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Abstract

Arctic-region observations are sparse and represent only a small portion of the physical state of na

ture. It is therefore essential to maximize the information content of observations and observation- 

conditioned analyses whenever possible, including the quantification of their accuracy. The four 

largely disparate works presented here emphasize observation analysis and assimilation in the 

context of the Arctic Ocean (AO). These studies focus on the relationship between observational 

data/products, numerical models based on physical processes, and the use of such data to constrain 

and inform those products/models to different ends.

The first part comprises Chapters 1 and 2 which revolve around oceanographic observations 

collected during the International Polar Year (IPY) program of 2007-2009. Chapter 1 validates pan

Arctic satellite-based sea surface temperature and salinity products against these data to establish 

important estimates of product reliability in terms of bias and bias-adjusted standard errors. It 

establishes practical regional reliability for these products which are often used in modeling and 

climatological applications, and provides some guidance for improving them. Chapter2constructs 

a gridded full-depth snapshot of the AO during the IPY to visually outline recent, previously- 

documented AO watermass distribution changes by comparing it to a historical climatology of 

the latter 20th century derived from private Russian data. It provides an expository review of 

literature documenting major AO climate changes and augments them with additional changes in 

freshwater distribution and sea surface height in the Chukchi and Bering Seas.

The last two chapters present work focused on the application of data assimilation (DA) 

methodologies, and constitute the second part of this thesis focused on the synthesis of numerical 

modeling and observational data. Chapter 3 presents a novel approach to sea ice model trajectory 

optimization whereby spatially-variable sea ice rheology parameter distributions provide the 

additional model flexibility needed to assimilate observable components of the sea ice state. The 

study employs a toy 1D model to demonstrate the practical benefits of the approach and serves as 

a proof-of-concept to justify the considerable effort needed to extend the approach to 2D. Chapter 

4 combines an ice-free model of the Chukchi Sea with a modified ensemble filter to develop a DA 

system which would be suitable for operational forecasting and monitoring the region in support 

of oil spill mitigation. The method improves the assimilation of non-Gaussian asynchronous 

surface current observations beyond the traditional approach.
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General Introduction

The importance of numerical modeling in all disciplines of modern geophysics cannot be under

stated, despite the presence of vast observational data. The now-classical adage that “all models 

are wrong but some are useful” [Box, 1979] reflects an acknowledgement that models are limited 

in their ability to capture essential observable details. The counterpoint statement that “all obser

vations are wrong” is less commonly accepted despite knowledge that instrument precision and 

accuracy are also limited; although they are often treated as unconditional references, observa

tions necessarily include estimated errors in spatiotemporal representation as well. The implicit 

assumption of observations as absolute is seen most clearly in use of the word “errors” when 

measuring differences between observations and model-equivalent quantities where “difference” 

would be more appropriate. The synthesis of numerical models and observational data should 

assume neither is perfect by accounting for their errors. The frameworks of data assimilation (DA) 

and analysis explored here rely on uncertainties in both models and observations.

This work follows the format of a paper thesis, rather than a manuscript. It includes no primer 

or introduction to the basic mathematical formulation of the problem at the heart of DA. Readers 

unfamiliar with the fundamentals of DA are thus referred to Thacker [1987]; Bouttier and Courtier 

[2002]; Kalnay [2003] for the necessary background.

The first chapter, published as Stroh et al. [2015] 1, focuses on the assessment of ocean surface

variable data products in the Arctic region. The commonly-used analyses which provide daily 

sea-surface temperature (SST) rely primarily on remotely-sensed satellite-derived observations. 

DA-modeling systems using underlying circulation models rather than pure data-analysis to pro

duce ocean surface quantities also estimate essential climate variable sea-surface salinity (SSS); 

they also rely heavily on satellite observation as other regional observations are sparse and in

frequent. Previous works assessing the quality of Arctic satellite-informed ocean products are 

primarily validation studies performed with limited observational data. Instead, this paper pro

vides statistical analysis of differences between product and observed quantities by comparing 

them with year-round pan-Arctic in situ data. The observational data included the contents of 

an online1 2 IPY 2007-2008 oceanographic measurement database developed by the author with 

additional data from other sources covering years 2010-2012. The results benchmark product 

1The work is solely that of the first author with some advice and guidance from the second. The third author was 
co-principle investigator of the project supporting the work and was thus partially responsible for funding. Subsequent 
authors contributed either data for post-IPY analysis and/or publication fees.

2The public database was offline for most of 2018. It is currently back online as of 2019-03-08, but the author no 
longer maintains it and does not know whether the host machine will remain supported for long.
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reliability in region, and quantify bias and uncertainty of analysis quantities. Use of ice-tethered 

profiler data to represent foundational SST and SSS in the central Arctic is novel; it provides an 

estimate of surface data in regions unobservable by satellite due to sea-ice obstruction or orbit 

limitations. Finally, it provides a statistical estimate of SST-adjustment on the basis of observable 

sea-ice concentration to improve analysis accuracy.

The second chapter is a published book chapter [Stroh et al., 2018]3 which gives a synopsis 

of changes in the Arctic Ocean evident at the time of the pan-Arctic IPY 2007-2008 survey. The 

work is centered around a full-depth snapshot of the Arctic Ocean during 2007-2009 calculated by 

statistical variational interpolation of the IPY database contents. The numerical code used to refine 

the pointwise observations into a complete, gridded analysis was developed by GeoHydrodynamic 

and Environmental Research (GHER); it is the only computational component of this thesis using 

external algorithms. This processing routine was likewise applied to a private Russian archive of 

historical measurements by co-authors with access to them. Calculated watermass distributions 

from the IPY 2007-2008 snapshot reveal developed changes in watermass, heat, and freshwater 

distributions when compared with the corresponding 1950-1996 climatology. The IPY database 

contents are further used for variational DA of mid-level currents and sea-surface height (SSH). 

Data-conditioned modeling suggest the source of some changes in the Pacific domain, including 

Greenland-region freshwater accumulation in the Beaufort Gyre and influence of SSH depression 

on inflow through Bering Strait. Though less technical than other works included in this corpus, 

the breadth of literature cited during the chapter preparation provided a robust survey of Arctic 

Ocean climate-related research over the past 15 years.

3The first author prepared and organized the observational data into an online database mentioned previously, 
and developed the manuscript. In organizing a framework for the project, the author independently learned and 
implemented the variational interpolation program used to produce the final gridded results. However, the paper is 
largely based on the final results of the second author who had previously implemented that same routine and had 
access to the Russian data archive. The third, fourth, and fifth co-authors contributed sections on data assimilation, and 
the final two authors are responsible for unknown work with the Russian archive.

4This work is the result of a close collaboration among the authors. The 1-D model was originally coded by the 
Naval Research Laboratories (NRL) collaborators, and each co-author played a role in developing, testing, and refining 
the tangent linear and adjoint models needed to construct the assimilation system. The first author primarily debugged 
the forward and adjoint models for consistency, and performed extensive initial testing configurations of the DAS 
using different numerical optimization approaches with an emphasis on ensuring robust convergence. More significant 
issues regarding adjoint stability were addressed by the NRL crew who developed the adjoint code with respect to 
rheological parameters. The third author contributed much needed computing resource access to the first author and 
help in designing appropriate observational system simulation experiments.

Chapter three is a recently accepted study [Stroh et al., 2019]4 done in collaboration with the 

research team that currently employs author's research advisor. The paper argues for the use 

of spatially-variable ice strength parameters in sea ice model rheology, where they are typically 

2



assumed to be invariant homogeneous. Experiments apply 2D variational DA to optimize initial 

data and spatially variable parameter distributions in a 1D viscoplastic sea ice model by ingest

ing representatives of common sea ice observations (thickness, concentration, and velocity) with 

realistic errors in data and forcing. Results demonstrate improvement and controllability of the 

simple model in cases with full ice cover (via rheological parameters) and partial ice cover (via 

wind stress). In full-ice regimes, simulations using optimized varying compressive ice strength 

parameters had error statistics that were more normal with lower bias, permitted more clear in

stances of ice ridging in ice-convergent areas, and generated more ice than those using constant 

parameters. The same algorithm applied to regimes with significant open water showed assimi

lation of sea ice velocity data to optimize local wind stress led to improved results, and suggests 

that remotely-sensed sea ice observations might be used to improve atmospheric boundary data. 

Extension to more practical 2D ice models is an ongoing work, but requires extensive numerical 

development to ensure stability of the elastoviscoplastic adjoint model.

The fourth chapter5 presents the implementation of an ensemble-based DA system (DAS), 

constructed to assimilate velocity profile and surface current observations in the greater Chukchi 

Sea area. The DAS applies a modified version the Maximum Likelihood Ensemble Filter (MLEF) 

to the Regional Ocean Modeling System (ROMS) for the purpose of assimilating moored velocity 

meter and high-frequency-radar surface current observations during the ice-free summer season. 

Specifically, the implemented method reflects an ensemble-transform approach to solve the 4D 

variational cost function using a forward-only sequential optimization process. Linear combina

tions of ensemble perturbations condition the analysis on timeseries of observations rather than 

instantaneous representatives. The analysis identifies the mode of the posterior probability distri

bution in contrast to Kalman-type filters which identify the mean; these statistical estimates differ 

due to the non-Gaussian nature of the surface current measurements and, by extension, of the 

model-minus-observation residuals. Two DAS configurations which rely on observed ensemble 

histories throughout the forecast step are benchmarked and compared with data both assimilated 

and external. A noteworthy difference in filter response between the HFR observation repre

sentations is related to the imparted surface forcing and to the strength of observed nearshore 

cross-isobath surface currents which the model does not resolve well. Results strongly intimate 

the advantages of an asynchronous variational DAS for operational environmental disaster miti

5This is work solely by the author with some necessary guidance from the author 's advisor. The advisor nevertheless 
acknowledges his committee, each of whom in some way contributed significantly to this work in terms of guidance, 
resources, and education.

3



gation over the shelf. The background ROMS model is (unintentionally) ill-configured and gives 

overall unrealistic results as discussed in the chapter. While the DA is found to greatly improve 

the forecast model in the region populated by observations, a reconfiguration of the underlying 

model is necessary for DAS results to be useful as a practical representation of the Chukchi Sea. 

The current state of this ongoing work is presented here in manuscript form.

4
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Chapter 1: Sea-surface Temperature and Salinity Product Comparison against External in situ

Data in the Arctic Ocean1

1Stroh, JN, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, (2015), Sea-surface temperature and salinity 
product comparison against external in situ data in the Arctic Ocean. Journal of Geophysical Research: Oceans, 120(11), 
7223-7236, DOI: 10.1002/2015JC011005.

Abstract

Sea-surface temperature and salinity (SST/S) in the Arctic Ocean (AO) are largely governed by sea

ice and continental runoff rather than evaporation and precipitation as in lower latitude oceans, 

and global satellite analyses and models which incorporate remotely-observed SST/S may be 

inaccurate in the AO due to lack of direct measurements for calibrating satellite data. For this 

reason, we are motivated to validate several satellite sea-surface temperature (SST) data products 

and SST/S models by comparing gridded data in the AO with oceanographic records from 2006

2013. Statistical analysis of product-minus-observation differences reveals that the satellite SST 

products considered have a temperature bias magnitude of less than 0.5ºC compared to ship-based 

CTD measurements, and most of these biases are negative in sign. SST/S models also show an 

overallnegative temperature bias,butno commonsignor magnitude ofsalinitybias against CTD 

data. Ice Tethered Profiler (ITP) near-surface data spans the seasons of several years, and these 

measurements reflect a sea-ice dominated region where the ocean surface cannot be remotely 

observed. Against this data, many of the considered models and products show large errors with 

detectable seasonal differences inSST bias. Possible sources ofthese errors are discussed, and two 

adjustments of product SST on the basis of sea-ice concentration are suggested for reducing bias 

to withinless than 0.01oC ofITP near-surface temperatures.

1.1 Introduction

Sea-surface temperature and salinity (SST and SSS, respectively, or SST/S collectively) are desig- 

natedbythe World Meteorological Organization as “essential climate variables” [GCOS, 2011]. At 

the interface of the ocean and atmosphere, they play a role in coupling highly dynamical com

ponents of the global climate system and are diagnostic of the present ocean state. Tropical and 

mid-latitude SST/S are driven largely by precipitation and evaporation, poleward heat transfer 

via ocean currents, and large basin-scale processes. In contrast, the SST/S of Arctic Ocean (AO) 

are strongly influenced by sea-ice and related melt waters, brine rejection, continental runoff onto 

broad continental shelves, and the upward flux ofheat from the deeper warm ocean.

The AO is also marked by a cold, fresh surface layer in contrast to the monotonic decrease of 
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temperature with depth common to most world oceans [Comiso, 2010]. Surface salinity therefore 

plays a significant role in the dynamics of the near-surface waters; density of cold water is more 

sensitive to salinity than temperature. While the AO is small compared to other oceans, a compre

hensive understanding of its dynamics is inhibited by the cost and difficulty of directly measuring 

this extreme environment. At present, observations are dominated by remotely-sensed surface 

data [cf. Emery et al., 2001; Kawai and Wada, 2007; Donlon et al., 2012]. Satellite-derived observations 

provide much greater spatial coverage than sparse in situ methods, albeit at lower resolution.

The spectral data which compose satellite SST/S observations are restricted to the very upper

most oceanlayers. Infra-red (IR) sensors measure “skin” SST at micrometer depths where thermal 

transfer cools the interface. Below the skin layer lies a meters-thick region where temperatures 

may exhibit fluctuations due to daily insolation and atmospheric wind. Microwave (MW) sensors 

which penetrate to millimeter depths are able to measure SST/S at the top of this sub-surface 

layer where direct solar influences are most pronounced. The base temperature of this layer, 

independent of diurnal variability, defines foundational SST and is sought as the best near-surface 

representative of temperature.

The spatial resolution of IR sensors is on the order of 1 km, while that of MW sensors is an 

order of magnitude larger. Satellite data products may incorporate observations from several 

sensors with different resolutions and penetration depths to produce accurate representations 

of SST. Remotely-sensed emissions spectra must therefore be adjusted to foundational SST/S by 

accounting for cool-skin effects, diurnal insolation, wind, precipitation, and sensor inaccuracies 

[Fairall et al., 1996]. Such techniques for empirical calibration of satellite measurements are not 

discussed here but may be found in Robinson [2004] and product documentations. Limited in 

situ data available for tuning and calibrating these algorithms may lead to SST/S inaccuracy in 

the AO where the mechanisms influencing the vertical temperature structure differ from those in 

data-abundant regions.

Validation and inter-comparison studies of gridded global satellite SST analyses use in situ 

data such as Argo drifters [Martin et al., 2012] and other inventories of global in situ measurements 

[Dash et al., 2012] with sparse AO coverage. Chen et al. [2002], Corlett et al. [2006], and H0yer 

et al. [2012] use in situ buoy data for AO satellite SST calibration and validation, with the latter 

studies augmenting their comparison sets with ship and radiometer records, respectively. Recent 

modeling studies works by Gammelsr0d et al. [2009] and Nguyen et al. [2009, 2011] include in situ 

T/S for comparison of hydrographic transport and verification of calibrated model parameters, 
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respectively. Sakovet al. [2012] compare modelT/S to insitu profiles to validate a data-assimilated 

Arctic model and assess its sensitivity to sub-ice ITP data.

Concern for the uncertainties in transforming satellite-data into foundational SST/S estimates 

motivates this study which validates selected global satellite SST products and SST/S models in the 

Arctic region. The relationship of gridded data dependent on satellite temperature measurements 

to external in situ SST/S measurements is explored statistically in this paper. The investigation 

relies heavily on the contents of an online-accessible International Polar Year 2007-2008 (IPY) mea

surement database (http://oregon.iarc.uaf.edu/dbaccess.html2) containing more than 12 thousand 

ship-cast CTD profiles in the Arctic region spanning 2006-2011. Section two summarizes the satel

lite analyses, model outputs, and in situ data used in this comparison. Section three describes the 

comparison methodology, section four discusses results of the product-to-data correspondences, 

and the final section summarizes results. Use of SST, SSS, and SST/S throughout the text refers to 

foundational values unless otherwise noted.

2See footnotes in the General Introduction for details regarding this database.

1.2 Data

Two types of gridded SST/S are discussed here: SST analysis and SST/S model products. The 

former consist of SST maps and other fields synthesized from algorithmic processing of satellite 

data and typically in situ data when available. The latter products are generated by programs 

driven by primitive-equation models which use observational data for parameter calibration or 

state adjustment (i.e. data assimilation). The terms "analyses" and "models" hereafter succinctly 

refer to satellite-derived datasets and data-conditioned model output, respectively, and "product" 

is used to describe data from either source. Several criteria aided in the selection of the product 

datasets. The data needed to be freely available online, include gridded daily coverage of the 

Arctic regions between 650N and 820N for the majority of years 2006-2009 or 2010-2013.

1.2.1 Analysis Products

Briefly discussed in this section are the included satellite-derived SST products which meet the 

above-listed requirements. Satellite SSS analyses for the AO meeting the desired criteria were not 

available at the time of this study.

Three included satellite products target at-depth SST: the NOAA 1/40 Optimal Interpolation SST 

version 2 (OISSTv2) [Reynolds et al., 2007] available for 1981-present at http://www.ncdc.noaa.gov/ 
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oisst, the NCEP Marine Modeling and Analysis Branch 1/12° high-resolution Real-Time Global SST 

(RTGHR) [Thiebaux et al., 2003; Gemmill et al., 2007] available for 2006-present at ftp://polar.ncep. 

noaa.gov/pub/history/sst/ophi/, and the Naval Oceanographic Office 1/10° SST analysis (K10_SST) 

available for 2008-present at http://podaac.jpl.nasa.gov/dataset/NAVO-L4HR1m-GLOB-K1ffiSST . 

Included products which target foundational SST are: the UK Met Office 1/20° Operational SST 

and Sea Ice Analysis (OSTIA) [Stark et al., 2007; Donlon et al., 2012] available for April 2006- 

present at http://www.myocean.eu, the NASA Jet Propulsion Laboratory 1/100° Multi-scale Ultra- 

high Resolution SST (MURSST) [Chin et al., 2013] available for 2002-present at http://podaac. 

jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST, the Australian Bureau of Meteorology 

1/4° Global Australian Multi-Sensor SST Analysis (GAMSSA) [Zhong and Beggs, 2008] available for 

late 2008-present at ftp://podaac-ftp.jpl.nasa.gov/allData/ghrsst/data/L4/GLOB/ABOM/GAMSSA_ 

28km, and the Remote Sensing Systems 1/4° MW-IR SST version 4 (RSffiSST) available for 2002- 

present at http://www.remss.com/measurements/sea-surface-temperature/.

All analyses are based on MW and IR satellite data except for RTGHR, which incorporates no 

MW data, and OISSTv2, which incorporated MW only until October 2011. Algorithms usedbythe 

analyses to combine satellite observations and other data into complete gridded fields generally 

are based either on optimal interpolation or related variational methods. In addition to satellite 

data, analyses often use in situ data from ships and buoys in their optimization; however, K1ffiSST 

and RSffiSST analyses do not use in situ data, and MURSST uses this data for quality control rather 

than in its variational optimization.

1.2.2 Model Products

The first SST/S model output to be compared comes from the NASA JPL Estimating the Circulation 

and Climate of the Ocean, Phase II project. The MITgcm-based model generates full-depth global 

ocean output together with an interactive sea-ice component at 1/4° grid spacing, then assimilates 

satellite and in situ observations via kernel and adjoint methods [Menemenlis et al., 2005]. The 

dataset used in this work is the geographically-interpolated NASA/JPL Cube92 model output 

available at ftp://ecco2.jpl.nasa.gov/data1/cube/cube92. The two-dimensional daily averaged SST 

and SSS fields from 2006-2012 ofthat dataset are herein referred to as ECCO2 data, and represent 

quantities averaged over the top 10 m.

The second model output is produced as part of the US Global Ocean Data Assimilation 

Experiment. This production system data-optimizes the model state calculated by the Hybrid 
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Coordinate Ocean Model (HYCOM) using the Navy Coupled Ocean Data Assimilation [Cummings, 

2005]. This 3-dimensionalvariational system assimilates satellite and in situ observations including 

altimeter data, SST, and sea-ice. This study specifically uses the 0 m vertical level of the 3

dimensional temperature and salinity (T/S) from HYCOM + NCODA Global analysis GLBa0.08 

experiments 90.6-90.1 (https://hycom.org/dataserver/glb-analysis). These fields correspond to SST 

and SSS from late 2008-present and are referred to herein as HYCOM data for brevity.

1.2.3 In situ Observations

The direct observational data used for validation include: a rich collection of hydrographical 

measurements from the 2007-2008 IPY collaboration which extends from 2006 through 2012; 

hydrographical profiles from Woods Hole Oceanographic Institute (WHOI) cruises to the Beaufort 

Sea during 2006-2013 and from international cruises to the Eurasian Arctic shelf during 2011

2013; and WHOI ice-tethered profilers (ITPs) adrift starting in 2006 [Krishfield et al., 2008; Toole et al., 

2011]. This data is organized into three groups: sets of hydrographical profiles collected during 

2006-2009 and 2010-2013, and one set of near-surface measurements from ITP during 2006-2013. 

The first groups consist of ship-based rosette CTD profiles collected either in the years around the 

recent IPY or in the years after 2009, supplemented by a smallnumber of expendable CTD (xCTD) 

readings. For brevity, these groups are identified as “IPY CTD” and “post-IPY CTD” hereafter. 

The third group comprises T/S data obtained from shallow microCAT sensors attached to ITPs as 

well as the upper-most profiler readings, and is referred to as “ITP.”

The IPY CTD set includes the 2006-2009 ship-based CTD and xCTD profiles from the IPY 

database as well as Beaufort Sea and Siberian Shelf rosette CTD and xCTD profiles from cruises 

conducted during 2006-2009. Ship-based CTD observations from 2010-2013 contained in the 

IPY database are included in the post-IPY CTD set. Much of the IPY and post-IPY CTD data 

was obtained in pre-processed form with profiles resolved to less than one meter depth using 

undocumented methods. Therefore, any data between 0 m and 3 m is ignored as its origins are 

often uncertain. The ITP dataset was obtained online in the form of roughly 30 thousand time- 

averaged profiles from the WHOI website (http://www.whoi.edu/website/itp), and this data was 

filtered to retain only data above 10 mdepth.

All in situ measurements used contain T/S data; records lacking either were omitted. Profiles 

with values identically zero or unrealistic temperatures beyond the range -2.2-30oC or salinities 

beyond 0-40 PSU in the top 10 m are omitted. The inherent instrument errors associated with 
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these datasets are small. CTD sensors typically have accuracies on order 10-3 ◦C (10-2 ◦C for xCTD) 

for temperature and order 10-3 PSU (10-2 PSU for xCTD) for salinity [Sy and Wright, 2000], with 

similar initial accuracies established for microCAT sensors. The IPY CTD, post-IPY CTD, and ITP 

datasets consist of roughly 9800, 1230, and 14,000 near-surface profile representatives, respectively, 

at locations illustrated in Figure 1.1. Use of “CTD” hereafter refers exclusively to the ship CTD 

and xCTD records collected in the IPY CTD and post-IPY CTD observation groups unless specified 

otherwise.

1.3 Methodology

Calculation of foundational SST/S obtained from CTD and ITP profiles requires careful considera

tion. This study uses the measurement average over the range of 3-7 m to represent foundational 

SST/S for each profile similar to Lee et al. [2010]. Exclusion of the upper 3 m is intended to avoid 

the most extreme variations in the diurnal temperature cycle and to avoid measurements of ques

tionable origin. For non-ITP records where surface salinity remains above 20 PSU, mean density 

and temperature profiles show little vertical change over the range 3-7 m (Figure 1.2). Use of the 

3-7 m range for averaging is motivated by this observation and analytically justified by way of a 

constrained variance minimization algorithm as follows. Use R and T to denote the mean density 

and temperature profiles, respectively, shown in Figure 1.2 between depths 1 m and 10 m, and use 

R(a, b) and T(a, b) to denote the averages of those profiles over depths a-b m. Ranges which mini

mize the total variance in R and T may be sought by finding argmin [(r - Ṝ(a, b)2 + (T - T(a, b))2] 

constrained by values such that a < 2 m and a < b < 10 m. Among the several near-integer solu

tions with roughly-equal minimum variances in R and T, the range 3-7 m is the optimal solution 

with the largest difference between endpoints. However, the mean salinity profile has the lowest 

variance over the range of 1-5 meters as calculated by a similar process. ITP microCATs record

T/S data with a minimum depth typically between 5 m and 6 m, and ITP SST/S representatives are 

thuscalculatedasanaverageof1-3valuesmeasuredbyprofilerdatabinnedat7mandshallower 

microCAT data.

Gridded SST/S product data was linearly interpolated in space and time to produce repre

sentative SST/S values collocated with each observation. Validation of data products requires 

comparison against independent data not used in their generation. The assembled IPY database 

contents were held privately for data contributors and only recently made publicly available, and 

roughly one-half of the post-IPY CTD data was obtained from closed sources. Most of the data 
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therefore could not have been used for that purpose as it was not available for real-time produc

tion. A small portion of older data included in this study may have been used for quality control 

purposes by eg. GHRSST in producing low-level background fields on which several analyses are 

based.

The statistical correspondence between measurements and products quantifies how well the 

product represents the observed ocean. In situ observations are known with accuracy and certainty, 

so the quality of a product or model can be roughly ascertained from the fit to the observations. 

Correlation, product-minus-observation residual bias, and centered root mean squared difference 

(RMSD) between products and observations data are able to assess how well a product tracks 

the background state and captures the temporal and spatial variability of the ocean. Anomaly 

correlation (and associated potential skill) between products and observations is not used; the 

necessary selection of background climatologies for this metric is likely to favor certain products 

over others.

1.4 Results

Direct comparison of representative observational data with gridded products permits estimation 

of product reliability with an operating assumption that 3-7 m averaging of in situ observations 

targets the same SST/S intended by the gridded data. Figures 1.3 and 1.4 illustrate the quality of 

fit between the included SST analyses and SST/S models, respectively, and in situ observations. 

The spatial distributions of these product-minus-observation residuals are charted geographically 

in Figures 1.5 and 1.6, with residual statistics appearing in Tables 1.1 and 1.2. Negative values in 

this table may be interpreted as products being cold relative to observations and the true ocean 

state. Figure 1.7 shows comparison of products to CTD and ITP data groups in the from of 

Taylor diagrams [Taylor, 2000], which resolve second-order statistics and should be considered in 

conjunction with the biases presented in Tables 1.1 and 1.2. Use of Taylor diagrams is intended to 

provide a convenient visual comparison and rough ordering of products in relation to how well 

they match the variability of observations.

