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Abstract. A method to determine the optimal subset of stations from a reference level groundwater
monitoring network is proposed. The method considers the redundancy of data from historical time
series, the times associated with the total distance required to run through the entire monitoring net-
work, and the sum of the times for each monitoring station. The method was applied to a hypothetical
case-study consisting of a monitoring network with 32 stations. Cost-benefit analysis was performed
to determine the number of stations to include in the new design versus loss of information. This
optimisation problem was solved with simulated annealing. Results showed that the relative reduction
in exploration costs more than compensates for the relative loss in data representativeness.
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1. Introduction

The problem of reducing the dimension of an existing groundwater monitoring
network (GMN) is addressed in this article. Both the quantity and quality of the
data and the exploration costs are included in the objective function. Data quality
includes the representativeness of the parameter spatial field and temporal vari-
ation. The parameter spatial field is considered to be representative for the phe-
nomenon under study if, with the amount of information available, the spatial
variation is best reproduced with a well-defined classification method. Three meth-
ods have been proposed to obtain optimal GMN networks: (i) variance reduction;
(ii) coupled simulation-statistical analysis; (iii) information transmission (transin-
formation). The variance reduction (VR) methods were introduced in early works
by Delhomme (1978), who used the so-called fictitious point method (generally
used to assess the quality of covariance models when estimating with kriging), to
determine the optimal location of rain gauges.

VR methods use the variance of the estimation error (σ 2
E) as an indicator of the

accuracy of the estimated values. In geostatistics, the mathematical definition of σ 2
E

means that its value does not depend on the actual values of the measured variables,
but rather on the relative spatial distribution of the measuring locations. Therefore,
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one may use σ 2
E to indicate the spatial distribution optimality of a sampling network

by testing all the combinations of available sampling locations, and choosing the
combination that minimises σ 2

E. Some additional assumptions must be made about
the probability-density function for the estimation error: the estimation errors at
any location in space are normally distributed – this may not always be the case
(Journel, 1987) – with zero mean and a standard deviation equal to the square root
of the estimation variance. A VR method is applied in this article. A short review
of the other two other optimisation methods is given below.

The coupled simulation-statistical analysis includes a wide range of techniques
that have arisen from the need to optimise the spatial distribution of containment or
pump-and-treatment wells in groundwater pollution problems. Meyer and Downey
(1988) proposed a method for determining the best location for monitoring wells,
following the works of Massmann and Freeze (1987a, b) in a risk-cost-benefit
analysis for waste management facilities. The method’s intention was to select
the networks that maximize the probability of detection in the face of uncertainty.
However, its practical applicability is hindered by the extreme simplicity of the ana-
lytical model used by Meyer and Downey (1988). Since then the containment prob-
lem has been thoroughly studied (e.g., Wagner and Gorelick, 1989; Lee and Kit-
adinis, 1991; Shafike et al., 1992; Woldt and Bogardi, 1992; Tiedman and Gorelick,
1993). A review of optimisation and decision analysis for aquifer restoration and
contaminant migration-control through pump-and-treat was made in Freeze and
Gorelick (1999). These methods also have high potential in the design of regional
or local networks for reference level monitoring.

Information transmission methods are based on the entropy as defined by Shan-
non (1948), on marginal entropy (Shannon and Weaver, 1949), and on the definition
of transinformation (Amorocho and Espildora, 1973). Entropy is a measure of un-
certainty; marginal entropy is a measure of the uncertainty of one outcome given
the knowledge of a second outcome related to the first; transinformation is the
reduction of the original uncertainty of one outcome given the knowledge of the
second. These methods were applied to water resources with good results (e.g.,
Amorocho and Espildora, 1973; Caselton and Husain, 1980; Harmancioglu and
Yevjevich, 1987; Harmancioglu and Alspaslan, 1992).

