
entropy

Article

Thermodynamic Fluid Equations-of-State

Leslie V. Woodcock

Department of Physics, University of Algarve, 8005-139 Faro, Portugal; lvwoodcock@ualg.pt

Received: 24 October 2017; Accepted: 30 December 2017; Published: 4 January 2018

Abstract: As experimental measurements of thermodynamic properties have improved in accuracy, to
five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic
fluid property data banks require ever-increasing numbers of terms with more fitted parameters.
Functional forms with continuity for Gibbs density surface ρ(p,T) which accommodate a critical-point
singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc) and
pressure (pc) and in the supercritical density mid-range between gas- and liquid-like states.
A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by
third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no
critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When
appropriate functional forms are used for each state separately, we find that the mesophase pressure
functions are linear. The negative and positive deviations, for both gas and liquid states, on either
side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous
states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle
temperature (TB), critical temperature (Tc), critical pressure (pc) and coexisting densities of gas
(ρcG) and liquid (ρcL) along the critical isotherm. A notable finding for simple fluids is that for all
gaseous states below TB, the contribution of the fourth virial term is negligible within experimental
uncertainty. Use may be made of a symmetry between gas and liquid states in the state function
rigidity (dp/dρ)T to specify lower-order liquid-state coefficients. Preliminary results for selected
isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with
focus on the supercritical mesophase and critical region.
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1. Introduction

There is a long history and an extensive literature of cubic equations-of-state, going back 140 years,
from van der Waals renowned two-term equation for Andrew’s original p-V-T data on carbon
dioxide [1], to current research and compilations with hundreds of terms and parameters. As the
thermodynamic experimental measurements have improved in accuracy, ever more complex equations
have evolved [2]. These equations are used to represent experimental thermodynamic properties for
modern data banks such as the NIST compilation for CO2 [2,3]. Over recent decades, ever-increasing
numbers of terms and more fitted parameters are required. The Span–Wagner equation for CO2 [2],
for example, contains hundreds of terms, each with many fitted parameters, and various adjustable
fractional exponents. As even more accurate data become available from future research, these
functional forms will need yet more adjustable parameters.

The basic reason of this inconvenient modeling practice is the van der Waals gas-liquid continuity
hypothesis [1]. Continuous cubic functional forms are inappropriate in the vicinity of Tc and in the
supercritical mid-range between gas and liquid phases. A mesophase, confined within percolation
loci that bound the existence of gas and liquid phases by higher-order discontinuities, has been
identified [4–6]. A simple numerical differentiation of NIST equations-of-state [7] can demonstrate the
supercritical mesophase and observe the phase bounds, along any isotherm, of any fluid (e.g., CO2
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Figure 1) for any of the 200 fluids in the NIST Thermophysical Property data bank. These boundaries
have been smoothed over by the equations-of-state used to parameterize the original experimental data.
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observable coexisting gas density, and minimum coexisting liquid density along Tc i.e., 305 K (purple). 

Within the uncertainties, p(ρ,T) is a linear function of ρ in the mesophase region. The origin of 
the linearity is the colloidal nature of the supercritical mesophase [6,8] with a linear combination rule 
for thermodynamic state functions, similar to subcritical lever rule for the inhomogeneous 2-phase 
region. When appropriate functional forms are used for gaseous and liquid states separately, we find 
that all other isothermal thermodynamic state functions in the mesophase are linear functions of 
density. In the case of pressure, the negative and positive adjacent deviations for liquid and gas on 
either side are quadratic. The parameterizations require only physical constants belonging to the 
specific fluid, Boyle temperature (TB), critical temperature (TC), and coexisting densities along the 
critical isotherm, and known virial coefficients b2(T) and b3(T) etc. A remarkable finding is that for 
the gas phases below TB, the coefficient b4 is effectively zero within the experimental uncertainty. 
There is rigidity symmetry between gas and liquid phases on either side of the mesophase reported 
previously [9], that relates the lower coefficients of the liquid equation to properties of the gas in the 
vicinity of the percolation loci. 

The objective of this research is to investigate the extent that these findings can be used to describe 
experimental thermodynamic properties of a pure fluid over the whole range of equilibrium existence. 
Here, we investigate equations-of-state for gas, liquid and mesophase separately, each of which, in 
an initial approximation, require only measurable physical constants specific to particular fluids. 
Comparisons with experimental data are made via the NIST thermo-physical databank [3]. NIST 
tabulations reproduce experimental data with 100% accuracy, and therefore, provide a foremost 
criteria for testing the alternative description to van der Waals underlying science of critical and 
supercritical behavior of fluids as described in references [4–9]. 
  

05
1015
2025
3035
40

0 5 10 15 20

p
(MPa)

density (mol/L)

CO2 supercritical isotherms
750 700

600
500

450
400

375
350

340
330

320
310

305

Figure 1. Supercritical T(K) isotherms for CO2: the green dashed line is the percolation loci PB; the blue
dashed line is the percolation loci PA; the green and blue solid circles are the maximum experimentally
observable coexisting gas density, and minimum coexisting liquid density along Tc i.e., 305 K (purple).