1.4.1 Comparison against ship-based CTD datasets

Satellite analysis sea-surface temperatures compare favorably with CTD measurements, and tend 

to have small negative SST biases. K10_SST and RSS-SST analyses have the smallest biases and 

RMSDs relative to the IPY dataset. During the post-IPY period, the smallest magnitude biases of 
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-0.02ºC are found for RSS-SST and MURSST products with the SST of the latter showing slightly 

more precision. For IPY and post-IPY datasets respectively, GAMSSA SST has the largest overall 

biases of -0.270C and -0.930C. The GAMSSA SST cold bias in the AO, previously identified in 

Dash et al. [2012], is exaggerated against post-IPY CTD due to poor representation of SST along 

the coastal Chukchi and Laptev Seas during the warm and low-ice year 2012. All other included 

satellite-derived SST analyses have biases and errors against CTD measurements comparable to 

those found against different in situ measurements in previous studies (eg. [Donlon et al., 2012; 

Dash et al., 2012; H0yer et al., 2012; Martin et al., 2012]).

Most gridded analyses correlate strongly with CTD observations as visible in the right two- 

thirds ofTable 1.1 and left columns ofFigure 1.3. Withcorrelations(assquaredPearsoncoefficients) 

universally above 80%, SST analyses track the variability of the IPY CTD set well. Post-IPY CTD 

correlations are lower in general, with the GAMSSA product showing a low correlation of 59% 

due to large errors during 2012. OSTIA and MURSST products continue matching 83% and 87%, 

respectively, of the total CTD variance.

The satellite analyses are similar compared to all CTD measurements, but Taylor diagram 

in the left plot of Figure 1.7 reveals a rough ranking of all products considered on the basis of 

second-order statistics. The analyses demonstrate remarkable fit to the variability of CTD SST, 

with standard errors (as measured by RMSD) within 6% of the true CTD SST standard deviation. 

The OISSTv2 analysis, despite having the lowest magnitude bias of -0.020C, has a larger RMSD 

and consequently lower overall correlation than other analyses. MURSST analysis appears to be 

the strongest overall analysis that gives full Arctic coverage without masking sea-ice although 

OSTIA SST has a higher correlation and lower RMSD in total.

Models show larger biases and error than analyses products, but appear to have statistics 

comparable with those ofthe satellite analyses. HYCOM SST has a +0.030C bias against post-IPY 

CTD-derived SST compared to the -0.970C bias of ECCO2 SST, and the corresponding RMSD for 

HYCOM, 1.030C, is less than half that of ECCO2 as in Table 1.1. Figure 1.7 shows that HYCOM 

SST has a higher correlation, lower RMSD, and closer fit to the observed SST variability amplitude 

than ECCO2 for non-ITP data. In these metrics, the HYCOM+NCODA SST fits CTD SST than the 

included ECCO2 model does.

The bottom of Table 1.1 includes model-minus-observation SSS residual statistics in the rows 

labeled "SSS" below each model name, and Figures 1.4 and 1.6 include visualizations of SSS 

residuals. The ECCO2 and HYCOM SSSs differ in sign of bias; ECCO2 under-represents post-IPY 
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CTD-derived SSS by an average of -0.58 PSU compared the +1.27 PSU bias of HYCOM, and the 

RMSD of ECCO2 is roughly 10% lower than that of HYCOM. The difference in bias between these 

model-derived data consistently exceeds 1 PSU across all observation groups, but both model 

SSSs correlate well with the CTD data (Figure 1.4, right) with increasing error in model values as 

observed salinity decreases.

Regional patterns in residuals

Spatial distributions of product SST errors show similarities; see Figure 1.5. Product SSTs are 

overall slightly cool toward the north Atlantic Ocean with a tendency be warm relative to near

surface CTD toward the Pacific Ocean. In the central AO, there is less agreement: MURSST and 

GAMSSA SSTs remain cooler than observations while OISSTv2 and RTG_HR analyses are typically 

warmer. Products also share similar regions where analysis SSTs differ greatly from CTD SST such 

as the Kara and Beaufort Seas, and the Fram and Bering Straits. Figure 1.6 shows the geographic 

distribution of SST/S residuals for the two models. Regions of interest in the ECCO2 model are 

the Greenland and Barents Seas where SST is overestimated in contrast to all other products 

considered, and the Pacific sector of the Arctic Ocean where the model notably represents the 

ocean water as too cold and salty both during and after IPY. For commonly resolved CTD data, 

ECCO2 and HYCOM products appear very salty in the Beaufort and Chukchi Seas. Figure 1.7 

shows that against all CTD data, HYCOM SST has a lower overall RMSD and stronger correlation 

of93%thaneventhe satellite analyses, but the modelSSShasalarger(andpositive)biasanddoes 

not track the variability found in CTDs as well as ECCO2 does.

For SST/S models, correlations with in situ data are weaker than for SST analyses, and the 

accuracy of model SST/S values is not constant throughout the AO. HYCOM SST residuals are 

more uniform across the AO shelves with no discernible change in bias between the Eurasian and 

Amerasian shelves; the spatial distribution of residuals resembles those of the satellite analyses. 

ECCO2 SST shows a bias of -1.72oC for all CTD measurements along the the Siberian shelves 

betweenE60o andE180o while a+0.25oC biasis presentfor CTDmeasurementsinthe Norwegian 

and Barents Seas region.

SSSs inthese regions are more accurate inthe ECCO2 model, which also lacks the overly-salty 

Norwegian coastal waters found in HYCOM. The warm, salty surface errors found in the HYCOM 

representationoftheKaraseacontraststhecool,freshbiasfoundinECCO2throughouttheSiberian 

Shelf. In the central AO, the HYCOM product is cool and salty relative to IPY CTD data while 
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ECCO2 is slightly warm and fresh. Similar patterns are found compared to the longer time series 

of ITP measurements. Both model datasets appear cool and strongly salty in the Beaufort Sea 

region despite large differences in AO-wide SSS biases. MURSST SST also has biases of +0.35 oC 

and -0.30 oC for these regions, respectively. Similar but smaller differences between errors in these 

regions are found in GAMSSA and OISSTv2 products. No other large-area differences in regional 

biases are detected in residuals relative to CTD data but clusters of large errors in several smaller 

data-abundant regions such as the Kara Sea and northern Svalbard coast beg further investigation 

not pursued here. In comparison to SSS observations which both models resolve, HYCOM and 

ECCO2 represent the Beaufort and Chukchi regions with strong positive salinity biases, but this 

region is more localized in ECCO2 whereas the overly-saline region extends into Bering Sea and 

the central AO in HYCOM.

Model SST/S and analysis SST are less accurate in regions of runoff influence, such as in the 

Kara Sea and near outflows of the Lena and Mackenzie Rivers. In these areas, both models over

estimate salinity and many products under-estimate SST. The regional presence of these biases 

and increased inaccuracy may be due to the choice of averaging CTD data over 3-7 m; the mean 

profile over all CTD measurements with salinity less than 20 PSU in 0-3 m depths has a monotonic 

decrease in temperature between 3 m and 10 m. This suggests that calculated SST cold residuals 

in freshwater regions may be reduced if deeper CTD measurements were averaged to represent 

observations.

1.4.2 Comparison against ITP near-surface data

ITPs move with the ice and their records form a time-series, so associated residuals are correlated 

in time and are substantially less independent than the CTD observations. Further, the errors 

are distributed non-normally due to the constraint on water temperature minimum. Checking 

products against ITP data may not be as meaningful as it is for CTD data, but this comparison 

is diagnostic in its own right. Against ITP data in the 3-7 meter range, the SST analyses display 

more pronounced differences. The K10_SST and RSS_SST analyses sample only about 1200 and 

20, respectively, of the approximately 14,000 ITP profiles due to sea-ice masking in those products, 

and neither analysis is further included in this discussion of fit to ITP-derived SST.

RTGHR SST shows a distinctive strong positive bias of 0.45ºC and less than 1% correlation 

withITPdata, andthisbiasisevidentagainstCTDdatasetsaswellinFigure1.5. OISSTv2 SST has 

the lowest bias for ITP data at -0.05ºC, but, along with OSTIA and RTGHR, over-represents the 
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inherent variance of ITP SST by more than 2.5 times (Figure 1.7, right). MURSST and GAMSSA 

statistics are nearly identical with biases near -0.25ºC and RMSDs roughly 0.14ºC.

Among the analyses considered, MURSST and OSTIA SST appear equal in providing both 

strongest correlation and lowest biases to ITP-derived SST for products which include a separate 

sea-ice analysis. The salinities representing the ECCO2 model have smaller RMSD and bias than 

those ofHYCOM for all datasets including ITP, although they still under-represent the variability of 

observations. Both models are competitive with satellite analyses in terms bias and RMSD for ITP 

data. Compared to the ECCO2 product, HYCOM SST has larger RMSD and a more pronounced 

over-estimation of ITP temperature variability, although the SSS residual second-order statistics 

are similar for both models. ECCO2 SST exists in a temperature range much smaller than the data 

while HYCOM SST is opposite (Figure 1.4, bottom).

1.4.3 Improving fit to ITP near-surface data

Hydrographical data beneath sea-ice for sub-surface layers is scarce and none of it is remotely- 

sensed. Instead, MW satellite bands are able to resolve approximate sea-ice concentration (SIC), 

and product SST can be relaxed to a freezing-point or other climatological state as SIC approaches 

100%. This parametric approach is used by many of satellite analyses with a target freezing-point 

near -1.8 0C implicitly assuming salinities near 35 PSU [Rayner et al., 2003; Donlon et al., 2012]. 

Roughly75%ofITPtemperaturedatainthe3-7meterrangeusedforcomparisoniswithin0.010C 

of the freezing-point calculated from the observed salinity.

The difference between ITP temperature and freezing temperature calculated from ITP salinity 

shows a change during Julian days 130-260, when the mean of this difference increases in order 

from 1/10000C to 1/100C with a corresponding change in standard deviation from 0.0270C in 

winter to 0.138 0C in summer3. Salinity distribution of ITP measurements is multi-modal and 

shows both seasonal and inter-annual variability, reflecting the changes in freshwater distribution 

and rapid freshening. The upper-most decile of near-surface averaged ITP salinities never exceed 

30.5 PSU for any season in the years 2008-2012.

3See Figure 2.12 later in this document for an illustration.

Different biases of several products are detected in seasonally-partitioned residual statistics 

presented in the left and center columns of Table 1.2. No seasonal changes in bias appear to 

be present in RTGHR, MURSST, GAMSSA, or ECCO2 SSTs. However, biases with seasonal 

variation are apparent for OISSTv2, OSTIA, and HYCOM residuals against ITP, and differ from 
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the total bias of Table 1.2. These products show warm biases of +0.24ºC, +0.14 ºC, and +0.09 ºC, 

respectively, in summer contrasting cold biases of -0.16 ºC, -0.24 ºC, and -0.12ºC, respectively, 

in winter. The winter biases against ITP data are roughly in the same range as those against the 

summer-focused CTD data. This suggests that rather than a cold bias in the winter, products 

are simply warmly biased in the central AO during the summer, and this bias is undetected by 

CTD measurements concentrated near and on continental shelves. Large errors for ITP data are 

localized in the Beaufort Gyre where surface freshwater content depend on a complex interaction 

of terrestrial hydrological cycles, atmospheric modes, and sea-ice melt [Timmermans et al., 2011; 

Morison et al., 2012]. Inaccuracies in that region may reflect the rapid salinity divergence from 

previous climatologies in the Beaufort Gyre and Canada Basin where ITPs provide the most data.

An increased warm bias during summer for certain products may be due to under-relaxation 

of temperatures toward freezing when the presence of surface melt-ponds causes SIC under

estimation. Cold bias in winter for these products is likely the result of prescribed climatological 

freezing temperatures: freezing-point prescribed near -1.8 0C is significantly cooler than tem

peratures observed by ITPs. The under-estimation of sea-ice in summer and over-estimation of 

background salinity is consistent with the seasonally-partitioned correlation diagrams shown in 

Figure 1.8. In the top row of this figure, summer-time measurements cluster near -1.6 0C while 

analysis SSTs are frequently warmer by 1/20C. The bottom row illustrates strongly constrained 

temperatures near -1.8 0C while the observed near-freezing temperatures are warmer by roughly 

1/6 0C. Another possible sources of summer warm bias in these products is the under-estimation 

of wind stress used in transforming the satellite skin temperatures to product SST, but this is not 

explored here.

ProductSSTPmaybecorrectedtobetterfitinsituITPdatabyusingproduct-minus-observation  

residuals ∆P and SIC I. In this discussion, I* is a critical SIC above which ice influences SST. 

Linear regression of residuals against SIC greater than I* parametrizes residuals in terms of SIC: 

∆P = α · I + β where α, β are statistically determined coefficients. The corrected product values 

P*1 = P + (α · I + β) · {I* ≤ I ≤ 1} target the mean full-ice SST observed by ITP and have an improved 

mean linear relation to ITP near-surface temperature.

Corrected SST P*1 have biases smaller than 10-2 0C against ITP data, but most ITP data are 

associated with SIC greater than 95%. As a result, the residuals of P*1 show little improvement 

in higher-order statistics and the values of (α, β) fluctuate for random sub-samples of ITP data. 

However, the full-ice SST corrections γ = α + β are robust and correspond to freezing temperature 
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corrections. Table 1.3 shows (α, γ)-values for several products using critical SIC of 50%. The 

corrected freezing temperatures P+γ are approximately -1.62°C for all products presented.

As a result of inadequate variation of SIC among ITP measurements, the method presented 

above tends to correct only product bias. The frequency of ITP data with respect to SIC resembles 

a log-normal distribution, so SST correction can be improved using a normalized logarithm of 

SIC. Transforming SIC into I = log(2 - I)/log(2 - I*) redistributes the dense cluster of ITP data 

associated with high SIC more appropriately onto the interval 0 ≤ I ≤ 1. This decreases the weight 

of ITP associated with high SIC and yields a better conditioned least-squares problem for linear 

regression.

Modified product SST values P*2 = P + (δ · I + η) · {0 ≤ I ≤ 1} fit the ITP data in the mean 

more uniformly over the region I ≥ I*. Table 1.4 shows coefficients (δ, η) for several products 

whose modified SST absolute biases are less than5· 10-3°C. This method produces values of(δ,η) 

which are considerably more robust for random sub-samples of ITP data, and may also improve 

higher-order statistical correspondence between product and ITP values. For example, applying 

independently the summer and winter corrections reduces the RMSD of OISSTv2 and OSTIA 

residuals by roughly 16% and 14.5%, respectively, and results in corrected SST P*2 with biases 

smaller than those of P*1.

1.5 Summary

We extracted near-surface AO temperature and salinity profiles from ship-based CTD rosette casts, 

xCTD, and ITP data sources during the years 2006-2013. Each profile containing valid T/S in the 

range 3-7 meters was reduced to the mean over that range to represent observed foundational SST 

and SSS. These in situ SST/S observations were compared to corresponding values in OISSTv2, 

OSTIA, MURSST, RTGHR, K10_SST, and RSffiSST gridded satellite analyses, as well as particular 

NASA/JPL ECCO2 Cube92 and HYCOM+NCODA data-assimilated model outputs. Against CTD 

temperature measurements, the satellite products had similar error statistics; correlation ranged 

between approximately 80% (OISSTv2) and90%(OSTIA) with relative errors in variability ranging 

from -6% (GAMSSA and RTGHI) to +1% (OISSTv2). All analyses showed overall cold biases 

against averaged ship-CTD profiles, and bias magnitudes were less than 0.5 °C. The warm post-IPY 

year 2012 generated large errors for many products; exclusion of 2012 CTD profiles reduces bias 

magnitude to less than 0.3 °C for all products.

Bias statistics against CTD SST data for models were generally worse than those for condi
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tioned satellite products, but the models estimate SSS as well as other key quantities (eg. heat 

fluxes) not considered. The reader is reminded that satellite MW salinity measurement is a more 

recent technological advancement [Lagerloef and Font, 2010], and is notlistedineithermodeldocu- 

mentation as a data source. The HYCOM product SST showed smaller bias (-0.04 oC) and higher 

correlation (93%) with ship-based CTD data than any of the satellite analyses but showed a large 

salinitybiasof+1.23PSU. ECCO2product SST/S biases were -0.61 oCand-0.42PSU,respectively, 

for all ship-based CTD data. ECCO2 matched the variance of the observations with +9% relative 

temperature error and -17% salinity error while corresponding values for HYCOM were-1%and 

-43%, respectively. Both models showed overall negative temperature biases similar to satellite 

analyses. Larger errors in T/S were detected in regions of direct freshwater and sea-ice influence. 

Generally, ECCO2 Cube92 appears to have a cold and fresh bias in the AO and adjunct shelves 

while HYCOM+NCODA output is cold and salty in those regions.

Near-surface ITP data reflect year-round T/S below multi-year sea-ice typically found over 

deep ocean basins in the Central Arctic. Away from the more often surveyed coastal shelves, 

products showed much lower correlation with ITP temperature measurements despite having 

small magnitude biases; the strongest non-seasonal correlation (26%) was found for GAMSSA, 

a product with negative bias of -0.25oC. Product RMSDs were correspondingly very small due 

to the narrow range temperature found in ITP-derived data. Considering ITP data during Julian 

summer days 130-260 separately from winter days, seasonal changes in temperature bias appear 

in all products except MURSST and ECCO2, with summer temperature biases higher than those 

found during winter. In OISSTv2, OSTIA, and HYCOM SSTs,these biases are positive in summer 

and negative in winter. In summer, this is likely a consequence of SIC under-estimation due to 

melt ponds.

A likely diagnosis for winter-time cold bias is over-estimation of surface salinities in back

ground climatologies. Many products appear to use freezing-point temperatures lower than 

observed ITP temperatures; during each year of 2009-2012, less than 10% of ITP near-surface 

salinities inthe Canada Basinand Beaufort Sea are above 30.5 PSU while products target freezing 

temperatures closer to 34 or 35 PSU.

LinearcorrectionofSSTonthe basisofSICandthe product-minus-ITP temperature allows for 

reducing product bias, but has difficulty improving second-order statistics due to the relatively 

low variability in SIC associated with ITP near-surface samples. A suggested linear correction of 

product SST against logarithmically-transformed SIC may be used to de-bias products as well as
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reduce RMSD in this case.

Ship-collected CTD profiles andnear-surface ITP data as collected are not intended to represent 

sea surface quantities. ITPs sample waters below sea-ice where the satellite observations are not 

present. Satellite-derived products and models which rely heavily on satellite SST present SST/S 

quantities where there are no remotely-sensed data, necessitating the use of available in situ data 

for validation and quality diagnosis. Improvements to product quality may be made, not only 

through directuse ofthese in situ data sources for analysis and state estimation, but additionallyby 

the incorporation of these data to update background fields and to improve the representativeness 

of remotely-sensible proxy data such as SIC.
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Table 1.1. Product bias, RMSD, and correlation for ship CTD data groups. The top portion of the table shows SST analyses with bias 
and RMSD units in ºC. The bottom portion corresponds to model SST/S with units of ºC and PSU, respectively, for bias and RMSD. The 
rightmost portion of the table gives product-observation correlations as squared Pearson coefficients.

Bias RMSD Correlation
IPY p-IPY All CTD IPY p-IPY All CTD IPY p-IPY All CTD

OISSTv2 +0.05 -0.38 -0.02 1.78 1.62 1.77 0.80 0.76 0.80
OSTIA -0.22 -0.54 -0.26 1.16 1.40 1.20 0.91 0.82 0.90
RTG_HR -0.17 -0.35 -0.20 1.47 1.76 1.51 0.85 0.73 0.84
MURSST -0.14 -0.02 -0.12 1.45 1.22 1.42 0.86 0.87 0.86
GAMSSA -0.27 -0.93 -0.46 1.09 2.12 1.49 0.92 0.59 0.84
K10_SST -0.08 -0.13 -0.10 0.86 1.54 1.18 0.93 0.76 0.87
RSS_SST -0.07 -0.02 -0.05 0.97 1.41 1.18 0.90 0.70 0.86
ECCO2 -0.56 -0.97 -0.61 2.09 2.16 2.10 0.77 0.61 0.76
-→sss -0.73 -0.58 -0.71 2.12 2.51 2.17 0.73 0.69 0.74

HYCOM -0.07 +0.03 -0.03 1.02 1.03 1.03 0.93 0.90 0.93
-→sss +0.64 +1.27 0.87 1.67 2.79 2.17 0.79 0.72 0.79
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Table 1.2. Product bias, RMSD, and correlation for shallow ITP data. Summer, winter, and total values are given on the left, center, and 
right thirds of the table, respectively. Bias and RMSD of product-minus-observation residuals, and correlation presented as squared 
Pearson coefficient, are given in the respective left, center, and right columns of each third. Top rows correspond to SST analyses, and 
the bottom to SST/S models. K10_SST and RSS_SST are under-sampled and not included. Summer is taken as Julian days 130-260 when 
ITP SST/S depart from freezing, and winter as the remainder of the year.

Summer Winter Annual
Bias RMSD P2 Bias RMSD P2 Bias RMSD P2

OISSTv2 +0.24 0.51 0.42 -0.16 0.23 0.01 -0.06 0.38 0.19
OSTIA +0.14 0.49 0.35 -0.24 0.14 0.02 -0.14 0.32 0.23
RTG_HR +0.48 0.43 0.04 +0.45 0.38 0.00 +0.46 0.39 0.01
MURSST -0.24 0.23 0.30 -0.24 0.11 0.10 -0.24 0.15 0.23
GAMSSA -0.29 0.22 0.30 -0.25 0.10 0.18 -0.25 0.13 0.26
ECCO2 -0.02 0.22 0.23 -0.04 0.12 0.01 -0.04 0.16 0.10
-→sss -0.60 2.60 0.04 +0.55 2.00 0.04 +0.25 2.23 0.03

HYCOM +0.09 0.76 0.31 -0.12 0.26 0.01 -0.08 0.41 0.19
-→sss +1.95 1.35 0.20 +2.71 1.55 0.06 +2.57 1.54 0.07



Table 1.3. Seasonal least-squares parameters for minimizing residuals regressed over high SIC. Least-squares slope (α) and temperature 
correction at 100% SIC (γ) for linear correction to various products for SIC above 50%. Original product values, P, better reflect ITP 
observations by computing P*l = P + γ + α ∙ (I - 1) for I > I* = 0.5.

OISSTv2 1.61 -0.15 0.71 0.20 1.11 0.11
OSTIA 0.29 -0.12 0.16 0.24 0.29 0.15
MURSST 0.11 0.24 0.15 0.25 0.14 0.24
ECCO2 0.12 0.03 0.16 0.05 0.15 0.04
HYCOM -1.26 0.12 0.26 0.10 0.26 0.10
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Table 1.4. Seasonal least-squares parameters for residuals regressed over logarithmically-transformed SIC. Least-squares slope (δ) and 
intercept (η) for residuals regressed over SIC transformed by I = log(2 -I)/ log(3/2) corresponding to a critical SIC value of 50%. Original 
product values, P, better reflect ITP observations by computing P2* = P + (δ ∙ I + η) for I > I* = 0.5.

Summer Winter Annual
δ[ºC] η [ºC] δ[ºC] η [ºC] δ[ºC] η [°C]

OISSTv2 -0.76 -0.14 -0.34 +0.20 -0.52 +0.12
OSTIA -0.13 -0.12 -0.08 +0.24 -0.14 +0.15
MURSST -0.05 +0.24 -0.07 +0.25 -0.07 +0.25
ECCO2 -0.06 +0.03 -0.08 +0.05 -0.07 +0.05
HYCOM +0.54 +0.12 -0.13 +0.10 -0.13 +0.11
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Figure 1.1. Locations of in situ data poleward of 65º N. Observational data referred to, from left to right, as "IPY CTD", "post-IPY CTD", 
and "ITP", respectively. Colors correspond to measurement year. Plotted points indicate measurements between 3 and 7 meters depth.



Figure 1.2. Mean T/S and density profiles for all ship CTD data north of 65º N excluding profiles with salinity less than 20 PSU in the 
uppermost 10 m. The mean density profile is shown in heavy black as the difference from 1000 g kg-1, and thin grey lines at a distance 
of one standard deviation illustrate density variability. Mean T/S profiles are shown in dotted and broken lines, respectively, with scales 
given on the top axis in bold and italics, respectively. The shaded rectangle indicates the 3-7 m region where T/S and density are nearly 
constant, indicating a region representative of sea-surface foundational values.
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Figure 1.3. Correlation of SST analyses with respect to (left columns) IPY CTD, (center columns) post-IPY CTD, and (right columns) ITP 
observations. The descending orders of products are: MURSST, GAMSSA, OISSTv2, K10_SST on the left side; and OSTIA, RSS_SST, and 
RTG_HR on the right. In each plot, the thick light-grey dashed line indicates perfect matching; the thin dark-grey line shows this ideal 
relation offset by product bias; and the thin solid lines bound the bias-offset fit at a distance of the product-minus-observation RMSD.



Figure 1.4. Correlation of SST/S model analyses with respect to (left columns) IPY CTD, (center columns) post-IPY CTD, and (right 
columns) ITP observations. ECCO2 is shown in the left portion and HYCOM in the right. SST comparison illustrated on the top row 
and SSS on the bottom. The plotted lines are equivalent to those of Figure 1.3.
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Figure 1.5. Analysis-minus-observations SST residuals. Plot layout is the same as in Figure 1.3. Plotted points represent residuals which 
are bin-averaged on the AVHRR northern hemisphere 25 km equal-area EASE grid [Brodzik and Knowles, 2002] to improve visibility 
and do not coincide with locations in Figure 1.1. Residual values are indicated by color. Greyish colors indicate residuals smaller than 
±0.15 ºC.
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Figure 1.6. Model-minus-Observation SST/S residuals. Plot layout is the same as in Figure 1.4, and points are plotted in the same manner 
as those in Figure 1.5. Greyish colors indicate residuals smaller than ±0.15 ºC for SST and ±0.16 PSU for SSS.



Figure 1.7. Comparison of non-dimensional second-order statistics via Taylor diagram against all ship CTD observations (left) and 
near-surface ITP observations (right). The relation shown here is independent of bias (first-order difference) and one must consider 
these in conjunction with Table 1.1.
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Figure 1.8. Seasonal comparison of select products to ITP measurements. The OISSTv2 (left), OSTIA (center), and HYCOM (right) 
products are biased positively in summer (top) and negatively in winter (bottom). Summer-time residual distribution shows a less 
constrained temperature range compared to observed values. Winter residuals show strongly constrained product SST targeting -1.8 ºC 
while actual measurements are centered near -1.6 ºC.



38



Chapter 2: Changes in Arctic Ocean Climate Evinced through Analysis of IPY2007-2008 

Oceanographic Observations1

1Stroh, JN, S. Kirillov, G. Panteleev, O. Francis, M. Yaremchuk, E. Bloshkina, and N. Lebedev, (2018), Changes in
Arctic Ocean climate evinced through analysis of IPY 2007-2008 oceanographic observations, in M. Kanao (Ed.), Arctic 
Studies-A Proxy for Climate Change, IntechOpen Publishing. DOI: 10.5772/intechopen.80926.

