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Abstract

The goal of this study is to improve understanding of atmosphere, sea ice, and ocean interactions in the 

context of Arctic storm activities. The reduction of Arctic sea ice extent, increase in ocean water 

temperatures, and changes of atmospheric circulation have been manifested in the Arctic Ocean along with 

the large surface air temperature increase during recent decades. All of these changes may change the way 

in which atmosphere, sea ice, and ocean interact, which may in turn feedback to Arctic surface air warming. 

To achieve the goal, we employed an integrative approach including analysis of modeling simulation results 

and conducting specifically designed model sensitivity experiments. The novelty of this study is linking 

synoptic scale storms to large-scale changes in sea ice and atmospheric circulation. The models were used 

in this study range from the regional fully coupled Arctic climate model HIRHAM-NAOSIM to the ocean­

sea ice component model of the Community Earth System Model CESM and the Weather Research and 

Forecasting (WRF) model.

Analysis of HIRHAM-NAOSIM simulation outputs shows regionally dependent variability of storm count 

with a higher number of storms over the Atlantic side than over the Pacific side. High-resolution simulations 

also reproduce higher number of storms than lower resolution reanalysis dataset. This is because the high- 

resolution model may capture more shallow and small size storms. As an integrated consequence, the 

composite analysis shows that more numerous intense storms produce low-pressure systems centered over 

the Barents-Kara-Laptev seas and the Chukchi-East Siberian seas, leading to anomalous cyclonic 

circulation over the Atlantic Arctic Ocean and Pacific Arctic Ocean. Correspondingly, anomalous sea ice 

transport occurs, enhancing sea ice outflow out of the Barents-Kara-Laptev sea ice and weakening sea ice 

inflow into the Chukchi-Beaufort seas from the thick ice area north of the Canadian Archipelago. This 

change in sea ice transport causes a decrease in sea ice concentration and thickness in these two areas. 

However, energy budget analysis exhibits a decrease in downward net sea ice heat fluxes, reducing sea ice 

melt, when more numerous intense storms occur. This decrease could be attributed to increased cloudiness 

and destabilized atmospheric boundary layer associated with intense storms, which can result in a decrease 

in downward shortwave radiation and an increase in upward turbulent heat fluxes.

The sea ice-ocean component CICE-POP of Community Earth System Model (CESM) was used to conduct 

sensitivity experiment to examine impacts of two selected storms on sea ice. CICE-POP is generally able 

to simulate the observed spatial distribution of the Arctic sea-ice concentration, thickness, and motion, and 

interannual variability of the Arctic sea ice area for the period 1979 to 2011. However, some biases still 

exit, including overestimated sea-ice drift speeds, particularly in the Transpolar Drift Stream, and 
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overestimated sea-ice concentration in the Atlantic Arctic but slightly underestimated sea ice concentration 

in the Pacific Arctic. Analysis of CICE-POP sensitivity experiments suggests that dynamic forcing 

associated with the storms plays more important driving role in causing sea ice changes than 

thermodynamics does in the case of storm in March 2011, while both thermodynamic and dynamic forcings 

have comparable impacts on sea ice decrease in the case of the August 2012. In case of March 2011 storm, 

increased surface winds caused the reduction of sea ice area in the Barents and Kara Seas by forcing sea 

ice to move eastward. Sea ice reduction was primarily driven by mechanical processes rather than ice 

melting. On the contrary, the case study of August 2012 storm, that occurred during the Arctic summer, 

exemplified the case of equal contribution of mechanical sea ice redistribution of sea ice in the Chukchi - 

East Siberian - Beaufort seas and melt in sea ice reduction.

To understand the impacts of the changed Arctic environment on storm dynamics, we carried out WRF 

model simulations for a selected Arctic storm that occurred in March 2011. Model output highlight the 

importance of both increased surface turbulent heat fluxes due to sea ice retreat and self-enhanced warm 

and moist air advection from the North Atlantic into the Arctic. These external forcing factor and internal 

dynamic process sustain and even strengthen atmospheric baroclinicity, supporting the storm to develop 

and intensify. Additional sensitivity experiments further suggest that latent heat release resulting from 

condensation/precipitation within the storm enhances baroclinicity aloft and, in turn, causes a re­

intensification of the storm from its decaying phase.
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Chapter 1 Introduction and Motivation

1.1 Arctic Climate System: Current State and Mechanisms of Ongoing Change

The Arctic climate system is a set of closely linked physical systems of land, ocean, cryosphere, 

and atmosphere. It plays a critical role in governing the global ocean and atmospheric circulation [Serreze 

and Barry, 2011].

The Arctic region is marked by the largest global climate warming evident in the instrumental 

record, paleoclimatic records, and in climate model projections through the 21st century [Manabe and 

Wetherald, 1975; Johannessen et al., 2004]. Air temperature increase in the Arctic over the past few decades 

has been documented in many studies [Serreze et al., 2000; Alekseev et al., 2000; Polyakov et al., 2003; 

Bengtsson et al., 2004; IPCC 2007] and is believed to be driven by the Earth's response to increasing 

atmospheric greenhouse gas concentrations [e.g., Manabe and Stouffer, 1980; Robock, 1983; Hansen et al., 

1984; Washington and Meehl, 1996; Holland and Bitz, 2003; Hall, 2004]. Extensive sea ice loss has 

occurred within the Arctic Ocean [Koyama et al., 2017].

Present Arctic warming is amplified due to shrinking and thinning sea ice extent, alterations of 

ocean currents, and hemispheric-scale changes in atmospheric variability [Curry and Mauritzen, 2005; 

Francis et al., 2005; Meehl et al., 2005; Stroeve et al., 2005; Schiermeier, 2006, Barber et al., 2008].

1.2 Arctic Climate System Feedbacks

Individual components of the Arctic Climate System can change concurrently and that interaction 

may amplify Arctic warming through feedback mechanisms [Manabe and Wetherald, 1975] and [Serreze 

and Barry, 2011; Pithan and Mauritsen, 2014]. Arctic climate feedbacks that modify the state of the Arctic 

Climate System and accelerate the warming include (i) ice albedo feedback; (ii) cloud and water vapor 

feedback; (iii) air temperature feedback; (iv) methane release due to thawing permafrost; and (v) Arctic 

greening [McGuire et al., 2006; Soden et al., 2008].

One of the primary contributors to Arctic polar amplification is the surface albedo feedback [Crook 

et al., 2011; Taylor et al., 2013]. Sea ice covered with snow reflects about 70% of sunlight whereas the 

ocean reflects less than 10% except in the sun glint [Wiscombe and Warren, 1980]. Therefore, the melting 

of sea ice, which reveals the ocean surface, causes an increase in the absorption of solar radiation further 
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adding an increased surface ocean temperature [Perovich et al., 2007]. In this warmer climate, the summer 

sea ice melt season lengthens and causes a larger exposure of open water areas that readily absorb solar 

radiation. This effect fosters further melt of the high albedo ice and solar radiation and increases the sensible 

heat content of the oceanic mixed layer [Perovich et al., 2007].

Cloud feedback was discovered to be the second largest contributor to the Arctic amplification 

[Winton, 2006; Taylor et al., 2013]. Cloud cover and water vapor feedback refers to the mechanism that 

causes the presence of clouds to augment the downward longwave radiation flux to the surface [Winton et 

al., 2006; Pithan and Mauritsen, 2014]. In contrast to the effect of cloud coverage in the low- and mid­

latitudes, the net effect of Arctic clouds, exemplified mainly by low stratiform clouds, was found to warm 

the surface [Intrieri et al., 2002; Kay and L'Ecuyer, 2013]. Recent scientific literature indicates that Arctic 

water vapor content has increased during recent decades due to increased transport of heat and moisture 

from mid latitudes [Lucarini and Ragone, 2011; Zhang et al., 2012], and via enhanced local evaporation 

[Bintanja and Selten, 2014].

Another potentially large contributor to warming of the Arctic atmosphere is permafrost 

degradation. Thawing permafrost results in the release of methane, a greenhouse gas, which constitutes a 

positive feedback to the climate system [Walter et al., 2006; Jorgenson et al., 2006; Anisimov 2007].

In response to Arctic warming, high-latitude ecosystem changes include animal habitat migration 

[Sturm et al., 2001], a prolonged growing season [Jeoung et al., 2011], and enhanced photosynthetic activity 

[Xu et al., 2013]. These changes are generally referred to as Arctic “greening”. Studies utilizing 

observations collected over the last several decades indicate an extension of shrub areas [Tape et al., 2006; 

Bunn and Goetz 2006; Potter et al., 2013] and northward migration of the Arctic tree line [Pearson et al., 

2013]. Increasing air temperatures will likely cause Arctic vegetation zones to shift, resulting in wide- 

ranging impacts. Rising temperatures are expected to favor a northward expansion of boreal forest into the 

tundra, and of tundra into the polar desert increasing the radiation absorption properties of the Arctic coasts 

[Bhatt et al., 2010]. Sea ice decline along the coast results in warming and enhanced tundra productivity 

[Bhatt et al., 2010]. Greening in the Arctic can amplify Arctic warming two to seven times due to decreased 

surface albedo [Levis et al., 2000; Chapin et al., 2005; Bonan, 2008].

The depletion of the ice pack leads to a rise in subsurface heat content as more of the ocean surface 

becomes exposed to the solar radiation [Johannessen et al., 2004]. The additional heat absorbed by an 

increasingly ice-free Arctic Ocean in summer is already accelerating local and regional warming and 

preventing sea ice from recovering in winter. The incoming solar energy becomes trapped below the ocean 

surface layer and can reduce the growth of sea ice in winter, ultimately leading to earlier melting/retreat in 
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spring. Such a positive feedback may act in addition to ice-albedo feedback and further contribute to Arctic 

amplification. Holland et al., [2006] argues that abrupt sea ice transitions are thermodynamically driven by 

enhanced open water production and increased solar radiation absorption.

1.3 Motivations

Extratropical cyclones are key atmospheric elements and represent major sources of energy, mass, 

and momentum transfer from the low and mid latitudes into the Arctic [Barry and Carleton, 2001; 

Sorteberg and Walsh, 2008a]. This motivates the investigation of another feedback mechanism that 

involves Arctic cyclones and sea ice and study how this feedback may also contribute to Arctic warming. 

Arctic cyclones play a critical role in the climate system by impacting precipitation, the radiation budget, 

cloudiness, and poleward heat and moisture transport [Bengtsson et al., 2006; Sorteberg and Walsh, 2008a]. 

The transport of heat into the Arctic by both the ocean [e.g., Polyakov et al., 2010] and atmosphere [e.g. 

Serreze et al., 2009] has been shown to accelerate Arctic warming.

Sea level pressure exhibits a decreasing trend over the Arctic Ocean [Serreze et al., 2000; Polyakov 

et al., 2003]. The long-term decline in atmospheric pressure over most of the Arctic is consistent with the 

response typically simulated by climate models to greenhouse warming [Vavrus et al., 2013] Analyses of 

the sea level pressure fields indicate that Arctic warming is linked to changes in atmospheric circulation 

due to increased energy influx into the Arctic [e.g. Simmonds et al., 2008]. Atmospheric circulation may 

cause approximately 50% of the winter warming in the central Arctic region [Serreze et al., 2000].

Whilst interaction between sea ice and storms affect Arctic temperatures in ways that may 

contribute to yet more climate change, the impact of increasing incidence and severity of Arctic cyclones 

is as yet not fully understood within the broad picture of global climate change. So far it has been discovered 

that decreasing sea level pressure trend in the Arctic is consistent with forcing mechanisms such as a 

poleward shift of storm tracks [Bengtsson et al., 2006], boundary layer heating [Deser et al., 2010], 

northward shifts in baroclinicity in the marginal ice zone [Inoue and Hori, 2011], and enhanced upward 

surface energy fluxes with greater open water coverage [Simmonds and Keay, 2009]. An increase in 

penetration of cyclones into the central Arctic has been observed during years of low ice content [Inoue et 

al., 2012].