Within the uncertainties, p(ρ,T) is a linear function of ρ in the mesophase region. The origin of the
linearity is the colloidal nature of the supercritical mesophase [6,8] with a linear combination rule for
thermodynamic state functions, similar to subcritical lever rule for the inhomogeneous 2-phase region.
When appropriate functional forms are used for gaseous and liquid states separately, we find that all
other isothermal thermodynamic state functions in the mesophase are linear functions of density. In
the case of pressure, the negative and positive adjacent deviations for liquid and gas on either side are
quadratic. The parameterizations require only physical constants belonging to the specific fluid, Boyle
temperature (TB), critical temperature (TC), and coexisting densities along the critical isotherm, and
known virial coefficients b2(T) and b3(T) etc. A remarkable finding is that for the gas phases below TB,
the coefficient b4 is effectively zero within the experimental uncertainty. There is rigidity symmetry
between gas and liquid phases on either side of the mesophase reported previously [9], that relates the
lower coefficients of the liquid equation to properties of the gas in the vicinity of the percolation loci.

The objective of this research is to investigate the extent that these findings can be used to describe
experimental thermodynamic properties of a pure fluid over the whole range of equilibrium existence.
Here, we investigate equations-of-state for gas, liquid and mesophase separately, each of which,
in an initial approximation, require only measurable physical constants specific to particular fluids.
Comparisons with experimental data are made via the NIST thermo-physical databank [3]. NIST
tabulations reproduce experimental data with 100% accuracy, and therefore, provide a foremost criteria
for testing the alternative description to van der Waals underlying science of critical and supercritical
behavior of fluids as described in references [4–9].
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2. Rigidity and Fluid-State Bounds

Rigidity, (ω)T, is the work required to isothermally and reversibly increase the density of a fluid.
With dimensions of a molar energy, this simple state function relates directly to the change in Gibbs
energy (G) with density at constant T

ωT = (dp/dρ)T = ρ(dG/dρ)T (1)

The inequalities that distinguish gas from liquid are:

GAS ρ < ρPB (d2ω/dρ)T < 0 (2)

LIQUID ρ > ρPA (d2ω/dρ)T > 0 (3)

and for the mesophase

MESO ρPB < ρ < ρPA (d2ω/dρ)T = 0 (4)

The rigidity isotherms shown in Figure 2 for CO2 have been obtained from NIST Thermophysical
databank [3]. Inequalities in the derivatives of ωT (Equations (2) and (3)) can thermodynamically
define the percolation loci [9]. It follows that at low density the percolation loci must approach the
Boyle temperature (TB) by its definition, which is obtained from the rigidity intersection interpolated
at zero density. For CO2 the limiting rigidity (RTB: where R is the gas constant) along the percolation
loci is 6.03 kJ/mol and TB is 725 K, i.e., the temperature above which the 2nd-virial coefficient (b2)
is positive and below which it is negative; at TB, p = ρkT and b2 = 0. In the pressure-density plane,
the percolation loci exhibit maxima as density decreases and approach zero, i.e., the ideal gas limit at
low pressures and densities. The same behavior is seen for other atomic (e.g., argon) and molecular
(e.g., water) fluids.
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Figure 2. Rigidity of fluid phases of CO2 from NIST thermo-physical tables: the loci of gas and
liquid-phase bounds are green (percolation line PB) and blue (percolation line PA) respectively; red
lines are supercritical isotherms, blue lines are subcritical isotherms; the purple isotherm is Tc (305 K):
the Boyle temperature (TB) = 725 K.
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It is clear from Equation (1) thatω ≥ 0, i.e., rigidity must always be positive although it can be
zero in two-phase coexistence regions. Gibbs energy cannot decrease with pressure when T is constant.
From these definitions moreover, not only can there be no “continuity” of gas and liquid but the gas and
liquid states are fundamentally different in their thermodynamic description. Rigidity is determined by
number density fluctuations at the molecular level, which have different but complementary statistical
origins in each phase, hence the symmetry [9]. There is a distribution of many small clusters in a gas
with one large void; there is a distribution of unoccupied pockets in the liquid with one large cluster.
The statistical neighborhood properties of unoccupied pockets are the same as occupied sites.

The percolation loci and the critical coexisting densities at Tc for CO2 have been obtained by
the method previously described in detail for Lennard-Jones fluids [5] and argon [8]. Looking at
Figure 2, the coexisting densities of the gas (ρG) and of liquid (ρL) and the meso-density gap vary
linearly between the critical temperature (Tc) and Boyle temperature (TB). If the mesophase rigidity is
obtainable in terms of TB and TC, we can then represent the density bounds with linear functions and
the rigidity in the mesophase as shown in Figure 3a,b, and incorporate a linear equation of state for the
mesophase that connects with gas and liquid at the percolation bounds PB and PA respectively.