Abstract

Full-depth hydrographical surveys conducted in 2007-2009 during the International Polar Year 

(IPY) collaboration provide an accurate snapshot of the Arctic Ocean (AO) hydrography at a time 

when the Arctic Ocean Oscillation (AOO) index was highest in recent record. We construct pan

Arctic temperature and salinity (T/S) reference states from these data using variational optimal 

interpolation, and discuss some key differences between the 2007-2009 state and a similarly con

structed climatology from historical 1950-1996 Russian archives. These data provide a recent, 

known reference state for both qualitative and quantitative future AO climate change studies. Fur

thermore, we present an analysis sea-surface height (SSH) and upper-layer circulation constructed 

from the IPY data via 4Dvardata assimilation, and use them to examine circulation and freshwater 

sources changes visible during IPY.

2.1 Introduction

During the International Polar Year (IPY) 2007-2008, the international scientific community com

pleted an intensive physical survey of the Arctic Ocean (AO). Many countries and institutions 

contributed to this effort, which generated a significant number of in situ hydrographical obser

vations including: stationary full-depth profiles of temperature/salinity (T/S) from conductivity

temperature-depth instruments (CTD) and partial-depth profiles of the upper ~ 700m along La

grangian tracks followed by Ice-Tethered Profiles (ITP) affixed to sea-ice; measurements of T/S 

along the tracks followed by sub-marine gliders near coastal areas; and a small number profiles 

from less accurate expendable CTD and expendable bathythermograph (XBT) instruments.

Arctic T/S distribution is governed largely by water inflow and outflow through the major 

gateways, the properties of those waters, and regional circulation. AO sources include: the warm 

saline waters advected with the Norwegian current from North Atlantic [Rudels et al., 1994]; the 

fresh (relative to mean AO salinity) Pacific waters (PW) entering through Bering Strait [Zhang 

and Zhang, 2001]; and the summertime fresh and warm river discharge the Siberian and North 

American rivers [Shiklomanov et al., 2000; Serreze et al., 2006]. AO export occurs primarily through 

Fram Strait by way of the Transpolar and East Greenland Currents, and also through less-studied 
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Canadian Archipelago transport [Curry et al., 2011]. Within the AO, shelf-basin exchanges are 

typically restricted to bathymetric features, such as Herald and Barrow Canyons in the Chukchi 

Sea [Weingartner et al., 1998], and St. Anna Trough north of Severnaya Zemlya in the Kara Sea 

[Dmitrenko et al., 2015]. Regional circulation is governed by topographically-steered boundary 

currents along shelfbreaks and other topographic features, restricted by density fronts between 

watermasses of disparate origin, and subject to external forcing including surface heating (cooling) 

in summer (winter) with significant effects from sea-ice melt/freeze and large-scale atmospheric 

pressure systems [Rudels et al., 1994, 1999; Proshutinsky and Johnson, 1997; Woodgate, 2013].

The IPY effort occurred at a significant time, co-incidental with the largest recent positive 

Arctic Ocean Oscillation (AOO) index, a measure derived from the sea-surface height gradient 

over the central AO which indicates strength of large-scale anti-cyclonic flow [Dukhovskoy et al., 

2006]. Prior to IPY, the AOO index had been in an overall positive regime for nearly two decades 

while historical records suggest a sub-decadal frequency [Proshutinsky and Johnson, 1997, updated 

at www.whoi.edu/page/preview.do?pid=66578]. Other modes of regional oscillation occur with 

timescales of 60-80years [Polyakov and Johnson, 2000]. At the same time, summer 2007 winds 

associated with the Beaufort High remained predominantly anti-cyclonic a feature common to the 

Arctic winter but unusual for summer [Wang et al., 2009], so Beaufort Gyre (BG) sea-level response 

to atmospheric forcing strengthened the AOO. Additionally, 2007 was a monumental year for 

river discharge; Eurasian river discharge surpassed the 2002 record by nearly 10% [Shiklomanov 

and Lammers, 2009]. The effects of these drivers, whether purely anomalous or the result of long

term variability, relate to pronounced recent changes in the Arctic marine climate system and were 

witnessed by the IPY survey efforts. Over a decade has passed since many of the observed strong 

and rapid warming trends were confirmed as both present and underway. Older climatologies 

may be inadequate for the study of more recent changes as they may depend on much pre-1996 

data when: the positive AOO regime was not a such a strong and permanent feature of the region; 

thicker and more extensive sea-ice regulated mechanical and thermodynamical fluxes with the 

atmosphere; continental riverine discharge was less; and the Lomonosov Ridge roughly defined a 

partition of the Arctic between Atlantic and Pacific upper-ocean layers. The thermal state of the 

AO over the past decade is above the long-term average, and this warming greatly affects both 

hydrographic and ice-related processes observed in the high latitudes; changes occurring under 

these new conditions are of particular interest [Polyakov et al., 2005; Falck et al., 2005; Alkire et al., 

2007; Carmack et al., 2008; Wang et al., 2009; McPhee et al., 2009; Polyakov et al., 2011; Curry et al., 2011;
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Morison et al., 2012; Woodgate et al., 2012; Zhong and Zhao, 2014].

Unlike other oceans, vertical stratification of AO watermasses is governed more by salinity than 

temperature, and density gradients readily allow for decomposition of profiles into differentiated, 

typically non-interactive layers. Away from regions of significant freshwater influence, the vertical 

distribution of watermasses throughout the AO generally comprises a well-mixed surface layer 

occupying the upper 50-100m, underlain by a layerofintermediate waterofPacificorigin(absent 

in the eastern, Atlantic domain of the Arctic), followed by a layer of warmer more saline water 

of Atlantic origins, and an Arctic deep water bottom layer. Importantly, the halocline of Pacific- 

originated waters overlies the warmer Atlantic water deeper in the ocean in the Pacific Sector 

[Steele and Boyd, 1998], buffering sea-ice from the warmer Atlantic waters below. The presence, 

thickness, and specific properties of each layer vary laterally throughout the Arctic [Woodgate, 2013; 

Emery, 2001], and one may distinguish between layers of waters of Pacific and Atlantic origin on 

the depth of local haloclines and isotherms characteristic within each column.

The remote nature of the AO, together with practical difficulties in observation and naviga

tion due to sea-ice and sparse infrastructure, makes in situ sampling of the AO expensive and 

occasional. Satellite monitoring of the ocean surface is possible but inhibited by ice-cover and 

clouds. Unfortunately, the accuracy of the satellite surface-observations and their processed (i.e. 

L2-L4) products are often far from optimal: they may contain large errors due to poor calibra

tion, mask large portions of the AO for sea-ice, and thus lack of coverage over the central AO, 

and may contain anachronistic assumptions in their post-processing algorithms [Stroh et al., 2015]. 

Modelling efforts and other interdisciplinary studies in need of static background ocean data may 

need to rely on gridded products that are biased toward older AO regimes or large amounts of 

surface observations from satellite. Further, climatological studies using older reference states for 

trend analysis may suffer from amplified trend errors. For example, the Arctic portion of the most 

recently available Polar Science Center Hydrographic Climatology (PHC 3.0, Steele et al. [updated 

from 2001]) is based on historic observations through 1993 [Timokhov and Tanis, 1997].

The concerns listed above motivate this work, which presents a 2007-2009 AO stationary 

analysis state inferred from algorithmic data-conditioning of pan-Arctic hydrographical surveys 

and other at-depth observations to provide a snapshot of the non-coastal ocean state with an 

emphasis on the intermediate layers. The result is a dataset of gridded T/S available in NetCDF at 

http://bit.ly/2M6qsJ9, from which this chapter discusses mapped watermasses and their differences 

relative to those mapped from a 1950-1994 climatology. We also use 4Dvar data assimilation to 
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establish an analysis of major circulation changes during IPY relative to the climatological mean 

and discuss the evident anomalies of July-December 2008 [Francis et al., 2017]. The remainder 

of this chapter is organized as follows: Section 2 discusses the in situ data and the production 

algorithm for the gridded fields; Section 3 presents an atlas of watermass properties for the IPY 

and their differences from historical data fields; Section 4 discusses changes in the AO watermass 

distribution and thermal state evident from use of IPY data and derived climatology; Section 5 

presents analysis of circulation anomalies during the IPY; and Section 6 concludes the chapter.

2.2 Observational Data and Gridding

As part of an IPY-initiative, approximately 13,000 CTD/xCTD/XBT profiles along with ITP data 

were curated into a central database of AO T/S observations from contributors in Japan, Norway, 

Russia, Canada, USA, Germany, Poland, Sweden, and China. Stroh et al. [2015, Figure 1]2 shows 

the location of profiles over the AO, of which only the IPY CTD and ITP data during 2007-2008 

are used here. CTD observations during the sea-ice minimum months of August-October account 

for approximately 40% of all ship-borne profiles while wintertime November-March account for 

approximately 30%. ITP apparatuses provide a more temporally uniform stream of profile data 

for the upper-most ~700m throughout the year; ITP data were collected and made available by 

the Ice-Tethered Profiler Program [Krishfield et al., 2008; Toole et al., 2011] based at the Woods Hole 

Oceanographic Institution (http://www.whoi.edu/itp).

2Also, Figure 1.1 earlier in this document.

The Data-Interpolating Variational Analysis tool [DIVA, Troupin et al., 2012] is a robust finite- 

element based optimization tool for gridding large 2D, 3D, and 4D datasets and includes error 

estimates of the analysis. This freely-available program, developed by the GeoHydrodynamics 

and Environmental Research (GHER, http://modb.oce.ulg.ac.be/), was applied to the observational 

data described above to construct static full-depth fields on an equal-area polar-centered grid with 

50km resolution. Interpolation to 51 vertical levels occurs level-wise within DIVA, to which an 

internally-applied stability algorithm ensures analyses remain hydrodynamically stable with re

spect to density throughout the gridding. Bathymetric masking was inferred from the International 

Bathymetric Chart of the Arctic Ocean [IBCAO v3.0, Jakobsson et al., 2012], and regions with depth 

less than 200m are masked. The correlation length-scales for observations correspond to 3 grid

cells with a signal-to-noise ratio of 10%. The same procedure applied to historical observations 

collected during 1950-1994 (privately archived at the Arctic and Antarctic Research Institute of
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Russia) generates mean climate dataset for that period used to contrast the gridded IPY data.

2.3 Watermass Distribution Maps

From the gridded T/S analyses for the 1950-1994 and IPY periods, watermass properties reveal 

qualitative differencesbetween them. Use of density-relatedproperties to distinguishwatermasses 

is less certain than chemical analysis [Ekwurzel et al., 2001; Alkire et al., 2007]. Scarcity ofwidespread 

chemical tracer surveys precludes such an approach here, and analysis based on the more common 

T/S data is adopted. This work chooses to map Atlantic Water (AW) and Summer Pacific Water 

(SPW) for both their simplicity of definition and importance in the freshwater (FW) and thermal 

budget of the AO. Characteristics used to identify AW and SPW are adapted from Emery [2001] 

and Steele et al. [2004]; Shimada et al. [2005], respectively, as described below.

The AW distinguishes an intermediate layer of warm water of Atlantic origin that has entered 

the Arctic Basin through deep coastal channels and bathymetric steering. Over-basin AW typically 

has S≥ 34.8 PSU, with T≥ 0ºC despite heat loss along the Eurasian shelf. SPW denotes relatively 

fresh waters with S in the range 31-33 PSU and T≥ -1.4ºC entering the AO through the Bering 

Strait which have cooled after residence on the shallow Chukchi Shelf and include substantial 

meteoric FW [Steele et al., 2004; Carmack et al., 2008]. These low density waters form a sub-surface 

layer in the western Arctic typically at depths between 50m and 100m, and often include a local 

temperature maximum [Shimada et al., 2001; Bourgain and Gascard, 2012].

In Figures 2.1-2.11, left-side plots show the identified field for the IPY dataset while the right

side plotshows the corresponding anomaly field relative to the AARI 1950-1994 archive. We refer 

to each such pair singularly as a figure, and distinguish between the field and its anomaly in 

context. Figure 2.1 maps the 34.8 PSU isohaline depth. Figure 2.2 shows the integrated FW content 

(FWC), in meters of freshwater, with respect to 34.8 PSU.

Figures2.3-2.7plottheAWcoredepth, core temperature, heat content, lower boundary depth, 

and upper boundary depth, respectively. AW here is defined as waters composing a continuous 

vertical region of positive temperature bounded by 0oC isotherms, which define herein the lower 

and upper AW boundary depths. The AW core depth and temperature are adopted to be the depth 

and value of the temperature maximum within the AW layer. Total heat content is calculated as 

the vertical integral of specific heat with respect to -1.8oC between AW boundaries. Insufficient 

deep data in near the Canadian Archipelago precludes a resolution of the AW lower boundary 

and, consequently of the heat content in that area.
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Figures 2.8-2.11 show calculated fields for summer Pacific Water, which exists only on the 

Pacific side of the Arctic. SPW is defined by a local temperature maximum occurring below the 

surface mixed layer within the salinity range 30.5-33.0 PSU [35]. Upper and lower SPWboundary 

depths are determined by T≥ -1.4oC and salinity restriction to that range. Figure 2.8 maps the 

depth of the maximum temperature found in SPW and Figure 2.9 identifies these maxima. Figures 

2.10 and 2.11 show the lower and upper boundary depths of SPW, respectively.

2.4 Changes Inferred from T/S Observations

In general, the vertical and spatial patterns of hydrographic parameters in the AO and adjacent 

North Atlantic had undergone considerable changes by IPY although the large-scale distributions 

of the watermasses align with the historic climatology. Readers unfamiliar with AO geography 

and its bathymetric features are encouraged to follow this discussion with an atlas, e.g. https: 

//geology.com/articles/arctic-ocean-features/.

2.4.1 Atlantic Waters

Elevated pan-Arctic heat content due to the extraordinary heat transported to the AO from the 

North Atlantic is a significant change evident during the IPY period. Advection of relatively 

warmer AW resulted in anomalous hydrographic state formation over entire deep Arctic Basin 

[Polyakov et al., 2011; Bourgain and Gascard, 2012]. The temperatures within the core of AW were 

observed 0.3-1.0ºC higher comparing to climatic values; mean changes are ~0.65ºC over the 

Eurasian basin and ~ 0.25ºC over Canada and Makarov Basins.

Of further note is the warm tongue of AW that appears to be topographically steered by the 

Lomonosov Ridge; Figure 2.4shows a clear 0.5oCcore temperature anomalous increase extending 

from the Laptev Sea toward the Greenland Shelf. This feature resides at a depth of about 275m, 

~75m surface-ward of the historic AW core depth per Figure 2.3. Over the Makarov Basin, 

AW expanded ~50m deep into the column [McLaughlin et al., 2009], while the AW core depth 

has moved 100-150m surfaceward with an associated 0.5-1.0 GJ/m2 increase in associated heat 

content. Similar changes including the AW moving surfaceward and retaining more heat at- 

depth are present throughout most of the AO indicating stronger potential influence on ice-related 

processes [Polyakov et al., 2010].

By 2007, the intermediate AW layer had deepened and thickened in the Pacific Sector [Zhong 

and Zhao, 2014], but the changes are heterogeneous over the central and Eurasian basins. In 
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particular, the net AW layer thickness appears to have thinned over the Amundsen Basin which is 

likely a mass balance response to the thickened layer observed on the Pacific side of Lomonosov 

Ridge. Within the western side of Fram Strait, the AW layer thickened by roughly 70m, moving 

20m closer to the surface without change in the core depth.

2.4.2 Pacific Waters

Figure 2.2 shows another of the most drastic changes in the Arctic - the change in freshwater 

distribution. As a proxy for the AW-PW upper-ocean front in the central Arctic, the strong FW 

anomaly gradient illustrates the change from the Lomonosov Ridge to the Alpha-Mendeleev 

Ridge (AMR) system [Morison et al., 2006; Alkire et al., 2007, and references therein]. Further, the 

boundary marking the extent of present SPW in Figures 2.9-2.11 tracks very directly the local 

bathymetric minimum of the AMR. Estimates shortly after IPY show that FWC in the Eurasian 

domain decreased by nearly one-quarter while the American domain increased by the same 

percentage [McPhee et al., 2009; Rabe et al., 2011]. The influx ofPW through Bering Straitwas near 

a record high in 2007, importing anomalously large FW volume and thermal input [Woodgate et al., 

2012].

Loss of FWC near the pole and in the western sector likely result from cyclonic AO moving 

the more AW toward the eastern Amerasian Basin. Simultaneously, the wind-forced anti-cyclonic 

BG stored fresher SPW in the Pacific sector, accumulating an average of 4m FWC on the Pacific 

side of the front. Much of this FW had been in place prior to 2007; the IPY FWC in the Beaufort 

Sea is nearly identical to that found for 2006 [Carmack et al., 2008]. Carmack et al. [2008] also find 

that sea-ice freeze/melt accounts for a net-loss of FWC in the Beaufort Region, with riverine water 

and PW contributing roughly half of the regional FW. Ge et al. [2013] find that the mean annual 

Yukon River outflow, which is identifed as the most significant meteoric source included in SPW, 

increased 8% between 1977 and 2006.

An increasing trend in Eurasian catchment outflow also is evident [Shiklomanov and Lammers, 

2009] and related to changes in permafrost [Zhang et al., 2005] and temporal changes in continental 

hydrological cycles [Shiklomanov et al., 2007]. Increased Siberian runoff suggests the apparent 

decreases in FW volumes adjacent to the Laptev and East Siberian Seas arise from changes in 

seasonal ice and the regional dominance of AW, but these source changes alone do not explain FW 

accumulation observed in the Beaufort Sea during IPY andbeyond [Proshutinsky et al., 2009]. Data- 

conditioned modeling of the 2008 circulation [Francis et al., 2017] suggests that this accumulation 
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may be supported by transport from the Lincoln Sea [De Steur et al., 2013] and/or regions north of 

Greenland.

Changes in the organization of water masses have also affected the outflow of AO through 

Fram Strait, located between Greenland and Svalbard. The Transpolar Drift mode arising from 

the cyclonic AOO regime impedes PW from reaching the continental shelf north of Greenland. 

Consequently, PW may only exit the AO via the Canadian Archipelago [Falck et al., 2005] which 

has been shown to be a significant but variable route for AO export [Curry et al., 2011, 2014; 

Beszczynska-Möller et al., 2011].

2.4.3 Directly Observed from ITP data

The gridded IPY data do not resolve a surface layer. Sea-surface temperature and salinity (SST 

and SSS, respectively) are temporally variable as they depend on the strongly seasonal Arctic 

diurnal effects. Additionally, SST/S in the AO depend seasonally on sea-ice related processes such 

melt-water strata, brine rejection, rapid winter-time heat loss through sea-ice leads, polynyi, and 

etc. Models and SST satellite data products often assume a surface freezing temperature (FT) 

of -1.8ºC, implicitly conditioned on a background salinity of ~32.86 PSU. At that T/S state, FT 

sensitivity is ~ 0.1ºC per -0.01 PSU so that inaccuracies in background salinity amplify errors in 

associated freezing temperature.

Figure 2.12 illustrates the inaccuracies of these assumptions by examining the relationship 

between near-surface temperatures observed by 2006-2009 ITP and FT calculated from the asso

ciated salinity. Observations are primarily over the Pacific sector and central Arctic. The thick 

diagonal line shows exact correspondence between observed T and FT. In the left plot, colors 

indicate binned values of T+1.8oC for winter ITP in the left plot, with dashed lines demarcating 

percentiles as labeled. The right plot is similar with binned values of T-minus-FT for summer 

ITP. In winter months of November-April, all observations correspond to freezing-point, but only 

about 25% of measurements have T ≤ -1.64ºC, the freezing temperature associated with ~30 PSU. 

In summer months of May-October, temperatures clearly depart from freezing but only ~25% of 

measurements differ from freezing by more that 0.05oC. In both summer and winter, the vertical 

structure of the plots demonstrates inaccuracy of the -1.8ºC at ~32.86 PSU assumption; surface 

waters in the western Arctic have salinities in the range 30-32 PSU.
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2.5 Changes in Circulation

Freshwater changes throughout the Arctic relate to changes in geostrophic current distributions. 

Over basins, the strengthened FW gradient between the Pacific and Atlantic sectors led to a very 

significant sea-surface height (SSH) changes, which in turn gives rise to changes in geostrophic 

currents [McPhee et al., 2009]. The strengthening of geostrophic currents in the Pacific Sector is 

suspect among the factors for the reduction of multi-year ice over the Canadian Basin [McPhee, 

2013]. Other factors include deepening AW over the Canada Basin since 2004, enhancing the 

strength of the BG and its accumulation of freshwater [Zhong and Zhao, 2014]. A recent study 

demonstrates that atmospheric modulation of geostrophic boundary currents and SSH quantifiably 

relate to the Northern Hemisphere annular mode strength [Armitage et al., 2018]. To analyze 

the quantitative difference in the mean circulation during the IPY period with respect to the 

climatological circulation, the IPY dataset was conditioned using the 4-Dimensional Variational 

(4Dvar) Data Assimilation (DA) approach [Panteleev et al., 2011; Luchin and Panteleev, 2014] in two 

ways.

2.5.1 Quasi-stationary Circulation Analysis

To find a quasi-stationary solution, the process uses 4Dvar optimization of an ocean model forced 

by the corresponding heat, salt and momentum fluxes inferred from NCEP/NCAR reanalysis 

and regional Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS). In the non- 

stationary reconstructions, all available T/S data were averaged for model grid bins and these 

mean representative observations were assimilated through the conventional 4Dvar DA approach 

using a semi-implicit ocean model (SIOM) with resolution of 65km; a framework of the algorithm 

is described in Panteleev et al. [2011, 2010].

The resulting quasi-stationary SSH maps andnear-surface currents are shown in Figure 2.13. A 

comparisonindicatesthe essential re-organization of the circulation in the AO evident during IPY. 

The most-notable feature is the strong intensification and shift of the BG towards the Alaska. IPY 

SSH patterns are characterized by a pronounced BG dome which attains a central height greater 

than 50 cm, while the typical climatological SSH is only about 40 cm. This difference results from 

intensified westward flow along the Alaskan and Chukchi Sea continental slope. There is also a 

clear re-centering of the BG resulting from the shift the Trasnspolar Drift axis toward the Canada 

Basin; this agrees well with recent analysis of the freshwater content and circulations conducted 

by Timmermans et al. [2011].
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2.5.2 Short-term Dynamical Circulation Reconstruction

Application of the more advanced 4Dvar reconstruction of non-stationary circulation for July- 

December 2008 indicates stronger circulation than those directly detected from the in situ IPY 

dataset. The SIOM-4Dvar reconstructed bi-monthly evolution of SSH and circulation at 250m 

depth during July-December 2008 is shown in Figure 2.14. The SSHpatterns are characterized by 

a pronounced BG dome which gets slightly stronger in November-December (Figure 2.14, right) 

attaining a 40 cm central elevation. Compared to the relatively smooth and symmetric SSH derived 

through optimal interpolation of observations [e.g. McPhee et al., 2009], the DA-reconstructed SSH 

reveals finer features consistent with the observations. During September-October, the SSHpattern 

is characterized bya secondary SSH maximum at 74oN 140oW, whichtendsto erode bythe endof 

the year but still persists as a tongue spreading towards Alaska along 140oW. This feature is seen 

in the AVISO anomalies averaged over the second half of 2008 [Francis et al., 2017].

Another prominent feature is a zonally spreading trough in the region between 72-80oN from 

Severnaya Zemlya to the Bering Strait. The emergence of this depression could be one of the 

causes of intensification of the Bering Strait transport due to the increase of the large-scale sea level 

difference between the Chukchi and Bering Seas. This is supported by the analysis of Woodgate 

etal. [2012, & Figure 1h therein] which estimated the force balance controlling the flow through the 

Bering Straitandfounda significant increase ofthe pressure headin2007-2011 with respect to the 

1997-2006 period when the Bering Strait transport was smaller. Behavior of the SSH lowering is 

shown in the bi-monthly SSH fields averaged over the area north of the Bering Strait (upper panels 

in Figure 2.14), the heights of which are estimated to be -11 cm, -10 cm, and -6 cm respectively. 

This is consistent with the seasonal decline of the Bering Strait inflow from 1.1 Sv in July-August 

to 0.5 Sv in November-December 2008 [Woodgate et al., 2012].

The effect of the above mentioned SSH decrease on the transport pattern in the region of 

the AW inflow is of particular interest. During July-August 2008, the negative SSH anomaly is 

closely attached to the coastline, creating a positive cross-shelf SSH gradient and a westward 

geostrophic transport of -2.9 Sv along the shelf break (lower left panels in Figure 2.14). The 

effect becomes less visible by the end of the year as the negative SSH anomaly detaches from the 

continental slope; the total transport relaxes to eastward values of 0.8 Sv and 1.0 Sv, respectively, 

for the September-October and November-December periods. This identified flow reversal agrees 

well with moored velocity observations from the Nansen-Amundsen Basin Observation Program 
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(NABOS, http://nabos.iarc.uaf.edu/data), which are indicated by red arrows in Figure 2.14 but 

were not used to obtain the optimized solution. The DA results immediately provide us with 

quantitative FWC estimates and permit identification of the regional FW. In particular, the total 

FWC within the volume bounded within [70.25,80]oN × [140,170]oW above 400m depth was found 

to be about 20,700 km3, which is slightly less (~5%) than that found in literature [Proshutinsky et al., 

2009, updated at http://www.whoi.edu/website/beaufortgyre/home]. A possible source of this 

difference is a smaller area of the integration for the 4DVar solution and the off-shore displacement 

of the BGobserved in 2008.

To assess the FW origin accumulated FWC in the BG, FW transports across the eastern, southern, 

and western boundaries were estimated 0.08 Sv, -0.005 Sv, and -0.075 Sv, respectively (positive 

oriented gyreward); the boundaries are shown in the top right panel of Figure 2.14, where the 

eastern boundary follows the figure boundary and the southern one intersects the Alaska coast. 

Calculated transports suggest that observed changes in the BGFWC were generally caused by 

the FW transport changes confined to the latitude band of 72-77ºN at the eastern boundary of the 

model domain.

2.6 Summary

This work introduces an IPY snapshot ocean climatology, and discusses freshwater and thermal 

changes in two principle watermasses to establish, in perspective, sub-surface changes over the 

central AO as well as consequences of surface freshening. It focuses only on the ocean and readily 

neglected: continental shelves where important watermass-forming processes occur [Semiletov 

et al., 2005] but enhanced mixing impedes analysis based on T/S; any resolvable changes in Arctic 

Bottom Water; and a direct discussion of sea-ice which requires an extensive discussion of the 

atmosphere and its variability [Maslanik et al., 2007] which are beyond the scope of this presentation.