More studies recently have been dedicated to investigating the linkage between Arctic storm 

incidence and concurrent sea ice deterioration [e.g., Asplin et al., 2012; Zhang et al., 2013; Boisvert et al., 
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2016]. In 2012, the historic minimum recorded sea ice extent was partially attributed to the occurrence of 

an Arctic cyclone in August that caused a sharp sea ice decline during its development [Parkinson and 

Comiso, 2013; Zhang et al., 2013].

The hypothesis of sea ice reduction as a response of cyclones is not new in spite of recent increase 

in media and scientific community attention drawn to investigating the relationship between sea ice decline 

and cyclone activity. The existence of an amplified pace of Arctic air-sea interaction under cyclonic 

conditions was first introduced in the 1980's. Studies demonstrated that there is a linkage between summer 

cyclone regime and sea ice decline [e.g., Barry and Maslanik, 1989; Serreze et al., 1989]. Since then, many 

studies documented that Arctic large-scale circulation, and cyclones in particular, can accelerate sea ice 

deterioration [Deser and Teng, 2008; Ogi et al., 2010; Ogi and Wallace, 2012; Asplin et al., 2012, Overland 

et al., 2012, Zhang et al., 2012].

Despite showing the frequency, duration, and intensity of cyclones that enter the Arctic region from 

the mid-latitudes increased significantly over the period 1948 - 2002 [Serreze et al., 1997, 2000; Orlanski 

1998; McCabe et al., 2001; Zhang et al., 2004; Wang et al., 2006], there is no conclusive finding to clearly 

assert if the increase in cyclone frequency or intensity is associated with sea ice loss [Vavrus et al., 2016]. 

Changes in cyclonic activity in the Arctic leads to changes in temperature gradients between mid-latitudes 

and the poles, and changes in specific humidity as the atmosphere warms [Vavrus et al., 2016]. Partly due 

to that, studies have reached different conclusions, with some studies suggesting a reduction in mid-latitude 

cyclone frequency and intensity during winter [e.g., Gitelman et al., 1997; Geng and Sugi, 2003, Vavrus et 

al., 2016], while others, suggesting an increase in frequency and strength of winter cyclones [Bengtsson et 

al., 2006; Simmonds et al., 2008; Sorteberg and Walsh, 2008b; Simmonds and Keay, 2009; Stroeve et al., 

2011].

While aforementioned Arctic studies alluded that cyclone and sea ice can contribute to Arctic 

climate warming, there is no general consensus on the mechanisms and this phenomenon is not well 

understood; therefore, the response of sea ice - storm interaction needs to be investigated as a fully coupled 

feedback mechanism by analyzing the impact of sea ice on Arctic cyclones in a thorough research 

framework. Whether the Arctic cyclones and sea ice as a feedback mechanism can accelerate Arctic 

warming remains unclear, but it motivates to study the response of sea ice on Arctic storms and vice versa 

as well as to assess of cyclones and sea ice interaction in the context of polar amplification.

Previous studies investigated the cyclonic impact on sea ice, and vice versa, on several time and 

spatial scales, utilizing different research approaches [e.g Zhang et al., 2004; Asplin et al., 2012; Zhang et 

al., 2013; Boisvert et al., 2016]. However, these studies lacked clarity on the broader context of cyclone - 
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sea ice interaction and its footprint on the Arctic warming. In this study, the objective is to conduct a 

comprehensive study of sea ice - cyclone interaction, encompassing different time and spatial scales and 

research methods, to identify the mechanisms that might be involved in a cyclone - sea ice feedback 

process.

Thus, in order to bridge the gap of previous research findings, we carried out an in-depth analysis 

of sea ice - cyclone response by deploying a series of coupled and stand-alone climate models to isolate 

and study in detail the following two processes:

(i) physical mechanisms influencing sea ice dynamics and thermodynamics under cyclonic 

conditions;

(ii) impact of sea ice recession observed in the last decades on Arctic cyclogenesis.

This study is aimed at providing a comprehensive understanding of the cyclone - sea ice interaction 

in an effort to aid the research community in improving the reliability of the climate model, to reduce the 

uncertainty of Arctic climate change projections, and to improve the accuracy of operational models.

1.4 Implications of Arctic Climate Change to Socio-economic Activity

Growing awareness of rapid changes in the Arctic climate, in conjunction with advances in 

technology, make the Arctic a new frontier for a variety of socio-economic activities including resource 

exploration, commercial shipping, tourism and societal activities [Eicken et al., 2009]. Depending on the 

interest of a stakeholder, Arctic sea ice can be categorized as: (i) climate regulator, marine hazard, and 

coastal buffer; (ii) transportation and use as a platform; (iii) cultural services obtained from the “icescape”; 

and (iv) support of food webs and biological diversity [Eicken et al., 2009]. Aforementioned categories 

may be at risk depending on weather conditions or ice regimes.

Sea ice retreat in the Arctic has significant implications for marine access and shipping that will 

impact natural resource development and regional trade [Arctic Council, 2009]. Shrinking sea ice coverage 

allows longer navigation seasons and new access to previously difficult-to-reach coastal regions [Arctic 

Council, 2009]. However, while year-round operations may become possible for the maritime industry, the 

longer season of navigation will cause greater risks of encountering adverse weather conditions as 

compared to times with larger sea ice extent.

Many Arctic-based operations are sea ice- and weather-dependent. To increase the feasibility of 

Arctic projects and timeliness of decision making, these operations demand quality data and an 
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understanding of the timing, intensity, and duration of ice incursions or cyclones so that decision makers 

may properly mitigate risks and hazards.

The Arctic is a challenging environment where risks of operating are increasingly high. Proximity 

to the sea ice edges and migration of low pressure systems pose additional environmental risks in the Arctic. 

Arctic low pressure systems are detrimental to Arctic offshore and onshore activities due to freezing spray 

(Fig. 1.1A), increasing wind speeds (Fig. 1.1C), greater wave height (Fig. 1.1D), increasing precipitation 

and the reduction of visibility (Fig. 1.1B), and, if sea ice is present, increased sea ice drift speed. High winds 

and sea state undermine the stability of offshore structures and vessels. Low visibility may limit 

navigational access for vessel-to-vessel work and helicopter flights. Icing during Arctic cyclones in 

transitional seasons is another hazard that Arctic stakeholders may have to contend with during storms. Ice 

accretion produces accumulation of ice on exposed structural components of ships and platforms above the 

water surface either on the coast or at sea (Fig. 1.1A).

Figure 1.1: Adverse weather conditions in the Arctic: ice build-up (Credit: http://www.ccg-gcc.gc.ca/) (A), 

poor visibility conditions (fog, mist) during Coast Guard search and rescue operations (Credit: 

http://alaska.coastguard.dodlive.mil/) (B), blizzard and strong winds conditions in Nunavut, Canada 

(Credit: http://www.cbc.ca/) (C), and destabilized beach barriers in Barrow on Aug. 27, 2015 (Credit: 

http://www.adn.com/) (D).

Arctic-based industries have incorporated meteorological, oceanographic and sea ice knowledge 

into their operational guidelines and implemented high cost plans to mitigate risks related to adverse 

weather conditions and ice encroachment. Ice management and ice defense plans detail potential impacts 
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of cyclones and sea ice on operations: e.g. causing downtime and damage to the equipment. Success of ice 

management, defense, and avoidance of operations depends upon the reliability of the atmosphere - ocean 

and sea ice models that, in turn, depends on sufficient physical knowledge of storm - sea ice interaction 

mechanisms.

Coastal erosion is another hazard that may accelerate following the reduction of sea ice under 

cyclonic conditions resulting in damages to coastal infrastructure [Jorgenstern and Brown, 2005; Clow, 

2008; Smith et al., 2010; Holland-Bartels and Pierce, 2011]. Sea ice acts as a buffer and protects coastal 

areas from erosion [Eicken et al., 2009; Wobus et al., 2011]. As the length of season with open water in the 

Arctic increases, coastal areas become more susceptible to erosion (Fig. 1.2). Stronger winds and higher 

waves that are often caused by cyclones tend to accelerate beach erosion by warming of permafrost 

[Ogorodov et al., 2010]. Several Arctic communities along with industrial facilities have reported structural 

damages to the infrastructure as a result of erosion, and in future may face relocation [Feifel and Gregg, 

2010]. Thawing ground can disrupt transportation, buildings, and other infrastructure, therefore posing 

significant engineering challenges for roads, buildings, pipelines, and industrial facilities.

Figure 1.2: Sandbags in Kivalina (Credit: Jan Van Der Woning/TCS/Zuma Press) (A), and Shishmaref 

(Credit: Shishmaref Alaska Erosion & Relocation Coalition) (B).

As a risk-mitigation tool in decision making, local communities, shipping, and resource 

development industries require accurate prediction of sea ice, ocean, and atmospheric conditions. Improved 

understanding of sea ice response to Arctic cyclones, and vice versa, may add value to developing better 

coupled algorithms for sea ice and weather/oceanographic forecast models. These models will become 
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essential aids for meeting the needs of Arctic shipping and resource development and forecasts that can be 

utilized by stakeholders.

In recent years, a number of intense storms in the Arctic Ocean have caused wide-spread 

environmental and socio-economic damage. A storm in August 2012 exemplified a low pressure system 

that caused notable environmental changes in the Central Arctic Ocean and a November 2011 cyclone 

resulted in both environmental and socio-economic damages to West Alaska coastal communities [Zhang 

et al., 2012]. Sea ice extent in summer 2012 reached the lowest ever recorded since 1979 over the remote 

sensing period. As was later discovered, the abrupt sea ice reduction was occurring while a low pressure 

system was moving over the Arctic Ocean in early August of 2012 [Zhang et al., 2012]. Between August 7 

and August 9, sea ice extent was reduced by nearly 200.000 square kilometers.

The November 2011 cyclone discussed in this thesis, is another example of a low pressure system 

that resulted in both adverse weather conditions and wide-spread coastal damage in the Arctic. The 

atmospheric low pressure system developed over the Bering Sea in November 2011 and moved northeast 

towards the western coast of Alaska bringing both near-gale and gale force winds and high sea state. 

Approximately 37 communities were affected by damages as a result of coastal erosion and flooding due 

to storm surge and large amount of precipitation [Hopkins et al., 2011].

Improved knowledge of storm - sea ice interaction will aid maritime industry to enhance safety 

and ensure that proper risk mitigation practices are in place. To date, a number of oil and gas projects carried 

out in ice-infested waters incorporated extensive studies of Arctic and sub-Arctic sea ice and cyclone 

climatology.

1.5 Research Goal and Objectives

The purpose of this study is to investigate the interactive mechanisms between cyclones and sea 

ice in the context of Arctic climate change by following a two-step investigation scheme: (i) analyze 

coupling mechanisms in the context of a sea ice - cyclone feedback (e.g., cyclone impact on sea ice; sea 

ice response to cyclones); and (ii) assess the role of sea ice - cyclone feedback in the context of Arctic 

Climate System and Arctic amplification, and the robustness of this finding. The thesis objectives are two­

fold: (i) to realistically represent Arctic sea ice, ocean and atmospheric conditions by applying coupled and 

stand-alone, global and regional climate models; and (ii) to investigate the multi-scale mechanisms of sea 

ice - storm interaction.
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Within this framework, the following contributing factors will be discussed: investigation of long­

term (climatology) and short-term (specific cases) cyclone - sea ice feedback mechanisms; investigation of 

the seasonality of cyclone - sea ice feedback by comparing cyclone activity in winter and summer; and 

investigation of geographical patterns of cyclone - sea ice feedback in two specific Arctic sectors: Atlantic 

and Pacific sides of the Arctic.