The inclusion of temporal information in the design of monitoring networks
has been addressed in the geostatistical context as part of the covariance/variogram
model by Bastin et al. (1984), Lebel et al. (1987), Buxton and Pate (1994), and
Pardo-Igúzquiza (1998), among others. The resulting models are however, both
very complex and problem-specific: the climatological variogram, in the form of a
linear function of a time-dependent, space invariant, scaling parameter and a vari-
ogram model, in the case of the first two and last references; or a variogram model
consisting of a three-dimensional isotropic spherical structure, a one-dimensional
zonal linear structure, and a one-dimensional cosine structure, in the case of Buxton
and Pate (1994). The sampling strategy may be designed not only to improve the
precision of the estimated field, but also to target the areas that exhibit critical
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estimated values (Rouhani and Hall, 1988; ASCE, 1990b), higher temporal vari-
ability, or special temporal features that distinguish them from the other spatial
locations. This limitation in the former models can be overcome by explicitly in-
corporating a temporal component in the objective function (OF), as is proposed
here.

Monitoring network designs is limited by budgetary constraints (except for very
special cases), which adds important limitations to the dimension of a particular
design with regard to the number of stations to be included. In groundwater mon-
itoring networks these costs are investment and exploration costs. If the design is
made from scratch then the number, location, frequency of monitoring and char-
acteristics of the wells can all be included in the design, and the problem is mul-
tiobjective: maximizing the information gained, while keeping the investment and
exploration costs at a minimum. However, if the objective is to reduce the dimen-
sion of an existing monitoring network, then exploration costs can be included in
the OF, and the problem is formulated using location as the only variable. Some
authors have addressed this problem in the context of variance reduction to optim-
ise rainfall data collection network designs (Bras and Rodríguez-Iturbe, 1976), to
assess the effect of altering the size and configuration of a groundwater monitoring
network for groundwater levels (Candela et al., 1988), and to establish an optimal
network design to estimate the areal averages of rainfall events (Pardo-Igúzquiza,
1998).

When reducing the number of stations of a GMN the problem is combinatorial:
which sub-set of stations, π , out of the original set, �, should be retained? If the
number of stations is large then the dimension of the combinatorial problem may be
exhaustively intractable. Pardo-Igúzquiza (1998) recently solved this problem for
rain gauges using simulated annealing. Rouhani and Fiering (1986) also used vari-
ance reduction techniques to determine the number and position of groundwater
monitoring stations, and analysed the robustness and resilience of these methods
(robustness was defined by Matalas and Fiering (1977) as ‘the insensitivity of a
system design to errors, random or otherwise, in the estimates of those paramet-
ers affecting design choice’; resilience in the definition of Shannon (1948) is ‘the
ability of the system to accommodate surprises and to survive under unanticipated
perturbations’). Rouhani and Fiering (1986) found a significant degree of instabil-
ity in the parameters of the covariance function (parameter space), though this
instability had negligible effect on the action space. Similar results were obtained
by Shannon (1948). Rouhani and Hall (1988) proposed the incorporation of risk,
defined as the weighted sum of the expected value and the estimation variance,
in order to correct the ‘blindness’ of the estimation variance to extreme values.
Longer reviews on this theme may be found in Loaiciga et al. (1992), Dixon and
Chiswell (1996), and Harmancioglu et al. (1999).

In this article the problem of reducing a GMN dimension is treated in the context
of variance reduction, coupled with a measure of temporal redundancy, such that
important local temporal variabilities are detected, and exploration costs in the
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form of the time taken to travel between stations. The term data quality is used
when referring to both spatial accuracy and temporal redundancy, and sampling
time when referring to the sum of monitoring and travel times. An objective func-
tion was built to incorporate these four factors.

The selection of the new GMN design was made by a cost-benefit analysis of
the gain in data quality and sampling times. The OF was optimised for several π

values with simulated annealing (SA), and the optimal π value obtained.
Two new developments in GMN optimisation are introduced in this article: (i) a

new definition of temporal redundancy; (ii) the minimisation of sampling times by
incorporating them directly in the OF.

The article is organized in the following way: in the second section an objective
function model is proposed; in the third section the simulated annealing algorithm
proposed to solve the optimisation problem is described, and its application is dis-
cussed; the fourth section presents a hypothetic case-study to test the method; the
results of the application are presented and discussed in the fifth section; finally, in
the sixth section the most relevant conclusions are drawn.

2. Objective Function

The new GMN size and spatial distribution must assure that both spatial and tem-
poral variabilities are correctly included in the new design, and that exploration
costs (sampling time) are minimized.