Changes in the AO are not monotonic as they result from cyclic and quasi-cyclic changes in 

various superimposed feedback-entangled geophysical components in addition to trends in their 

background values. Changes may arrive in short bursts or “pulses”, and may undergo periods of 

relaxation towards long-term means. The intensive pan-Arctic IPY survey provides evidence of 

an AO undergoing significant changes and departure from the longer-term mean of the late 20th 

century - responding to variations in source content (from the Atlantic, Pacific, and continental 

waters) and the resulting changes: in freshwater and heat distribution; atmospheric forcing and 

induced SSH gradients and their associated geostrophic responses; and relative volume and means 
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of exit of various watermasses present in the AO. During IPY, many of these components appeared 

to be establishing new records. In the decade following, 2011-2012 set records for associated 

components such as River outflow, Bering Strait inflow, sea-ice minimum, arctic cyclone strength - 

some of which may have beensurpassedbythose of2016-2017. Fromthisperspective, conditions 

of the AO during IPY 2007-2008 show the region in transition toward a “new normal”, and a 

gridded IPY dataset provides a useful reference state for establishing how far that transition has 

progressed.

A model-DA system was also applied, and may quantify the observed difference in the T/S 

distribution brought on climatological and seasonal temporal scales. The reconstructed mean 

2007-2009 AO circulation clearly identified global shifts in the BG and axis of the Transpolar 

drift. Both results are consistent with other qualitative analyses. Analysis of the reconstructed 

non-stationary circulation for July-December 2008 allowed quantification of several anomalous 

circulation features including:

a) A reversal of the total transport in the AW inflow region of -2.9 Sv in July-August which 

later relaxed to an eastward transport of 0.8-1.0 Sv. This reversal of along-slope current is 

confirmed by independent observations from NABOS moorings.

b) Formation of a prominent SSH trough extending from the eastern Laptev Sea to the Bering 

Strait. A similar and even stronger structure occurs inthe PIOMAS solution and is indirectly 

evidenced by two NABOS moorings located on the continental slope of the Laptev Sea.

c) The above mentioned SSH depression near the Chukchi Sea tends to increase the large-scale 

sea level difference between the Bering Sea and the AO. This contributes to the 25% increase in 

the Bering Strait transport at that time, and agrees with the regional force balance suggesting 

an increased role of the pressure head between the Bering Sea and AO during 2007-2011 

[Woodgate et al., 2012].

d) A significant total FWC of ~20,700 km3 in the BG during 2008. The FW accumulation agrees 

with estimates from in situ hydrographic observations [Proshutinsky et al., 2009]. Analysis of 

the FW transports across model boundaries around the BG indicates that FW accumulation in 

2008 was mainly caused by the anomalous inflow through the eastern section. TheDAmodel 

estimate of ~0.8 Sv qualitatively agrees with other works [e.g., Lique et al., 2011; Proshutinsky 

et al., 2015] that suggest FW sources may include areas near Greenland.
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Figure 2.1. 34.8 PSU Isohaline depth - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.2. FWC relative to 34.8 PSU Isohaline - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.3. AW core depth - IPY (left) and anomaly (right). Values are given in meters.



Figure 2.4. AW core temperature - IPY (left) and anomaly (right). Values are given in o C.
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Figure 2.5. AW Heat Content - IPY (left) and anomaly (right). Values are given in GJ∕m2 (or 109 J∕m2).
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Figure 2.6. AW Lower Boundary - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.7. AW Upper Boundary - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.8. Summer PW depth of Tmax - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.9. Summer PW Tmax - IPY (left) and anomaly (right). Values are given in oC.
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Figure 2.10. Summer PW Lower Boundary Depth - IPY (left) and anomaly (right). Values are given in meters.
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Figure 2.11. Summer PW Upper Boundary Depth - IPY (left) and anomaly (right). Values are given in meters.



Figure 2.12. Shallow ITP observed temperatures and associated freezing temperature from ITP salinities - winter (left) and summer 
(right). All axes are given in ºC. In the left plot, bins are horizontal because distance from the horizontal line FT=-1.8 is calculated. In 
the right plot, bins are parallel with the thick diagonal reference line T=TF since pointwise departures of T from TF are considered.
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Figure 2.13. Quasi-Stationary model reconstruction of SSH and near-surface currents from historical 1900-2006 data (left plots) and the 
IPY data (right plots). SSH contours are given in cm while velocities are scaled with respect to the 14 cm/s arrow indicated over western 
Siberia.



Figure 2.14. Bi-monthly averaged fields for SSH (upper panels, in cm) and 250m currents (lower 
panels, with respect to the shown 15 cm/s reference arrow scale). NABOS mooring-observed 
velocities are shown as red arrows in insets. The boundary used for calculating the total FW flux 
around BG is indicated by the thick grey line around the upper right panel; the grey line adjacent 
to the figure panel frame is the “eastern” boundary around BG through which FW transport is 
positive (gyreward).
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Chapter 3: Toward Optimization of Rheology in Sea Ice Models through Data Assimilation1 1 2 

Abstract

1Stroh, JN, G. Panteleev, O. Francis, M. Yaremchuk, and R. Allard, (2019), Toward Optimization of Rheology in Sea
Ice Models through Data Assimilation, Journal of Atmospheric and Oceanic Technology, accepted.

2Reviewers have provided important feedback and concerns that could not be fully addressed before submission 
deadlines of this document to the University of Alaska Fairbanks Graduate School; footnotes throughout the chapter 
comment on these issues. However, the footnotes are not an adequate guide to a major revision. The author openly 
acknowledges his extreme self-disquiet at formally committing this administratively-reviewed chapter with known 
errors and oversights that have elsewhere been corrected already; an interested reader is well-encouraged to email the 
author personally or otherwise seek an updated version of this work.

Sea ice models which allow for deformation are primarily based on rheological formulations orig

inally developed by Hibler [1979]. In both the original visco-plastic (VP) and elastic-VP schemes, 

the internal sea-ice pressure term is modeled as a function of variable sea ice thickness and con

centration with empirical parameters for ice-strength and atmospheric wind stress prescribed as 

constants throughout the domain. This work considers a spatially-variable extension of those 

parameters in the one-dimensional VP sea ice formulation of Konig Beatty and Holland [2010]. In 

areas where ice cover is complete, experiments which assimilate synthetic ice-state observations 

using variable rheological parameters show larger improvements than equivalent experiments 

using homogeneous parameters. For partially ice-covered regions where internal ice stresses are 

negligible, experiments assimilating synthetic sea ice velocity observations demonstrate reason

able reconstruction of spatially variable wind stresses. These results suggest practical benefits 

attainable by using sea ice velocity, thickness, and concentration to optimize spatially-varying 

rheological parameters and to improve sea ice state reconstruction and forecast.

3.1 Introduction

Sea ice models are an important component of any ice-ocean Data Assimilation (DA) system in the 

Arctic Ocean (AO). Currently, there are several DA systems which are widely applied to reconstruct 

ice conditions in the Arctic in reanalysis or quasi-operational mode. For example, there are systems 

basedontheMITgcm[Menemenlisetal.,2008;Heimbach,2008;Forgetetal.,2015;Fentyetal.,2017], 

ROMS [Budgell, 2005], HYCOM [Lisxter et al., 2007; Sakov et al.,2012]), PIOMAS [Zhang and Rothrock, 

2003;LindsayandZhang,2006],andNEMO[Vancoppenolleetal.,2009;Massonnetetal.,2015]. Several 

newmethods of sea icemodelinghave been proposed during the last decade includingLagrangian 

models [Rampal et al., 2015; Bouillon and Rampal, 2015a] and finite element models [Danilov et al., 

2015]. In spite of these new technologies, practically all sea ice DA systems implement sea ice 

models based on the visco-plastic (VP) rheology proposed by Hibler [1979] and/or the elasto-VP 
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(EVP) modification [Hunke and Dukowicz, 1997]. The essential advantage of these models is the 

efficient and relatively simple approximation of sea ice dynamics in terms of the VP/EVP rheology 

which is based on a rigorous theoretical framework developed in the past century [Timoshenko and 

Goodier, 1951; Goodier and Hodge, 1958] with an adjunct practical stability analysis theory for sea ice 

applications [Gray and Killworth, 1995; Schulkes, 1996; Dukowicz, 1997; Pritchard, 2005].

According to Hibler [1979], the sea ice model rheology is defined by three parameters (e, P*, 

c*) describing respectively the yield ellipse eccentricity, the dimensional maximum ice strength 

per unit-thickness, and non-dimensional scaling of ice strength with its compactness. Ice strength 

within a grid cell is amean value, although the intracell strength distribution is unknown. The idea 

of approximation to sea ice dynamics through the VP rheology is that spatiotemporal variations in 

plastic deformation rates are statistically representable by a viscosity term [Hibler, 1977]. Therefore, 

practical VP viscosity reflects a subgrid parametrization of variable local strength properties with

out fully resolving the underlying floe distribution. However, one notes that this interpretation 

implicitly assumes a uniform distribution of cracks and other ice weaknesses throughout the grid 

cell.

Over the last decades, estimates of sea ice rheological parameters (RPs) have been made from 

the satellite and in situ ice observations. These estimates, however, range within significant limits 

[Harder and Fischer, 1999]. For example, Tremblay and Hakakian [2006] bounded P* between 35 and 

45 kN/m2 while earlier historical literature suggests a range of 15 kN/m2 to 27.5 kN/m2 may be 

more appropriate [Weeks and Assur, 1967; Timco and Weeks, 2010]3. These works' authors emphasize 

the significant variability of their P* estimates, which may be attributed to spatial and temporal 

variation of Arctic sea ice and better represented using a non-elliptic form of the yield curve [e.g. 

Tremblay and Hakakian, 2006].

3A reviewer correctly identified that the manuscript mis-cited Kreyscher et al. [1997], Hibler III and Walsh [1982], and 
van Scheltinga et al. [2010] for estmates of P* . An unpublished 2010 work by van Scheltinga et al. (http://www.met.reading. 
ac.uk/~xv901096/research/Terwisscha-2010.pdf) gives seasonal pan-Arctic distributions of P* bounded between 10 and 
40 kN/m2 based on assimilative modelling. Improved citation of studies providing rheological parameter estimates is 
forthcoming in the revision.

For modeling landfast ice, an additional parameter kT has been introduced to model tensile 

strength [Konig Beatty and Holland, 2010] which is omitted in the traditional [i.e. Hibler, 1979] 

elliptical yield curve formulation. Numerical experiments with a coarse resolution pan-Arctic 

CICE-NEMO model find that kT = 0.2 provides the best agreement with landfast strength mea

surements in the Kara Sea region, with ellipse ratio 1.2 ≤ e ≤ 1.4 providing the best fit to the 

sea ice observations [Lemieux et al., 2016]. Lemieux et al. [2016] emphasizes the significant impact 
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the ellipse parameter value has on simulation results, which intimates variability of e, noting that 

“tensile strength should depend on other factors such as sea ice salinity, the ice temperature, the 

history of deformation of sea ice, etc”.

Recently, the impact of spatial non-uniformity of the ice strength parameter P* was analyzed 

by Juricke et al. [2013]. AO sea ice models in that study generated greater ice volume and lower 

ice cover area when P* was stochastically perturbed, and the authors found that such effects could 

not be reproduced from global modifications of P*.

Thus, analysis of sea ice observations andnumerical modeling results suggest that an optimized 

spatially-varying set of RPs (i.e. e(x, y), P*(x, y), c*(x,y), kT(x, y)) may significantly improve the 

results of numerically modeled sea ice. Obviously, it is tempting to methodically resolve RP 

dependence onobservable sea ice properties and analytically derive optimal estimates from them. 

However, a poor theoretical understanding of ice floe interactions subject to various external and 

internal forces precludes this approach. One also anticipates temporal variability of RPs, as the ice 

state variables which influence their values vary seasonally as well as spatially.

An alternative method is to empirically optimize sea ice RPs through the assimilation of 

available sea ice observations into a sea ice model using the Variational (Var) data assimilation 

technique [Le Dimet and Talagrand, 1986]. This approach looks feasible given the tremendous 

increase of the satellite sea ice observations during the last decades suitable for model constraint. 

When ice cover is not full, the permitted advection exponentially reduces the importance of 

internal stresses so the benefit of variable internal RPs may be relatively unimportant for sea ice 

model dynamics in this case. In such regions, however, model dynamics may benefit from local 

optimization of wind-imparted surface stresses [Miller et al., 2006], and a common assimilation 

approachcanbegenerallyappliedtofindoptimalRPand/orwindstress,dependingontheregion. 

Temporally fixed RPs are sought here for the purposes of improving short-term reconstruction and 

forecast of the ice state.

Currently available are relatively accurate observations of sea ice concentration (SIC) and sea 

ice velocity (SIV) from optical or SAR images [Komarov and Barber, 2014; Bouillon and Rampal, 2015b]. 

There are several satellite projects that may potentially provide daily SIV and sea ice thickness 

(SIT) in the near future (e.g. NASA ICEsat-2 and CSA RADARSAT Constellation Mission) given 

the right data processing. A properly-developed variational algorithm can assimilate these sea ice 

observationstooptimizespatiallyvariablesea ice RP in the Arctic region, with temporal variability 

resolved by sequential assimilation. Nevertheless, open questions remain regarding the tangent 
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linearity and controllability of VP/EVP ice models through sea ice RPs.

This study adopts the simplified one-dimensional sea ice model of Konig Beatty and Holland 

[2010] and explores some of these questions using a corresponding variational DA system (Var

DAS). The work posits that addressing these issues is important before including spatial variability 

into modern sea ice models (e.g. CICE) and developing the associated tangent linear and adjoint 

models. The developed VarDAS may be formally applied to estimate sea ice rheology in narrow 

straits or small-scale regions where sea ice is essentially one-dimensional such as in ice ridging 

areas. The approach uses Observation System Simulation Experiments (OSSEs) to evaluate the 

optimizability of the two major sea ice RPs (e and P*), wind stress, and initial ice state distribu

tions on the basis of simulated incoming satellite observations. The paper is organized as follows: 

Section 2 describes the implemented ice model and applied DA algorithm; Section 3 describes the 

underlying OSSE hypotheses and experiment design;Section4discusses results ofthe OSSEs;and 

Section 5 summarizes the work and comments on future research.

3.2 Optimization Method

This section provides details of the implemented sea ice forward-time model and its associated 

linearizations, outlines the variational data assimilation system (DAS) applied to optimize model 

parameters, and describes the synthetic observations used to do so.

3.2.1 Forward, Tangent Linear, and Adjoint models4

This work considers the thermostatic sea ice model [Hibler, 1979] with tensile strength [Konig Beatty 

and Holland, 2010] andlocalizedvariabilityinice-strengthparameters. The standard one-dimensional 

sea ice constituent equations with fixed boundaries on a domain of length L=1800 km are given 

by:

4This section contains numerous inaccuracies, including major errors in the presented equations. There are also 
several undiscussed assumptions. An interested reviewer is cautioned to these problems.
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with a stress tensor defined by5: 

5A reviewer has correctly noted that the form of Equation (3.4) pre-assumes that T = 0, so that T = -T. Further, the 
form of the equation is incorrectly simplified. The equation without this assumption is Equation 25 of König Beatty and 
Holland [2010]. Also, there is a concern that use of a scalar stress omits cross terms in V · σ, making this formulation 
inaccurate for a 1.5-D problem or using certain kinds of boundary conditions.

where e(x), kT(x), P*(x), and c*(x) are spatially (piece-wise) varied functions of ellipse ratio, tensile 

strength factor, and empirical ice-strength parameters respectively; the symbol Δmin defines the 

creep limit; u(x, t), h(x, t), and a(x, t) identify SIV, SIT, and SIC, respectively; and τa and τo denote 

respective atmospheric and oceanic stresses. Initial ice conditions implicitly determine the fixed 

boundary values, with ice velocities maintained at zero at each boundary. Note that this model 

omits dynamical effects due to sea surface tilt and Coriolis effects.

Discretization of equations (3.1)-(3.7) over a B-grid at time k yields a tridiagonal matrix equation

[Konig Beatty and Holland, 2010], defining an implicit map from current state variables and param

eters bk to forecast velocities u. The map Ak is clearly non-linear as it depends on the current 

SIV, SIT, and SIC distributions uk, hk, and ak, respectively. Equivalently-discretized continuity 

equations (3.2)-(3.3) provide updates of concentration and thickness once velocities are known, 

and may be used to augment Equation (3.8) for an implicit complete state update.

The implemented numerical sea ice model used a 1800 km domain discretized with 10 km 

resolution, and was integrated for a period of 5.5 days with a 4-day data assimilation window. For 

simplicity, ice-ocean interaction is neglected (τo = 0) and fixed boundary conditions are imposed 

on velocity, concentration, and thickness. Formally, these Dirichlet boundary conditions together 

with neglected ice-ocean drag may result in model instabilities during long model integration 

or in the presence of very strong winds, but no instabilities were observed during experiments 

discussed herein due to relatively short integration periods. Atmospheric wind and initial sea ice 
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conditions were specified analytically by combinations of trigonometric functions, while RPs were 

specified by piece-wise linear functions. Numerical model parameters are largely adopted from 

Konig Beatty and Holland [2010] and assembled in Table 3.1.

Exact tangent linear and adjoint models associated with Equation (3.8) were developed ana

lytically with respect to a control vector c comprising initial state distributions (u0(x), a0(x), h0(x)), 

wind stress τa, and RP vectors P*(x), e(x), c*(x), and kT(x). Note that the 1-d rheology parametriza

tion non-uniquely represent compressive ice strength P and net pressure factor P - T in terms of 

(P*,c*) and (P,kT), respectively. Omissionofc*(x) andkT(x) from c results in equivalent control with 

reduced control vector dimension, although the models retain these variables for possible future 

development in 2D where this is not true. Spatial variability of RP is therefore only allowed for 

P*(x) and e(x), with invariant values set for c* andkT asinTable 3.1. Artificially enforced inequality 

constraints 22000 ≤ P*(x) ≤ 37000 and 1.5 ≤ e(x) ≤ 2.5 intend to restrict the feasible controls to 

those giving realistic solutions. These ranges suffice for experimental purposes, and should be 

widened appropriately for practical application.

Numerical solutions to Equation (3.8) and its associated linearization/adjoint are accomplished 

using GMRES routines [Saad and Schultz, 1986, https://www-users.cs.umn.edu/~saad/software/] . 

These solutions are used to determine an optimal control vector on the basis of observations using 

the VarDAS described below. Functional minimization within the algorithm uses the N1QN3 

routine of Gilbert and Lemarechal [1993], which implements a quasi-Newton method [Wright and 

Nocedal, 1999]. Preliminary numerical experiments determined that sequential minimization over 

different control components yielded better results; simultaneous optimization of SIV, SIT, and SIC 

initial conditions occurs first, followed by optimization of the remaining components P*(x), e(x), 

and τa together.

3.2.2 Variational Assimilation Method

The update of an ice-model state implied by Equation (3.8) together with discretized continuity 

equations define a numerical forward-time state map. By iterating this function, model states 

depend only on the initial data and static model parameters which compose the control vector: 

x = M(c) where x denotes the trajectory of model ice variables u(x, t), h(x,t), and a(x, t); M is the 

iterated forward-time map; and c is a control vector comprised of complete initial state conditions 

along with other model parameters. The associated tangent linear model δx = Mδc identifies 

variations of the model state δx with respect to control vector variations δc; the adjoint model, 
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where B and R are the background model and observation error covariance matrices, respectively; 

0 ≤ k ≤ N are model time indices of the assimilation window; Hk denotes the linearization of 

the observation operator h at time k; and dk = yk - h (M(c0)k ) is the first guess difference from 

observation at time k. The symbol Mk denotes application of the tangent linear model from the 

initial time to time k, and MkT identifies the adjoint model at time k. Error covariances in this study 

are diagonal with entries defined by component-wise estimates of appropriate variances. The 

optimal control copt = c0 + δcopt contains optimal initial state conditions and sets of RPs reported 

in the following sections; the trajectory of ice-model states M(copt ) is reported hereafter as the 

optimal model solution. Components of the control may be readily omitted from optimization in 

experiments by preventing their update to formally retain their presence in c.

3.2.3 Observations

For experimental purposes, observational data of the sea ice state are required for assimilation. This 

work aims to represent synthetic equivalents of the following high-resolution satellite observations, 

which are currently available or developing.

The first data are accurate SIC observations, of which there are currently multiple grid

ded products based on various remote sensing instruments with different spatial resolutions. 

Example datasets include the Passive Microwave Sea Ice Concentration with 25 km resolu

tion [Peng et al., 2013, https://nsidc.org/data/g02202], MASAM2 with 4 km resolution (https: 

//nsidc.org/data/g10005), and the Advanced Microwave Scanning Radiometer 2 (AMSR2) with 

10 km resolution (https://gportal.jaxa.jp/). After additional pre-processing, these observations are 

routinely used in DASs [e.g. GOFS 3.1 DA system, Cummings and Smedstad, 2013] with a nominal 

spatial resolution of 5 km and regionally low SIC representation errors [~5%, Yaremchuk et al., 

2019].
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δc = Mtδx where (∙)τ is the matrix transpose, identifies the control variations associated with 

a change in state. The optimal control vector is sought to ensure that observations of model 

states {h(x)} lie close to known observations {y} by minimizing the standard quadratic variational 

cost function J(c) [Le Dimet and Talagrand, 1986] in two dimensions. This unknown minimum is 

distinguished by the vanishing gradient of J at copt, and may be identified from an initial c0 by 

solving:
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The second set are SIT observations which contain moderate errors6 Currently, the primary 

source of such data is CryoSat-2, with gridded 2-day averaged observations from the Center 

for Polar Observations and Modeling (http://www.cpom.ucl.ac.uk/csopr/seaice.html). Laxon et al. 

[2013] conducted a detailed survey of this processed product and found 0.62 m mean difference 

between CryoSat-2 and in situ SIT observations; the estimation errors are largely due to uncer

tainties in converting remotely-observed freeboard height to equivalent SIT. In the future, novel 

observational platforms will likely provide better spatial coverage (i.e., over the entire Arctic) and 

higher accuracy. For experiment purposes, this work posits future inaccuracy by imposing SIT 

observation errors of 0.35 m in the mean.

6A reviewer correctly noted that no reference was provided for SIT and SIV observations. See the published revision 
for citations.

Accurate observations of the sea ice velocities compose the third group. An example product 

is the daily 25 km SIV analysis of various satellite sources (https://nsidc.org/data/nsidc-0116), 

although its production ended in 2015. However, similar velocity maps with higher spatial 

resolution can be derived by sequential comparison of SAR images with accuracy of 0.05 m/s 

[Komarovand Barber, 2014] which suggest the possibility ofongoing and future SIV observations.

A fourth set of data is needed to optimize atmospheric forcing and comes in the form of wind 

stress information. Atmospheric wind stress is usually estimated using the 10m wind speed from 

atmospheric reanalysis or weather forecast systems, rather than observations. The inaccuracy of 

suchdata inthe central Arctic region likely results from limited in situ observations for calibration 

rather than inaccuracies in the atmospheric boundary layer parametrization in the existing models. 

Evaluation of product accuracy by Jakobson et al. [2012] suggeststhatstandardwindspeederrorsare 

typically 1.5 m/sinthe centralAO;the corresponding wind stress uncertainty calculated at fullice 

cover using parameters in Table 3.1 is about 0.04N/m2 and scales linearly with open water fraction. 

However, this estimate fails to account for uncertainties in the static ice-air friction coefficient or 

errors in SIC estimates. Further, the 1D wind stress discussed here lacks a vorticity component 

that must be accounted for in realistic 2D applications. For these reasons, the observation errors 

for data associated with 1D wind stress are assumed to be much larger with a standard error of 

0.125 N/m2.

This work assumes that spatial resolution of synthetic observation representatives is the same 

as the model resolution, and also that observations are available at each model time step. Practical 

applications justify spatio-temporal interpolation of existing sea ice datasets because they are 
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already gridded, daily analyses ofasynchronous satellite swaths. Here, assumptions are motivated 

by simplicity and the desire to avoid specifying additional smoothing terms needed to regularize 

the ill-posed optimization problem [i.e. Neumaier, 1998, and references therein].

3.3 Observation System Simulation Experiments

Sea ice model presented in Equations (3.1)-(3.7) suggests two major dynamical regimes depending 

on ice coverage. This grouping motivates the organization of experiments as their dynamics are 

distinct.

The first regime occurs where sea ice covers the entire ocean surface and is identified as the pack 

ice zone (PIZ) and characterized by a(x) ≈ 1. Within this case, internal stress σ plays a significant 

roleintheseaicedynamicsandSICcontinuity(Equation(3.3))maybereadilyignoredbyassuming 

a(x) = 1. Formally, this assumption of constant, full ice cover is equivalent to immediate sea ice 

formation in regions where SIC slightly decreases due to ice divergence. Equation (3.4) naturally 

suggests that, in this case, spatial variability of RPs should significantly affect the presence of the 

convergence (causing ridging).

The second regime occurs where sea ice is present but only partially covers the ocean surface; 

it is identified as the marginal ice zone (MIZ) and characterized by concentrations 0.2 ≤ a(x) ≤ 0.8 

in this work. Numerically, this case differs numerically from that of the PIZ because Equation (3.3) 

is required in the solution to Equation (3.8). In the MIZ, the impact of the internal stress σ is low 

as ice movement is not fully constrained. Dynamics of the presented sea ice model in this regime 

are controlled by atmospheric/oceanic forcing, with Coriolis effects in the 2D case.

Wind stress is naturally the most important component of the external forcing in this ice 

model, and accuracy of the wind forcing is important to secure quality reconstruction and forecast 

of the sea ice state. It is thus reasonable to conduct OSSEs for cases which involve both realistic7 

and idealized, error-free atmospheric forcing. It is also important to evaluate separately the 

impact of the optimization with respect to the various control components: the initial ice state 

(u0(x), a0(x), h0(x)), the wind stress τa, and the RP distributions (P*(x), e(x)).

7A reviewer correctly noted that no mention was made of the unrealistic timescale of the wind forcing in the 
OSSEs. The wind stress is constant over a 5.5 day period in the presented experiments. The VarDAS was successful in 
reconstructing the ice-state under more realistic (noisy, non-stationary, and slowly varying) wind fields in the MIZ, but 
such experiments were conducted early in this research and were not targeted at wind stress reconstruction. Work in 
this direction is ongoing.

To assess the quality of reconstructed sea ice states using various controls and data sources, 

OSSEs are conducted in which poorly-initialized model results are compared with identically- 
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initialized DAS solutions. The conventional OSSE methodology [Houtekamer and Mitchell, 1998] is 

briefly described here.

First “true” solutions are generated with a given atmospheric forcing, initial/boundary condi

tions, and rheological parameters. InitialSITandSIC condition are specified as the sumof several 

smooth cosine and sine functions. Initial SIV condition are specified by ice model integration for 

10 time steps (100 minutes). Then synthetic observational data are generated by contaminating 

these true, known solutions with spatially-correlated noise whose scale and form depends on the 

type of observation the data is intended to represent; the noise amplitudes are chosen to reflect 

realistic mean error magnitudes for each data type discussed in the previous section. The model 

is then reinitialized with poorly-informed first guess (FG in figures) initial data, wind stress, and 

RP which compose the initial control c0. The variational assimilation scheme presented previously 

is applied to determine the optimal control by assimilating observations at each timestep. The 

optimal model state trajectory and parameters (OPT in figures) result from initialization at day 

0.08.