The project objectives are broad in scope and intended to advance knowledge, reduce uncertainty, 

and improve assessment of Arctic climate and predictions of Arctic weather, ocean and ice conditions.

1.6 Methods and Research Approach

We applied a multi-prong modeling approach to rigorously detail the results of both case studies 

and climatology analyses to bridge the gap of sparse findings of previously conducted studies on sea ice - 

storm physical interaction and to further investigate Arctic climate coupling mechanisms. In this study, we 

employed a scientific approach to analyze model data output produced by regional and global, stand-alone 

and coupled climate models. High-resolution models were applied to better understand the physical 

mechanisms driving the Arctic climate change and their interaction.

A hierarchy of climate models will provide greater insight into the interactive mechanisms of the 

climate system than using data from just one model. The employed models include the stand-alone regional 

atmospheric Weather Research and Forecasting model (WRF), coupled regional North Atlantic/Arctic 

Ocean climate atmosphere-ocean-sea ice (HIRHAM-NAOSIM), and coupled global ocean-sea ice 

Community Ice Code - Parallel Ocean Programming model (CICE-POP) (Table 1.2). WRF and CICE-POP 

were compiled and integrated as a part of the research project. Output of the HIRHAM-NAOSIM model 

was also used in this study. Models of various scales, (global and regional), allowed identification of 

feedback mechanisms, at both a medium and large geographic scale. Case studies and climatology analyses 

were utilized to differentiate long-term from short-term impacts of feedback mechanisms within the sea ice 

- cyclone coupled system.

CICE-POP and WRF models were used to carry out additional sensitivity analyses and 

investigating the role of independent sea ice - cyclone feedback mechanisms while only unperturbed 

simulations were used in HIRHAM-NAOSIM research study because the model data for that study was 

provided by Alfred Wegener Research Institute and not generated internally in the Arctic Research 

Supercomputing Center as was the case with CICE-POP and WRF models.
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Table 1.1: Utilized weather and climate models

WRF Weather Research 

and Forecasting Model
HIRHAM-NAOSIM

CICE-POP Community Earth

System Model

Model

National Center for

Atmospheric Research

(NCAR)

Alfred Wegener Institute for

Polar and Marine Research

(AWI)

National Center for

Atmospheric Research

(NCAR)

Scale Regional Regional Global

Coupling Stand-alone Fully coupled Two way coupled

Component Atmosphere
Atmosphere -

Ocean - Sea ice
Ocean - Sea ice

Resolution 10 km Spatially variable Spatially variable

Time Frame Case study Climatology Case studies

Objective

Investigate impacts of sea 

ice reduction on storm 

dynamics

Investigate impacts of

Arctic cyclones on sea ice

and ocean

Investigate impacts of Arctic 

cyclones on sea ice

Impacts of sea ice and ocean on storms were investigated based on a case study of a cyclone event 

using the WRF model, while the impacts of storms on sea ice were studied using both coupled ice-ocean 

simulations of the case studies (CICE-POP simulations) and climatology (HIRHAM-NAOSIM 

simulations).

1.7 Thesis Structure

The structure of the thesis is as follows: Chapter 2 discusses the climatological impacts of Arctic 

storms on sea ice in summer, whereas chapter 3 describes the impacts of Arctic storms based on two case 

studies. Chapter 4 examines the impact of recent sea ice decline and ocean warming on Arctic storm 

dynamics. Research discussion and conclusions are given in chapter 5.
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Chapter 2 Climatology of Arctic Cyclones and Impacts on Sea Ice: Results from Regional Fully 

Coupled Model Hindcast Simulations

2.1 Introduction

Along with the amplified surface temperature increase over the Arctic, one prominent phenomenon 

in atmospheric circulation changes is a generally poleward shift of storm tracks and intensifying Arctic 

storm activities [Zhang et al., 2004; Sepp and Jaagus, 2011]. Concurrently with observed atmospheric 

changes, sea ice cover and thickness has dramatically decreased in the last decades [Kwok and Rothrock 

2009; Stroeve et al., 2011]. The atmospheric impact upon underlying sea ice can become more severe as 

the reduction and thinning of Arctic sea ice continues to result in sea ice that is more susceptible to 

atmospheric and oceanographic changes. In particular, a number of studies reveal that the large-scale 

atmospheric circulation (e.g., associated with the North Atlantic Oscillation) has a strong impact on sea ice 

cover [e.g., Liu and Curry, 2004; Ukita et al., 2007; Strong and Magnusdottir, 2011]. Analyzing the Arctic 

regional sea ice - ocean model output, Zhang et al. [2003] indicated that the large-scale atmospheric 

circulation is the driver of many of the changes manifested in the recent observations such as reductions of 

Arctic sea ice area and volume. Further, cyclones play an important role in the formation and destruction 

of sea ice. Thermodynamically, storms provide heat and moisture advection from lower latitudes to the 

Arctic and modify the surface radiation balance by changed cloud conditions. Dynamically, wind stress 

associated with storms can break open the ice cover such that cracks, leads and polynyas can form and open 

water affects the surface energy balance [Wendler et al., 2013]. The influence of cyclones on sea ice has 

been discussed in studies based on both observations and models [e.g., Zhang et al., 2010; Mesquita et al., 

2011; Kriegsmann and Brummer, 2014]. The passage of storms over Arctic sea ice resulted in increased 

wind [Zhang et al., 2013] and wave forcing on sea ice [Asplin et al., 2012] as well as modification of freeze­

melt cycles [Bader et al., 2011].

Regional climate models are valuable tools to investigate such small scale coupled atmosphere-ice- 

ocean phenomena at high spatial and temporal resolutions. Additionally, the given ‘ideal' lateral boundary 

forcing from reanalysis data provides the opportunity to study the effects of cyclones on sea ice in a 

‘controlled' environment. Previous investigations with the Arctic coupled atmosphere-sea ice - ocean 

model HIRHAM-NAOSIM showed that this model can reproduce the present-day Arctic atmospheric and 

sea ice conditions as compared to observations [Dorn et al., 2009, 2012] and, it can be used to describe 

atmospheric feedbacks to sea ice anomalies associated with heat and moisture flux anomalies, modified 

baroclinicity and cyclone activity [Rinke et al., 2013].
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In this thesis, we evaluated the HIRHAM-NAOSIM simulated Arctic summer cyclone (i.e. storm) 

climatology and assess the average impact of intense storms on the underlying sea ice and ocean by 

analyzing the model output from 61-year-long (1948-2008) ensemble runs performed in Alfred Wegener 

Institute. [Dorn et al., 2009] The analysis of sea ice-ocean-storm interaction was concentrated on sea ice 

melting season which was defined as July 1 - September 15 period. The focus on the summer months is 

two-fold: one of them is the seasonality of cyclone activity in the Arctic (summer is the most synoptically 

active period over the central Arctic Ocean [Serreze and Barrett, 2008]) and the other one, is the high 

susceptibility of sea ice to changes in atmospheric forcing. In particular, it was discussed if the model could 

reproduce the following known effects of intense storms on sea ice: reduction of sea ice concentration and 

thickness, modified surface energy fluxes, and changes in ice drift (i.e., increased divergence).

The structure of this chapter is as follows. Data and methods will be presented in Section 2.2, 

followed by documentation of the modeled storm climatology for various Arctic sectors (Section 2.3.1.) 

The influences of storms on sea ice and ocean conditions are discussed in Section 2.3.2. Section 2.3 presents 

the results and discussions.

2.2 Data and Methods

2.2.1 Model data

The employed data were from the regional coupled climate model HIRHAM-NAOSIM, which 

consists of the regional atmospheric model HIRHAM [Dethloff et al., 1996] and the high-resolution version 

of the North Atlantic/Arctic Ocean sea ice model NAOSIM [Karcher et al., 2003; Kauker et al., 2003]. A 

detailed model description was given by Dorn et al. [2009].

The model generally well reproduces the observed summer sea ice variability over the last 6 

decades, although with a less steep decline of sea ice extent over the last decade than observed, which is 

attributed to the summer atmospheric circulation and the sea ice volume at the beginning of the melting 

period in spring [Dorn et al., 2012]. Atmosphere - sea ice interactions were realistically simulated, whereby 

strong regionally dependent feedback patterns can be imprinted [Rinke et al., 2013].

The model was configured to cover the entire Arctic north of about 60oN at a horizontal grid 

increment of 0.5o (~ 50 km) for the atmosphere (HIRHAM) and of 0.25o (~25 km) for the ocean (NAOSIM).
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A hindcast simulation over 1948-2008 with six ensemble members was carried out using the 

NCEP-NCAR reanalysis data as atmospheric lateral boundary conditions [Kalnay et al. 1996]. All ensemble 

members were started on 1 January 1948 and run through 31 December 2008 [Dorn et al. 2012]. The 

ensemble runs performed by Dorn et al. [2012] only differ in their initial ocean and sea ice fields, which 

were taken from different years of a preceding coupled spin-up run. The model ensemble simulations that 

was used in this study have been extensively described in Dorn et al. [2012].

2.2.2 Cyclone identification algorithm

To document the simulated climatology, variability, and changes of Arctic storm activities, a storm 

identification and tracking algorithm [Zhang et al., 2004] was applied to daily sea level pressure (SLP) 

outputs. The principle of this algorithm is the identification of a low SLP center, which has a minimum SLP 

gradient of at least 0.15 hPa per 100 km with surrounding grid points and can survive for more than 12 

hours. More details about this algorithm and its application with respect to Arctic storm track variability 

and changes can be found in Zhang et al. [2004].

As defined, the Arctic region was considered as poleward of 60oN. Considering the distinct 

geographical and climatological features as well as outstanding climatological storm activity near the ice- 

free Atlantic and Pacific Oceans, we divided the Arctic Ocean domain into eight subregions in this study: 

Barents-Norwegian Seas, Greenland Sea, Kara Sea, Laptev Sea, East-Siberian Sea, Chukchi Sea, Beaufort 

Sea, and Central Arctic (Fig. 2.1).
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Figure 2.1: Defined regions of Arctic Ocean to discuss the storm activity: Barents/Norwegian Seas (BN), 

Greenland Sea (GS), Kara Sea (KS), Laptev Sea (LS), East-Siberian Sea (ESS), Chukchi Sea (CS), Beaufort 

Sea (BS), and Central Arctic (CA).

We analyzed two parameters to characterize the storm activity: storm count, and storm intensity. 

The sum of cyclone centers in each subregion in all time steps is denoted by a cyclone center count. The 

cyclone center count was found based on a composited map into 3.0 by 3.0 degree grid cells and represents 

a depiction of the Arctic cyclone activity. We analyzed overall storm count accounting for all storms in the 

domains and intense storm count comprised of only intense storms with central SLP less than 990 hPa. The 

other measure of storm activity that we investigated in the present study is the storm intensity, which we 

calculated based on the method described in Zhang et al. [2004]. Storm intensity is defined by the difference 

between the central SLP of the storm and the average monthly mean SLP at corresponding grid points. 

Therefore, positive values of storm intensity denote a positive departure of the central SLP of a storm from 

the climatological mean SLP at this grid point.
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Considering that the number of Arctic storms climatologically reaches its maximum during summer 

[Zhang et al., 2004; Serreze and Barrett, 2008], and the largest variability and decrease, as well as minimum 

value, of sea ice extent occur in summer, our analysis focused on the period from 1 July - 15 September of 

each year during the model simulation 61-year time period 1948-2008. The cyclone identification algorithm 

was applied to the daily SLP data from all six individual HIRHAM-NAOSIM ensemble members and from 

NCEP-NCAR reanalysis for late summer/early fall (JAS) 1948-2008.