It is better to consider all the information collected, rather than using statistical
transformations of the data. Common statistical variables are: maximums, minim-
ums, percentiles, average values, variance, or more evolved transformations like
projection in factorial spaces and similarity (or correlation) coefficients. Most of
these statistical transformations have the advantage of reducing a large amount of
data to a treatable number of parameters. Despite their particular advantages, these
methods tend to enhance some particular features of the data, while disregarding
others. One way to circumvent this blindness is to use raw data whenever possible.
A mathematical time series function that makes no statistical transformation of the
raw data is proposed and used in this article. The function is a measure of data
redundancy and is used to obtain better spatial distributions of monitoring stations.

Spatial accuracy, temporal redundancy, monitoring times for each station and
total travel time are incorporated in a single OF and subjected to minimisation.
Simulated annealing (SA) is proposed to optimise the OF.

2.1. SPATIAL ACCURACY

Monitoring network optimisation for geo-variables, such as in areal mean rainfall
events, was the subject of early works by Rodríguez-Iturbe and Mejía (1974a, b),
in which they considered the spatial and temporal variability of mean rainfall. The
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variance of mean rainfall was calculated as the product of point process variance,
a reduction factor given by sampling in time (dependent only on the correlation
in time and length of the time series), and a reduction factor given by sampling
in space (dependent on the spatial correlation structure, the sampling geometry
and the number of stations). These authors studied random and stratified random
sampling schemes, and obtained an abacus for different correlation functions, the
number of stations, and area of the region. Lenton and Rodríguez-Iturbe (1974)
also considered the density and location of the stations. Bras and Rodríguez-Iturbe
(1975) continued the latter’s work, comparing former results for different point
variances, the covariance function and covariance function parameter. In the same
formalism, Bras and Rodríguez-Iturbe (1976) included the cost associated with
each station to help choose the best set (number and position) of stations with least
cost and least mean rainfall variance. The methods based on the reduction of the
estimation errors variance are known as variance-reduction techniques.

At this stage the variance-reduction method is developed using geostatistical
nomenclature. Within the geostatistical formalism, field data are held to be the
result of random processes of regionalized variables, i.e., of random variables with
space coordinates, with some spatial covariance. Regionalized variables are con-
tinuous in space, and therefore not completely random, but at the same time it
is not possible to model them by means of a deterministic function (or spatial
process). They therefore result from deterministic and stochastic processes (Math-
eron, 1970), incorporating the notion of uncertainty in the conception of inference
models or in the simulation of variables (Matheron, 1970; David, 1977; Journel
and Huijbregts, 1978). ASCE (1990a, b) gives a thorough review on the use of
geostatistics for mapping and sampling design.

The values of z(x) at the sampled points in the field can be considered as real-
izations of a set of random variables Z(x) in a field �. A set of random variables
Z(xi) defined in a field � is a random function Z(x):

Z(x) = {Z(xi)}xi∈�

z(xi) is therefore a realization of a random variable, and the latter a realization
of a random function.

As field data are usually scarce, it is not possible to calculate the distribution
function, but for practical applications only the first two moments are needed. Some
restrictions with respect to stationarity are needed. The most common theory con-
siders that the distribution function is invariant by translation. As, strictly speaking,
the restrictive hypotheses are applied only to the first two moments, it is required
that these exist and that they are independent of space coordinates (second order
stationarity), otherwise the spatial covariance of the variable Z depends solely on
the separation vector h (in modulus and direction). In this case only the spatial
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increments have to be stationary (intrinsic stationarity). If these increments are
made at step h, then the resulting expression is called the variogram:

γ (h) = 1

2
E

{
[Z(x + h) − Z(x)]2} . (1)

The matrix system used to compute the kriging weights has to be invertible. For this
property to be true, all the covariances of the system must be defined from positive
definite functions (see e.g., Matheron, 1970, p. 54). The variogram has tended to
replace covariance, mainly because of the less restrictive intrinsic hypothesis. In
most practical cases this less demanding restriction on the random function model
will not change the results (Deutsch and Journel, 1992).