8That is to say, when t = 0.0 days. By “at” in relation to times, the author throughout this document means “at the 
start of” or “when time is instantaneously equal to” in the way one uses “at 5 o'clock”. One reviewer felt this was 
ambiguous as it could be interpreted as “during” because days are not typically referred to in this way. It does feel very 
unnatural to say “at Tuesday” as days colloquially denote time intervals rather than instants.

In discussing experimental results, it is often necessary to distinguish between the initial 

condition and the trajectory (or solution) resulting from it. For example, a first guess control c0 

includes initial state data for SIV, SIT, and SIC at t = 0 as well as parameter distributions for RP and 

τa; application of the forward model results in the first guess solution x0 = M(c0). The true and 

optimal solutions are defined analogously by the initial conditions and parameters comprising 

their associated control vectors. Figure 3.1 attempts to meaningfully communicate this distinction 

to the reader.

The estimates of the model skill are calculated separately for the assimilation period, spanning 

the first 4 days of integration (ie. 0 ≤ t < 4), and forecast period for the 1.5 days following (ie. 

4 ≤ t ≤ 5.5). Skill of the DAS reconstruction/forecast is quantified by the root-mean-squared errors 

(RMSE) of optimal quantities (u(x,t), a(x,t), h(x,t), τa) withrespectto their true counterparts. The 

RMSEs reported for OSSEs corresponds only to ice variable values of the innermost 1660 km of 

the domain; the boundary regions are discarded in skill calculation to omit boundary errors likely 

caused by dynamical imbalance between forcing and boundary conditions. Wind stress errors are 

reported for the entire length of the domain. Conducted OSSEs are detailed concisely in Table 3.2.
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3.4 Results and Discussion9

9This section includes analysis based on some incorrectly identified RMSEs for the observations and forecast/hindcast 
solutions. One notes that in several of the figures, the forecasts are more accurate than the hindcasts. This clearly does 
not make sense, and a reader is further cautioned against viewing this section when updated versions of this chapter 
exist.

3.4.1 Pack Ice Zone

Figure 3.2a shows the true solution associated with PIZ experiments (OSSE-3,-3w, and -3n). The 

true parameters are piecewise linear distributions for P*(x) and e(x) in the form of triangular waves 

with a period of 300 km, and a smooth quasi-sinusoidal distribution for wind stress with typical 

amplitude about 0.25 N/m2. Evolution of the ice thickness, shown in the fifth row of Figure 

3.2a, indicates that this configuration results in ice convergence with a discontinuity in the SIT 

distribution (row four) between 1200 km and 1300 km. This discontinuity is clearly seen in the 

SIV and SIT distributions at day 4 of the model integration, shown by solid black lines in Figure 

3.3a,b.Throughout the text below, we identify this feature of the true solution as “ridging”behavior. 

It is also necessary to note that prescribed SIV and SIT boundary conditions are unbalanced with the 

wind forcing; the non-zero wind forcing near the boundaries results in unrealistic sharp decreases 

of SIT near those boundaries. Ideally, the ice thickness and concentration should decrease in these 

areas due to off-shore ice transport under the influence of accelerating offshore winds. However, 

the SIC distribution is spatially invariant with a(x) = 1 throughout each PIZ experiment.

True wind stress forcing, SIV, and SIT are modified by adding spatially correlated smooth func

tions with amplitudes corresponding to the errors discussed above above; the noise-contaminated 

values are used as simulated observational data. Mean RMSE between data and true solution 

for these fields were 0.13 N/m2, 0.03 m/s, and 0.21 m, respectively, with associated maximum 

differences of 0.3 N/m2, 0.10 m/s and 0.6 m. Figure 3.3 illustrates the typical differences between 

true solution and synthetic observations for these fields.

To initialize the DAS, the true initial conditions for SIV, SIT, and SIC are contaminated in a 

similar way as the data-supplying model, but with a largerspatialdecorrelationscaleanddifferent 

noise. The larger spatial scales provide a smoother initial state whose trajectory evolves away from 

the true solution; smaller spatial decorrelation scales produced dynamical state differences which 

dissipated rather than evolve. These initial conditions, conventional RPs P*(x) = 27500 N/m2 and 

e(x) = 2, and exact wind stress characterize OSSE-3.

The errors of the OSSE-3 first guess with respect to true fields are shown in Figure 3.2b. The 

small (~0.03 m/s) mean RMSE for first guess SIV is due to the exact wind stress forcing provided 
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in the experiment. The corresponding RMSE for SIT is more significant, equaling 0.19 m and 0.23 

m for hindcast and forecast periods respectively. Maximum differences in first guess SIT occur 

in the domain between 900 km and 1200 km and reach ~0.8 m in height, which is approximately 

25-30% of the local true SIT (Figure 3.2a).

Figure 3.4a underscores the significant qualitative difference between true and first guess 

solutions. In particular, the first guess thickness (identified by the dashed green line, bottom) is 

rather smooth in the central part of the model domain (900-1300 km) and does not reflect the 

ridging discontinuities clearly seen in the true SIT identified by the solid black line. There also 

exist problems near the boundaries; these are due to non-zero wind and fixed boundary conditions 

which are not in dynamical balance.

The optimized P*(x) and e(x) distributions and difference between optimized and true solutions 

are shown in Figure 3.2c. Assimilation of SIV and SIT observations results in a spatial distribution 

of P*(x) more representative of the true solution, although this improvement is not uniform. The 

optimized distribution for e(x) is generally inaccurate, which suggests that the elliptical yield curve 

eccentricity is ofmodest importance in the optimization. It is worthwhile to note that the optimized 

solution yields better recovery of the P*(x) distribution with large reconstruction errors for e(x) in 

the center of the domain, while the opposite appears to be true in the boundary regions. In spite 

of this, RPs and SIV/SIT initial condition optimization reduces the difference between optimized 

and true SIT.

The average effect of the SIT optimization is more profound for the forecast period where 

mean RMSE is 0.13 m (42% improvement over the first guess) and smaller for the hindcast period 

where mean RMSE is 0.16 m (15% improvement over the first guess). Yet these average errors do 

not provide a complete picture; Figure 3.4a clearly demonstrates that the difference between first 

guess and true SIT can be as large as ~1m near 1200 km and even larger near the boundaries, while 

optimized SIT is very close to the true SIT across the most of the modeled region after the first day.

Errors in the optimal hindcast SIT are mostly due to the underestimation of SIT in the center of 

thedomainaround900kmforthefirstdayofsimulation;theoptimizedSIVandSIToutperform  first 

guess solution (e.g. Figure 3.4a) in the rest of the domain, boundary areas excluded. Additionally, 

thefirstguessSITerrorsarecorrectedbyasmuchas0.9moverthecentraldomainintheoptimum. 

Also note that the optimal solution contains an SIT discontinuity between 1100 km and 1300 km 

that is qualitatively the same as that found in the true solution, while the first guess solution with 

uniform rheological parameters does not.
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The top row of Figure 3.5 highlights the effect of RP variation and optimization on the error 

distributions in SIT and SIV. The first guess solution of OSSE-3, where RP are constant, statistically 

underestimates SIT by about 0.3m, and the error structure is rather uniformly distributed over the 

range -0.5-0.0 m. In contrast, the optimized SIT errors show statistically desirable qualities of low 

bias and approximate normality. Improvements in SIV error distribution are also evident.

Figures 3.6a,b present the result of the more realistic OSSE-3w which uses inaccurate wind 

stress in its first guess and observation data. The true state, ice-state observations, and first guess 

for SIV and SIT are the same for this case as in OSSE-3 (Figure 3.2a, Figure 3.3a), although the 

resulting model trajectories differ as a result of the incorrectly specified wind forcing. The control 

vector for OSSE-3w includes initial conditions, RPs, and wind stress. In the optimized solution, 

imperfect wind information results in poor reconstruction of P*(x) and e(x) in OSSE-3w (Figure 

3.6b, top panels), while the reconstructed wind stress is accurate. Despite this poor RP estimation, 

optimized SIV and SIT solutions (Figure 3.6, bottom) are significantly closer to the true model state 

than the first guess solution (Figure 3.6a, bottom). The applied DAS reduces SIV errors by 71% 

(from 0.07 m/s to 0.02 m/s) during reconstruction and by 60% (from 0.07 m/s to 0.02 m/s) during 

forecast, with averaged error reductions of 59% and 65% obtained for SIT hindcast and forecast, 

respectively. Similartothe OSSE-3, the major optimization impact is clearly observed in the central 

part of the modeled region away from 1000-1200 km; here, the absolute differences between true 

and optimized SIV/SIT are about 0.01 m/s and 0.1 m, respectively. Again, the structure of SIV and 

SIT error distributions (Figure 3.5, middle) shows approximate debiasing of both fields. However, 

the posterior errors for SIV retain the bimodal structure of the first guess errors.

The OSSE-3w instantaneous SIV and SIT distributions at the end of the hindcast period (day 

4) are shown in Figure 3.4b by the blue line and show significant superiority over the first guess 

solution (green). Interestingly, the additional optimization of the wind stress provides a smoother 

SIT solution near the boundary than that of the first guess. In the ridging area (near 1200 km), 

optimized SIT still demonstrates some level of discontinuity, but the feature is not as pronounced 

as in the OSSE-3 case with perfect wind. Small scale noise in some optimal solutions is visible, 

e.g. OSSE-3 optimal SIT around 1100 km in Figure 3.4a. In additional OSSEs not detailed here, 

additional regularization was given in the form of cost function gradient penalties encouraging SIV 

and SIT smoothness; results suggest that such regularization is capable of eliminating this small 

scale noise but inhibits formation of intended discontinuities in ridging regions. This problem may 

be formally overcome by implementing a more advanced non-uniform smoothing, but such an 
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approach would require additional information to formulate a reasonable regularization constrain 

[e.g., Fomel, 2007].

Figures 3.4c and 3.6c visualize OSSE-3n, which is similar to OSSE-3w but optimizes only initial 

conditions and wind stress while RP are held uniformly as in the first guess solution. Figure 3.6c 

shows that partial optimization still yields SIT distribution improvement, with SIT forecast and 

hindcast improving the first guess by 11.5% and 7%, respectively. However, these improvements 

are modest compared to reductions of 65% and 58% achieved using full control in OSSE-3w. 

Figure 3.4c clearly indicates that without variable RP included in the optimized control, there are 

marked difference from the true SIT in the central domain (900-1300 km) and optimized SIT lacks 

the discontinuity near 1200 km. The OSSE-3n optimal initial state and wind stress are otherwise 

similar to those of OSSE-3w, which confirms that variable RP significantly affect the evolution of 

the sea ice state. This is further supported by examination of the optimized SIT error structure 

for OSSE-3n (Figure 3.5, bottomleft) which shows little change fromthe corresponding firstguess 

errors and continues to underestimate SIT.

Optimization of the initial conditions in OSSE-3n has a minor impact on the forecast SIV, which 

remains close to the first guess SIV for the entire forecast period (Figures 3.4c and 3.6c). This 

similarity likely results from identical rheological parameters and a small difference between first 

guess wind stress and wind stress observations. The optimization does, however, reduce SIV 

bias from ~0.04 m/s to ~0.01 m/s (Figure 3.5, bottom right). Thus, the comparison of OSSE-3w 

and OSSE-3n optima clearly indicates the significant impact P*(x) and e(x) optimization has on 

obtaining accurate short range sea ice forecast in the idealized PIZ region.

To more clearly identify the roles of P*(x) and e(x) separately, two additional OSSEs were per

formed where the true solutions were obtained using RPs with either P* or e taken as uniform. 

Results showed that optimization over each non-uniform RP independently provides approxi

mately the same hindcast/forecast mean errors in SIV and SIT distributions, and were larger than 

errors in OSSE-3w. However, optimization of e(x) with constant P*(x) did not provide reconstruc

tion of the SIT discontinuities discussed above. This result suggests that the 1D e(x) does not 

influence the formation of discontinuities. In all cases, identified ridges are located in true and 

optimized solutions where P*(x) attains a local minimum. Therefore, optimization with respect 

to spatially variable P*(x) appears to be more important for short range hindcast/forecast than e 

in the 1D case; this is also suggested by the quality of SIT/SIV reconstruction in OSSE-3 despite 

inaccurate reconstruction of e(x).
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An interesting result ofOSSE-3 and OSSE-3w together is that first guess solutions with constant 

PRs show a clear negative SIT bias with respect to the true SIT solution, while optimization using 

spatially variable P*(x) and e(x) significantly reduces this underestimation (cf. Figure 3.5, left 

panels). This is in strong agreement with aforementioned results of Juricke et al. [2013], which 

found that simulations using varied P* led to central Arctic SIT could not be reproduced with 

reduced fixed P*.

Observed biases in sea ice thickness and volume in some modeling systems [e.g. theArcticCap 

Nowcast/Forecast System, Posey et al., 2015] may be reduced after conditioning SIT initialization 

on observations [Allard et al., 2018], and the results of OSSEs here suggest that observational- 

conditioning with variable RPs may provide similar benefits in more realistic applications.

3.4.2 Marginal Ice Zone

As discussed previously, the MIZ regime greatly limits the role rheological stresses play in the 

sea ice dynamical balance; the VP internal pressure with 80% SIC is less than 2% of its value 

at 100% SIC with other parameters unchanged. One expects the impact of spatial variability in 

RP to be negligible as well, so spatially uniform parameters, P* = 27000 N/m2 and e = 2, reflect 

these assumptions in MIZ OSSEs. To avoid instabilities in model simulation, the amplitude of the 

supplied wind stress τa is reduced to avoid violation of CFL conditions. In a less idealized setting 

where ice-ocean stress (τo) is included in the dynamical forcing, ocean drag would naturally reduce 

the net imposed stress10.

The MIZ OSSEs further assume that true SIC is proportional to true SIT for convenience, 

although this constraint is not imposed on the DAS. The evolution of the true MIZ solution is 

shown in Figure 3.7a. Iceinthe model solution moves toward to the center of the domain similarly 

to the PIZ case, but lacks the marked discontinuities in ice state variables.

The generation of observations and first guess solution for MIZ OSSEs follows those described 

previously for OSSE-3w. Figure 3.7b shows the evolution of the first guess solution, and 3.8 

provides an example of the day 4 observations which now include SIC data. Note that both first 

guess wind stress and observations differ significantly from the true wind stress with mean RMSEs 

of0.04N/m2 and 0.02 N/m2 respectively and are aligned with 10m wind error estimates calculated

10A reviewer correctly pointed out that ignoring τo could be effectively regarded as taking τa to represent the net 
interface stress rather than the wind stress. While this has no effect on the experimental results, there may be implications 
for the use of SIV to inform boundary-layer winds in atmospheric models and products. Namely, such use require 
additional estimates of ocean surface currents. This discussion is ongoing among co-authors. 
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from reanalysis products [Jakobson et al., 2012]. In OSSE-4, the optimization was conducted with 

respect to initial state conditions (which now includes SIC) and wind stress, and results of the 

optimization are shown in Figure 3.7c.

Clearly, optimized solution shows considerable improvement in the hindcast (forecast) SIV, 

SIC, and SIT distributions which improve over the first guess by 66% (60%), 43% (50%), and 36% 

(23%), respectively. In particular, Figure 3.9a compares true, first guess, and optimized solutions 

at day 4 and suggests that the most significant improvements occur in optimized SIV which is 

five times closer to the true solution than the first guess SIV. Interestingly, the optimized τa is 

much closer to the true wind stress with RMSE of ~0.01 N/m2 despite large errors (~0.04 N/m2) 

in the supplied wind stress observations. This is a consequence of assimilating SIV observations, 

which relate directly to wind velocity; in the absence of the internal rheological stress and ocean 

drag, sea ice velocities are linearly related to the atmospheric wind stress by Equation (3.1). This 

suggests prerequisite use of SIV observations for estimation of atmospheric stress in the MIZ. 

Further, it suggests SIV may be utilized in conjunction with other ice-state estimates as additional 

atmospheric observations to improve atmospheric reconstruction and forecast.

To better illustrate this possibility, OSSE-4w is conducted identically to OSSE-4 only with more 

accurate SIV observations; the data are contaminated with noise of 1/3 the amplitude (~0.01 m/s) 

of those used in OSSE-4 as shown in Figure 3.8 (second plot, blue line). The optimized solution is 

shown in Figure 3.10 and improves the reconstructed wind stress as well as ice-state distributions 

beyond the results of OSSE-4. With all else equal, the threefold increase in accuracy of assimilated 

SIV observations yields a threefold decrease in reconstructed wind stress errors (viz. from ~0.009 

N/m2 in OSSE-4 to ~0.003 N/m2 in OSSE-4w). It is worth reminding that ocean influence is ignored 

in this regime, or is at least treated as spatially constant to decrease the net forcing imparted by 

the wind.

The comparison of OSSE-4 and OSSE-4w suggests that high-accuracy SIV observations may 

significantly benefit hindcast/forecast quality of the sea ice state and in weather forecast systems 

as well. Such accurate SIV observations are typically obtained from analysis using the Maxi

mum Cross-Correlation (MCC) method applied to sequential SAR images [Fily and Rothrock, 1987; 

Komarov and Barber, 2014]. In this method, the presence of the open-water generally allows for 

more accurate estimation of the cross correlations between two data images. Based on this, one 

expects more accurate SIV estimates in the MIZ than in the PIZ where ice concentration is more 

homogeneous.

88



3.5 Summary

This study addresses the feasibility of optimizing spatially-varied rheological parameters (RPs) 

and wind stress (τa) by assimilating simulated satellite observation of sea ice velocity, concentra

tion, and thickness (SIV, SIC, and SIT respectively) with realistic errors. To study this problem, 

developed tangent linear and adjoint models were implemented into a variational data assimila- 

tionalgorithmforasimple1Dsea ice model which has been previously used to analyze a modified 

rheology and numerical scheme [Konig Beatty and Holland, 2010; Auclair et al., 2017].

In all observation synthesis simulation experiments (OSSEs) conducted for the pack-ice zone 

(PIZ, where SIC is maintained at 100%), optimization of variable rheological parameters resulted 

in improved hindcast/forecast of the sea ice state variables. Of note is that this improvement is 

achieved even when the RMSE of optimum RPs is larger than those of the first guess when the 

true solution has spatially variable parameters (as in OSSE-3). The PIZ OSSEs here suggested 

that optimized variable RPs yielded model evolution with more (thicker) ice and corrected SIT 

underestimation of the first guess solutions, which was not the case in experiments with non

variable RPs. This results agrees with those of Juricke et al. [2013], which found simulation using 

stochastically perturbed strength parameter cannot be reproduced with a fixed, uniform P*. OSSE 

results also show that partial optimization using a subset of rheological terms may significantly 

improve hindcast/forecast of the sea ice state.

Individual optimization of P*(x) ande(x) yielded similar improvements in SIV and SIT states in 

the case of full ice-cover. However, optimization of strength parameter P*(x) allowed solutions to 

form discontinuous SIT distributions which can be associated with ice-ridging regions. Results also 

suggest that accurate reconstructions are achieved when the optimal e(x) is inaccurate, suggesting 

that its role is of less relative important in the 1D case than wind stress and spatially variable 

P*(x). However, sea ice state reconstruction strongly depends also on accuracy of the wind stress 

forcing and assimilated observations. OSSEs in this study used simulated high-accuracy SIV and 

SIC observations such as those currently available (0.03 m/s and 3% respective RMSE), along with 

moderately accurate simulated wind stress and SIT observations (0.125 N/m2 and 0.2 m respective 

RMSE). Actual SIT observations are less accurate than assumed in these experiments, although 

forthcoming observational platforms and methodologies should provide SIT observations with 

uncertainties less than those currently available and comparable to those simulated.

In the marginal ice zone (MIZ, where ice coverage is between 20 and 80%), the effects of 

internal sea ice stress are negligible and optimization of the rheological parameters relatively 
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unimportant. Instead, the conducted OSSEs revealed that wind stress, in the absence of ocean 

forcing, is successfully optimized through the assimilation of SIV observations. This results 

mostly from the known linear relationship between wind stress and sea ice velocity in the MIZ, 

and consequently the quality of the wind stress correction is roughly proportional to the accuracy 

of assimilated SIV observations.

Pack ice is the prevalent regime over most of the central Arctic Ocean throughout the year, so 

these results clearly indicate practical benefits of including spatially varied P*(x) and e(x) into sea 

ice models and developing the proper optimization algorithms to handle the more dynamically 

complex 2D case. Notably, optimizations which included variable RPs resulted in SIT solutions 

with considerably less bias than first guess solutions using fixed RPs. This may partially explain 

the source of observed SIT underestimation in some sea ice models employing a set of constant 

RPs. However, thermodynamic components of modern sea ice models, which are not considered 

in the presented short-term experiments, need to be considered in assessing impacts and biases in 

longer simulations.

Development of this algorithm will also allow for estimation of local wind stress in the MIZ, 

which accounts for significant portion of the Arctic Ocean in the summer months. At present, the 

simplified model is limited to one dimension, and a proper MIZ implementation must account 

more complicated physical considerations such as imposed wind stress curl, Coriolis coupling 

of velocities, effects of ice-ocean drag, geostrophic currents with sea surface tilt, and different ice 

types. More research and development are needed to extend the idealized experimental results to 

practical settings.

The sea ice model is non-linear, and the cost function of the DAS has multiple local minima; the 

calculated optimal solution therefore depends on the first guess solution. However, assimilation 

of a significant volume of sea ice observations should provide sufficient correction and constraint 

to the model evolution that the optimization scheme targets an optimum which is “close enough” 

to the “true” solution after several assimilation cycles. This suggests that future developments 

toward realistic applications implementing the assimilation methodology described here should 

focus on hindcast periods with abundant data.

Also, the modern analysis of SAR images and other satellite observations permits accurate 

identification of different ice types [e.g. multiyear/first year ice, deformed first year ice; Zakhvatkina 

etal.,2013,2017] and leads [Murashkin et al., 2018] . Newmethods ofprocessing satellite data resolve 

additional sea ice characteristics which affect its material properties, such as ice age [Korosov et al., 
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2018] which has long been known to affect ice strength [Weeks and Assur, 1967; Timco and Weeks, 

2010]. Such information may be efficiently used to reduce of the dimension of the rheological 

control vector through regional definitions. For example, one could partition a pan-Arctic model 

domain into sub-regions based on the maturity and type of sea ice present, and prescribe to each 

a set of local strength distribution P*(x). Such an approach, of course, requires experimentation 

to empirically determine optimal RPs for each ice category. Furthermore, the ongoing work 

of resolving sea ice properties from remote sensing provides a base of information necessary 

to establish a proper regularization scheme (e.g. through spatially variable smoothing) for the 

optimization problem presented here. The need for sophisticated regularization is clear in some 

pack-ice OSSEs; without it, large errors in observational data may produce artificially noisy ice 

states, while imposing spatially homogeneous regularization prevents the formation of physically 

relevant and appropriate discontinuities.

These results are encouraging, but are based on a relatively simple 1Dseaice model employing 

the VP rheology proposed by Hibler [1979]. The most widely used sea ice models are two

dimensional and use an elastic-VP rheology, which is more efficient for parallel implementation 

on super computers [Hunke et al., 2010; Bouillon et al., 2013]. These models also have a different 

numerical formulation which may result in more-difficult-to-avoid instabilities in their associated 

adjoint models. Development of full tangent linear and adjoint for existing community sea ice 

models (e.g. CICE) is a long term project. In the meantime, continued research and OSSEs with 

a more realistic 2D sea ice model are the next steps toward achieving locally optimal rheology 

through data assimilation.
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Table 3.1. Model and DAS configuration parameters
Name Symbol Value(s)
Domain size L 1800 km
Grid size dx 10 km
Timestep dt 600 s
Integration Time T 5.5 days
Assimilation Window 0 ≤ T ≤ 4 days
Ice-ocean stress τo 0
Creep Limit Δmin 0.1 s-1

Background Wind Speed ua 20 cos((x/L) - (1/2)) m s-1

Compactness Strength Parameter c* 20
Tensile/Compressive Strength ratio kT 0
Base Strength Parameter P*(x) [22,37] kNm-2

Yield curve eccentricity e(x) [1.5,2.5]
Atmospheric Drag Coefficient ca 0.001
Fixed leftt boundary values [u(0, t), h(0,t), a(0, t)] [u0(0), h0(0),a0(0)]
Fixed right boundary values [u(L,t), h(L, t), a(L,t)] [u0(L), h0(L), a0(L)]
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Table 3.2. For OSSE-3, -3w, and -3n, the DAS incorporates noisy sea ice velocity and thickness observations while a(x) = 1 is fixed 
in keeping with PIZ assumptions. Ice velocity, thickness, and concentration observations are used in OSSE-4 and -4w with RP held 
constant. Wind stress observations are assimilated in all cases subject to inexact wind forcing.

OSSE- Description Goal Control (c)
3 PIZ with a(x) = 1, spatially varied (P*(x),e(x)), 

exact wind forcing, and inaccurate first guess 
parameters/ state

Evaluate RP impact under ac
curate wind forcing.

[u0(x), h0(x), P*(x), e(x)]

3w PIZ with a(x) = 1, spatially varied (P*(x),e(x)), 
inaccurate first guess parameters/state, and 
reasonable errors in wind and ice-state obser
vations

Evaluate RP impact under rea
sonable errors in wind forcing 
and observations.

[u0(x)/ h0(x)f τa(x), P*(x), e(x)]

3n PIZ with a(x) = 1, spatially varied (P*(x),e(x)), 
inaccurate first guess state, and reasonable 
errors in wind and ice-state observations

Evaluate initial-condition im
pact under reasonable errors 
in wind forcing and first guess 
state.

[u0(x), h0(x), τa(x)]

4 MIZ with 0.2 < a(x) < 0.8 and spatially uni
form (P*(x),e(x)), inaccurate first guess state, 
and reasonable errors in wind and ice-state 
observations with low-accuracy SIV observa
tions

Evaluate initial condition im
pact under inaccurate wind 
forcing and low-accuracy ice-
velocity data.

[u0(x), h0(x), a0(x), τa(x)]

4w MIZ with 0.2 < a(x) < 0.8 and spatially uni
form (P*(x),e(x)), inaccurate first guess state, 
and reasonable errors in wind and ice-state 
observations with high-accuracy SIV obser
vations

Evaluate initial condition im
pact under inaccurate wind 
forcing and high-accuracy ice-
velocity data.

[u0(x), h0(x), a0(x)/ τa(x)]



Figure 3.1. Schematic of an OSSE. The general idea of an OSSE is to generate noisy observations from an a priori true solution, do/do 
not assimilate those data into an inaccurately initialized model, and compare the resulting solutions with the true one. Dotted arrows 
correspond to noisy processes, and hollow arrows to application of the forward model.