Figure 3. (a) Phase diagram for CO2: data obtained from NIST Thermophysical Properties compilation
indicating the percolation loci that bound the supercritical liquid and gas states: the green and blue
dashed lines are the gas (PB) and liquid (PA) percolation loci respectively [4–9]; solid red points;
coexisting densities of the gas (ρG) and of liquid (ρL) at Tc are indicated by the arrows; (b) rigidity as a
function of temperature in the mesophase.

GAS ρPB(T) = ρG(Tc) [(TB − T)/(TB − TC)] (5)

LIQUID ρPA(T) = ρL(Tc) [(TB − T)/(TB − TC)] (6)

Use of original experimental data could result in non-linear Equations (5) and (6) for density
state bounds in a more refined analysis. Given these expressions for the temperature dependence
of the percolation loci, and the rigidity in the mesophase (Figure 3b), in terms of physical constants
belonging to the specific fluid, we can now proceed to represent the thermodynamic surfaces using
virial expansions.

The rigidity in the mesophase varies from kT at TB to zero at Tc. It is linearly dependent on
temperature in the near-critical region up about 1.25 T/Tc but there is an increasing small quadratic
term as seen in Figure 3b. The temperature dependence in the range Tc to TB appears to be logarithmic,
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but without a scientific explanation, and within the uncertainty of the data, it is best represented by a
simple quadratic

ωT = c1T* + c2T*2 (7)

where T* = (T − Tc)/(TB − Tc) and the constants c1 and c2 as given in Figure 3b.

3. Pressure Surfaces p(ρ,T)

The pressure for any thermodynamic equilibrium state point can be obtained as a function of
density along any isotherm. The gas equation-of-state can be parameterized using the formally exact
Mayer virial expansion [10]. The mesophase pressure increases linearly with density the region 0 > T >
TB and ρPB(T) > ρ < ρPA(T), and for the “liquid” state ρ > ρPA(T), we can use an empirical expansion.
The isothermal equations-of-state for pressure are as follows:

GAS p(ρ,T) = kTρ (1 + b2(T)ρ + b3(T)ρ2 + . . . ) (8)

MESO p(ρ,T) = p(ρPB,T) +ωT (ρ − ρPB) (9)

LIQUID p(ρ,T) = p(ρPA,T) + [a1(ρ − ρPA) + a2(ρ − PA)2 + a3(ρ − ρ PA)3 . . . ] (10)

For the temperature-density region Tc < T < TB and ρ < ρPA(T), Equations (8)–(10) are based
upon the observation that there is a phase transition of the third-order at the mesophase bounds
with a discontinuity in the derivative ofωwith respect to ρ, i.e., the third derivative of Gibbs energy
with respect to ρ at constant T along an isotherm. For temperatures above TB, p(ρPA,T) and ρPA,
in Equation (10), are zero, whereupon the coefficients an in Equation (10) become the same as the
Mayer virial coefficients bn (T) in Equation (8).

For the supercritical fluid at temperatures above TB, Equation (8) up to order b4 is sufficient to
reproduce the pressure with five-figure accuracy, i.e., within the margin of the original experimental
uncertainty, with a trend-line regression >0.999999, up to temperatures of 1000 K and pressures up
to 50 Mpa. For the gas phase, at all temperatures below TB, the 4th virial coefficient is found to be
essentially zero, within the uncertainty of the experimental data; all higher terms are negligible. Thus,
for the case of CO2, the equation-of-state of the whole “gas” region of Figure 3 requires just the second
and a third virial coefficients b2(T) and b3(T) within the experimental precision.

An overall p(ρ,T) equation of state can be integrated along any isotherm to obtain the Helmoltz
energy function A(T) and hence, via the partition function, all other thermodynamic state functions
and/or derivatives by long-established procedures [11].

3.1. Supercritical CO2

In order to demonstrate a necessity of three separate equations-of-state, we take, as an example
in the first instance, a supercritical isotherm T = 350 K, or T/Tc = 1.15, of CO2. The critical and Boyle
temperatures for CO2 according to NIST databank [3] are Tc = 305 K and Tc = 725 K. Using the same
method described previously for argon [8], the coexisting densities at Tc are found to be ρc(gas) =
7.771 mol/L and ρc(liq) = 13.46 mol/L. Substituting these physical constant values into equations
(5 to 7) for T = 350 K we obtain the gas and liquid state density bounds ρPB(gas) = 7.305 mol/L and
ρPA(liq) = 12.02 mol/L, and the rigidityω(350 K) = 0.318 kT (0.925 kJ/mol).

If we try to fit the NIST data for the whole isotherm continuously from 0, just up to only 50 MPa,
using a 6-term polynomial for example, we obtain the result:

p = −0.000008ρ6 + 0.000457ρ5 − 0.009373ρ4 + 0.096245ρ3 − 0.596317ρ2 + 3.459264ρ − 0.189239

with R2 = 0.999125
In this typical continuous overall polynomial fit, the lower order coefficients are scientifically

meaningless. By contrast, by using virial coefficients and known properties of the mesophase bounds,
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the NIST data for the whole range of three regions can be reproduced with essentially 100% precision
when the gas, liquid and meso-states have different equations-of-state. We assume that there is a
third-order phase transition, i.e., a discontinuity in the third derivative of Gibbs energy at the gas and
liquid-state boundaries in accord with inequalities (2 and 3).