2.2.3 Composite Analysis

The purpose of the composite analysis was to test the hypothesis that deeper and more intense 

storms produce a robust response of sea ice and ocean conditions. For this, composites of sea ice and ocean 

variables for identified low and high intense storm count cases were calculated and composite differences 

for “high minus low intense storms” are discussed. More concretely, we conducted the composite analysis 

based on the count of intense storms (central SLP < 990 hPa) over each of the subregions. The criterion for 

the composite analysis was based on exceeding the 1.5 standard deviation (σ) of intense storm count. Low 

intense storm cases were selected when the intense storm count was less than -1.5σ whereas events of high 

intense storms were obtained when the intense storm count exceeded +1.5σ. We used the ensemble mean 

to calculate the composites (4697 low and 61 high intense storm cases within the 61 years for the Atlantic 

side of the Arctic and 4665 low and 23 high intense storm cases within the 61 years for the Pacific side of 

the Arctic) because of the low across-ensemble differences (Fig. 2.2). A Student's t-test was applied to 

assess the significance of the composite differences at the 95% confidence level.
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Figure 2.2: Summer storm count in HIRHAM various ensemble experiments (Unit: [storms per subregion]): 

maximum storm count in 61-year period of model integration (A), minimum storm count in 61-year period 

of model integration (B), average storm count in 61-year period of model integration (C).

For this composite analysis, we further partitioned the Arctic Ocean domain into two primary 

source regions: The Pacific side of the Arctic (storms originating over the Pacific Ocean) and the Atlantic 

side of Arctic Ocean (storms originating over the Atlantic Ocean). Both of these regions are characterized 

by frequent storm tracks associated with northeastward moving currents of warm ocean water - the 

Kuroshio Current and the Gulf Stream, respectively. The Pacific side of the Arctic covers the East Siberian,
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Chukchi and Beaufort Seas while the Atlantic side of the Arctic Ocean encompasses the Greenland, 

Barents/Norwegian and Kara Seas. Both the Atlantic and the Pacific sides of the Arctic span the region 

from 60°N to 90°N and cover 60°W to 80°E and 140°E to 140°W, respectively.

2.3 Results and Discussion

2.3.1 Arctic Storm Analysis

2.3.1.1 Regional and Temporal Variability of Storm Activity

Cyclone activity in the Arctic experiences substantial temporal and spatial variability. To evaluate 

the simulated cyclone activity climatology over different Arctic subregions, we analyzed the regional 

distribution and time series of storm count and intensity (Fig. 2.3-2.4).

The storm count is lower in NCEP than in HIRHAM-NAOSIM which is a result of lower resolution 

and inability to capture small scale low pressure systems that are resolved in HIRHAM-NAOSIM. The 

counts in NCEP and HIRHAM-NAOSIM are well-correlated. The intensity of storms in HIRHAM- 

NAOSIM is higher than in NCEP reanalysis data which is also a result of a higher model resolution in 

HIRHAM-NAOSIM.
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Figure 2.3: HIRHAM-simulated ensemble mean (colored lines) and NCEP-NCAR (black lines) storm 

counts in JAS for 1948-2008 (Unit: [storms per grid cell]). Smooth lines indicate 11-year running averages. 

The count is the accumulating number of storms occurring over each subregion based on the daily data. 

The across-ensemble standard deviation of the storm count is shown as shaded area.
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Figure 2.4: HIRHAM-simulated ensemble mean (colored lines) and NCEP-NCAR (black lines) storm 

intensity in JAS for 1948-2008 (Unit: [hPa]). Smooth lines indicate 11-year running averages. The count is 

the accumulating number of storms occurring over each subregion based on the daily data. The across- 

ensemble standard deviation of the storm count is shown as shaded area.

The ensemble mean storm count in the Arctic and pan-Arctic indicates the presence of several 

maxima of cyclone activity. The largest storm density in summer was observed around Iceland (over 300 

storms) and southwestern Greenland (200-230 storms) attributed to a prominent North Atlantic storm track. 

On the Pacific side of the Arctic, the maxima of cyclone activity were observed around Alaska (230-260 

storms), and Chukotka (250-300 storms) corresponding to the Pacific storm track (Fig. 2.5). Comparison 

with NCEP-NCAR data showed that the reanalysis had a lower number of storms than HIRHAM-NAOSIM, 

but the areas of maximum cyclone counts (around Greenland, Alaska, Far East of Russia) were co-located 

with those of HIRHAM-NAOSIM. Furthermore, the comparison demonstrated that the distribution and 
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magnitude of storm count was in an agreement with previous studies using the NCEP-NCAR reanalysis

data [Zhang et al. 2004, Serreze and Barrett, 2008].

Figure 2.5: Ensemble mean storm counts (Unit: [number of storms per grid cell per 60 years (1948-2008)]). 

The count is the accumulated number of storms occurring over each region based on the daily data: all 

storms HIRHAM-NAOSIM (A), all storms NCEP-NCAR (B), deep storms (SLP < 990 hPa) HIRHAM- 

NAOSIM (C), deep storms (SLP <990 hPa) NCEP-NCAR (D).

There was a comparable spatial pattern of cyclone activity in the Arctic between the HIRHAM 

simulations and European Centre for Medium-Range Weather Forecasting reanalysis (ERA-40) with a 

maximum over the central Arctic Ocean [Akperov et al. 2014]. Specific values of Arctic storminess derived 

from NCEP-NCAR and HIRHAM-NAOSIM are given in Table 2.1. The average storm count in HIRHAM 

was approximately twice as high as in the NCEP-NCAR reanalysis for the Central Arctic (55 vs. 28 storms), 

Laptev Sea (16 vs. 7 storms), Kara Sea (17 vs. 9 storms), Greenland (8 vs. 3 storms) and Norwegian-Barents 

Sea sector (24 vs. 11 storms) (Table 2.1). The notable underestimation of storm counts over the Arctic in 

NCEP-NCAR reanalysis compared to HIRHAM-NAOSIM was likely to be caused by the higher spatial 
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model resolution allowing representation of small scale low pressure systems. This finding is in agreement 

with Akperov et al. [2014] who also found that the storm count in HIRHAM's is twice as large as in ERA- 

40 reanalysis data.

Table 2.1: Storm counts (accumulated number of storms over each region) for JAS 1948-2008. Max, Min 

indicate the maximum, minimum counts in the most extreme year.

Central
Arctic

Beaufort
Sea

Chukchi
Sea

East 
Siberian

Sea

Laptev 
Sea Kara Sea Greenland

Sea
Norwegian-
Barents Sea All Arctic

HIRHAM
Max 77 19 16 26 26 26 16 36 191
Min 33 1 2 4 3 8 2 9 95
Ave 55 9 8 11 16 17 8 24 148

NCEP-NCAR
Max 70 21 19 21 19 28 16 35 186
Min 2 0 0 0 0 0 0 0 10
Ave 28 6 5 8 7 9 3 11 79

In various Arctic subregions, the cyclone activity experienced significant year-to-year fluctuations, 

both in terms of storm count and intensity shown in Fig. 2.3 and Fig. 2.4, respectively. The simulated storm 

count time series showed the maximum high storm count in summer over the Central Arctic (on average 

about 55 storms per summer, maximum of 77 storms in years of strong cyclone activity and about 33 storms 

in years of lowest cyclone activity; Fig.2.3). While the entire number of storms over the Central Arctic is 

high, their intensity is relatively low (Fig. 2.4). Storms normally move into the Central Arctic from the 

lower latitudes than 60oN. As the storms move in the Central Arctic area from the Atlantic, Pacific Ocean 

and Eurasia and due to the large distances traveled by them, their intensity is weak.

It should be noted that in the simulations, a large number of storms with high intensity was found 

in the Chukchi Sea with storm counts averaging about nine storms per summer with intensity up to 15 hPa. 

Other areas of high intensity storm count include the Norwegian, Barents and Kara Seas where frequent 

cyclone activity is associated with the North Atlantic storm track.

Similar to the storm count, the storm intensity experienced a large interannual variability of 

different magnitude for various Arctic subregions (Fig. 2.4). The comparison of HIRHAM-NAOSIM- 

simulated and NCEP-NCAR reanalysis derived cyclone intensity showed relatively similar temporal 

change. The smallest differences between the HIRHAM-NAOSIM and NCEP-NCAR cyclone intensities 
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were observed over the Central Arctic, Beaufort and East Siberian Seas. Storm intensity over the Chukchi, 

Laptev, Kara, Norwegian-Barents and Greenland Seas was greater in HIRHAM-NAOSIM than in the 

reanalysis, which was likely a result of higher resolution of the model.

The analysis of storm intensity over different Arctic regions demonstrated large interannual 

variability of cyclone intensity over seasonally ice-free areas of the Greenland Sea and the Barents- 

Norwegian Sea ranging from 0 hPa to 40 hPa, 5 hPa to 30 hPa in the Pacific side of the Arctic, respectively 

(Fig. 2.4). In contrast, the central Arctic that remained ice-covered in JAS, experienced lower storm 

intensity and less pronounced interannual temporal fluctuations of intensity than the aforementioned waters.

2.3.1.2 Composites for High and Low Intense Storms

The major direct impact of intense storms events was displayed in associated SLP anomaly patterns. 

Composites of high intense storm cases over the Atlantic side of the Arctic showed a deep SLP center of 

about 997 hPa and occurred over the Kara Sea, extending to the Barents Sea, northern Greenland Sea and 

eastward to the Laptev Sea (Fig. 2.6A). The SLP difference between high and low intense storm cases was 

characterized by a statistically significant (95% confidence based on Student's t-test) negative anomaly of 

-13 hPa over the Kara Sea (Fig. 2.6C). Similarly, a deep SLP center of ca. 989 hPa was found over the 

central Chukchi Sea, covering western Beaufort Sea and eastern part of the East-Siberian Sea (Fig. 2.6D). 

The composite difference over the Pacific side of the Arctic showed a statistically significant at the 95% 

confidence level negative SLP anomaly of -16 hPa (Fig. 2.6D).
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Figure 2.6: Composite differences of sea level pressure (Unit: [hPa]) over the Atlantic (left) and the Pacific 

(right) sides of the Arctic Ocean from a composite analysis of high and low intense storms during JAS 

1948-2008. Differences between high and low intense storms with greater than 95% confidence are dotted.

2.3.2 Impact on Sea Ice and Ocean

We investigated the climatological response of sea ice concentration (SIC), thickness, and motion 

as well as ocean mixed-layer temperature (defined here as the uppermost ocean model layer of 0-20 m) to 

intense storms over the Atlantic and Pacific sides of the Arctic Ocean.
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As illustrated by the composite differences of SIC in events of intense storms sea ice areal coverage 

was reduced. Persisting negative SIC anomalies in the NE part of the Barents and northern part of the Kara 

Seas indicate the areas predominantly affected by migration of Atlantic storms (Fig. 2.7A). Areas with 

negative SIC anomalies on the Atlantic side of the Arctic outlined marginal ice zones where ice is most 

frequently and strongly subject to changes in oceanic and atmospheric forcing. The most extensive negative 

SIC anomaly occurred in the SE Kara Sea, expanding from the eastern coast of Novaya Zemlya eastward 

to Yamal Peninsula. A coastal polynya to the east of Novaya Zemlya was a result of intense cyclone activity. 

Positive anomalies of SIC in the central Barents Sea were driven by cyclonic dynamic forcing where 

increased winds exerted on sea ice promoted NE drift in the area. The Svalbard Islands blocked sea ice 

movement to the NE with the drift that resulted in piling up of ice and consequently positive SIC anomalies. 