Figure 3.2. PIZ OSSE-3 Results. Panels in column a.) show the true parameter distributions (upper 3 plots) and solution (lower 2 panels) 
for PIZ experiments (OSSE-3,-3w, and -3n). Subplots from top to the bottom show respectively spatial variability of the P*(x), e(x), and 
wind stress (τa), and evolution of SIV and SIT. Panels of column b.) show the OSSE-3 first guess parameters and solution in relation to 
the true solution. The upper three plots of b.) show true and first guess distribution by the dashed red and black lines, respectively. The 
lower two plots show the true-minus-first guess evolution of SIV and SIT, respectively. The dashed black line identifies the end of the 
assimilation window, with the RMSE for hindcast (hc) and forecast (fc) periods shown. Panels of column c.) show the OSSE-3 optima 
the same way as column b.).



Figure 3.3. PIZ OSSE Example Observations of τa, SIV, and SIT. Solid lines in the upper, middle, and lower plots exemplify observations 
of the wind stress, SIV, and SIT used in PIZ OSSEs at the start of day 4 of the model run. Dashed lines represent the true solutions from 
which observational data (red) are generated.



Figure 3.4. PIZ OSSE Solutions at Day 4. Panels show SIV (top row) and SIT (bottom row) at the start of day 4 for each simulation. 
Solution distributions are shown for each of OSSE-3, OSSE-3w, and OSSE-3e in the left, center, and right columns, respectively. True, 
first guess, and optimal distributions are shown in solid black, dashed green, and dashed blue curves, respectively, in each panel. The 
black curves are identical the black, dashed curves in Figure 3.3.



Figure 3.5. PIZ OSSE Error Distributions. Error distributions for OSSE-3, -3w, and -3n are shown in the top, middle, and bottom row 
of panels, respectively. Plots in the left (right) column correspond to SIT (SIV) errors, calculated as experiment-minus-true, with first 
guess solution errors presented in red and optimal solution errors in blue.



Figure 3.6. OSSE-3w∕n First Guess and Optimal Parameters/Solutions. Panels in column a.) show first guess parameter distributions 
(upper 3 plots) and solution (lower 2 panels) of OSSE-3w, with column b.) showing the relation of the OSSE-3w optimum. The layout 
mirrors those of Figures 3.2 b. and c., respectively, showing results in relation to the true parameters/solution. Column c.) shows the 
optimized results of OSSE-3n in relation to the true parameters/solution.
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Figure 3.7. MIZ OSSE-4 Results. Panels in column a.) show the true wind stress (top panels) and solution (lower 3 panels) for MIZ 
experiments (OSSE-4,-4w). Subplots from top to the bottom show respectively spatial variability of the wind stress (τa), and evolution 
of sea ice state. Panels of column b.) show the OSSE-4 first guess parameters and solution in relation to the true solution. The upper 
plot of b.) shows true and first guess τa by the dashed red and black lines, respectively. The lower plots, from top to bottom, show the 
true-minus-first guess evolution of SIV, SIC, and SIT, respectively. The dashed black line identifies the end of the assimilation window, 
with the RMSE for hindcast (hc) and forecast (fc) periods shown. Panels of column c.) show the OSSE-4 optima the same way as column 
b.). Rheological parameters P*(x) = 27000 N∕m2 and e(x) = 2 remain fixed throughout and are not shown. Plotted red lines in each of 
the top three rows illustrate the true parameter distribution.



Figure 3.8. MIZ OSSE Example Observations of τa and Ice-State at Day 4. Plots show, from top to 
bottom, the observations of wind stress, SIV, SIC, and SIT, respectively, used as model constraint at 
the start of day 4. Solid red lines show example observations for OSSE-4, while the dashed black 
lines track the true solution., for the day4 ofthe modelrun. The RMS errors identify the statistical 
difference between true state and synthetic data throughout the assimilation window. The blue 
line of the SIV plot represents the high-accuracy (RMSE of 0.01 m/s) ice velocity observations used 
in OSSE-4w.
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Figure 3.9. MIZ OSSE Solutions at Day 4. OSSE-4 (a) and OSSE-4w (b) model states at the start of day 4 are shown. Top, middle, and 
bottom rows illustrate SIV, SIC, and SIT distributions, respectively.



Figure 3.10. Optimal OSSE-4w Solution Errors. The errors for the optimized solution for the 
OSSE-4w (high accuracy ice velocity observations) are shown as in 3.7c. Subplots from top to 
the bottom show errors in the optimized wind stress distribution, and evolution of errors in the 
optimal SIV, SIC, and SIT, respectively. Standard error of optimized solution with respect to the 
true solution shown in each forecast and hindcast region.
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Chapter 4: Ensemble-Transform Filtering of HFR & ADCP Velocities in the Chukchi Sea1 

Abstract

1This work is still in preparation. Anticipated ordered list of authors is: Stroh, J.N., G. Panteleev, and T. Weingartner

The Chukchi Sea (CS) is the gateway to the Arctic Ocean (AO) for Pacific waters entering from 

Bering Strait (BS) and also a potential location for future offshore oil extraction. Since 2010, 

regional CS data has become more plentiful with acoustic Doppler current profilers (ADCP) 

moored throughout the northwestern portion of the shelf along with coastal high-frequency radar 

(HFR) surface current monitoring during the ice-free summer season. This work develops a 

data assimilation system (DAS) for these observations which applies an asynchronous variational 

ensemble filter to a Regional Ocean Modeling System (ROMS) CS domain. Two configurations of 

the DAS applied during August-November 2012are tested and compared with observations from 

several sources, including unassimilated external data. The tested DAS configurations performed 

when assimilating surface as a full timeseries of observations rather than as forecast-intervalmeans. 

The resulting system could be used for future operational forecast refinement in the region well 

suited for application to surface monitoring and forecast for regional oil spill mitigation. Failures 

of background model which limit further analysis are discussed.

4.1 Introduction

The Chukchi Sea (CS) is an essential constituent of the Arctic Ocean (AO) where Pacific waters 

entering through Bering Strait (BS) conflow with water masses originating fromthe Atlantic Ocean 

and the Siberian Shelf, the Canada Basin, and seasonal sea-ice. In addition to its key role in the 

AO freshwater and heat budgets, the region is also important to resident and migratory wildlife, 

potentially subject to energy development, and likely to see increased commercial maritime activ

ity in the coming years. At present, the region lacks an operational surface monitoring forecast 

system suitable to aid in mitigation of oil spills or other advected contaminants. Such considera

tions motivate attentive monitoring of the region and the development of possible data-informed 

forecast systems.

The CS is shallow, with depth rarely exceeding 60 m, but lies above a broad continental shelf 

with area roughly 7702 km2 and contributes over half the total coastal water territory of the USA. 

Regional flow is primarily by the sea-surface geopotential difference between the North Pacific 

and Arctic Oceans [Coachman et al., 1975; Woodgate et al., 2005] which is strongly regulated by 

both large-scale atmospheric dynamics [Danielson et al., 2014; Peralta-Ferriz and Woodgate, 2017]. 

109



Circulation through the CS is governed by topographic depressions which trifurcate the incoming 

BS northward flow into three channels: a western flow through Herald Canyon [Pickart et al., 

2010; Itoh et al., 2012; Gong and Pickart, 2015], a flow through the Central Channel [Weingartner 

et al., 2005], and the Alaska Coastal Current (ACC). A local map of the region and flow may be 

found in Weingartner et al. [2005]. Relative distribution of flow through each branch varies with 

seasonal changes in wind forcing and strength of baroclinic flow components. Higher frequency 

flow modulation results from local wind forcing [Weingartner et al., 1998, 2017a], external inflow 

variation [Woodgate et al., 2005; Danielson et al., 2014], and baroclinic effects from the presence of 

different watermasses [Pisareva et al., 2015; Pickart et al., 2016].

In the eastern CS, Hanna Shoal together with minor topographic features and the continental 

shelf break influence the CC to merge with the ACC near the northernmost reach of the Alaska 

coast. This common flows reaches Barrow Canyon (BC), a nearshore along-coastal depression that 

serves as the major entrypoint for relatively warm Pacific and post-Eurasian flow Atlantic waters 

to the Arctic basins. Itoh et al. [2013] estimates annual flow through Barrow Canyon as 0.45 Sv near 

the mouth with much higher rates of transport (~1.0Sv) in summer when winds are coherent with 

the stronger background pressure gradient than in winter (~0.1 Sv) when southward-blowing 

winds oppose a weaker pressure gradient. Okkonen et al. [2009] found that flow into Barrow 

Canyon is strongly modulated by wind and buoyancy effects of the source ACC flow. Williams 

et al. [2014] investigate water-mass exchanges over the shelf-breaks along the boundaries of the 

CS, while more recent work by Corlett and Pickart [2017] studies the current structure along the 

shelfbreak. Many of these studies have been aided by moored acoustic Doppler current profilers 

(ADCP, or moorings) and coastally-installed high-frequency radar (HFR) to monitor circulation 

over the region.

The earliest data assimilation(DA) study in the Chukchi region which combined observational 

data and numerical modeling into a DA system (DAS) reconstructed the ecohydrology of the 

north Bering and southern Chukchi Seas using the 3-dimensional variational (3DVar) assimilation 

method [Brasseur and Haus, 1991]. More recent regional DAS applications focus on: optimal north 

Pacific state reconstruction [Awaji et al., 2003], circulation of the Bering Sea and model sensitivity 

to moorings [Panteleev et al., 2009], Chukchi circulation during data-rich years 1990-1991 [Panteleev 

et al., 2010], reconstruction of Bering Sea SSH [Panteleev et al., 2011] and circulation [Panteleev etal., 

2012], configuration and optimization of HFR sites for Bering Strait monitoring [Panteleev et al., 

2013,2015],and CS thermal state regime reconstruction for 1941-2008 [Luchin and Panteleev, 2014].

110



A more recent work by Francis et al. [2017] applies a DAS to examine regional sea-ice loss effects 

on local circulation. These contemporary studies all implement the 4-dimensional variational 

(4DVar) data assimilation method [Le Dimet and Talagrand, 1986] as oceanographic studies generally 

prioritize reconstructive smoothing over operational forecast [Kalnay, 2003; Gustafsson, 2007].

These recent studies, however, have not used new regional HFR data sources in an assimilative 

study. Ensemble-based DA methods are implemented into operational or real-time monitoring and 

forecast system more easily than the 4DVar methodology (which requires a separate adjoint model), 

and provides better scalability with modern parallel computing resources. This work presents a 

DAS for the Chukchi Sea using the maximum-likelihood ensemble filter [MLEF, Zupanski, 2005]) 

and the Regional Ocean Modeling System [ROMS, Shchepetkin and McWilliams, 2005] to assimilate 

surface velocities measured by HFR and timeseries of moored observations. The remainder of 

this study is presented as follows. Section 2 describes the monitoring sources and observational 

data. Section 3 provides brief details of the MLEF algorithm and a practical extension to assimilate 

timeseries of observations. Section 4 describes the model setup, tests and validates the DAS, 

and presents results. Section 5 summarizes the work and comments on failures of the background 

model. Dates herein are written in ordinal date format (YYYY-ddd.dd, per ISO 8601) or are referred 

to by ordinal day prefixed by ‘jd' with the year provided in context.

4.2 Observational data

4.2.1 HFR

HFR antenna installations along the North Slope of Alaska have existed since 2010, with opera

tional systems since 2012 near communities of Point Lay (69.74ºN, 199.99ºE), Wainwright (70.64ºN, 

199.97ºE), and Utqiagvik/Barrow (71.38ºN, 203.52ºE). Another antenna at Simpson (71.06ºN, 

205.270E) became operational in 2013 to resolve surface currents eastward of Barrow. The moni

toring system observes velocities during the summer months to a distance approximately 180 km 

offshore; Figure 4.1 identifies the antenna locations and observable CS region within the model. 

The antennae broadcast frequencies of4.75-4.8 MHz correspond to bulk surface observations over 

an effective depth of about 2.5 m [Stewart and Joy, 1974].

HFR resolution of 2D velocity fields requires simultaneous observation by independent an

tenna, so associated gridded datasets contain both temporary gaps exist due to signal intermittence 

and persistent gaps due to radar geometry. Regional measurements further suffer night-time pol

lution from ionospheric backscattering [Teague et al., 2001] between 0600 and 1200 UTC (roughly 
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10pm-4am local time), which reduces the number of observations during that interval by about 

half. One expects that HFR-conditioned states show some evidence of degraded coherence with 

these observations at daily 12Z analyses. In spite of these uncertainties and limitations, HFR 

remain among the most cost-effective regional observation systems anditis therefore important to 

maximize the information collected from them. The HFR data is available from the Coastal Observ

ing Research and Development Center (http://hfrnet.ucsd.edu), and consists of hourly-averaged 

velocityrecords together withassociated geometric dilution of precision (GDOP) fields estimating 

spatial accuracy degradation [Chapman et al., 1997].

4.2.2 Moored ADCP

In the northeast CS, the Hanna Shoal and Barrow Canyon region have been the locus of moored 

ADCP installations supported by BOEM, NOAA, and local industry. Figure 4.1 identifies the 

locations of moorings during 2012-2014 and Table 4.1 provides further specific details. Acquired 

mooring data files include 2D timeseries of velocities which are binned at approximately 1 m 

intervals from 2-3 m below the surface to 8-10 mabove the ocean floor. Persource file documenta

tion, hourly profile representatives result from interpolation with 6th order low-pass Butterworth 

filtering with a 36-hour cutoff threshold.

4.2.3 Drifters and CTD

Dynamical data from 22 drifters released in the central Chukchi region on 2012-225 and 2012

236 serve as external data for comparison to model and DAS counterpart trajectories. Table 4.2 

provides a record of drifter metadata for reference. The drifter observations,obtained from http: 

//research.cfos.uaf.edu/chukchi-beaufort/datmarchive.php, comprise hourly or half-hourly drifter 

velocity and position measured by satellite. Deployment time and locations were assumed to be 

the first time and position of each record. However, the first record in each timeseries includes a 

velocity, and are therefore suspected not to correspond directly with physical deployment. A set 

of CTD observations are also used for quality assessment of vertical temperature and salinity (T/S) 

profiles in the model.

4.3 Assimilation Method

Data assimilation (DA) is a technical framework for combining numerical modeling and obser

vational data, and is an essential component of modern geoscience. In its most direct form, 
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sequential DA methods use empirical data to constrain and adjust primitive equation model evo

lution [Kalnay, 2003; Jazwinski, 2007]. The objective of a DAS is to determine a model state most 

representative of provided data, given the uncertainties in those data. Among the most commonly 

employed DA algorithms are the ensemble Kalman Filter (EnKF) [Burgers et al., 1998; Houtekamer 

and Mitchell, 1998; Evensen, 2003] and variants, whereby a collection of model iterations statistically 

approximate the classical Kalman Filter (KF) (which is itself a least-squares optimization method 

[Sorenson, 1970]). The general idea of KF-type methods is to use an ensemble of solutions to em

pirically construct model (and/or observational) covariances, from which an minimum-variance 

unbiased estimator (MVUE) of the joint model-data probability distribution (PD) may be calcu

lated algebraically. Variational methods, in contrast, seek to iteratively identify the mode of this 

PD and may be more robustly applied in cases where the relationship between model states and 

observations is nonlinear or involved PDs are non-Gaussian. The standard DA notation and 

nomenclature of Ide et al. [1997] are assumed here for brevity.

In the maximum-likelihood ensemble filter, correction of the forecast state is defined as a linear 

combination of N ensemble perturbations about the forecast state [Zupanski, 2005] unlike Kalman- 

type filters where perturbations are centered around the ensemble mean. Specifically, the analysis 

is given by xa = xf + P1/2w* where w* is an optimal weight vector for columns of P1/2, which is 

a matrix whose columns are scaled ensemble differences from the unperturbed forecast xf. The 

scaling, by √N, is such that p1/2pT/2 is an empirical rank-N approximation to the full model error 

covariance P with ∙t indicating matrix transposition. The analysis xa is identified by minimizing 

the common variational cost function 

over the N-dimensional subspace {xf + P1/2w} parametrized by w ∈ RN. Here, R = R1/2RT/2 is 

the observational error covariance matrix. The Hessian matrix of J(xa) identifies the posterior 

covariance error matrix [Thacker, 1989]. From a Bayes' Rule perspective, this optima is the mode 

of the posterior PD produced when the forecast model PD is updated on the basis of observations 
[Purser, 1984; Purser and Parrish, 2003; Wikle and Berliner, 2007] with the analysis state corresponding 

to the maximum a posteriori estimate. The forecast error covariance square-root factor P1/2 is 

updated to reflect this posterior PD by computing the square-root factor of the Hessian term 
associatedwithEquation(4.1) atthe analysis [Zupanski, 2005]. The columns of this posterior factor 
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define state variations to initiate the next ensemble forecast step via model integration.

The observation operator H typically defines a mapping between analysis-time model states 

and observed data. The nature ofmany EnKF-like DA schemes allow for representing observations 

at non-analysis times via linear combinations of the observed forecast H(xf ) and its observed 

perturbations H(xf +pi) atthose times. This correspondence is approximate whenH isnonlinear, 

and may formally require treatment of temporal covariance among the observations [Sakov and 

Bocquet,2018]. Filter assimilation of observations at times different than the present analysis-time 

is referred to as “asynchronous filtering” although it could be referred to as a sequential smoother 

[Sakov et al., 2010; Sakov and Bocquet, 2018]. For simplified notation in diagrams and figures, the so- 

called innovation vector d quantifies the difference between observation and model counterparts, 

with dbg = yo - H(xbg) and df = yo - H(xf ) used for the background and forecast innovations, 

respectively.

In the application discussed here, asynchronous observation operators corresponding to HFR 

and ADCP data are quasi-linear operators which output a 6-hour timeseries of hourly velocities. 

For a state in the target subspace represented by w, the associated model observation is the 

forecast timeseries plus the same linear combination of observed ensemble perturbations. A 

formal linearization gives H(x) = H(xf ) + P1/2w where columns of P1/2 are the observed (via 

application of H ) ensemble variations with respect to the observed forecast timeseries; these 

empirical quantities are easily output and stored during the ensemble forecast step (i.e. model 

integration). The approach is an alternative for incorporating all records of data without shortening 

the forecast-analysis DA cycle to 1-hour intervals.

The base algorithm identifies the mode of the posterior PD, rather than finding the best linear 

unbiased estimator under the constraint of minimum variance as in algebraic KF-type filters 

[Zupanski et al., 2008]. This distinction is of primary concern when involved PDs arenon-Gaussian 

[Pires et al., 2010], so that the posterior mode and variance minimizer differ [Talagrand, 2003]. The 

nature of surface currents as measured by HFR [Ashkenazy and Gildor, 2011] or other means [Bracco 

etal.,2003] are knownto be non-Gaussian, and by extension the presumed error structures [Purser 

and Parrish, 2003] are as well. This motivates the use of the variational approach rather than 

algebraic method, as the mode would more robustly represent the general disagreement between 

the model and observations. Whereas MLEF directly targets a subspace optima of the 3Dvar 

cost function given in Equation (4.1), its asynchronous extension approximately solves the 4Dvar 

cost function at the analysis time over the ensemble-spanned subspace. The method circumvents 
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the need for an adjoint model to propagate future-time changes in observed errors to initial-time 

changes in state. The analysis state and covariance structure among the ensemble perturbations 

stores information as data is assimilated. In contrast with 4DVar, this ensemble method offers no 

correction of the entire model trajectory; the analysis step updates only the instantaneous model 

state rather than its history over the priorforecastinterval. Itdoes, however, provide anestimation 

of analysis uncertainty at no additional cost.

4.4 Results and Discussion

For this study, the ROMS model domain encompasses the region [58.76N,83.34]ºN × [168.12, 

229.28]ºE with grid-scale of approximately 16km at the boundaries tapering to approximately 

12km over the central 1/9th of the domain. The domain is artificially large to maintain ongoing 

ensemble variations, which are suppressed by low-dimensional dynamics of the Bering Strait, and 

to limit interaction between the open boundaries and the analysis region. Previous experiments 

with a smaller domain suffered from instabilities due to the formation of a spurious large scale 

gyres over the deep northeastern that was driven by numerical boundary currents. Extant sea-ice 

over the shelf is thin and rapidly retreats from the continental shelf during the model period of 

August-October, and is ignored in the ice-free model configuration implemented here. The area 

ofinterest resolved at approximately 12km is outlined by a dark grey box in Figure 4.1;this region 

is used to localize the model analysis and posterior covariance update. Importantly, the domain 

intends to be kept reasonably coarse for reduced computational time desirable when employing 

an ensemble of model instances.

Domain bathymetry is sampled from the Alaska Region Digital Elevation Model v2 [Danielson 

et al., 2015]. The vertical grid comprises 15 terrain-following vertical levels with prescribed Mellor- 

Yamada Level 2.5 closure scheme. Initial data fields are generated by linear interpolation of 

Hybrid-Coordinate Ocean Model (HYCOM) analysis GLBa0.08 variables (accessible via open

DAP at https://tds.hycom.org/thredds/dodsC/glb_analysis) to the model grid. An identical method 

and source generated open-boundary values for the duration of model integration. Boundary 

behaviors were set as radiation/nudging, Flather, and explicit Chapman conditions for full-depth 

variables, barotropic velocities, and free-surface, respectively.

The 6-hourly ERA-interim fields [ECMWF, 2012] supply ocean surface forcing during simula

tion. For each year 2012-2014, background models integration begins at jd180 with fixed boundary 

values, and forcing undergo a 30-day integration with 90-second timesteps to relax dynamical im
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balance. Following this adjustment period, initial HYCOM T/S data was re-prescribed and then 

integrated from jd180 to jd210 with larger timesteps (2.5 minutes) to achieve a fit between the cur

rents and model parameters without disrupting the T/S distribution during cold-start adjustment.

The DAS described in Section 4.3 was initialized with an ensemble of N = 30 model instances 

perturbed by random velocity and free-surface variations throughout the ocean domain 24-hours 

before the first analysis time. The analysis steps occur every 6 hours through the summer periods 

jd214.00-310.00, which approximately frame the availability of HFR measurements. The obser

vation error covariance factor R1/2 is supplied as a diagonal matrix using to estimated standard 

errors σm, σh modified as follows. Entries corresponding to moored velocities are set to a constant 

value σm, while those for HFR are a constant σh multiplied pointwise by its spatial GDOP factor. 

Temporally averaged HFR GDOP factors for 2012-215-300 are shown in Figure 4.2 to illustrate the 

spatial structure of these uncertainties, although the figure suppresses their temporal variability.

In the described experiments, background σm and σh aresetto0.1 m/s and 0.33 m/s, respectively. 

With this uncertainty model, zonal HFR observation error components are at maximum approx

imately 0.16 m/s nearshore increasing linearly to 0.2 m/s at the furthest observable extent, with 

meridional error components of 0.14 m/s where beams are oriented northward growing to 0.5 m/s 

where each antenna beam has the largest azimuth. Early experiments found that this GDOP scal

ing of prescribed HFR uncertainty yielded smoother posterior ensemble perturbations less prone 

to model blow-ups. For both ADCP and HFR, prescribed error scales are considerably larger 

than documented instrumental uncertainties as theysubsume errors associatedwithgridding and 

pre-processing observations, errors in model representation of true states, and model-space errors 

incurred by applying H .

The model re-initialization after each analysis requires that barotropic velocity estimates be 

recalculated for each ensemble member, which depends on the free surface in the terrain-following 

coordinates. Three-dimensional velocity fields as well the free-surface variable compose the state 

vector x so that it includes all dynamical fields needed for model update.

4.4.1 Filter Configuration

Ensemble Generation and Size To test the effect of ensemble size on analysis quality of assimi

lated observations, DAS experiments were conducted employing ensembles with 30, 60, and 91 

perturbed members, respectively. This test configuration assimilated 6-hour mean HFR data and 

hourly ADCP timeseries, but did not include the free-surface variable ζ in the model state vector.
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A base ensemble of 30 perturbed members was produced by adding random noise to the initial 

background state at day 210, integrating for varying number of 3-hour increments to define a 

variation about the background state at jd214. An additional set of 30 members was generated by 

adding random noise with a 60 km decorrelation length scale at jd210 and propagating to jd214. 

Initial standard deviations of noise added to the velocity fields in these two cases was 10 cm/s, with 

the latter smoothed by a 5-gridpoint radius Gaussian filter to the imposed noise. Finally another 

31 perturbations were created by adding random noise (mean amplitude 5%) to Fast Fourier- 

transformed copies of the background state at jd214 to generate 31 additional ensemble elements 

with smooth spatial variations. Figure 4.3 shows that additional members of the ensemble did not 

improve the quality of the forecasts in an evident way. One concludes that a 30-member ensemble 

of forecast variations is sufficient, although some intermittent improvement (<2% mean) for HFR 

is possible at the cost of doubling or tripling total model integration time.

Approximate Optimization Minimization of the nonlinear cost function J with respect to the 

control vector ξ ∈ RN is at the heart of the analysis. In relation to the variable w discussed in 

Section 4.3,

ξ = [In + Z(xf )t Z(xf )]1/2 w (4.2)

gives the ensemble-transform coefficient in a Hessian pre-conditioned form ξ. This change-of- 

variables intends to make the control space isotropic by scaling the ensemble expansion coeffi

cients according to their correlation structure. The analysis optimization step of the ROMS-MLEF 

DAS implements a secant line search algorithm [Wright and Nocedal, 1999] to iteratively update the 

control variable ξ in sequentially orthogonal subspaces determined by a conjugate gradient (CG) 

method, closely following Navon and Legler [1987] and Zupanski et al. [2008]. To check to effec

tiveness and efficiency of this approach (identified to as “NLCG-ss”) compared to an immediately 

accessible method, an optimal analysis is found by computing arg min |VJ| over the control space 

using the internal MATLAB function “fminopt” .

The left plot of Figure 4.4 illustrates the small difference (<3% mean over the 90-day period) in 

the quality of the analyses produced by the search-based and proprietary optimization methods. 

However, the right plot of the figure demonstrates thatmean computation times differ significantly. 

The NLCG-ss and “fminopt” methods average 78.4 and 486.4 seconds per analysis, respectively. 

Assimilation cycles at which the optimization times are similar correspond to instances of few 
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observations. The difference in computation time accumulates to nearly 40 hours over the 90-day 

period shown, roughly doubling the total time needed to apply the 30-element DAS using 20 

CPUs.