The experimental data from the NIST tabulations is reproduced with the same precision as the
original data can be obtained, i.e., accurate to 5 figures, as evidenced by the mean-squared regression
(R2) in the trendline polynomial coefficients as given. Also shown in Figure 4 are redefined equations
to give the virial coefficients in Equations (8)–(10) as shown on the plots. The coefficient a1 in the
liquid-state expansion is taken to be equal to the value ofωT in the mesophase to effect the third-order
discontinuity between the mesophase and the liquid state. There is a symmetry between the rigidity of
gas and liquid on either side of the mesophase but at this stage, this observation is empirical. As it
presently lacks formal theory, we assume only the linear coefficient in Equation (10) and make no
assumptions regarding higher-order coefficients at this stage.
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Figure 4. Pressure equations p(ρ) for CO2 at a supercritical temperature (350 K or T/Tc = 1.15) as
derived from NIST Thermophysical Properties compilation: (a) gas state; (b) supercritical meso-phase
and (c) liquid.

3.2. Supercritical Argon

Modern research into fundamental equation-of-state science is more often based upon the example
of argon in the first instance because of the relative simplicity of the spherical two-body pair potential
and the amenability to basic theory. The literature on equation-of-state data to high temperature and
pressure is both extensive and accurate to at least five figures except in the vicinity of the critical
temperature (Tc) and pressure (pc) [3,12]. For temperatures above the Boyle temperature there appears
to be just a single continuous fluid state up to the highest pressures measured, which, in the case of
argon, is 1000 MPa, according to NIST [3,12]. If there are no discontinuities along isotherms for T > TB,
the Mayer virial expansion is applicable over the whole accessible density range. The expansion for
the pressure is

p = kT(ρ + b2ρ
2 + b3ρ

3 + b4ρ
4 . . . . . . ) (11)

and on differentiation the rigidity is

ω = (dp/dρ)T = kT(1 + 2b2ρ + 3b3ρ
2 + 4b4ρ

3 . . . . . . . . . ) (12)

where bn are the temperature-dependent virial coefficients with conventional definitions. The NIST
data for four supercritical isotherms above and including the Boyle temperature (TB) can be precisely
reproduced using Equation (12) and the virial coefficients determined. From Stewart and Jacobson [13]
we obtain TB = 414 ± 0.5 for argon, which is consistent with the zero value of the second virial coefficient
obtained here from parameterizations of NIST rigidity values from sound velocity compilations.
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The equation-of-state isotherms are presented in Figure 5. Also given are the polynomial trend-line
parameters up to order 4. In this region, the entire experimental range of pressures, from near zero at
ideal gas states at limiting low densities, up to 1000 MPa, can be represented to within the experimental
five-figure precision by a three or at most four-term, closed-virial equation. Using Equation (12) we can
deduce lower-order values of the virial coefficients of argon as listed in Table 1. The values obtained
for b2 and b3 are in agreement with the literature values within the experimental uncertainties, which
can be as high as 20% in the case of b3 [9]. For argon at supercritical temperatures, little is presently
known experimentally about b4 and higher coefficients.Entropy 2018, 20, 22  7 of 15 
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Figure 5. Rigidity isotherms,ω(ρ) for argon at temperatures from 700 K down to TB (414 K) as obtained
from NIST Thermophysical Properties compilation up to pressures of 500 MPa; all of the EXCEL
trendline polynomials of order 4 reproduce the NIST isotherms with total precision, i.e., a regression of
R2 = 1.000000 up to 6-figure precision.

Table 1. Argon virial coefficients.

T (K) b2 (10−3 mol/L) b3 (10−6 mol2/L2) b4 (10−9 mol3/L3)

700 14.91 0.8191 0.0063
600 11.45 0.9029 0.0013
500 6.130 1.0523 −0.0082

414 (~TB) 0.0081 1.3085 −0.0248
151 (~Tc) −86.02 2.48 0

100 −183.2 0

Lower-order virial coefficients, as defined by Equation (12), and calculated from the trend-line
polynomial coefficients in Figure 5, are summarized in Table 1. All the experimental data from the NIST
tabulations are reproduced with maximum precision as evidenced by the mean-squared regression in
the trendline polynomial coefficients (R2 = 1.000000 to six decimal places in every case); the coefficients
have been redefined to obtain values of the virial expansion coefficients defined in Equation (11). These
are in line with previous b2(T) and b3(T) tabulations [14] within the uncertainties, which are rather
wide, up to a few percent for b2(T), and up to 25% in the case of b3(T).