Another positive SIC anomaly found in the Pechora Sea was also the result of dynamic forcing exerted on 

sea ice due to strong winds.
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Figure 2.7: Composite differences between sea ice concentration (Unit: [fraction of 1]) for the Atlantic (A) 

and for the Pacific (B) side of the Arctic, sea ice thickness (Unit: [m]) for the Atlantic (C) and for the Pacific 

(D) side of the Arctic, surface sea temperature (Unit: [oC]) for the Atlantic (E) and for the Pacific (F) side 

of the Arctic of the composite analyses of high minus low intense storms during JAS 1948-2008. 

Differences between high and low intense storms with greater than 95% significance are dotted.

In events of intense storms on the Pacific side of the Arctic, negative anomalies of SIC occurred 

predominantly along the coasts where sea ice is most susceptible to cyclonic-driven forcing (Fig. 2.7B). As 

a result of cyclonic forcing, SIC in the Chukchi, Beaufort and East-Siberian Seas was reduced by 

approximately 9-12%. Coincidentally, SIC was increasing in events of intense storms south of the Bering 

Sea by approximately 12-15%.
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Further, corresponding to intensified cyclone activity during the high number of intense storms, the 

sea ice in the costal and marginal zones showed vast ice thickness reduction co-locating areas of shrinking 

ice extent (Fig. 2.7C, D). Due to cyclone activity on the Atlantic side of the Arctic, sea ice was 10-12 cm 

thinner while along the NE Greenland the sea ice became 15-20 cm thinner than in the low intensity case 

as compared to high intensity case (Fig. 2.7C). Along the coasts of the Chukchi and Beaufort Seas, the 

thickness of sea ice was reduced by approximately 10-15 cm. The most dramatic thickness changes 

occurred in the East-Siberian Sea with below 20 cm difference compared to the low intense storm composite 

(Fig. 2.7D).

Negative sea ice extent and volume anomalies enhanced heat uptake in the ocean leading to positive 

mixed-layer ocean temperature anomalies. On the Atlantic side of the Arctic, a pronounced positive SST 

anomaly (0.5-1oC) extended from the NE Barents Sea into the SW Kara Sea (Fig. 2.7E). Similarly, a 

positive but less extensive SST anomaly was observed in the Beaufort Sea corresponding to decreasing of 

SIC and thickness as a result of cyclone activity (Fig. 2.7F).

In order to further explain the aforementioned sea ice mass balance changes occurring during the 

high number of intense storms, we presented a composite analysis of sea ice drift speed and direction (Fig. 

2.8). In the composite with high number of intense storms, sea ice in the central Arctic and along NE 

Greenland was dominated by the southerly drift. The ice is therefore transported from the NE Kara Sea 

merging into the main Transpolar Drift Stream through the Fram Strait into the North Atlantic (Fig. 2.8A). 

The ice in Transpolar Drift Stream moved significantly faster in the intense storm composite than in the 

composite with no intense storms 0.1-0.14 m/s vs. 0.06-0.1 m/s, respectively. There is noticeable lack of 

drift change in the SW Kara Sea in intense storm composite compared to no intense storms composite. 

Negative SIC anomalies east of Novaya Zemlya and near the Yamal peninsula, where polynyas are present, 

are not related to prevailing ice drift. As illustrated by the composite difference, sea ice drift in the SW Kara 

Sea tended to move slower during intense than non-intense storms, which is in association with the 

discussed location of a strong cyclonic circulation anomaly. An amplified drift of sea ice on the Pacific side 

of the Arctic was discovered along the coasts of the Chukchi Sea and West Beaufort Sea (Fig. 2.8D). In the 

intense storm composite, the Beaufort Gyre was weakened and displaced towards the Canadian Arctic 

Archipelago. Corresponding with anticyclonic circulation, it was moving westward from the Beaufort Sea 

towards Eurasia. Once the ice reached the Chukchi Sea, the pattern of ice movement becomes cyclonic. 

Transport across the northern Chukchi Sea bifurcated the ice flow with one branch of ice drift moving into 

the East-Siberian Sea and another directing towards the Laptev Sea. In case of the Pacific side of the Arctic, 

ice drift composite differences were mostly positive, ranging from 0.02-0.04 m/s in the East-Siberian and 

Beaufort Seas to 0.04-0.06 m/s in the central Chukchi Sea (Fig. 2.8).
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Figure 2.8: Composite differences of sea ice motion (Unit: [m s-1]) over the Atlantic side Arctic Ocean (A) 

and the Pacific side Arctic Ocean (B) from a composite analysis of high and low intense storms during JAS 

1948-2008. Ice drift speed is colored shaded. Differences between high and low intense storms with 

significance greater than 95% confidence are dotted.

As discussed above, thermodynamic (in this case melting) and dynamic forcings during intense 

storms resulted in sea ice reduction that in turn, affected the amount of heat flux released from the surface 

into the atmosphere. To address the question of the quantity and spatial distribution of surface heat released 

into the Arctic atmosphere in summer during storms, we analyzed the composites of the net surface heat 

flux (Fig. 2.9). The composite analysis was continually extended to the net sea ice heat fluxes, calculated 

as the difference between the net atmospheric surface heat fluxes and the oceanic heat flux of a model grid 
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cell. The difference represents the net contribution from all radiative, sensible, and latent heat fluxes from 

the atmosphere and the turbulent heat flux from ocean, indicating the total thermodynamic contribution to 

sea ice changes (melt and growth). In this paper, we use the sign convention that negative (positive) net 

heat fluxes point downward (upward), which we can interpret as snow/ice melt (sea ice growth).

As indicated by the composite analysis, sea ice net heat budgets were negative on the Atlantic side 

(except for the Central Arctic Ocean) for high as well as low numbers of intense storms ranging from -3 to 

-10 W/m2 (Fig. 2.9A) and from -5 to -30 W/m2 (Fig. 2.9C), respectively. Negative net heat flux indicated 

the surface takes up heat from the atmosphere thereby promoting sea ice melt. In time periods with high 

intensity storms, diminished ice concentration in the Barents and Kara Sea areas exposed areas of open 

water that increased the upward turbulent heat flux due to storm induced ocean mixing. The difference 

between composites with high and low numbers of intense storms was positive over the Barents and Kara 

Seas (Fig. 2.9E). This positive difference was likely caused by the reduced downward solar radiation as a 

result of increased cloudiness during cyclones.
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Figure 2.9: Composite differences of surface net heat flux over (Unit: [W m-2]) Atlantic side Arctic Ocean 

(A) and the Pacific side Arctic Ocean (B) from a composite analysis of high and low intense storms during 

JAS 1948-2008. Positive fluxes point downward. Differences between high and low intense storms with 

significance at greater than 95% confidence are dotted.

A negative net heat flux was observed on the Pacific side of the Arctic (Fig. 2.9B). Areas of 

minimum net surface heat flux extended along the coast of the East-Siberian Sea into the southern Chukchi 

Sea and eastern Beaufort Sea. The net surface heat flux was more apparent in magnitude and spatial extent 

than on the Atlantic side. In low number of intense storm cases, net surface heat fluxes were approximately 
-30 to (-50) W/m2 in the Chukchi Sea, East-Siberian and Beaufort Seas (Fig. 2.9D). The corresponding 
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areas in the high number of intense storm cases showed comparatively higher net surface heat fluxes: -5 to 

(-15) W/m2 in the Chukchi Sea and -30 to (-40) W/m2 in the East-Siberian and Beaufort Seas (Fig. 2.9B). 

Similar to the Atlantic side of the Arctic, the differences in net surface heat flux marked positive 

corresponded to a greater energy release from the surface into the atmosphere in high intense storm case 

than low intense storms as a result of cyclonic forcing generating sea ice openings. Overall, the difference 

of the low and high intense storm cases displayed pronounced positive anomalies of net surface heat flux 

co-locating the areas of largest ice reduction in the marginal ice zones of the Barents and Kara Seas on the 

Atlantic side (Fig. 2.9E) and along the coasts of Alaska and Chukotka peninsula on the Pacific side of the 

Arctic (Fig. 2.9F).

The composite analysis showed that there is a climatic (60 years) response of sea ice/ocean to intense 

summer cyclones. Arctic cyclones were found to result in increased SST and reduced SIC, reduced ice 

thickness and a reduction of net heat flux. While the composite analysis showed the general large-scale sea 

ice/ocean response to a combined number of cyclones in the Arctic, it did not show the individual physical 

mechanisms driving sea ice response to Arctic cyclones.
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Chapter 3 Processes Associated with Cyclone Impacts on Sea Ice: A Case Study Using Sea Ice­
Ocean Model Simulations

3.1 Introduction

This chapter documents the findings of the sea ice response to two intense Arctic cyclones by 

utilizing the output of the global coupled climate model Community Earth System Model, version 1.0.4 

(CESM 1.0.4) [Collins at al., 2006]. The main objective of this research is to analyze the impact of dynamic 

vs. thermodynamic forcing by cyclones on sea ice. The hypothesis is that sea ice, ocean, and atmosphere 

interactions can be amplified during intense storms and this amplification may contribute to further climate 

change. In order to test this hypothesis, a case study approach was applied to two Arctic cyclones. The key 

objectives for this study are:

(i) to assess coupled ocean-sea ice model performance to simulate Arctic sea ice and ocean conditions 

and its applicability for climate research studies;

(ii) to investigate storm-induced dynamic and thermodynamic forcing on sea ice decay/growth 

processes;

(iii) to investigate storm-induced dynamic and thermodynamic forcing on sea ice energy balance.

Henceforth, the thermodynamic processes in this study include sea ice freezing and melting cycles 

that are caused by changes in the surface radiation balance and sensible and latent heat fluxes. Dynamic 

processes refer to sea ice deformation and drift that result from wind forcing, ocean, and internal ice stresses. 

Sea ice thermodynamic and dynamic growth/reduction processes are not independent in that sea ice 

dynamics changes may induce thermodynamic changes, and vice versa [e.g. Thorndike et al., 1975]. The 

present study adopts a similar modeling approach involving the partitioning of cyclone forcing, which was 

introduced and applied by Liptak and Strong [2013], onto sea ice to partition dynamic and thermodynamic 

forcing components.

3.1.1 Dynamic Forcing of Arctic Cyclones on Sea Ice

Dynamic impacts of Arctic cyclones on sea ice constitute an important forcing factor affecting sea 

ice deformation and motion at various temporal and spatial scales [Brummer et al., 2003; Herman and 

Glowacki, 2012]. Previous studies of interactive processes between ocean, atmosphere, and sea ice in the 

Arctic indicate that sea ice dynamics is dependent upon a variety of atmospheric variables: forces related 

to atmospheric circulation [e.g., the Arctic oscillation in Kwok, 2006; Rampal et al., 2009; Comiso, 2012] 
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including geostrophic wind [Thorndike and Colony, 1982; Serreze et al., 1989], and surface pressure 

gradient force [Asplin et al., 2009; Kwok et al., 2009]. It also depends on cyclone tracks, number (which 

can be expressed in counts), intensity [Screen et al., 2011].

Previous studies pointed out that atmospheric circulation is a key factor, determining the Arctic sea 

ice drift and thickness pattern [e.g., Deser et al., 2000; Rigor et al., 2002; Hu et al., 2002; Rigor and 

Wallace, 2004; Rothrock and Zhang, 2005; Serreze and Francis, 2006; Ukita et al., 2007]. Rigor et al. 

[2002] as well as Zhang et al., [2003] showed that the phase of the Arctic Oscillation (AO) is another factor 

that determines annual Arctic sea ice areal and volume distributions. Zhang et al. [2003] found reductions 

of Arctic sea ice area and volume by ~3% and ~9%, respectively, when the AO changes from the negative 

to the positive phase.