4.4.2 Improved Fit to Assimilated Data

Section 4.3 discussed how ensemble-transform filters applied asynchronously may be utilized to 

assimilate timeseries of observations over analysis windows. The MLEF-ROMS DAS could be 

configured in several ways depending on whether HFR was represented by hourly timeseries 

of data (i.e. asynchronously) or as 6-hour temporal means ending at the analysis time (i.e. syn

chronously). To compare the effects of the different HFR observation treatments, DAS application 

using otherwise identical initialization and configurations was performed. Here, Case 1 assimi

lated HFR as a vectorized 6-hour timeseries while Case 2 assimilated the average record of that 

timeseries. A model initialized from the same state as the assimilative model run, but which 

assimilated no data, is used as a background reference to assess the impact of DA. Figures 4.5 

and 4.6 schematically show the relation of model observations and measurement data inthe asyn

chronous and synchronous cases, respectively. These schemes differs from the classical filtering 

method in that model observation timeseries (or its mean) cannot be generally constructed from 

the analysis-time model state without explicit call to the nonlinear model. Alternately, the mean 

of the timeseries may also be compared to model observations averaged over the forecast window 

as in Case 2. In both cases, moored ADCP profiles are always treated asynchronously and assimi

lated as timeseries, with observation-space possibilities represented by ensemble expansion of the 

forecast and ensemble histories. Note that throughout this discussion, the identification of Case 2 

as “synchronous” is imprecise in that Case 2 observations depend directly albeit implicitly on the 

full history of HFR data during the forecast period. Nevertheless, this term is used to distinguish 

it from the explicitly asynchronous approach of Case 1.

Figures 4.7 and 4.8 show the temporally-smoothed evolution of uncertainty-weighted differ

ences between observations and DAS forecast states relative to those of the background model. The 

figures show results ofCase 1 and Case 2, respectively, presentedby comparing case-to-background 

error ratios. Results presented in this form do not depend on the number of observations which 

differ between cases; otherwise, one naturally expects that errors in Case 2 be less than those of 

Case 1 due to smaller vector length. This effect was noted in early experiments conducted to 

assess the impact of including the free surface (ζ) as a state vector component: assimilation of 
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only analysis-time HFR data in runs which included ζ had errors 1-2% larger than those which 

did not because of the slightly increased weight given to the background cost term. However, 

inclusion of ζ when moorings were assimilated appeared to reduce the scale of artificial gravity 

waves generated by analysis changes of the velocity field, yielding smoother forecasts and more 

stable integration of perturbed models2. Alternate methods of suppressing adjustment waves 

from the analysis [Barth et al., 2007] were attempted without success.

2In the official ROMS modeling forums, the program's main numerical developer discouraged free-surface data 
assimilation as it results in a “volumetric buoyancy forcing” which is “non-physical, and you do not expect anything 
good out of it” [A.Schepetkin, posted to the ROMS forum 2011-12-06 (https://www.myroms.org/forum/viewtopic.php? 
f=14&t=2475). However, updating ζ on the basis of velocities produced improved dynamical balance of analysis 
barotropic states, resulting fewer waves and model instabilities at model-reinitialization.

The results shown in these figures are qualitatively comparable; errors in the background 

model are reduced by 20-35% on average. Both DAS applications successfully constrain and cor

rect model trajectories by comparable amounts when considering all forecast-minus-observations 

(black lines), although the asynchronous case has a clear advantage most of the time. Specifically, 

in relation to the background errors, Case 1 errors against HFR (ADCP) decrease by 11% (32%) in 

the mean while the corresponding error(s) for Case 2 reduce by 5% (20%).

The qualitative similarity is expected, as the two representations of HFR data are related 

directly. However, the corresponding volume of HFR observations is not identical; pointwise 

HFR observations in Case 1 are about 5 times more numerous than in Case 2. This results in 

significantly different filter response: the error reduction in Case 1 is balanced between HFR and 

ADCP errors, while Case 2 total errors closely track the errors in the more numerous ADCP data. 

Thus,theasynchronousassimilationofHFRhelpstoeventherelativeweightofthetwoobservation 

types. This effect is most pronounced between jd240 and jd250 when HFR observations are most 

numerous. During this period, Case 1 errors generally decrease from ~85% to ~60% while Case 2 

errors are maintained at ~85% relative to the those of the background model.

Influence of Wind Regimes Of key note is the difference in filter response between cases as it 

depends onthe local wind forcing. The mean relative improvement of ADCP errors is 11% greater 

than that of Case 2, which is solely due to the method of HFR velocity assimilation. Previous 

observation-based studies found that sustained winds exceeding 6 m/s blowing southeast (240±200 

CCWfromeast) coincided withmeasured surface flowreversal[Weingartneretal., 20 1 3; Potter et al., 

2014], and agree with previous modeling showing barotropic flow reversal when winds critically 

exceed ~6.4 m/s [Winsor and Chapman, 2004]. In the background model here, trial-and-error 

119

https://www.myroms.org/forum/viewtopic.php


exploration suggested that winds directed toward 225 ± 60º (measured counterclockwise from 

east) with magnitude exceeding 5 m/s correlate moderately (57%) with differences between the 

mean surface (2.5-10 m) flow and deeper (10-30 m) mean flows means in shallow regions of the 

central CS where depth is between 35 and 50 m.

This wider range and lower critical limit are roughly established parameters which have not 

been optimized, but are qualitatively similar to cited ranges. With a temporal restriction that 

they persist for more than 30 hours with gaps less than 12 hours ignored, these events are herein 

referred to as “opposing” winds and are designated by blue wind vectors in Figures 4.7 and 4.8. 

The associated periods are shown in blue-shaded regions of Figure 4.9 which compares the relative 

errors of ADCP fit for the two cases. During these periods, Case 1 strongly reduces errors in both 

HFR and ADCP while Case 2 errors vary with little net reduction. Averaged over such periods, 

Case 1 relative mean fit to ADCP improves by ~1.8%∕cycle more than Case 2. In the asynchronous 

case, the larger volume of HFR data better encourages the analysis toward the observed sheared 

flow. Meanwhile, Case 2 experiences a unique occurrence in which errors for HFR in Case 2 are 

lower than the overall error. This suggests that the large near-surface errors during this time are 

strongly corrected in Case 2 at the expense of quality of fit to local moorings (viz. moorings #23 

and #24).

However, strong conclusions regarding isolated periodsmustbe cautioned to flow-dependence; 

states are effectively conditioned on all previously assimilated data and are identical only before 

the first HFR is assimilated at jd214.25. Also, some persistent differences between HFR and DAS 

forecast may be a consequence of the ensemble-transform methodology. This is to say that a com

mon linear combination of ensemble vectors may not be able to simultaneously adjust direction 

of the surface flow measured by HFR and the at-depth velocity profiles measured by ADCP when 

vertically sheared flow variation is not present among ensemble perturbations. One alternative 

explanation is that the opposing wind events lead to more diverse behavior in the ensemble fore

casts, which has the effect of increasing the orthogonality among the ensemble variations; this 

leads to more efficient optimization as resolution of errors in the column span of P1/2 is improved.

Nevertheless, periods do exist in where Case 2 outperforms Case 1. This is clear from the 

red shaded regions of Figure 4.9, which identifies “supporting” wind events where atmospheric 

forcing is aligned with the background flow. Such events are characterized here by the following 

conditions: having eastward wind components exceeding 4 m∕s or exceeding 2.5 m∕s when winds 

are directed within ±8º of due east, and a duration than 30 hours with gaps less than 12 hours 
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ignored. Averaged over such periods, Case 2 relative mean fit to ADCP improves by ~0.3%∕cycle 

more than Case 1 although most of this difference is due to faster degradation of Case 1 fit to 

ADCP. A clear example is the sustained constraint of model behaviour between jd281-289 where 

wind stress is aligned with the background flow. During this period, Case 2 shows relative errors 

of around 60% while errors are around 72% in Case 1. Interestingly, the HFR errors directly 

account for a small fraction (~20%) of this difference; strong reduction of errors in fit to ADCP 

accounts for most of this improvement. This coincides with an onshore wind event, so a likely 

explanation is that the Case 2 optimum strongly fits the coastal and at-depth ADCP data while 

the more strongly-weighted HFR reduces the quality of fit to those ADCP in Case 1. This period 

also marks the start of a large systematic disturbance of the domain generated by a short-duration 

of rapid inflow from the western boundary along the East Siberian Shelf (not shown). The strong 

pulse enters the domain as a wave, and follows the Russian coastline to the Bering Strait where 

it disrupts and reverses the Bering Strait northward transport. Transient consequences are felt 

throughout the northeast Chukchi shelf until dynamical balance is returned around jd295. No 

attempt was made to correct or condition the boundary data which are interpolated directly from 

the HYCOM source to the ROMS domain.

A noteworthy observation regarding DAS behaviour is that zonal components are corrected 

by HFR more strongly than meridional ones, particularly in shallow regions. Primary reason for 

this seems to be that onshore, cross-isobath velocities frequently present in the HFR observations 

are strongly resisted by potential vorticity balance in the model which tends to direct flow along 

isobaths in shallow regions. It is further noted that the HFR-imposed constraint in shallow 

regions is stronger due to the increased number of σ-coordinate levels used to represent modeled 

observation counterparts.

The difference in case-wise filter performance under the two wind regimes may be explained 

by examining the spatial distribution of analysis errors relative to HFR during the events. Figure 

4.10 (4.10) shows the HFR observations (left panel) and analysis errors for Case 1 (upper right 

panel) and Case 2 (lower right panel) temporally averaged over all periods of opposing (supporting) 

wind. During opposing winds, surface currents are generally slow with a maximum onshore HFR 

component of ~25 cm/s. During this period, Case 1 has a clear advantage across the observed 

region, particularly along the coast (8-20 cm/s vs. 10-25 cm/s) and western lobe (4cm/s vs. 7cm/s). 

Significantly, Case 1 errors are comparatively lower over deeper waters above the head Barrow 

Canyon (15 cm/s vs.21 cm/s) and the southern/eastern side of Hanna Shoal (3 cm/s vs. 8 cm/s); 
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both regions have HFR observations with westward components. This suggests that Case 1, while 

having simultaneously lower errors against back-flow aligned ADCP measurements, is better at 

resolving the surface-sheared flow than Case 2.

During supporting wind events, mean HFR observations show larger magnitude observations, 

and westward velocities are present in the eastern lobe only following the isobaths southward from 

east of Hanna Shoal toward Barrow Canyon. Analysis-HFR errors under supporting wind events 

are generally worse throughout the domain except over the shelfbreak (i.e. beyond the 70 m 

isobath) in the northeast extent of the HFR observation. Onshore components of averaged HFR 

observations near the head of Barrow Canyon are in the range 50-70 cm/s with a maximum of

1.2 m/s. For this region, both cases exhibit errors in the range of 10-25 cm/s. However, Case 2 

errors are lower than Case 1 near the the shoals and over the central shelf (5-8 cm/s vs. 8-10 cm/s) 

and throughout the western lobe (6 cm/s vs. 7 cm/s). The along-isobath band of increased error 

following the 40 m isobath is present in both cases, while the HFR observations are approximately 

orthogonal to isobaths. This strongly supports the notation that the model fails to represent 

cross-isobath flow as the DAS is consistently unable to resolve these flows.

Without onshore and cross-isobath components resolved among the ensemble variations, the 

DAS cannot improve fit-to-observations in either case. For the observations near the head of 

Barrow Canyon, the GDOP of both velocity components is low and the observations are given 

large weight in producing the analysis. When HFR signals have larger and more regular onshore 

and cross-isobath velocities that are poorly resolved by the model, Case 1 simply has a larger 

volume of such data to optimize against. The inability to resolve this data in the ensemble 

variation leads to a degradation of Case 1 fit to all data; the weight of unresolvable components 

acts as an additional constraint on the asynchronous cost function and inhibits fit-to-ADCP in this 

case. In contrast, lower volume of such unfittable data has less net weight in the synchronous cost 

function, so Case 2 is able the fit to the ADCP instead.

The quality of fit to HFR and ADCP seen in Figures 4.7-4.9 during the 2012 season is overall 

better for the case of asynchronously assimilated HFR. Evidence is also presented that during 

supporting wind events, Case 1 suffers a loss of fidelity with observations due to abundant 

unresolved velocity components. However, the frequency and duration of these events during 

summers 2012-2017, shown in Figure 4.12, indicates that the asynchronous method would be more 

advantageous overall. That the 2012 ice-free season has the largestnumber of identified supporting 

wind days suggests one should expect a stronger benefit of asynchronous HFR treatment in 
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subsequent years.

4.4.3 Comparison to external drifter data

DAS forecasts in this discussion show improvement in model-observation velocity correspon

dence. Observational data in the form of Lagrangian drifter position and velocity follow flow 

patterns and are not easily assimilated using the DAS presented here. Instead, the dynamical 
data from drifters released in the central Chukchi region on 2012-225.42 and 2012-236.71 serve as 

external data for validation of forecast velocity. The drifter observational data comprise hourly- 
averaged velocities and position data. Table 4.2 lists details for each drifter and Figure 4.1 plots 

relevant portions of drifter trajectories in purple. Model drifters are tracked at an effective 0.0 m 

depth, while physical drifters in the comparison were deployed with drogues at 1 m depth. This 

disparity in representative depth is a consequence of an incorrect assumption by the author based 

on the presence of surface temperature measurements and lack of documentation in the data files. 

In fact, many of the physical drifters used 10 m drogues; they are omitted from this discussion but 
remain listed in Table 4.2.

The first record associated with each physical drifter determines the deployment time and 

location for the corresponding model trajectory. The simulated counterparts of each drifter are 

calculated from geographical positions output by the model, which are assessed in two ways 

to determine model fidelity with observations. First, output position data is used to compute a 

timeseries of hourly mean distances from the observed drifter position. Second, the difference in 

simulated mean hourly distance is used to calculated average velocity for correlation comparison 

to velocities identically calculated from drifter GPS data.

Vector correlation, needed for the latter evaluation, typically measures the common variability 
of a velocity time-series [Davis, 1985; Kim et al., 2009]. However, preliminary assessment using 

direct vector correlation hourly velocities (or 3-hour velocity timeseries) suggested that these 

comparisons of deviations provided little insight as they do not account for differences in mean 

flow direction. Instead, a more useful method of scoring first-order model-observation coherence is 

through a skill that directly compares model-observation differences, rather than a fit of variability. 

Considered here is a quantity r(t) that measures the relative size and direction of differences at 

some time t:
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where w = [u1 v1 u2 v2 u3 v3]T denotes the 1D-vectorization of a short 3-hour timeseries series of 

2D velocities for the forecast and observations. In a more geometric notation, this skill may be 

written as 

from which one may see desirable properties such as: r = ±1 if and only if w0 = ±wf, and r = 0 

if and only if w0 ⊥ wf and not both zero. The values of r(t) are calculated at 3-hour intervals 

using 3-hour timeseries of hourly velocities. The quantities are referred to herein as “correlations” 

as they have properties similar to those of a correlation coefficient, and correspondingly express 

fractional values as percentages. Nevertheless, this naming is formally incorrect as r(t) measures 

coherence among magnitude and direction rather than among second-order moments.

Figures 4.13 and 4.14 show the mean evolution of distance and correlation metrics for drifters 

deployed on jd225.42 and jd236.71, respectively, of 2012. The former are deployed in the vicinity 

of Hanna Shoal while the latter are deployed offshore north of the Alaska Coastal Current (cf. 

Figure 4.1). In the region west of Hanna Shoal, simulated drifters in both Case 1 and Case 2 remain 

closer to the physical data than those of the background model, with Case 1 diverging from the 

observations at 28% the rate of the background. The improvement in Case 2 is modest compared 

to Case 1, as it assimilates less voluminous HFR data in the region. Note the periodic oscillations in 

the graphed distances, which likely result from inertial oscillations in the data. The DAS forecast 

oscillations are larger than those of the background, especially in Case 1. Small-scale oscillatory 

behaviour of the DAS forecasts in the region appears to persists until around jd231 when constraint 

by moorings #25 and #26 begins; conditioning the analysis on these additional data appears to limit 

the generation of gravity waves and artificial inertial oscillations caused by corrections to surface 

velocities from assimilated HFR observations. Note that there is a large temporal gap in HFR data 

during jd220-224.75 (cf. Figures 4.7), so both DAS forecasts starting at jd225.25 may still be in the 

processofadjustingtoarelativelylargechangeinmodelstate. With regard to velocity correlation, 

all simulated solutions rapidly decorrelate in the first 3-hours after deployment reaching to as 

low as 9% in Case 1. However, the Case 2 and the background reach zero uncorrelated after 11 
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hours whereas Case 1 maintains positive correlation until around 19 hours. At further times after 

deployment, correlations in all cases oscillate about zero with amplitudes of about 20%.

Figure 4.14 shows model correspondence with drifters deployed north of the Alaska Coastal 

Current south of Hanna Shoal. Improvement of DAS solutions over the background model are 

evident in both plots, with Case 1 again showing advantages over Case 2. Case 1 diverges from 

the observation 34% more slowly than the background case over the 2-day period following 

deployment, and 51% more slowly over the first 30 hours. In contrast, the 10% relative divergence 

rate reduction is a modest 10%. Background, Case 2, and Case 1 solutions remain within 12km 

(corresponding to the width of one local grid cell) of the observation for approximately 22 hours, 28 

hours, and 39 hours, respectively. Distance inCase 1 remains less than half that ofthe background 

case for the first 42 hours after deployment. With regard to correlation, the r-metric for Case 1 

decays linearly from 100% to 50% over the 27 hour period following deployment. In contrast, 

the background and Case 2 solution drifters show oscillation in their metrics with periods of 

approximately 5.5 hours; the mean±amplitude for these curves are 41±11% and 54±22% during 

the first 24 hours. The corresponding lack of oscillation in distances suggests that the background 

and Case 2 velocities are out of phase with inertial oscillation present in observations while Case 1 

velocities are in phase. DAS correlations are stronger here than for the the jd225.41 drifter group, 

which is owed in part to the regularity of HFR data; the region is closer to the antenna and thus 

the DASs are better informed by HFR. And while the behavior of the correlation metrics varies 

between the DAS cases, their strong qualitative similarity is likely due to identically assimilated 

data from nearby moorings (cf. Figure 4.1) combined with a background model that performs 

moderately well in the region.

The analysis in this section is based on the average of4-5 drifters deployed en masse, and do not 

reflect tracking of individual drifters. One notes that the physical drifters are tracked in periods 

when model forcing contains strong and abrupt changes in wind direction, during which the HFR 

errors in bothcases exhibit large intermittent errors (cf. wind profiles inFigures 4.7and 4.8) which 

may have diminished the tracking performance of surface drifters. Correctly specifying drifter 

depths should greatly improve the quality of these results, as the comparison here takes place be- 

tween1 m observationsand0m simulations. Such improvement would apply in both background 

model and DAS cases, with stronger improvements expected in the latter where assimilated HFR 

more appropriately reflects 1 m velocities (i.e. those actually influencing the drifter) than the 0 

m surface velocities assumed here. Further, the excluded 10m-drogued observations are likely 
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to have less noise and longer-scale spatiotemporal variability, which suggests they may be better 

represented by coarse model representatives than drifters nearer the surface. Properly tracking 

depths of the 1 mand10 m drifters awaits future DAS runs, asthe approximate streamline tracking 

is not achievable by post-processing.

4.4.4 Comparison to external CTD data

While velocity and circulation and their relation to assimilated data are of specific interest, it 

is worthwhile to consider the quality of other hydro-dynamical circulation aspects within the 

model. A collection of ~250 conductivity-temperature-depth (CTD) instrument casts taken during 

2012 surveys of the eastern Chukchi Sea provides a dataset of temperature and salinity (T/S) 

observations for further testing. All considered observational profiles are contained within the 

12km-resolution model subdomain; spatiotemporal locations of the data, which were acquired 

internally from University of Alaska Fairbanks Institute of Marine Science, are hidden for brevity. 

The T/S observations are interpolated to ROMS σ-coordinates via cubic splines for comparison to 

background and DAS model representatives. Figure 4.15 exemplifies CTD-observed temperature 

and its associated cubic interpolant which poorly-resolves its thermocline; similar problems exist 

in representation of salinity observations. Some inherent errors are thus expected, particularly in 

the area of the pycnocline.

Figure 4.16 plots the CTD T/S observation representatives and relative differences of the back

ground, Case 1, and Case 2 forecast models. Without respect to geolocation, the chronology of 

CTD observations shows a general trend toward surface cooling and freshening between jd230 

and jd270. Cases 1 and 2 show differences from CTD representatives which look very similar to 

the background model errors.

Unfortunately, the scale and structure of T/S errors in the background model dominates the 

errors of Case 1 and Case 2. Within all models, differences from CTD observations increase in 

time, with profiles progressing toward vertically uniform T/S distributions. Figure 4.17 shows T/S 

profiles from observations and models 40 days apart to illustrate this problem. Correction of this 

behavior was attempted by changing verticalmixing/closure options (from the Mellor-Yamada 2.5- 

layer scheme to K-profile parametrization or generic length-scalemixing) with a variety of different 

T/Smixing options. However, none of these alternatives gave rise to significantly improved vertical 

T/S distribution.

A more in-depth diagnosis is warranted; three appropriate places to begin investigation are 
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the external HYCOM used for initial/boundary data, the vertical coordinate distribution selected 

in the model, and the evolution of vertical structure at the point of Bering Strait inflow. Cursory 

topical analysis shows that modeled Bering Strait inflow T/S is unstratified, whereas the HYCOM 

initialization data resolves a surface freshwater layer several meters thick. The loss of a surface 

freshwater layer in the model may further reflect the omission of significant freshwater sources, 

such as the Yukon River discharge averaging ~0.1 Sv in modeled months per USGS monthly flow 

rates at Pilot Station, AK. However, this volume is insufficient to balance the model volume BS 

flow. The strengthening warm bias of modeled temperature profiles compared to CTD is also 

noted, but its cause is not speculatively diagnosed here in the absence of further experimentation. 

Such errors and shortcomings of the background model reflect strong systematic biases [Dee and 

Da Silva, 1998; Chepurin et al., 2005; Dee, 2005], and cannot be corrected by traditional assimilation 

of T/S data which only serve as model constraints. Improvement of the background model to 

include meteorologic freshwater sources and preserve vertical stratification over the Chukchi 

Shelf is obviously necessary.

4.4.5 (Failed) Transport Estimates of Summers 2012-2014

Figure 4.18 identifies a set ofmodel transects defined for posterior estimation transport of volume, 

heat, and freshwater. Each transect is oriented with a northernmost initial point and leftward

normal orientation as the transect is traversed. Each normal direction is thus defined with a 

positive eastward component. Note that the northern Central Channel (CCn) is oriented with the 

positive side pointing into the region bounded by transects and the coast.

Across each defined transect, vertically-integrated estimates of volume flux (V'), freshwater 

volume flux (V'FW), and heat flux (Q') can be calculated from the respective equations: 

where u⊥ is the velocity component normal to the transect, ρFw is the density of fresh-water, Cs 

is the state-dependent seawater heat capacity, θ is potential temperature, and Sref and θref are 
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adopted reference values (e.g., 34.8 PSU and -1.9ºC are common). Integrals of the fluxes along the 

length of transect give the associated total transports V, VFW, and Q.

The gross inaccuracy and unrealistic behaviour of T/S in all models disparages their use in 

calculating Q' and V'FW. Nevertheless, the assimilative model discussed previously demonstrates 

sufficient coherence with velocity observations and regional dynamics to estimate mass transport. 

Mass transports are estimated using 24-hour forecast records of velocity data, computed from 

mean velocities calculated during the DAS forecast step.

Inflow Sources Long Strait (LS) flow is directly related to HYCOM boundary data from HYCOM, 

withseasonaltransportestimatesof5.7mSv,5.5mSv,and6.9mSvforthemodeledyearsexcluding 

the anomalous inflow events centered around 2012-223 and 2012-292 outflow event 2014-297. Net 

eastward transport of those years roughly agrees with estimates calculated using results of Francis 

et al. [2017].

Regional circulation dependence on Bering Strait (BS) transport is well established [Danielson 

etal.,2014;Weingartneretal.,2017b]. Recent observational studies of moored ADCP find BS inflow 

near or above 1.0 Sv in the months of August-October during the modeled years [Woodgate et al., 

2015; Woodgate, 2018]. However, modeled BS quantities are far lower and typically in the range of 

0.45-0.65 Sv. The only months which show near agreement are September and October of 2012, 

where model (observed) transports are 0.5 Sv (0.43 Sv) and 0.41 Sv (0.49 Sv), respectfully. (The 

BS flow reversal around 2012-298 caused by the anomalously strong inflow pulse from the ESS 

is omitted from October 2012 estimation.) Model results from 2013 are dubious, with vertically- 

averaged model northward flow through BS in 2013 of approximately 0.25 m/s with standard 

deviations 0.07 m/s. In other years, the rates generally decreases from 0.6 m/s to 0.4 m/s over 

jd214-300 with deviations about that trend of 0.05 m/s. Current meter estimates from Woodgate 

et al. [2015]; Woodgate [2018] show that realistic flow rates should be roughly twice these values, 

with model 2013 BS transport underestimated by ~75%. These errors, which are determined by the 

background model and only slightly influenced by the DAS, could not be corrected by adjusting 

some model parameters throughout the domain. For example, experiments with the background 

model showed: decreasing the viscosity from 12 m2/s to 1.2 m2/s yielded only a 5% increase in BS 

flow rate. As previously noted, riverine water sources are ignored but are insufficient to account 

for the BSflowdeficitinthe model. The poortransportresolutionthroughBSprofoundlyimpacts 

the modeled transports throughout the domain.
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Subregional balance estimates A consistency check of the model transport estimates shows that 

the primary CS inflow and outflows are in approximate balance. This is justified by comparing 

the sum of incoming water from the Long Strait and Bering Strait and the outgoing water across 

the Barrow Canyon. The seasonal mean differences between these quantities for 2012-2014 are 

-0.036 Sv, -0.012 Sv, and -0.023 Sv, respectively. These estimates omit a low-volume source north 

of Wrangell Island and outflow along shelfbreak current which bypasses Barrow Canyon. An 

estimate of the latter during 2009-2011 by Brugler et al. [2014] is about 0.02-0.04 Sv, which agrees 

with the missing component of the budget.

In 2012 and 2014, flow across the southern Central Channel transect is slightly greater than 

the concurrent Bering Strait transport of ~0.6 Sv. This suggest that the Siberian Shelf flow volume 

directed though the southern CCs transect slightly exceeds (by ~0.005 Sv) any BS transport flowing 

northward through Herald Canyon.

The polyline transect composed of the Central Channel (CCn,CCs) transects together with 

the western transect of the Alaska Coastal Current (ACCw) forms a closed region bounded by 

the Alaska coast. Forecast transports across the boundaries show an approximate closure, with 

outflow of through CCs and ACCw accounting for about 97% of the ACCs inflow across all 

three years. This error results from a combination of excluded shallow coastal flow, numerical 

errors in collocating C-grid velocities and bathymetry, and failure to account for changes in free 

surface. Regional transport distribution in 2012 and 2014 is similar, with northward transport 

across CCn measuring 16.9% and 16.8%, respectively, of the incoming flow measured across CCs. 