4. Critical Isotherms

4.1. Argon

The critical temperature of argon according to NIST is 150.87, the value obtained in a revised
analysis of the data of Gilgen et al. is 151.1 ± 0.1. Here we represent the rigidities of the experimental
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151 K isotherm from the NIST data tables using standard trend-line polymomials. The coexisting gas
and liquid densities as obtained from the original experimental data of Gilgen et al. [14,15] are ρc(gas)
= 11.89 mol/L and ρc(liq) = 14.95 mol/L [8]. For all temperatures between Tc and the triple point
(Ttr), the NISTω(ρ)T isotherms can be reproduced with 100% precision using just the two-parameter
equation. Numerical values of the coefficients b2 and b3 at Tc, obtained from the rigidity isotherms as
illustrated in Figure 6a, are included in Table 1. The trend-line polynomials of order 3 reproduce the
NIST isotherms over the whole range of equilibrium existence with high accuracy.

These trend-line equations forωT(ρ) can be integrated to obtain pressure equations, and rewritten
as:

Gas ρ < ρc(gas) p = kT (ρ + b2 ρ
2 + b3 ρ

3) (13)

Meso ρc(gas) < ρ < ρc(liq) p = pc (14)

Liquid ρ > ρc(liq) p = p(ρcl,T) + kT [a (ρ − ρcl) + a2(ρ − ρcl)
2 + a3(ρ − ρcl)

3] (15)

where ρcl is the critical coexisting liquid density ρc(liq). For argon, the critical pressure in Equation (14)
pc = 4.949 MPa [4]. Thus, we have an equation-of-state for argon along the whole critical isotherm,
with no divergent singularity. The coefficients in Equations (13) and (15), are obtainable from the
rigidity data plotted in Figure 6a,b, for example, by dividing the coefficients an by nkT.
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4.2. Steam and Water

The evidence for supercritical percolation transitions bounding the existence of water and steam
in the supercritical region, and the parameters describing the mesophase, have all been the subject of a
previous article with an extended debate [16]. For the present purposes, we only need values of some
physical constants that are given as an ancillary data list by NIST [3].

Figure 7 shows how the critical point in the T-p plane is thermodynamically defined by an
intersection of two percolation loci, using the example of water. The coexisting density curves are taken
from the experimental measurements of the IAPWS International Steam Tables [17]. The supercritical
percolation transition points PA and PB intersect at Tc, and continue to define the metastable limit of
existence loci, usually referred to as spinodals, of the subcritical gas and liquid within the two-phase
region. Values of the critical physical constants for water are: Tc = 647.1 K; pc = 22.05 MPa; critical
steam density ρcG = 13.02 mol/L; critical water density ρcL = 20.61 mol/L [3,16].

Also plotted in Figure 7 are the experimentally observed spinodals [18] that bound the regions
of metastable existence within the two-phase coexistence region at subcritical temperatures. At Tc,
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the percolation loci, PA and PB in Figure 7, cross the critical coexistence line at its extremities to become
the subcritical boundary of the metastable compressed gas (p > psat) and metastable expanded liquid
state (p < psat) stability limits respectively. This behavior was also shown for liquid argon [8]. It is
consistent with a phenomenological definition of PA and PB when both liquid and gas have the same
values of the rigidity (ωT) on the same isotherm whereupon (d2p/dρ2)T = 0 at both PA and PB but at
different pressures. At these instability points, there is also zero surface tension and consequently no
barrier to spontaneous nucleation of steam from water at PA, or water from steam at PB, for example.
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The equations-of-state for steam and water along the critical isotherm are shown in Figure 8a,b
respectively. In both cases a quartic equation is required to fit the data with the five-figure precision of
the NIST tables. The fourth virial coefficient for steam at Tc, however, still appears to be quite small in
its contribution right up to the near critical density. We also note that the liquid water critical isotherm
extends from a critical pressure of 22.05–1000 MPa and can be reproduced with six-figure precision by
the quartic polynomial.
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It is clear from the above that the equations-of-state for subcritical isotherms will require a
scientific knowledge of the forms for the extension of the percolation loci into the subcritical two-phase
region on the density surface. At present we do not have this information. It would be rather unwise
to make any assumptions based only upon the known supercritical behavior of the density loci of PA
and PB and rather scanty subcritical spinodals. In the following section, therefore, we will limit the
present extension of the above to an analysis of the 100 K isotherm of liquid argon, to demonstrate
the applicability of the simple equation-of-state forms Equations (8)–(10) to subcritical gas and liquid
state isotherms.

5. Subcritical Isotherms

Subcritical Argon

The 100 K (T/Tc ~2/3) isotherm data for the rigidity from the NIST compilation of gaseous and
liquid argon are re-plotted in Figure 9. The gas pressure up to the condensation line can be represented
with just the two-term equation with the value of b2 given in Table 1; b3 is essentially zero. Thus the
accurate equation for argon gas at lower temperatures is simply

pgas (100 K) = kTρ (1 + b2 ρ) (16)

The value obtained from the linear fit of ωT in Figure 8a, is 183.2 × 10−3 mol/L compares
favorably with an experimental value −187 (cm3/mol) obtained in 1958 [13].
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Figure 9. Rigidity ω(ρ) for argon along the sub-critical isotherm T = 100 K from NIST [4]: (a) gas
phase from zero to maximum equilibrium gas coexistence density (0.42 mol/L): (b) liquid phase from
minimum liquid equilibrium coexistence density (32.9 mol/L) at the coexistence pressure (MPa) to a
pressure of 100 MPa.