To estimate the average value of a variable in an area A from values at locations
xα , Z(xα), inside or outside the area, this value is equal to

V = 1

A

∫
A

Z(x)dx . (2)

A linear estimation of V can be obtained from n data points by

V =
n∑

i=1

κi·Z(xi) , (3)

which is unbiased if the sum of the weights κ is one. This is a common requirement
in several methods and also in kriging. This method is chosen because values of
κ are determined so as to minimize the variance of the error of estimation. The
kriging system is defined by (Journel and Huijbregts, 1978):



n∑
k=1

κk·γ (hij ) + µ = γ (hiA) i = 1, . . ., n

n∑
k=1

κk = 1 ,

(4)

where µ is the Lagrange parameter, and γ (hiA) is the average variogram between
the point i and the area A when one extreme of the vector h is fixed in xi and the
other extreme describes the area A independently. The average variogram is then:

γ (hiA) = 1

A

∫
A

γ (xi, u)du . (5)

Approximated numerically by

γ (hiA) ≈ 1

M

M∑
k=1

γ (xi, xj ) xj∈A , (6)
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with M number of points used to discretise A. The estimation variance is expressed
by (Journel and Huijbregts, 1978):

σ 2
E =

N∑
i=1

κi·γ (hiA) − γ (hAA) , (7)

and

γ (hAA) ≈ 1

M2

M∑
i=1

M∑
k=1

γ (xi, xj ) xi, xj∈A . (8)

The estimation variance is a measure of the estimation accuracy of V . Because σ 2
E

only depends on the data points’ location, and once a variogram model is defined, it
is possible to change data location and calculate the estimation variance again. The
spatial arrangement of points that minimizes σ 2

E has the lowest estimation error, and
therefore best reflects the spatial correlation introduced into the variogram model.

2.2. TEMPORAL REDUNDANCY

All time series are considered synchronous and complete, either because data were
collected at the same time, or because the necessary interpolations were made to
synchronize data and fill in the gaps. Time events can therefore be handled as real-
izations of random functions, Yi(m), i = 1, . . . , LFIXED+LEXP;m = 1, . . . ,D,
(with LFIXED being the number of fixed stations, i.e., those that are to be included
in all solutions; LEXP the dimension of the subset of stations to be included in the
new design; D length of the time series vectors). Y i(m)∈X∈χ , with X being the
current solution, and χ the solution space.

If the time series are not synchronous and/or complete then it is proposed that:
(i) data should be interpolated, or (ii) a measure of temporal correlation be used, in
either the frequency or correlation domains.

The sum of differences between time series, S, is used to evaluate redundancy:
large values of S indicate that the series are very different, while smaller val-
ues indicate the opposite. S is an approximation to the π -integral of time series
functions.

The series are first normalized by subtracting the average value, Ȳi : Y 0
i (m) =

Yi(m) − Ȳi . Then the summation of the differencse between the series is made for
all times, with the possibility of shifting one time series in relation to the others by
the time value 	 so that the sum is the lowest, i.e., when summing the difference
between series Y 0

i (m) with series Y 0
k (m)k �= i, only the minimum values are used.

This time translation should guarantee that time series are compared in-phase.
Minimum temporal redundancy implies maximum S:
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S(n) = Max




LFIXED+LEXP−1∑
i=1

k=i+1

Min

{∑D−d
m=1 Y 0

i (m) − Y 0
k (m + d)

D − d
, 0 ≤ d ≤ +	

}}
.

(9)

2.3. EXPLORATION COSTS

The costs associated with maintaining a GMN are considered to be dependent only
on the time needed to measure at each station, in the form of equal or different
times for measuring per station, and the time needed to travel through the whole
network along the shortest path. Other costs not included in this formulation are,
e.g., maintenance costs and the cost associated with the non-detection of a pol-
lution event (as considered, e.g., in Massmann and Freeze, 1987a, b; Wagner and
Gorelick, 1987; Rouhani and Hall, 1988; Meyer et al., 1994). The sum, UC, of
individual measuring times, uci, i = 1, . . ., π , is used to calculate the OF model,

UC =
π∑

i=1

uci . (10)

The determination of minimum total travel time (TC) is a well-known combinat-
orial problem known as the travelling salesman problem (TSP), solved here with
the algorithm proposed by Carpaneto et al., (1995a, b). The optimal TC obtained
by the algorithm is used to calculate the OF.