Large-scale synoptic events may determine the sea ice conditions on time scales of several weeks 

as a result of increased wind-driven advection of sea ice [Barry and Maslanik, 1989, Brummer et al., 2003, 

Zhang et al., 2010]. The Arctic cyclones may result in reversal of the predominant rotational pattern of sea 

ice from anticyclonic to cyclonic [McLaren et al., 1987; Serreze et al., 1989] as has been observed in the 

Beaufort Sea where under cyclonic conditions the rotation of the Beaufort Gyre changes from clockwise to 

counterclockwise [LeDrew et al., 1991, Asplin et al., 2009]. Barry and Maslanik [1989] showed that wind 

speed and divergence of the sea ice pack behind a low pressure system cause sea ice concentration to 

decrease. Strong winds tend to accelerate sea ice drift by breaking it up and decreasing its internal 

interaction [Brummer et al., 2003]. Using satellite imagery, Holt and Martin [2001] argued that the cyclone 

that developed over the Beaufort and Chukchi Seas in August 1992 reduced the size of sea ice floes and 

increased the open water area. Brummer et al. [2008] showed that sea ice drift diverged along the track of 

the center of the March 2002 cyclone while it converged over the areas of cyclonic periphery. In summer, 

extensive open water fetch under strong winds due to migratory cyclones may generate large waves that, if 

intruded into the ice pack, may induce sea ice break up [Asplin et al., 2012]. Based on the case study about 

the Arctic storm that occurred in September 2008, Asplin et al. [2012] found that the intrusion of strong 

waves caused sea ice fracturing as far as 250 km from the ice edge. Increased wind speed associated with 

Arctic cyclones may reveal openings in sea ice known as leads or polynyas [Barry and Maslanik, 1989]. 

Increased winds affecting sea ice motion intensify sea ice inertial fluctuations [Brummer et al., 2003; 

Lammert et al., 2009]. In particular, Brummer et al. [2003] demonstrated that inertial and tidal oscillations 

of sea ice in the Fram Strait were amplified during cyclonic events. Their finding was reinforced later 

through analysis of cyclonic cases that occurred in the northeast Greenland in March 2007 [Lammert et al., 

2009].

Sea ice preconditioning is another factor that affects the sea ice dynamic state on different 

timescales [Rigor et al., 2002; Drobot and Maslanik, 2003; Nghiem et al., 2006; Lindsay et al., 2009].
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Long-term preconditioning refers to increased sea ice susceptibility to oceanic and atmospheric forcing as 

a result of thinning and shrinking of sea ice coverage in the Arctic. Short-term preconditioning refers to sea 

ice susceptibility as a result of abrupt sea ice changes that can occur, for example, in the event of wind 

intensification during a cyclone. Mechanical break up and movement of sea ice will increase sea ice 

vulnerability to oceanographic and atmospheric abrupt changes associated with cyclones [Parkinson and 

Comiso, 2013].

3.1.2 Thermodynamic Impact of Arctic Storms on Sea Ice

The balance of oceanic and atmospheric energy, sea ice internal heat conduction, and storage of 

heat govern sea ice thermodynamic growth and melt. Ice growth or melt at the ice underside results from 

the difference between the heat conducted away from the water-ice boundary into the ice and the heat flux 

supplied from the ocean. Ice growth or melt at the ice top side results from the difference between the 

atmospheric incoming and outgoing radiation and turbulent heat fluxes. Sea ice thermodynamic state is 

dependent upon a number of cyclonic forcings including advection of warm/cold air masses [Stroeve et al., 

2008], ocean heat advection [Polyakov et al., 2003, 2010; Woodgate et al., 2006, 2010], changes in 

cloudiness [Francis et al., 2005; Schweiger et al., 2009, Kay and Gettelman, 2009], and alterations of the 

ice albedo feedback [Perovich et al., 2007, 2008].

Sea ice thermodynamic characteristics are subject to changes in surface turbulent heat fluxes under 

cyclonic conditions. The impact of openings in the sea ice on heat and moisture content of the Arctic 

atmospheric boundary layer varies subject to the season [Brummer et al., 2003]. In winter, sea ice leads 

cause turbulent heat release into the atmosphere. In summer, leads promote increased absorption of down­

welling shortwave radiation in the ocean that results in a surplus of heat in the uppermost ocean layer. This 

radiative transfer of energy may have an impact on the sea ice melt/freeze cycle [Perovich et al., 2008; 

Kriegsmann and Brummer, 2014]. Open water amplifies sea ice melt [Brummer et al., 2003; Perovich et 

al., 2008; Kriegsmann and Brummer, 2014]. The direction of turbulent heat fluxes is subject to rapid 

changes, resulting from sea ice motion and formation of open water leads [Dierer et al., 2005]. Exerted 

wind and wave forcing on sea ice results in a reduced ice floe size and an increased total ice floe perimeter 

[Zhang et al., 2015]. An increase in the ice floe perimeter allows for efficient distribution of oceanic and 

atmospheric fluxes into sea ice and, therefore, causes intensified lateral melting [Steele, 1992; Asplin et al., 

2012]. Analysis of in-situ observations collected in the Arctic as a part of the SHEBA experiment showed 

that turbulent heat fluxes have larger daily variability as compared to radiation fluxes [Persson et al., 2002].
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The SHEBA experiment also showed that maxima of sensible and latent heat fluxes were recorded 

in events of Arctic cyclones.

The rapid summer sea ice decline observed over the recent decades resulted in open water that 

stores additional atmospheric heat and delays the freeze-up onset [Screen and Simmonds, 2010, Blanchard- 

Wrigglesworth et al., 2011, Overland et al., 2011]. This, ultimately, results in thinning of winter sea ice 

[Blanchard-Wrigglesworth et al., 2011]. The reduction of sea ice extent and sea ice thickness explains why 

the strongest observed warming occurs in the marginal ice zones, with the strongest signature in fall and 

winter [Screen and Simmonds, 2010; Overland et al., 2011].

The impact of Arctic cyclones on the stratigraphy of upper ocean layers has been a focus of many 

previous research studies [Shimada et al., 2006; Woodgate et al., 2006; Steele et al., 2008; Perovich et al., 

2008; Stroeve et al., 2011]. Sea ice reduction observed during and after Arctic cyclones was found to lead 

to an increase in the summer ocean mixed layer depth [Stroeve et al., 2011], oceanic heat fluxes increase 

[Shimada et al., 2006; Woodgate et al., 2006; Steele et al., 2008], and solar heating increase [Perovich et 

al., 2008]. Associated with strong winds increased sea ice movement accelerates ocean mixing and heat 

exchange within the oceanic boundary layer, therefore, causing sea ice reduction due to enhanced basal 

melt [Zhang et al., 2013].

Cloudiness, associated with cyclone activity, has been shown to intensify fluctuations of the sea ice 

energy balance components including short and longwave radiation fluxes, and latent and sensible turbulent 

fluxes, causing further changes within the sea ice thermodynamic structure [Persson et al., 2002; Kay and 

Gettelman, 2009]. Based on SHEBA field experiment data, the total energy flux into the surface varies from 

-25 W/m2 to +12 W/m2 in winter and +37 W/m2 to +129 W/m2 in July. This large variability in total energy 

flux was attributed to day-to-day variability in radiation and turbulent heat fluxes. The total energy flux is 

positive in winter, during cloudy periods, when the difference between incoming and outgoing longwave 

radiation is near zero [Persson et al., 1999].

3.1.3 Sea Ice Momentum and Mass Balance

Sea ice mass balance is determined by its growth and melt processes, transport and deformation, 

ultimately resulting in an increase or reduction of sea ice thickness and extent.
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The mass balance of sea ice is governed by ice motion (momentum balance), accretion, sublimation, 

freezing and evaporation and melting (as resulting from surface energy balance), and the transport and 

redistribution of ice thickness (mass conservation) (Eq. 3.1).

where f is the Coriolis parameter, m is the ice mass per unit area, gr is the acceleration due to gravity, u is

the geostrophic wind. The terms in Eq. (3.1) signify the following: is the sea ice momentum,

—mfk × u is the Coriolis stress, τa is the air (wind) stress, τw is the ocean stress, mgrY is the sea 

surface slope, and V ∙ σ is internal ice stress [e.g. Hibler, 1979].

Air and ocean stresses include forces associated with wind drag on the upper surface and water 

drag on the ice underside. Triggered by the tilt of the sea surface, the sea surface component is generally 

less notable in magnitude. The final term of the equation is the force, arising from gradients in the internal 

ice stress field, i.e., the force resulting from the resistance of sea ice to deformation.

3.1.4 Sea Ice Surface Heat Budget

where the individual heat flux terms are the incoming solar shortwave flux, Fr, with ice albedo, a, (the ratio 

between incident and reflected shortwave energy for a given ice surface); the shortwave radiation flux into 

the ice/water, Io; the incoming longwave radiation flux, Fι↓; outgoing longwave radiation flux, F↑; 

turbulent atmospheric sensible and latent heat fluxes Fs and Fe; the heat flux due to melting of ice at the 

surface (typically only relevant during the summer melting phase), Fm; and the conductive heat flux from 

the interior of the snow/ice to the ocean water, Fc. More detailed information of the surface energy balance 

can be found in Maykut [1986] and Steele and Flato [2000]. The total energy flux at a given time may be 

positive, negative, or zero. If a total energy flux is positive, snow or ice is gaining energy. This scenario 

can result from an increase in the temperature of the snow or ice (energy storage). When the total energy 

flux is negative, the surface slab of sea ice loses energy and sea ice temperature decreases.

In subsequent sections, the analysis of the sea ice energy balance is based on the comparison of the 

temporal variability of individual energy fluxes and the net energy fluxes during two cyclonic cases that 

occurred in the Arctic Ocean and were reproduced in different modeling experiments. To quantify sea ice 

energy flux variability, area-integrated sea ice energy fluxes were calculated for the Kara and Barents Seas
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The energy balance at the sea ice - atmosphere interface under steady-state temperature conditions 

dictates that the heat fluxes out of, and into, the surface of sea ice must be balanced:



for the March 2011 cyclone and for the East-Siberian, Chukchi and Beaufort Seas for the August 2012 

cyclone.

The principle of conservation of energy (Eq. 3.3) is the basis for the simplistic expression for the 

energy balance at an ideal, planar surface.

Ftotal surface energy balance flux = (SW↓ - SW↑ ) + (LW↓ - LW↑) - SHF - LHF + CHF (3.3)

where SW and LW denote the shortwave and longwave radiation fluxes, SHF is the sensible turbulent heat 

flux, LHF is latent turbulent heat flux, CHF is the conductivity heat flux, and OHF is the oceanic heat flux.

The following fluxes are denoted positive when pointed downward: net surface heat flux, latent 

heat, sensible heat, conductive heat fluxes. Oceanic heat flux is positive when the ocean gains heat.

3.2 Data and Methods

3.2.1 Model Description

Modeling experiments are carried out using the sea ice and ocean components of the National 

Center for Atmospheric Research's Community Earth System Model (CESM) version 1.0.4 [Gent et al., 

2011]. CESM is a fully coupled Earth System Model that simulates all major components of the physical 

climate system including land surface, atmosphere, sea ice, and ocean. Considering the study objectives, 

only the sea ice and oceanographic model components of CESM were integrated in a two-way coupled 

setting: Sea Ice Model - Community Ice Code version 4 (CICE4; Hunke and Lipscomb [2008]) and Parallel 

Ocean Program (POP) version 2 model [Smith et al. 1992].