The corresponding pressure data for liquid argon at 100 K up to freezing (62 MPa) may not be
continuous in all its derivatives, and hence the equation-of-state may not be as simple as it looks
if there is a higher-order discontinuity. The liquid isotherm appears to comprise two linear parts
containing an intersection at an intermediate density of around 35.0 mol/L. This is consistent with a
previous conjecture [19] that as the crystallization point is approached, the liquid itself may become
another kind of mesophase as large clusters of ordered arrangements of atoms, probably bcc in the
case of argon, begin to stabilize. This could be a feature of the equilibrium “liquid” state structure in
the near triple-point density region. One can regard the data in Figure 9b as a fragment of evidence for
this conjecture. We will not consider this intriguing possibility further at this stage. We note, however,
that if this is indeed the underlying science, any equation-of-state for the equilibrium ‘pure liquid’ may
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terminate before the equilibrium crystallization density is reached along subcritical isotherm, below
around 115 K in the case of argon.

6. Energy and Heat Capacities

6.1. Argon Critical Isotherm and Isochores

The only real evidence for a van der Waals-like singularity and a critical point, with continuity
of gas and liquid [1] and universal scaling properties [20], is evidently in historic heat capacity
measurements [21,22]. Here we focus briefly at the equation-of-state for the internal energy U(ρ)T for
the critical isotherm of argon close to Tc (151 K). The NIST data with the trend-line parameters are
shown in Figure 9. The foremost observation is that along this isotherm the gas phase is represented
by a quadratic requiring two coefficients whereas the liquid phase is linear up to a density around
35 mol/L. The critical divide is linear by definition in accord with the lever rule or proportionality.

The internal energy for all temperatures below Tc in the two-phase region is defined to be linear
by the lever rule since the physical state is of two-phase coexistence. Above the critical divide the three
regions shown in Figure 10, however, look much the same, so we can identify two higher-order phase
transitions bounding the mesophase. There is no evidence of divergent behavior of slope of U(T)ρ, i.e.,
in the isochoric heat capacity Cv. Isotherms from Tc to 2Tc all show a constant value of (dU/dT)ρ in
the supercritical region, as seen in Figure 11. Along the critical divide, the isochoric heat capacity is
defined by the lever rule: for T ≤ Tc

Cv = (dU/dT)V = X Cv(liq) + (1 − X) Cv(gas) (17)

where X is mole fraction of liquid.
Uhlenbeck [20] appears to have been the first to recognize what he described as “surprising

Russian results” [21,22] as being supportive of a universal picture of critical phenomena in which the
isochoric heat capacity Cv is believed to diverge logarithmically on both sides of the critical point.
When the proceedings of the Washington Conference were published one-year after the event [20],
the articles by Rowlinson, and by Fisher, in particular, hailed the Russian discovery as a breakthrough
(referenced by Rowlinson though curiously not referenced by Fisher), with the implicit proclamation
that the van der Waals critical point, with continuity of liquid and gas, had become established scientific
truth, and universal scaling properties similar to a 2D-Ising model lattice gas would describe gas-liquid
and indeed all similar “critical point singularities”. In fact, an abundance of experimental evidence
against this conjecture was already there in the literature [23] and not supportive of van der Waals
hypothesis or universality.

Entropy 2018, 20, 22  11 of 15 

 

6. Energy and Heat Capacities 

6.1. Argon Critical Isotherm and Isochores 

The only real evidence for a van der Waals-like singularity and a critical point, with continuity 
of gas and liquid [1] and universal scaling properties [20], is evidently in historic heat capacity 
measurements [21,22]. Here we focus briefly at the equation-of-state for the internal energy U(ρ)T for 
the critical isotherm of argon close to Tc (151 K). The NIST data with the trend-line parameters are 
shown in Figure 9. The foremost observation is that along this isotherm the gas phase is represented 
by a quadratic requiring two coefficients whereas the liquid phase is linear up to a density around 35 
mol/L. The critical divide is linear by definition in accord with the lever rule or proportionality. 

The internal energy for all temperatures below Tc in the two-phase region is defined to be linear 
by the lever rule since the physical state is of two-phase coexistence. Above the critical divide the three 
regions shown in Figure 10, however, look much the same, so we can identify two higher-order phase 
transitions bounding the mesophase. There is no evidence of divergent behavior of slope of U(T)ρ, i.e., 
in the isochoric heat capacity Cv. Isotherms from Tc to 2Tc all show a constant value of (dU/dT)ρ in 
the supercritical region, as seen in Figure 11. Along the critical divide, the isochoric heat capacity is 
defined by the lever rule: for T ≤ Tc 

Cv = (dU/dT)V = X Cv(liq) + (1 − X) Cv(gas) (17) 

where X is mole fraction of liquid. 
Uhlenbeck [20] appears to have been the first to recognize what he described as “surprising 