2.4. OBJECTIVE FUNCTION MODEL

The network of π stations with higher spatial accuracy, lower temporal redundancy,
and lower exploration costs (times), implies the minimization of the following
objective function,

OF = w1· σ 2
E

Max(σ 2
E)

+ w2·
[

1 − S

Max(S)

]
+ w3· UC

Max(UC)
+ w4· TC

Max(TC)

Conditional to:
UC + TC ≤ 7 hours
available data

(11)

Max(σ 2
E), Max(S), Max(UC), and Max(TC) are the maximum values found dur-

ing the optimisation process, and are needed to make the OF dimensionless and
problem-independent. It is assumed that the monitoring takes only one working-
day of seven hours. This can be easily altered if necessary, however. The weights
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wj, j = 1, . . ., 4, are such that 
wj = 1. This may be useful if one wishes to give
more emphasis to the quality of the data collected, by giving higher weights to the
first two variables, or to control the exploration costs more stringently, by giving
higher weights to the two remaining variables. In the example given here, equal
weights (= 1) are used for all variables.

3. Solving the Model

Reducing a monitoring network of dimension � to a network of smaller dimen-
sion, π , is a problem for which the number of possible combinations is given by
�!/(π !·(� − π)!). However, if the dimension of the original network is large,
there may likewise be a very large number of combinations, and computing the OF
exhaustively would require much more time than is usually available. Therefore a
more efficient method has to be used in order to obtain a good quality solution (in
the sense that it may not be the global optimum) in a reasonable amount of time.

It is proposed to solve the problem by replacing one station at a time, evaluating
the result, keeping the station if it reduces the OF or if the result fulfils a prob-
abilistic criterion (the Metropolis criterion), and rejecting the station otherwise.
The iterative process of replacing the stations and analysing the fulfilment of the
Metropolis criterion is a crucial part of the simulated annealing algorithm. The
algorithm looks at each iteration for the cost of a given set of stations (a feasible
solution), and it may be that a station that is rejected in one iteration, with a particu-
lar combination of stations, is accepted in a later stage with a different combination
(different solution). Therefore an efficient search of the solution space has to be
ensured. A global optimal solution would be found if the entire space was searched.
However, in practical applications, if the number of combinations is very large, a
global search would take far too much time. Algorithms that do not guarantee a
global search can only provide optimal local solutions. This is the case with the
simulated annealing (SA) implementation used here.

SA is one of the threshold algorithms included in the class of local search
algorithms. The other two, as defined by Aarts and Korst (1990), are: iterative
improvement, where only OF-reducing neighbours are accepted; and threshold ac-
cepting, where a certain deterministic non-increasing threshold sequence is used,
allowing neighbour solutions with larger OF to be accepted, though to a limited
extent. This is because the threshold value is fixed and always decreasing, with a
very rigid control on the size of the cost difference. Simulated annealing uses a
more flexible control on the threshold values, allowing transitions out of a local
minimum at nonzero temperatures.

SA was first introduced by Kirkpatrick et al. (1983) as an algorithm to solve
very well-known combinatorial optimisation problems, reducing the risk of fall-
ing prematurely into local minima (or metastable solutions) common to iterative
improvement methods, because they tend to accept only solutions that lower the
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OF, with fast quenching from high temperatures to temperatures near zero. These
authors proposed the use of the Metropolis (Metropolis et al., 1953) procedure
from statistical mechanics. This procedure generalizes iterative improvement by
incorporating controlled uphill steps (to worse solutions). The procedure states the
following: consider one small random change in the system at a certain temperat-
ure; the change in the objective function is 	OF; if 	OF ≥ 0, then the change in
the system is accepted and the new configuration is used as the starting point for the
next step; if 	OF > 0 then the probability that the change is accepted is determined
by P (	OF) = exp(−	OF/kbT ); a random number uniformly distributed in the
interval (0,1) is taken and compared with former probability; if this number is
lower than P (	OF) then the change is accepted. The control parameters kbT are
replaced by the parameter t (also called temperature), to avoid using the Boltzman
constant, kb, which would have no meaning in this context.

The SA algorithm runs in the following way: (i) the system is melted at a high
temperature (initial temperature, t1); (ii) the temperature is decreased gradually
until the system freezes (no further OF change occurs); (iii) at each iteration the
Metropolis procedure is applied.