The POP and CICE model components were configured and integrated on the identical resolution 

dipole displaced-pole grid. The CICE-POP model utilizes the nominal 1o resolution and was employed on 

a displaced pole grid (gx1v6) with one pole co-located at the South Pole and the other pole centered over 

Greenland. The displaced grid is a rotated coordinate system with a horizontal dimension of 320 zonal 

points by 384 meridional points and geographically-varying longitudinal and latitudinal spacing. Grid 

spacing is roughly 1.125o in the zonal direction and 0.5o in the meridional direction. Due to the displacement 

of the “North Pole”, the POP and CICE models utilize a non-uniform horizontal resolution that is variable 

depending upon the proximity to the displaced pole. Consequently, horizontal resolution for the Arctic 

Ocean domain is comparatively high in the Atlantic sectors of the Arctic and low in the Pacific sectors.

The Community Ice CodE, or CICE, version 4.0 is a Los Alamos Sea Ice Model [Hunke and 

Lipscomb, 2008]. CICE is a dynamic-thermodynamic model that includes a subgrid-scale ice thickness 
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distribution [Bitz et al., 2001; Lipscomb, 2001]. The ice dynamics utilize the elastic-viscous-plastic (EVP) 

rheology approach introduced by Hunke and Dukowicz [1997]. Subgrid-scale ridging and rafting is 

parameterized according to Rothrock [1975] and Thorndike et al. [1975]. In our study, the CICE model was 

set up to simulate parameters at five discrete ice thickness categories. The CICE model uses the energy 

conserving thermodynamics of Bitz and Lipscomb [1999], with four ice layers and one snow layer in each 

thickness category, and accounts for the influences of brine pockets within the ice cover. Horizontal 

advection is calculated via the incremental remapping scheme of Lipscomb and Hunke [2004].

The Parallel Ocean Program, or POP, is a depth-based, level-coordinate ocean general circulation 

model [Smith et al., 1992]. A full description of the POP model is available in Collins et al. [2006] and 

Danabasoglu et al. [2006]. In this study, POP was integrated at 60 non-uniformly spaced vertical levels 

with the uppermost level at 5 m depth. Vertical levels have a 10 m spacing for the upper most 20 levels. 

Below 200 m levels increase with depth down to the lowest level in ~5400m.

3.2.2 Forcing and Initialization

Prescribed atmospheric forcing from the ERA-interim reanalysis surface fields developed at the 

European Centre for Medium-Range Weather Forecasting (ECMWF) was used to initialize and force POP- 

CICE model [Berrisford et al., 2011]. ERA-Interim is a global reanalysis dataset covering the period from 

1979 and continuing [Dee et al., 2011]. ERA-Interim is discretized on an approximately 80 km horizontal 

grid increment (T255 spectral) at 60 levels with vertical steps of variable distance from the surface up to 

0.1 hPa [Dee et al., 2011]. Prescribed atmospheric forcing for CICE and POP models comprised the 

following fields: 6-hourly sea level pressure (SLP), u- (u10), v-component (v10) of wind, air temperature 

(t10), specific humidity (q10); daily average downward shortwave (SW↓) and longwave (LW↓) radiation 

fluxes; and monthly precipitation rate (pr. rate). For the purposes of this study, the ERA-interim fields for 

the years 1979 to 2012 (33 years) were utilized.

3.2.3 Experimental Design

The investigation of the sea ice response to storms was carried out by performing five sets of 

simulations that employ different treatments of atmospheric forcing: model spin-up, time-varying 

(hindcast), control (CTR), dynamic (DYN), and thermodynamic (THERMODYN). Model spin-up and 

time-varying simulations were used for the CICE-POP model evaluation. Upon attainment of simulated 

reliable sea ice and ocean conditions by running CICE-POP with the same forcing (1979) for 200 years, the 
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CTR, DYN, and THERMODYN experiments were performed. In each of the CTR, DYN, THERMODYN 

experiments, CICE-POP utilized a different set of prescribed atmospheric forcing. CTR experiments were 

integrated with the real-time, unperturbed atmospheric forcing as was observed during each of the storm 

cases. A modified atmospheric forcing was employed for the time when the storm case was present in the 

Arctic Ocean in the DYN and THERMODYN simulations. The overview of the performed modeling 

experiments, including forcing data, time step, and integration period are given in the Table 3.1.

Table 3.1: Model configuration of the Hindcast, Time-Varying, Control, Thermodynamic and Dynamic 

experiments

Experiment Forcing data Model run time Resolution

Spin-up ERA-Interim
1979 run for 200

years
monthly

Time­

varying
ERA-Interim 1979-2011 monthly

CTR
ERA-INTERIM, real-time during storm: u10, 

v10, SLP, q10, t10, SW↓, LW↓,
2011-2012 6-hourly

Thermodyn

ERA-INTERIM, 1) real-time during storm: 

t10, q10, SWl, LWl 2) fixed to climate: u10, 

v10, SLP

2011-2012 6-hourly

DYN

ERA-INTERIM, 1) real-time during storm: 

u10, v10, SLP, q10, 2) fixed to climate: 

SWl, LWl, t10

2011-2012 6-hourly

The sea ice mass balance and heat budget responses were studied by analyzing two Arctic cyclones 

that occurred in different seasons and over different Arctic Sectors. To capture geographical differences in 

storm - sea ice interaction, we selected one cyclone that developed on the Atlantic side of the Arctic and 

one on the Pacific side. To capture the seasonality difference of the storm impact on sea ice, we analyzed 

one summer and one winter cyclone. The overview of investigated cyclones is given in Table 3.2.
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Table 3.2: Overview of investigated cyclone cases

Cyclone Case Season Location

March 2011 Winter (ice growth) Atlantic Side of the Arctic

August 2012 Summer (ice melt) Pacific Side of the Arctic

3.2.3.1 Model Spin-up Experiment

The spin up simulation is run by using one year (1979) forcing data for over 200 years, until 

equilibrium sea ice and ocean conditions were reached.

3.2.3.2 Time-varying Experiment

To re-create sea ice and ocean conditions for 1979 to 2012, sea ice and ocean data from model 

spun-up data were used as initial conditions to perform the time-varying simulation once a sea ice and 

oceanic equilibrium was attained. In this run, continuous time-varying atmospheric data were utilized to 

force the model for 33 years, spanning from January 1979 to December 2012.

3.2.3.3 Control Experiment

The control experiment (CTR) is a run forced with reanalysis using the following variables u10, 

v10, SLP, t10, q10, SW↓ LW↓ observed during the storm case. The control simulation is obtained by 

integrating CICE-POP with a 6-hourly time-step over the cyclonic life time.

3.2.3.4 Thermodynamic Experiment

The thermodynamic experiment (THERMODYN) is a run forced with monthly climatological 

variables such as u10, v10, SLP and reanalysis datasets including t10, q10, SW↓, LW↓. THERMODYN 

otput is obtained by integrating CICE-POP with a 6-hourly time-step over the cyclonic life time. Modified 

forcing was applied for the duration of the storm only. The purpose of THERMODYN is to separate the 

thermodynamic impact of the cyclone on sea ice by setting dynamic impacts (wind) to climatology. In the 
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case of the thermodynamic experiment, surface turbulent heat fluxes were computed by combining 

modified forcing (u10, v10) and reanalysis (t10, q10).

3.2.3.5 Dynamic Experiment

The dynamic experiment (DYN) is a run forced with monthly climatological variables such as t10, 

SW↓ LW↓ and reanalysis u10, v10, SLP, q10. The ensemble set was obtained by integrating CICE-POP 

with a 6-hourly time-step over the cyclonic life time. Modified forcing was applied for the duration of the 

storm only. Fixing surface air temperature and radiation fluxes to climatology allows independent 

evaluation of the dynamic of the storm impact on sea ice.

3.2.4 Model Validation

An assessment of CICE-POP's ability to reliably reproduce Arctic sea ice and ocean temperatures 

was performed by comparing modeled against available observational data that included upper-surface 

ocean temperature (PHC 3.0 climatology Polar Science Center [Steele et al., 2001]) sea ice concentration 

(passive microwave SSMI-derived 1979-2012), sea ice thickness (laser altimetry ICESat (Ice, Cloud and 

land Elevation Satellite) data collected over the years 2004 to 2008 [Kwok et al., 2009]), and sea ice drift 

data (International Arctic Buoy Program (IABP), [Rigor et al., 2002]).

Sea ice concentration (SIC) was validated by comparing modeled and SSMI-derived average 

September mean sea ice concentrations in the Arctic (1979-2012) and March sea ice concentrations (Fig. 

3.1). The overall spatial pattern of sea ice distribution in the Arctic is well -represented by CICE-POP in 

both months. Sea ice conditions, including the location of the sea ice edge and areal coverage, is reproduced 

more accurately in September than in March. As shown by sea ice concentration (SIC) differences, SIC is 

overestimated in the western Barents Sea, which is likely associated with a cold bias of surface ocean waters 

north of the Kola Peninsula, and the White Sea (Fig. 3.6). Increased SIC south of Fram Strait represents an 

overestimated sea ice outflow from the Arctic into the Atlantic Ocean. The modeled SIC is greater in the 

coastal areas of the East-Siberian Sea and less in the coastal areas of the Beaufort Sea compared to SSMI 

data (Figs. 3.6C, 3.6D).
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Figure 3.1: Mean sea ice concentration (1979-2011) (Unit: [fraction of 1]) in JFM: CICE-POP (A), SSMI 

(B); and in JAS: CICE-POP (C), SSMI (D).

As seen from the interannual variability of the sea ice area in SSMI and CICE-POP data in Fig. 3.2, 

the model generally captures the long-term decreasing trend of sea ice area. The interannual variability of 

simulated sea ice area experiences a larger amplitude compared to SSMI data with a greater and smaller 

sea ice area in JFM and JAS, respectively.
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Figure 3.2: Sea ice area comparison 1979-2012 (Unit: [106 km2]): CICE-POP (red line), SSMI (blue line).

CICE-POP - SSMI sea ice area differences were calculated to assess seasonality in bias between 

modeled and remote sensing data. Modeled sea ice area average bias is positive in March, ranging from 

+0.1 106 km2 in 1979 to +1.78 106 km2 in 2007 (Fig. 3.3). Sea ice area average bias shows both positive 

and negative difference in September ranging from -1.58 106 km2 in 2004 to a maximum of +1.63 106 km2 

in 2010. In this analysis, we consider areal coverage as a main metric for assessing sea ice response to 

storms so the ability to reproduce sea ice variability subject to external factors (atmosphere and ocean) is 

critical.
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Figure 3.3: CICE-SSMI sea ice area (Unit: [106 km2]) difference in September (blue line), March (red line).

Observations of sea ice thickness are very limited in covered area and time. One of the recent 

campaigns (ICESat) collected sea ice thickness data over the Arctic from 2004 to 2008 (February to April). 

The quality of simulated sea ice thickness was assessed by comparing model output to the data obtained 

from ICESat freeboard measurements of sea ice thickness (Fig. 3.4). CICE-POP captures acceptably well 

the general pattern of sea ice thickness including the thicker sea ice north of the Canadian Arctic 

Archipelago and thinner sea ice along the Eurasian Arctic coast. Simulated sea ice thickness is 

underestimated north of the Canadian Arctic Archipelago by approximately 1-2 m; it is overestimated in 

the Central Arctic, eastern Laptev, and west East-Siberian Seas by approximately 1 m (Fig. 3.4).
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Figure 3.4: Sea ice thickness (Unit: [m]) averaged over February-March-April of 2004-2008: CICE-POP 

(A); ICESat (B).

The main sea ice drift patterns in the Arctic Ocean, such as the Transpolar Drift Stream and the 

Beaufort Gyre, have been well reproduced by CICE-POP (Fig. 3.5); however, the Beaufort Gyre is slightly 

displaced westward of the Chukchi Sea. CICE-POP tends to overestimate the speed of sea ice drift by 

approximately 3-4 cm/s within the Transpolar Drift Stream and 1-2 cm/s within the Beaufort Gyre.