Russian results” [21,22] as being supportive of a universal picture of critical phenomena in which the 
isochoric heat capacity Cv is believed to diverge logarithmically on both sides of the critical point. 
When the proceedings of the Washington Conference were published one-year after the event [20], the 
articles by Rowlinson, and by Fisher, in particular, hailed the Russian discovery as a breakthrough 
(referenced by Rowlinson though curiously not referenced by Fisher), with the implicit proclamation 
that the van der Waals critical point, with continuity of liquid and gas, had become established 
scientific truth, and universal scaling properties similar to a 2D-Ising model lattice gas would describe 
gas-liquid and indeed all similar ‘critical point singularities’. In fact, an abundance of experimental 
evidence against this conjecture was already there in the literature [23] and not supportive of van der 
Waals hypothesis or universality. 

 
Figure 10. Internal energy U(ρ) for argon along the isotherm (T = 151 K) using data from NIST [4]. 

Figure 10. Internal energy U(ρ) for argon along the isotherm (T = 151 K) using data from NIST [4].



Entropy 2018, 20, 22 12 of 15

Entropy 2018, 20, 22  12 of 15 

 

(a) (b)

Figure 11. (a) Internal energy isochores, U(T)ρ for argon for a temperature range from near triple 
point to supercritical from NIST [4] showing an expanded window picture of the near critical 
isochores to the right. (b) Magnified data in critical region showing a weak discontinuity in (dU/dT)v, 
i.e., Cv, at Tc but clearly no evidence of logarithmic divergence on either side of Tc. 

Despite using complex equations-of-state that could accommodate the concept of a critical 
density at the node of a parabola, the NIST thermodynamic data bank is still valid as “experimental” 
evidence that the 1965 Washington proclamation of ‘a universality theory’ was fundamentally incorrect. 
It was based upon a misinterpretation of the isochoric heat capacity Cv for T < Tc, and spurious results 
at, or millikelvins greater than, Tc [24,25]. Along any isochore within the critical divide there can be no 
divergence of the isochoric heat capacity. For T > Tc a divergence of Cv would be a contradiction of 
laws of thermodynamics. If one could reversibly add heat (Qrev) to a classical Gibbs fluid system that 
does no work with no increase in the temperature, it would be imply, for example, that Qrev i.e., 
enthalpy, or (Qrev/T) i.e., entropy, are not state functions [26]. 

6.2. SF6 near Critical Isochors 

Sulphur hexafluoride has a special importance in this scientific debate; its critical temperature 
and pressure are amenable to experiments at near ambient conditions. It has been the subject of a 
microgravity experiment aboard the NASA Space Shuttle [27] that appeared to confirm the erroneous 
result obtained some 25 years earlier by Voronel and his colleagues [24,25]. We have obtained the 
original published data points of the space shuttle experiments (see acknowledgements) and have 
plotted them alongside the U(T)V equation-of-state from the NIST data bank parameterized as a simple 
quadratic for T < Tc and linear for T > Tc equations in Figure 12a. The equations for U(T) at the same 
density as the space shuttle μg experiment can be differentiated to give the isochoric heat capacities Cv 
in Figure 12b. In contrast to both the historic Russian results for argon, and the space shuttle “Cv” 
values also plotted in Figure 12b, there is no divergence of the isochoric heat capacity Cv either below 
or above Tc, as suggested, for example, in alternative near critical equations of state with a crossover 
to the divergent form in the vicinity of Tc [28]. 

We can see from Figure 12 that the isochoric heat capacities reported in the Russian experiments, 
and the space shuttle experiments, as relied upon by all the principle proponents of universality for 
several decades [20], are a misinterpretation of the correct thermodynamic definition of the isochoric 
heat capacity Cv below the critical temperature. If the equations-of-state for U(T) in Figure 12a are 
essentially correct, the space shuttle result, as well as the argon results for “Cv” must be wrong in the 
region above Tc. One explanation may be that the experimental measurements on argon [21] were 
carried out on continuously stirred steady-states. Heat capacity data obtained for stirred samples in 
closed adiabatic calorimeters cannot be construed as equilibrium thermodynamic data for the 
determination of fluid equations-of-state in the close proximity of Tc, either below or above Tc, for 
any isochore along the critical divide. In the case of the SF6 microgravity experiments [22], if there 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

145146147148149150151152153154155156

In
te

rn
al

 E
ne

rg
y 

 (K
J/

m
ol

)

T(K)

GAS

LIQUID

2-PHASE

Figure 11. (a) Internal energy isochores, U(T)ρ for argon for a temperature range from near triple point
to supercritical from NIST [4] showing an expanded window picture of the near critical isochores to
the right. (b) Magnified data in critical region showing a weak discontinuity in (dU/dT)v, i.e., Cv, at Tc

but clearly no evidence of logarithmic divergence on either side of Tc.