The generic SA algorithm for minimisation, considering a neighbourhood struc-
ture N , a solution space χ , and an objective function OF has the following pseudo-
code.

Select an initial solution Xbest;

Select an initial temperature t1 > 0;

Select a temperature reduction factor;

Repeat

Repeat Randomly select X∈N(Xbest);

δ = OF(X) – OF(Xbest);

if δ < 0 then

Xbest = X

else

generate random z uniformly in (0,1);

if z < exp(−δ/t) then Xbest = X;

Until iterations = max_iterations

Set t = α(t);

Until stopping condition = true;

Xbest is the optimal solution found.

Once a feasible solution is generated it is passed to the OF calculation module
(Figure 1). Here, two routines are internal (Redundancy and Monitoring time) and
the other two are external, and were developed elsewhere. The following data is
read: (i) (x, y) coordinates and data values matrix into the kriging routine; (ii) time
series values matrix into the redundancy routine; (iii) monitoring times per station
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Figure 1. Objective function computing module.

matrix into the monitoring time routine; (iv) travel distance matrix into the TSP
routine.

In order to speed-up the process several improvements have been proposed,
particularly, limiting the number of iterations at each temperature, i.e., defining the
max_iterations number. The dimension of the Markov chain has been proposed as
a function of the dimension of the problem (Kirkpatrick et al., 1983): temperature
is maintained until 100� solutions (iterations), or 10� successful solutions have
been tested, whichever comes first. � stands for the number of variables (stations)
in a problem. These authors also proposed that the annealing is stopped (stopping
criterion) if after three consecutive temperatures the number of acceptances is not
achieved. Alternatively, if the average value of the OF does not change after a
pre-established number of temperature decreases (RSTOP), then the annealing is
stopped. Along with these dynamic criteria, a static one may be used to halt the
process when a minimum temperature, tmin, is reached. This last criterion will
guarantee that the annealing stops if none of the dynamic criteria is fulfilled, even
before the total number of iterations is attained. In the present algorithm, both the
dynamic and the static criteria were implemented.
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Cunha and Sousa (1999) proposed the following expression to calculate the
initial temperature, t1,

t1 = −b·OF0

ln a
, (12)

where OF0 is the cost of the initial configuration, a is the elasticity of acceptance,
and b is the amount of dispersion around the cost of the initial solution. Prior runs
of the model determine the last parameter. The elasticity of acceptance repres-
ents the probability of accepting a solution worse than the initial one. The initial
temperature determined by (Equation (12)) is such that there is a probability a of
accepting solutions that are b% worse than the initial solution.

Temperature is usually decreased at a constant rate (cooling factor), α, such
that after s temperature decreases the temperature is ts = t1·αs . The two stopping
criteria: tmin and number of temperature decreases are complementary because it is
easy to calculate the minimum temperature attained if t1 and α are known.

A specific computer code in FORTRAN was developed by the authors to solve
GMN reduction problems (MINCOST). The code incorporates two routines de-
veloped by others, namely the kriging routine (Deutsch and Journel, 1992), and the
solution for the travelling salesman problem (Carpaneto et al., 1995a, b). The code
was thoroughly tested and validated.

4. Case Study

In order to test the method, a grid of 32 monitoring stations randomly distributed in
a square grid of eight by eight spatial units was created (Figure 2). Monitoring sta-
tions numbers 1 and 2 represent wells for water supply and are therefore included
in all the solutions. � is therefore equal to 30. Time series of generic geo-variables
for all stations were calculated using common mathematical functions, purely de-
terministic and with normally distributed errors. The functions were selected based
on empirical judgment and experience, attempting to simulate the behaviour of
water quality variables. Some of the resulting variables are non-homocedastic, thus
reflecting a feature common to variables such as redox potential and electrical
conductivity when the scale of measure has to be changed between consecutive
observations. The unit of the generic geo-variable is identified by un. The time
series equations are presented in Table I.

The intention was then to choose the π monitoring stations that should be added
to stations 1 and 2 in order to obtain a network that has optimal exploration costs,
best preserves the temporal features of the data, and has optimal spatial accuracy.