The remaining portions, calculated at 80.5% and 83.1% respectively, exit the region eastward 

through ACCw, with standard deviations of about 2%. In 2013, model BS throughout the season 

is approximately 0.24 Sv less than the 2012/2014 mean. Consequently CCs inflow is reduced, and 

the CCn mean outflow is only 12.5% of the CCs with 82.6% leaving through ACCw. Local wind 

forcing does not appear to play a significant role in regulating this balance; correlation coefficients 

calculated for variations in transport against wind components normal to transects with a 0.5day 

lag are uniformly less than 10%.

DAS transport estimates through BC are expected to be inaccurate due to poorly represented 

BSflow inthe background model. Respective 2012-4seasonalmeanflows inthe DASanalysisare 

1.2Sv,0.31 Sv,and0.94Sv. Ignoring 2013,these contrast with the accurate observational estimates 

in the 0.45 Sv range for the head of BC [Weingartner et al., 2017b] and better align with estimates 

late-summer flow at the mouth of BC [Itoh et al., 2013]. Up-canyon transport events occurs only 
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in 2013, despite the observational expectation of —0.1 Sv in the latter half of each modeled season 
[Weingartner et al., 2017b]. Two plausible reasons for this inconsistent behavior involve the model 

and the DAS itself, beyond those induced by BS underestimation. First,the12kmmodelresolution 

may be insufficient to fully resolve the flow dynamics of the ACC; Okkonen et al. [2009] found that 

a 9km resolution of the ACC was insufficient for simulating the BC regional flow. Second, low 

BS inflow causes an overall reduction velocities in region where the DAS analysis localized. The 

data-optimized solution attempts to match data that reflects larger observed velocity components, 

so that latent bias-adjustment (artificially) increases flow in the ACC and consequently through 

BC. This latter point underscores the need for BS inflow to be accurately supplied or resolved for 

regional analysis.

4.5 Remarks and Summary

The work focuses on the development of a DAS for assimilating HFR and ADCP data in the 

Chukchi Sea. The system consists of an ice-free ROMS model enveloped by a modified ensemble 

filter. The implemented method is based on MLEF, which variationally identifies the optimal 

analysis as the maximum a posteriori estimate, modified to assimilate timeseries or synchronous 

representatives rather than observations directly derived from the analysis-time model state. The 

resulting asynchronous variational ensemble filter is a sequential approximation to the 4DVar 

method for observations such as HFR surface currents which are known to be non-Gaussian and 

for which algebraic Kalman-type filters may be ill-suited.

The study compares a pair of DAS results which differed only in treatment of HFR data; Case 

1 treated HFR observations over the forecast period asynchronously as a vectorized historical 

timeseries while Case 2 treated them as a synchronous average observation. Both methods rely on 

the history of observations and ensemble of observed model counterparts, unlike the traditional 

filter methods which consider only data at the time of analysis. ADCP data were consistently 

assimilated as timeseries in both cases. The results were then compared to available 2012 data 

to assess the quality of improvement, and to diagnose failures. The findings support that the 

analysis resulting from fully-asynchronous filtering surpasses that of the averaged case. Both 

cases improve upon the forecast quality of the background model and unpresented early cases 

which assimilated data using the classical (instantaneous) approach, which ignores 5/6 of surface 

observations when a 6-hour forecast/analysis cycle is used.

Compared to ingested 2012 data, the asynchronous approach to assimilation was shown to 
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have advantages over the averaged approach. In particular, assimilated HFR timeseries yielded 

a stronger reduction in forecast-minus-observation errors compared to the background model 

background than averaged HFR. Significantly, asynchronous assimilation of HFR improved the 

Case 1 analysis fit with ADCP observations by 12% more than Case 2 relative to the background 

model errors. The direct comparison of ADCP errors (co-relative to associated errors in the common 

background model) shows thatthe assimilationofHFR timeseries has the effect of simultaneously 

improving overall fit to ADCP observations and HFR observations despite the larger relative 

weight given to HFR observations in Case 2. Onthispoint, itis noted that increasing modelspatial 

resolution is an alternate method of naturally changing the balance between the number of HFR 

and ADCP observations; theformerincreaseswithlateralmodelresolutionwhereasthelatterdoes 

not.

The scale of overall error improvement is difficult to quantify consistently due to temporal 

irregularity of regional dynamics and volume of available data, and also because of the flow

dependent nature ofsequential filtering. However, the magnitude of difference between case-wise 

DAS improvements is generally greatest during times when local winds oppose the prevailing 

background flow or contain a strong onshore component (cf. jd240-260 and jd280-290 of Figures 

4.7 and 4.8). Averaged over these intervals, Case 1 errors for HFR (ADCP) are 14% (16%) lower 

than those of Case 2.

The quality of fit to observation was shown to vary with wind regime, with Case 1 more 

advantageous when strong winds induced vertically-sheared flow against the background flow. 

Strong optimization constraint imposed on the filter by onshore, cross-isobath HFR observations 

unresolved by the model (and thus the observed ensemble variations) under eastward blowing 

winds is implicated in the observed degradation of model-observation fidelity for Case 1 during 

such events. However, the spatiotemporal distribution of winds in recent years suggests that 

local summertime forcing is predominantly shear-inducing, and suggests that the asynchronous 

treatment of observations is appropriately suited to the region.

Unassimilated Lagrangian drifter observations provided an external reference for comparing 

the DAS forecasts. For drifters released offshore, the case with fully asynchronous assimilation 

diverge from observed data 34% slower than the background model, compared with a more modest 

~10% reduction in rate when ingesting averaged HFR. Case 1 drifter position remained within 

12km (1 grid-width) of observations for an additional 13 hours with positive velocity correlation for 

an additional 8 hours, while the corresponding improvements in Case 2 were 1 hour and 0 hours, 
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respectively. Results for drifters released nearer to the coast were similar, with the interesting result 

that Case 1 velocity correlation tended to decay linearly (at a rate of ~2.1%/hr) for the first day 

rather than oscillating. This trajectory correspondence between DAS forecast and unassimilated 

drifter data supports the use of asynchronous filtering for ongoing regional application.

An alternate scheme for applying the presented asynchronous ensemble-transform DA in

volves optimizing the initial model state rather than the forecast state. In this approach, the 

optimal ensemble-expansion coefficient vector (w* in Section 4.3) may be used to define an op

timized initial condition for each model integration step, with the analysis state defined by the 

integrated optimum. The resulting trajectory would have improved fit to the data on which it is 

conditioned. Additionally, the states generated in this way will be fully model-constrained as in 

the strong 4DVar method. This contrasts the presented method in which linear combinations of 

constrained states are not guaranteed to satisfy nonlinear primitive equations. The initial state in 

this case would be conditioned on data at future times, and it would more properly be considered 

asmootherrather than a filter. The implementation would require onlyminormodifications ofthe 

current DAS, although it would double the total model integration time as each model instance is 

propagated twice between each analysis cycle. Work in this direction is ongoing.

As metrics for the DAS effectiveness in 2012, the work compared DAS forecast quantities 

with those of a background model which assimilates no data. The DAS configuration of Case 1 

was found to strongly improve the quality of fit to observations, and it was applied to equally 

configured ROMS models of 2013 and 2014. Poor background model dynamics were evident, 

especially with respect to T/S distributions and mass/volume transport estimates which clearly 

do not correspond with observations beyond the analysis subregion. The employed model inac

curately resolves Bering Strait inflow in terms of both volume transport and vertical freshwater 

distribution. Crucially, the model omits the Yukon River, which is a significant contributor to 

both. These background model failures must be corrected when considering a region which hosts 

a confluence of waters climatically important for the Pacific sector of the AO, and preclude the 

inclusion of sea ice for extending the modelable season.

The systematic problems with the model affect both the background model and model compo

nent of the DAS equally. This justifies the approach taken in this work, which compares different 

DAS outputs in relation to a common background model. A more properly configured model 

would obviously produce a more accurate background trajectory. It would would also serve as a 

better basis for assimilation schemes, such as those explored here, which are primarily developed 
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to constrain and refine model states via temporally-independent corrections rather than overcome 

persistent model bias [Dee and Da Silva, 1998; Dee, 2005]. However, the variational formulation 

of MLEF permits inherent correction of the bias component in the span of P1/2, which implies 

that a bias-aware version of the algorithm must account for this component. Specifically, the bias

adjustment methods of Dee [2005] are formulated for KF-type methods which define the forecast 

as the ensemble mean, and adjust that forecast based on a non-zero of mean of the posterior in

novation (i.e. mean(da)) computed prior to the forecast step. Further experimentation is necessary 

to implement such a correction in variational form for MLEF, which requires a different relation

ship between the forecast state and ensemble perturbations. Bias-aware modification to the DA 

component cannot, however, correct model deficiencies originating outside of the analysis region, 

such as the poorly modeled BS flow.

Ensemble filtering offers a forward-model only method of assimilation which easily scales as 

computer resources become available, making them more practical than than strong-constraint 

variational methods for operational forecasting. As HFR surface observations are known to 

be non-Gaussian, a mode-tracking objective for optimization should thus be be sought. The 

variational ensemble filter implemented here satisfies both of these requirements, and is tested in 

its capacity to resolve surface currents in the Chukchi Sea region by assimilating real data in two 

ways. The quality of coherence between DAS surface forecast and various forms of velocity data 

presented indicate the strong candidacy of an asynchronous variational ensemble filter for regional 

applicationwhentimelinessofanalysisiscrucial,suchasthemonitoringofsurfacecontamination 

by shipborne heavy fuel oil or other spills.
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Table 4.1. Moored ADCP information. The table shows the internal mooring reference number, 
name in previous studies, geographical location, and deployment/retrieval dates. The names 
corresponds to Barrow Canyon (BC), Hanna Shoal Northeast/Northwest (HS-NE/NW) in Wein- 
gartner et al. [2017a], and East and West Barrow Canyon (EBC, WBC). The dates are rounded to the 
first analysis time with a complete 6-hour record, and date specified as '-' indicates data through 
2014-310.

ID Name Lat. (ºN) Lon. (ºE) Start End
Mooring 13 BC2 70.92 200.06 2012-255.50 -
Mooring 16 CS_1 #01 72.26 201.93 2013-290.50 -
Mooring 17 CS_2 #02 72.30 202.27 2013-287.50 -
Mooring 18 CS_3 #03 72.34 202.55 2013-287.75 -
Mooring 19 CS_4 #04 72.39 202.85 2013-287.75 -
Mooring 20 CS_5 #05 72.43 203.16 2013-287.75 -
Mooring 21 FM_1 #06 72.26 201.96 2013-300.75 -
Mooring 22 HS-NE_40m 72.12 199.50 2012-236.25 -
Mooring 23 HS-NE_50m 72.16 200.88 2012-236.50 -
Mooring 24 HS-NE_60m 72.18 201.45 2012-236.75 -
Mooring 25 HS-NW40m 72.28 196.47 2012-231.50 -
Mooring 26 HS-NW50m 72.53 195.90 2012-231.25 -
Mooring 27 HS-NE_40m 72.12 199.51 2013-254.00 -
Mooring 28 HS-NE_50m 72.16 200.88 2013-254.00 -
Mooring 29 HS-NE_60m 72.18 201.45 2013-253.75 -
Mooring 30 HS-NW40m 72.28 196.47 2013-254.75 -
Mooring 31 HS-NW50m 72.53 195.90 2013-254.75 -
Mooring 34 EBC 71.38 203.12 2011-233.75 2012-245.50
Mooring 36 WBC 71.57 202.30 2012-286.75 2013-248.75
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Table 4.2. Drifter Information. The table shows the internal drifter reference number, name in 
previous studies, geographical location, and deployment/termination date. Drifter IDs identify the 
deployment locations for paths shown in in Figure 4.1. The names corresponds to the correspond
ing public data records, available and visualizable at research.cfos.uaf.edu/chukchi-beaufort/data/ 
drifters/ under heading “BOEM 13-August-2012”.

ID Name Lat.(ºN) Lon.(° E) Start End
72 UAFSFOS-MS-0001 71.628 195.277 2012-225.42 2012-284.54
73 UAFSFOS-MS-0003 71.570 199.303 2012-236.71 2012-261.08
74 UAFSFOS-MS-0004 71.627 195.290 2012-225.42 2012-296.12
75 UAFSFOS-MS-0005 71.628 195.280 2012-225.42 2012-296.54
76 UAFSFOS-MS-0006 71.628 195.280 2012-225.42 2012-285.67
77 UAFSFOS-MS-0007 71.626 195.290 2012-225.42 2012-285.88
78 UAFSFOS-MS-0008 71.568 199.301 2012-236.71 2012-250.33
79 UAFSFOS-MS-0009 71.628 195.284 2012-225.42 2012-259.83
80 UAFSFOS-MS-0011 71.569 199.302 2012-236.71 2012-290.00
81 UAFSFOS-MS-0012 71.569 199.304 2012-236.71 2012-278.62
82 UAFSFOS-SVP-0001 71.568 199.296 2012-236.71 2012-319.17
83 UAFSFOS-SVP-0002 71.634 195.255 2012-225.42 2012-317.04
84 UAFSFOS-SVP-0003 71.634 195.264 2012-225.42 2012-311.29
85 UAFSFOS-SVP-0004 71.570 199.296 2012-236.71 2013-041.83
86 UAFSFOS-SVP-0005 71.635 195.262 2012-225.42 2013-041.83
87 UAFSFOS-SVP-0006 71.634 195.255 2012-225.42 2013-041.83
88 UAFSFOS-SVP-0007 71.572 199.288 2012-236.71 2013-012.08
89 UAFSFOS-SVP-0008 71.629 195.259 2012-225.42 2012-332.67
90 UAFSFOS-SVP-0009 71.573 199.296 2012-236.71 2012-255.62
91 UAFSFOS-SVP-0010 71.634 195.261 2012-225.42 2012-330.71
92 UAFSFOS-SVP-0011 71.571 199.287 2012-236.71 2013-041.83
93 UAFSFOS-SVP-0012 71.577 199.283 2012-236.71 2013-007.88
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Figure 4.1. Chukchi domain and observations for 2012-2014 shown focused on subregion resolved at approximately 12km bordered in 
light grey line; the inset image shows the entire domain. Stars identify approximate locations of HFR antennae.
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Figure 4.2. Temporally averaged HFR GDOP fields. Temporally averaged HFR GDOP fields are shown to illustrate the scaling applied 
to σh to generate the pointwise values in error covariance matrix factor R1//2.



Figure 4.3. Forecast-minus-observation relative differences for different ensemble size. Varying ensemble-size forecast model errors 
∣R-1/2df relative to the background for all observations. The horizontal grey line indicates the covariance-weighted background 

innovation norm errors ∣∣R-1/2dbg|| used as a reference. The 30, 61, and 92 element filters are indicated by lines with circle, square, and 
triangle markers, respectively.



Figure 4.4. Efficiency of optimization schemes. Time series of relative errors (left) and computation time for optimization (right) via 
secant-search and "fminopt" algorithms. The right plot suggests that the custom optimization code finds the same optima as the 
proprietary optimization routine, but does so approximately one order of magnitude (~6.5 times) faster.



Figure 4.5. "Asynchronous" Assimilation Process. The conceptual relationship between the true ocean, observational data, modeled 
data, and model states is shown. The red arrow and application of the nonlinear model comprise the forecast stage. The analysis update 
uses the comparison of observations shown in the blue box. In the asynchronous case, observations at various times during the forecast 
stage inform the analysis.



Figure 4.6. "Synchronous" Assimilation Process. The conceptual relationship between the true ocean, observational data, modeled data, 
and model states is shown for one case of synchronous observations. In this synchronous case method, observations are represented by 
averaging HFR over the forecast stage.



Figure 4.7. Relative Error Reduction for the 2012 Asynchronous Case. Forecast errors during summer months of 2012 are shown for the 
case of asynchronously assimilated HFR data. Values are smoothed over 48-hour periods and normalized against the corresponding 
errors in the background model indicated by the unit horizontal line. Solid black, dotted grey, and dashed grey lines correspond to 
normalized error values of all observations, HFR observations, and ADCP observations respectively. Pointwise values of total error are 
shown by grey circles. The local wind forcing vectors in the region are shown at the top of the plot, and assimilated HFR (ADCP) data 
volume data is shown shaded in blue-gray (beige) for reference. Blue wind vectors denote wind with magnitude greater than 5 m/s and 
blowing toward 225 ± 60o (measured counterclockwise from east).



Figure 4.8. Relative Error Reduction for the 2012 Synchronous Case. Forecast errors for the case of averaged HFR assimilation. Figure 
layout follows that of Figure 4.7 and shows results of Case 2 which assimilates mean HFR data.



Figure 4.9. ADCP errors with Identified Wind Regime. The figure shows relative ADCP errors with the solid (dot-dash) line showing 
Case 1 (Case 2). Normalization with with respect to background errors, as in previous plots. Blue and red regions identify times with 
"opposing" and "supporting" winds, respectively, as described in the text. The volume of HFR observations for Case 1 is shown in the 
grey background for reference, with the low, dotted line indicating the volume of averaged HFR observations.



Figure 4.10. Mean HFR Observations and Analysis Errors under Opposing Winds. Arrows indicate the temporally-averaged HFR 
observations during opposing wind events in the left panel, with colors indicating magnitude. The corresponding averaged errors for 
Case 1 and Case 2 are shown in the upper right and lower right panels, respectively. The heavy white line identifies the approximate 
Alaska coast from the model 3 m bathymetry. Dotted contours identify the 50, 50, and 70 m model isobaths.



Figure 4.11. Mean HFR Observations and Analysis Errors under Supporting Winds. The plot layout is identical to that of Figure 4.10, 
only for supporting wind events.



Figure 4.12. Temporal Map of Wind Regimes for 2012-2017 Summers. Shown in red and blue are the opposing and supporting wind 
events from spatial means of ERA-Interim 6-hourly 10 m wind analysis over the 12km model region. The criterion used to establish the 
supporting wind events omits the temporal restrictions.



Figure 4.13. Shoal Region Model-Drifter Position and Velocity Correspondence. Correspondence between forecast and drifters deployed 
on 2012-225.42 is shown here, with calculated distance from observation in the left panel and timeseries of correlation r(f) in the right 
panel.



Figure 4.14. ACC Region Model-Drifter Position and Velocity Correspondence. Correspondence between forecast and drifters deployed 
on 2012-236.71 is shown, with the panels presented as in Figure 4.14.



Figure 4.15. Example CTD observation and model representative. The blue curve shows temperature plotted against depth as 
represented in observational data. The projection onto modeled vertical coordinates using cubic spline interpolation is shown by the 
dashed red curve, with circles indicating values at ROMS vertical coordinate depths.



Figure 4.16. CTD Observations and associated Model Errors. The top row of panels shows temperatures and the bottom row shows 
salinities where the horizontal axes correspond to chronologically sorted CTD observations and the vertical axes to fraction of total 
depth. The four columns, left to right, show CTD observations and associated errors for the background model, Case 1, and Case 2, 
respectively. The horizontal axis limits correspond roughly to 2012-230-270, although the spacing is not uniform.



Figure 4.17. Two Example CTD and model T/S Profiles. The various temperature (red) and salinity (blue) profiles associated with CTD 
observations at ~jd230 (left) and ~jd27O. CTD data, background forecast, Case 1 forecast, and Case 2 forecasts are shown by solid, 
dash-dot, dotted, and dashed lines, respectively. The difference is extreme, but illustrates the model T/S drift toward strongly biased 
uniform profiles.



Figure 4.18. Map of Model Transects. The geographical locations of sections used for estimation of transports are shown with 
corresponding short identification labels for transects. Long Strait (LS) is far west of the region and is meridionally aligned at 178.8º 
between Wrangell and the Siberian coast. Labels are shown on the positively oriented side of each segment.



Figure 4.19. Seasonal Mass Transport Estimates 2012-2014. Mass transport estimates during 2012
2014 are shown for the various geographical transects. Plots of 2013 transport across the central 
channel and eastern coastal region look qualitatively different than 2012 and 2014 reconstructions. 
Plotted data is smoothed over 5-day intervals for presentability, while figures stated in the text use 
daily averages.
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General Conclusion

Geophysics, and more broadly many natural sciences, rely on practical knowledge from two 

distinct sources. First, there are numerical models which often solve systems of equations de

rived from time-forward discretizations of partial differential equations describing physical phe

nomenon. Such models are limited in resolution, make many simplifications, and often apply 

empirical parametrizations to unresolved processes. Second, observational data which arise from 

measurement processes applied to the external reality and, in addition to representing very lim

ited knowledge of the full physical state, usually rely on a combination of empirical and analytical 

rules to relate them to state variables. For example, satellites do not actually measure sea-surface 

temperature; they measure limited bands of emitted or reflected electromagnetic spectra. These 

radiances are then model-transformed into representatives of temperature, which is itself a statis

tical representative of its net local kinetics of the water. This perspective maintains that knowledge 

from models and observations are inter-dependent and should not be treated independently of 

one another. The synthesis of the two sources together into a common stream is the aim of data 

assimilation (DA), whose practical application requires some knowledge of quantified uncertainty 

in model and observation information sources. Further, existing observational data products are 

not calibrated equally for all regions, and may be calibration-biased toward regions with abundant 

data. It is therefore important to better understand the source and distribution of uncertainties in 

observations and models alike for the purpose of improving future scientific work based on them 

and to view past works in an appropriate context.

This dissertation is a collection of works which emphasize observational data analysis and 

observation-informed modeling methodologies. The study region is centered on the Arctic Ocean 

(AO), particularly the portion strongly influenced by the Pacific Ocean. It has not focused on 

revealing new physical phenomenon, but rather on the use of numerical tools and methods for 

augmenting studies based on both data and modeling. It intends to communicate expertise in 

these topics sufficient to develop an independent research program focused on technical DA 

development or to collaborate with researchers engaged in applied research using numerical 

geophysical models.

Chapters 1 and 2 focused on data analysis of International Polar Year (IPY) surveys of AO, 

and the analysis and synthesis of IPY data is largely concluded. The decade since the multi-year 

IPY effort has seen the continued accumulation of data from many Arctic and sub-Arctic studies. 

Future work planned in this direction of research includes the production of a series of annual and 
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seasonal snapshots of T/S in the AO for 2010-2017 by applying the distributed gridding method 

(viz. DIVA) to public collections of quality-controlled oceanographic data. Building the original 

analysis required the large set of IPY data, but the following analyses should require less, as 

supplying the IPY analysis as a first-guess state effectively conditions subsequent years' analysess 

on the IPY data. The potential use of these results would contribute to post-IPY climatologies and 

pan-AO trend analysis by comparing the series of post-IPY analyses. Secondarily, the combination 

of Chapters 1 and 2 present the need for improved SST background climatologies to inform satellite 

analyses, particularly in regions with irregular ice-cover and those previously occluded by ice.

Chapters 3 and 4 focused on data assimilation, a framework for combining models and obser

vational data on the basis of objectively established criterion. The third chapter presented recently 

accepted results of ongoing work related to refining model sea ice state evolution on the basis of 

satellite data using flexible strength and stress parameters. The study was limited to one spatial 

dimension as realistic 2D sea ice applications are precluded by the need for a more complex nu

merical adjoint for those cases; this extension is presently pursued by funded collaborators with 

whom the author hopes for continued involvement.

Chapter 4 presents a statistical optimization of a regional oceanographic model to observed 

velocity data, which contrasts the deterministic variational inverse method of optimization in 

Chapter 3. The research was done under the guidance of the author 's advisor without additional 

collaborators and constitutes the development of an original research program by the author. It 

is presently the only assimilation effort to use the high-frequency radar (HFR) array data in the 

Chukchi Sea region, and an extensive literature search also suggests it is the only oceanographic 

application of variational ensemble DA run in asynchronous mode. The resulting DA system 

is arguably suitable for use in the regional monitoring of contaminants arising from oil explo- 

ration/extraction or other maritime sources. The work intended to obtain more realistic results 

from the data-optimized analysis solution but was limited by significant errors in the background 

model. Efforts to refine the background model are ongoing with the goal of developing a practical 

system able to produce near-operational forecasts by ingesting data as it comes available.

This dissertation provides a basis for ongoing works by others in addition to the continuations 

mentioned above, particularly when it comes to the analysis of uncertainties in data and data- 

informed products. The closing of this work proposes a small assortment of possible, related 

future projects not immediately pursued by the author.

The abundant IPY dataset of T/S profiles, together with post-IPY data found in other assem
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bled datasets, could be used to establish an updated background SST/S climatology for satellite 

products. This was not pursued here because estimation of surface variables from satellites is 

very sensor-dependent and the works herein focused on the analysis products rather than prim

itive raw data. In this regard, one also notes that there is little existing work done in the way of 

refining satellite-to-surface empirical calibration specific to the Arctic shelves. That is, technical 

documentation of satellite products often note that transformation of brightness temperature to 

SST depends on other variables including sea-surface salinity, surface roughness, and near-surface 

stratification. Yet in the course of preparing Chapter 1, the author found no literature discussing 

the co-resolution of SST and SSS. Technical construction of an error covariance model for the joint 

resolution of SST/S from multi-band satellite sensors appears to be missing from the literature and 

would be very useful to product-makers. In the event that such works do exist, their empirical 

bases may not be well-calibrated to the AO and it is worthwhile to improve them on in situ data. 

Additionally, the freshwater distribution of the AO is changing due to many processes as discussed 

in Chapter 2. It may be worthwhile to generate a surface freezing-temperature reference dataset 

for the AO which reflects its geographic and seasonal variations to better inform satellite analysis 

which often prescribes a spatiotemporal constant value in unobservable regions influenced by sea 

ice. Further, literature discussing the diurnal (i.e. solar driven) SST cycle in the Arctic regions is 

also sparse, presumably due to limited observations. An observational study of diurnal cycles 

over the Chukchi shelf might be beneficial for regional biologists, although the finding may not be 

interesting because of high winds during the ice-free season.

With regard to the data assimilation projects presented, the presented methodologies involved 

the use of data to improve models. However, one may also take a contrarian perspective and use 

assimilative models to deduce HFR observations at a higher resolution. For example, the HFR 

data of Chapter 4 are supplied on a 6 km grid and often contain signals with strong divergences 

and cross-isobath flows poorly resolved in the model; an assimilative model reconstruction could 

present approximations to the data at sub-observation scales for further studies related to regional 

Ekman pumping, effects of wind-stress curl, and the relationship of observed wind and observed 

ocean response to their artificial numerical model counterparts. On the more technical side of DA 

literature, there are very few papers regarding the temporal structure of error covariance associ

ated with asynchronously-represented observation processes3, and no surveyed literature clearly 

address bias correction in variational ensemble assimilation schemes. The method presented in 

3Chapter 4 assumes that observation errors are temporally independent.
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Chapter 4 would benefit strongly from such developments. Finally, the author notes that while DA 

is underpinned by a rigorous mathematical framework, its practical implementation is approx

imate and requires conceding to necessary simplifications and ad hoc suppositions. Many open 

questions remain regarding the validity of these application-specific assumptions.
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