Despite using complex equations-of-state that could accommodate the concept of a critical density
at the node of a parabola, the NIST thermodynamic data bank is still valid as “experimental” evidence
that the 1965 Washington proclamation of ‘a universality theory’ was fundamentally incorrect. It was
based upon a misinterpretation of the isochoric heat capacity Cv for T < Tc, and spurious results at,
or millikelvins greater than, Tc [24,25]. Along any isochore within the critical divide there can be no
divergence of the isochoric heat capacity. For T > Tc a divergence of Cv would be a contradiction of
laws of thermodynamics. If one could reversibly add heat (Qrev) to a classical Gibbs fluid system
that does no work with no increase in the temperature, it would be imply, for example, that Qrev i.e.,
enthalpy, or (Qrev/T) i.e., entropy, are not state functions [26].

6.2. SF6 near Critical Isochors

Sulphur hexafluoride has a special importance in this scientific debate; its critical temperature
and pressure are amenable to experiments at near ambient conditions. It has been the subject of a
microgravity experiment aboard the NASA Space Shuttle [27] that appeared to confirm the erroneous
result obtained some 25 years earlier by Voronel and his colleagues [24,25]. We have obtained the
original published data points of the space shuttle experiments (see acknowledgements) and have
plotted them alongside the U(T)V equation-of-state from the NIST data bank parameterized as a simple
quadratic for T < Tc and linear for T > Tc equations in Figure 12a. The equations for U(T) at the same
density as the space shuttle µg experiment can be differentiated to give the isochoric heat capacities
Cv in Figure 12b. In contrast to both the historic Russian results for argon, and the space shuttle “Cv”
values also plotted in Figure 12b, there is no divergence of the isochoric heat capacity Cv either below
or above Tc, as suggested, for example, in alternative near critical equations of state with a crossover
to the divergent form in the vicinity of Tc [28].

We can see from Figure 12 that the isochoric heat capacities reported in the Russian experiments,
and the space shuttle experiments, as relied upon by all the principle proponents of universality for
several decades [20], are a misinterpretation of the correct thermodynamic definition of the isochoric
heat capacity Cv below the critical temperature. If the equations-of-state for U(T) in Figure 12a are
essentially correct, the space shuttle result, as well as the argon results for “Cv” must be wrong in the
region above Tc. One explanation may be that the experimental measurements on argon [21] were
carried out on continuously stirred steady-states. Heat capacity data obtained for stirred samples
in closed adiabatic calorimeters cannot be construed as equilibrium thermodynamic data for the
determination of fluid equations-of-state in the close proximity of Tc, either below or above Tc, for
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any isochore along the critical divide. In the case of the SF6 microgravity experiments [22], if there
was no stirring, there must be some other reason for the discrepancy seen in Figure 12, that is
presently inexplicable.
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Figure 12. (a) Internal energy isochores, U(T)ρ for SF6 for a temperature range from near triple point
to supercritical from NIST Thermophysical Properties compilation [4]; (b) Isochoric heat capacities
calculated from the equations in Figure 1a, i.e., (dU/dT)ρ alongside the original space shuttle heat
capacity data points.

7. Conclusions

From the foregoing analysis, we conclude that the pressure equation-of-state, and hence all other
thermodynamic state functions, can be expressed simply in terms of a few physical constants belonging
to the fluid, and coefficients in virial expansions. The van der Waals equation-of-state survived for
about 50 years until, increasingly, there was evidence that it could not account for the experimental
data unless it was extended to include more and more terms and adjustable parameters. Modern
equations-of-state with a large number of terms and adjustable parameters can reproduce experimental
p-V-T data to high precision for chemical engineering applications, but they may no longer reflect an
underlying physical science in the spirit of van der Waals.

We have found that the equation-of-state for the low density gas phases, in all three temperature
regions T > TB, TB >T > Tc, and T < Tc, can all be represented by the first two or three terms of a Mayer
virial expansion. For T > TB a single virial equation can represent the whole isotherms up to the highest
recorded pressures, which in the case of argon is 100 MPa. For supercritical temperatures below the
Boyle temperature the gas phase can be represented by a term virial expansion to within the accuracy
that the original pressures reported by NIST [3]. The virial equations-of-state are fundamental to all
atomic and molecular fluids and appear to be accurate up to second order, i.e., to quadratic terms for
all temperatures below TB. We will report detailed comparisons and virial coefficients for the case
CO2, and also some preliminary comparisons with experimental data and NIST equations, for the
exemplary fluid argon, in due course.

At this stage in the development of science-based alternative forms of the equation-of-state we
have not attempted to parameterise the second and third virial coefficients as functions of temperature.
We note, however, there is evidence that b2(T) may be non-analytic at the Boyle temperature. It can be
represented by two different series expansions, at least in the case of a simple Lennard–Jones model,
above and below TB [29,30]. There are also some indications that b3(T) exhibits a maximum at or near
Tc. Also, we find that for simple fluids, e.g., argon, below TB, the coefficient b4(T) appears to become
vanishingly small. A more accurate determination of lower-order virial coefficients from original
thermodynamic data ought now to become a research priority.
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