The first goal was to determine the number of stations to be included in the new
design; the second goal was to identify the stations in the new optimal design.
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TABLE I

Time series equations

Series Equation: x =

number

1 Cos(time) + 0.54 	time

2 0.12 time

3 Sin(time)

4 Cos(	time + time)

5 Cos(2	time + time)

6 Log(time) – Log(	time)

7 Exp[-time/(end time – start time)]

8 1

9 Cos(0.3 time + 3	time)

10 Atan(time)

11 Atan(time + 1.5	time)

12–22 Repeat Equations (1)–(11) + 20% normally distributed error around the mean

23–32 Repeat Equations (1)–(10) + 40% normally distributed error around the mean

4.1. RESULTS

4.1.1. Cost-benefit analysis
Eight different subset cardinalities of π + 2 stations were tested, {13, 15, 17, 19,
21, 23, 25, 27}, and a cost-benefit analysis was performed for the gain in accuracy
and temporal representativeness and the increase in exploration costs (time needed
to sample).

As expected, the estimation variance decreased as new stations were added
(Table II) (indicating an increase in spatial accuracy), but the gain in spatial ac-
curacy was much more significant up to the 23rd station, with each new station
producing an average increase in spatial accuracy of 8.1%; after the 23rd station
the spatial accuracy only increased 0.5% each time a new station was added.

It should be noticed here that the interpretation of data redundancy (S) is dif-
ferent when considered in the context of cost-benefit analysis or in the context
of network optimization for a pre-defined π number. In the first case S(� + 2)
represents the total amount of information in the time series, and S(π2) – S(π1),
with π1 < π2, is the marginal S, or the amount of information added by the π2 −π1

stations. In the second case no marginal S is calculated, and S is always the total S,
calculated for different π + 2 values.

The gain in temporal representativeness (marginal S) increased every time a
new station was added, but the average rate of increase was almost four times
higher up to the 19th station than it was for the remaining stations (9.8% against
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Figure 2. Location of the monitoring stations and routes connecting them: bold line for two-way.

2.5%). Figure 3a shows the accuracy and representativeness curves with the fitted
trend lines drawn as interrupted straight lines.

Both monitoring and travel times (UC and TC) increased polynomialy (2nd
degree) with the number of stations, with UC having a faster growth rate than TC.
One interesting feature is the stabilization of travel times after the 23rd station; a
similar stabilization is found for the monitoring time (UC) after the 21st station,
but in this case UC increases again after the 23rd. As a result the increase in total
sampling time shows a polynomial behaviour up to the 21st station, after which it
becomes linear. Figure 3b shows the variation of UC, TC and UC + TC, with the
number of stations and the adjusted second-degree polynomials.

These results show an interesting data quality/sampling time structure: up to the
23rd station, though data quality increases linearly, sampling times increase poly-
nomialy; after the 23rd station the increase in data quality is much lower and the
sampling times still increase, but at a lower rate. This indicates that a monitoring
network with 23 stations would be the optimal solution.
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TABLE II

Optimization results for the eight π values. The original GMN results are also show

Number of OF σ 2
E (un2) S (un) UC (h) TC (h) UC + TC

stations

13 1.885 0.09788 204.9 1.841 1.327 3.168

15 1.966 0.09808 264.3 2.190 1.362 3.552

17 1.915 0.08715 297.6 2.563 1.406 3.969

19 2.032 0.08827 349.0 2.935 1.482 4.418

21 2.053 0.07273 417.0 3.635 1.692 5.326

23 2.044 0.06209 424.3 3.634 2.036 5.670

25 2.021 0.06336 464.8 4.147 1.982 6.129

27 2.119 0.06081 481.3 4.485 1.999 6.483

32 – 0.05937 550.4 5.990 2.704 8.694

Sampling times cost structure may be investigated by analysing the relative con-
tribution of UC and TC to the total time. Figure 4 shows the relative contribution
of UC to the total sampling time. UC is always the most important cost factor, and
its importance increases with the dimension of the network, at least up to the 21st
station, after which the relative weight tends to stabilise around 70%. The jump at
the 23rd station is justified by the need to introduce new stations in locations with
difficult access, for which the new path is longer; the subsequent increase indicates
that the stations added after the 23rd can be connected by the new-found path,
and UC becomes much more important again. Therefore, new gains in efficiency
(reduction of total sampling time) should be sought by reducing the measuring
times, µi .

The selection of stations show high congruency for the different π + 2 values
(see Figure 5): (i) four of the stations are not included in any design (7, 9, 10 and
13); (ii) four of the stations are only included for very high π + 2 values (≥25) (5, 6,
11, 25). The interpretation is complex due to the presence of four variability factors,
but it is still possible to observe the following: the stations mentioned make a small
contribution to the increase in spatial accuracy, but, on the other hand, they tend to
increase the total travel time (their location being on one-way roads). Furthermore,
the stations involve low marginal Ss (see Figures 3a and b).

4.2. SELECTED MONITORING NETWORK

The selected π + 2 station GMN is now analyzed, but equivalent analyses could be
made for different π values, not included due to space limitations. Figure 6 shows
the OF, data quality and sampling times convergence curves. The OF starts in the
first iterations at high temperatures, with values close to 2.7, indicating that it is still
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Figure 3. Cost-benefit analysis for increasing number of stations: a) gain in spatial accuracy and
temporal representativeness; b) Time necessary to sample.
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Figure 4. Relative contribution of UC to the total sampling time.

Figure 5. Stations excluded in the new designs (in gray).



120 L. M. NUNES ET AL.

far from its minimum. This is clearly visible in Figure 6, as the four OF variables
slowly converge towards their optimal values. At sufficiently low temperatures a
frozen system is achieved and the optimal (local) solution is reached. The solution
GMN is shown in Figure 7.

The resulting π + 2 = 23 stations GMN is 28 % smaller than the original one,
and results in a reduction of 3.0 hr in sampling time (35%). At the same time, only
20% of spatial accuracy (0.0119 un2) and 22.9% of total time series information
(126.1 un) was sacrificed.

5. Conclusions

GMN optimisation problems are particularly difficult to solve because of discon-
tinuous integer-related nonconvexity (as a monitoring station is either included in
the new design or not, the feasible region is discontinuous) and continuous non-
convexity of the interpolation error variance surface (due to the presence of many
local minima). Some solvers can handle one or the other type of nonconvexity, but
the combination of both requires heuristic methods. Because the aim of this article
was to test the objective function model, no comparison of algorithms was made,
rather, simulated annealing was selected for its good results in other optimisation
problems. Furthermore, it has already been tested for monitoring networks design
against other heuristic algorithms, and it has outperformed the them (TABU search,
genetic algorithms, and sequential exchange search algorithms) (Lee and Ellis,
1996).

In many instances it is neither possible nor advisable to incorporate statistics-
based frequency methods in the optimisation models due to the short length of
time-series, missing data, and the bias introduced in the data by the empirical
selection of locations and frequencies of the existing monitoring networks. An
automatic frequency/location optimisation will, in these cases, seriously comprom-
ise the quality of the solution. A better alternative is to establish the frequency
beforehand, after judicious analysis of the available time series and the hydraulic
properties of the aquifer (e.g., in karst aquifers frequency must, in most cases,
be higher than in porous aquifers). The location and number of stations are then
selected afterwards. This is the case of the GMN optimisation problem solution
described here for reference level/compliance monitoring with a pre-set sampling
frequency.

The method proposed in this article seems to have a good applicability for refer-
ence level ground water monitoring networks when the main spatial variability and
behaviour of time series should be preserved, but exploration costs are to be op-
timised as well. Due to the definition of temporal redundancy, which is calculated
in the data space rather than covariance space (Amorocho and Espildora, 1973;
Caselton and Husain, 1980; Harmancioglu and Yevjevich, 1987; Harmancioglu and
Alspaslan, 1992), there is a tendency to overburden time series with higher values
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Figure 6. Optimization results for a monitoring network of 23 stations. (a): Objective function; (b)
data quality variables; (c) sampling times.
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Figure 7. Resulting monitoring network with 23 stations.

and/or higher variability. This feature is, however, welcome in most situations, and
is an accepted penalty for not having to consider particular variable or multivariate
statistical distributions.

The results showed that it is possible to eliminate some stations from a GMN
and have a relative lowering of costs greater than the relative reduction of GMN
dimension and collected data quality.
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