Figure 3.5: Annual mean sea ice drift (1979-2012) (Unit: [cm s-1]): model-simulated (A), and observed 

(IABP) (B).
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The CICE-POP performance to simulate ocean surface temperature was assessed by comparing 

modeled and Polar Science Center Hydrographic Climatology (PHC) data [Steele et al., 2001] (Fig. 3.6). 

The CICE-POP mean ocean water temperature was computed by averaging the output of the time-series 

simulation for ocean temperature at levels 5 m, 15 m, 25 m, and 35 m, over 25 years, from 1979 to 1994. 

The PHC climatology is obtained by extrapolating and averaging compiled in-situ measurements of ocean 

temperature and salinity collected between 1979 and 1994. Simulated surface water temperatures in the 

Arctic Ocean have a positive bias of 1-2oC at the Atlantic side of the Arctic. This bias is characteristic for 

both summer and winter seasons. The bias could be explained by overestimated heat transport into the 

Arctic. A plausible explanation to the ocean temperature bias is the difference of oceanic depths in the 

datasets. The upper-level surface in the model is 5m and represents the averaged mixed layer temperature 

in the upper 10m of oceanic water. In the PHC, the upper-level surface is 0 m and represents the temperature 

of the atmosphere-ocean interface.
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Figure 3.6: Mean sea surface temperature (1979-2011) (Unit: [oC]): CICE-POP in JFM (A), in JAS (C); 

PHC in JFM (B), in JAS (D).

CICE-POP reliably reproduced inter-annual sea ice area variability for 1979 to 2011, and the Arctic 

sea ice concentration, motion, and thickness patterns; however, it noticeably overestimated sea ice drift 

speed. Overall sea ice positive bias in winter and negative bias in summer was less in 2011 and 2012 was 

less in magnitude as compared to 1979-2008 period, suggesting the model data was more accurate during 

the two storm case studies that occurred in these years. Sea ice drift bias while being relatively high along 

the northeast coast of Greenland needs to be taken into account as the outflow of sea ice through the 

Transpolar Drift Stream will likely be overestimated. Sea ice concentration was reproduced more 

accurately in summer than in winter as compared to remote sensing data; SIC tended to be overestimated 

in the Atlantic Ocean, and slightly underestimated in the Pacific side of the Arctic.

46



The differences between the CICE-POP ocean temperature and the PHC-interpolated ocean 

temperature to 5 m, 15 m, 25 m and 35 m show that CICE-POP tends to overestimate water temperatures 

in the upper 40 m (Fig. 3.7). The maximum difference of 2-4oC is observed south of the Svalbard. Ocean 

temperature bias over the Central Arctic Ocean is positive but small (0.5 - 1oC), i.e. within measurement 

uncertainty. Negative bias of -1oC to -2oC is observed in the northern White Sea, Bering Strait, and in the 

Labrador Sea.

Figure 3.7: Annual mean sea surface temperature difference (1979-2011) (Unit: [oC]) between CICE-POP 

and PHC: at 5m (A), 15m (B), 25m (C), and 35m (D).
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3.3 March 2011 Cyclone

This section explores possible forcing, exerted by the March 2011 cyclone on sea ice based on the 

output of the CTR and sensitivity experiments (DYN, THERMODYN).

The lifecycle of the March 2011 cyclone is detailed in chapter 4 of this thesis document. Before the 

March 2011 cyclone fully developed, sea ice was at the winter maximum extent (14.6 106 km2) and sea ice 

was deteriorating primarily in the marginal zones: the northeastern part of the Barents and the southwestern 

part of the Kara Seas (Fig. 3.8). When the center of the cyclone reached the Central Arctic, it stalled from 

March 17 until March 22, the surface pressure gradient tightened up. Consequently, particularly strong 

winds occurred over the Eurasian Arctic coast that encompassed the Barents Sea and eastward into the East- 

Siberian Sea. Following the wind increase over the northeastern parts of the Barents Sea, the edge of the 

sea ice shifted poleward. The poleward displacement of the sea ice edge in the Barents Sea was concurrent 

with formation of polynyas on the leeward (eastern) side of the islands, including Novaya Zemlya, 

Svalbard, and Franz-Joseph Land.
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Figure 3.8: CICE-POP sea ice concentration (colors) (Unit: [fraction of 1]) and ERA-Interim reanalysis sea 

level pressure (contours) (Unit: [hPA]) valid for March 15 1800 UTC (A), March 17 1800 UTC (B), March 

19 0000 UTC (C), March 22 1200 UTC (D).

Maximum surface wind speed throughout the lifecycle of the March 2011 cyclone was observed 

over the Barents and Kara Seas. Less strong winds were observed over the Laptev and East-Siberian Seas. 

Winds along the Eurasian Arctic coast had a sustained speed of over 17 m/s (near-gale to gale force on 

Beaufort scale) for a duration of five days (Fig. 3.9). Given orographic effects, winds on the leeward side 

of the mountains of Novaya Zemlya initiated sea ice recession and created a notable coastal polynya in the 

Kara Sea. Over the marginal ice zone in the northeastern Barents Sea, wind speed was approximately 15-
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20 m/s (Fig. 3.9A). Strong surface winds observed along the Eurasian coast of the Arctic Ocean continued 

until the March 2011 cyclone weakened on March 21 (Fig. 3.9D).

Figure 3.9: ERA-Interim reanalysis surface wind speed (colors) (Unit: [m s-1]), direction (arrows), and sea 

level pressure (contours) (Unit: [hPa]) valid for March 15 1800 UTC (A), March 17 1800 UTC (B), March 

19 0000 UTC (C), and March 22 1200 UTC (D).

The pattern of atmospheric circulation, long lifecycle of the March 2011 cyclone, and elevated 

wind speed determined the sea ice drift speed and sea ice drift direction. The speed of sea ice drift varied 

in various regions of the Arctic Ocean, depending on the predominant wind speed and direction. It ranged 

from 20-25 cm/s in the Barents Sea to 10-15 cm/s in the central part of the Arctic Ocean. As the March 
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2011 cyclone was developing, the maximum drift speed of sea ice (20-25 cm/s) was observed in the 

marginal ice zones of the Barents and Kara Seas (Fig. 3.10). When the March 2011 cyclone reached its 

maximum intensity, increased sea ice drift was observed in the Central Arctic and the Laptev Sea. Robust 

counterclockwise sea ice motion led to the intensification of ice outflow from the Arctic Ocean through 

Fram Strait.

Corresponding to the winds, sea ice drift was to the northeast. The pattern of sea ice drift assumed 

a circumpolar shape after the March 2011 cyclone intensified and moved poleward. Corresponding to 

cyclonic winds, the pattern of sea ice drift during March 2011 was counterclockwise, including the Beaufort 

Sea where the predominant direction of sea ice motion was reversed (Figs. 3.10B, C, and D). 

Counterclockwise sea ice movement in the Arctic was sustained through the dissipation phase of the March 

2011 cyclone on March 22.
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Figure 3.10: CICE-POP sea ice drift (colors) (Unit: [cm s-1]) and direction (arrows) valid for March 15 1800

UTC (A), March 17 1800 UTC (B), March 19 0000 UTC (C), and March 22 1200 UTC (D).

3.3.1 Dynamic vs Thermodynamic Forcing on Sea Ice

Cyclonic forcing exerted on sea ice during the March 2011 cyclone was analyzed through a 

comparison of model output of CTR and sensitivity experiments. We selected the region of the Barents and 

Kara Seas for analysis because that region was characterized by the maximum sea ice reduction during the 

cyclone passage.
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Sea ice growth occurred in the Barents and Kara Seas through March 16, 2011, when the maximum 

sea ice area reached 1.57 106 km2 (Fig. 3.11). Between March 17 to March 24 sea ice area in the Barents- 

Kara Seas underwent a rapid decline from 1.57 106 km2 to 1.4 106 km2. The sea ice area was decreasing at 

an approximate rate of 37.500 km2 per day from March 16 to March 20, 2011, when sea ice reduction was 

driven by the immediate impact of increased cyclone winds (Fig. 3.9) and melting. The rate of sea ice retreat 

decreased to approximately 5.000 km2 per day on March 20. The decreased retreat rate lasted until March 

24, 2011, which coincided with the weakening and gradual dissipation of the March 2011 cyclone. The 

decrease in sea ice reduction rate after March 20 was a result of the inertial response of slow-reacting sea 

ice to rapidly reacting atmospheric changes. The decreased rate of sea ice reduction on March 20, and 

thereafter, is associated with the lagging sea ice response to diminished wind speed. The sea ice area 

resumed a gradual growth on March 24 continuing into early April of 2011.

The sea ice reduction rate in the DYN experiment during the March 2011 cyclone was less abrupt 

than in CTR run. The sea ice area in DYN run was at minimum on March 20 (1.48 106 km2), which was 

0.06-0.08 106 km2 greater than in the CTR run. There is a difference in the time of minimum sea ice area: 

CTR - March 24 and DYN - March 20 due to inability to sustain robust baroclinic instability in DYN as 

compared to CTR.

To estimate the impact of wind forcing on sea ice during the March 2011 cyclone, we compared 

the output of the CTR and THERMODYN runs. Simulated sea ice area in the CTR and THERMODYN 

runs show notable differences; sea ice in the CTR case experienced a sharp decrease during the March 2011 

cyclone whereas the sea ice in the THERMODYN case continued steady winter growth. The fact that the 

sea ice area did not experience a drop during a cyclone in THERMODYN demonstrates that the modified 

wind forcing was too weak to result in sea ice deterioration. Lower wind speeds, causing lower wind stress, 

resulted in slower ice drift in the Barents-Kara Seas in THERMODYN than CTR.

Based on a comparison of the CTR-THERMODYN and CTR-DYN differences, it can be 

concluded that the cyclonically-driven wind forcing had a more pronounced impact on sea ice reduction 

than thermodynamic melting (Fig. 3.11).
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Figure 3.11: CICE-POP simulated sea ice area (Unit: [106 km2]) over the Barents and Kara Seas in the 

Control, Thermodynamic, and Dynamic experiments (A). CTR-DYN (brown) and CTR-THERMODYN 

(yellow) difference in sea ice area (Unit: [103 km2]) over the Barents and Kara Seas (B).

The geographical pattern of where dynamic and thermodynamic cyclonic forcing had their 

maximum impact on sea ice was analyzed by investigating the difference in simulated sea ice concentration 

(SIC) fields between CTR and DYN (Fig. 3.12A) and CTR and THERMODYN experiments (Fig. 3.12B). 
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SIC difference is more significant in the CTR-THERMODYN case than in CTR-DYN. This finding 

supports the evidence that during the March 2011 cyclone, the wind forcing was the primary forcing causing 

the sea ice recession; surface heating and radiation fluxes were secondary. The areas of maximum impact 

of thermodynamic forcing on sea ice concentration is observed east of Novaya Zemlya, Franz-Joseph Land, 

and Svalbard (Fig. 3.12B).

The CTR-THERMODYN difference of sea ice concentration, valid for March 19, 2011, is negative 

in the marginal ice zone in the NE Barents Sea and, to the east of the islands, in the Barents and Kara Seas 

(Fig. 3.12B). Sea ice concentration west of Novaya Zemlya increased as a result of sea ice compression due 

to increased east-northeasterly drift of sea ice during the March 2011 cyclone. Strong winds pushed thinner 

ice eastward and amplified sea ice dynamic growth as a result of sea ice piling west of the Novaya Zemlya 

Archipelago.

Figure 3.12: CICE-POP sea ice concentration (Unit: [fraction of 1]): CTR-DYN (A), CTR-THERMODYN

(B) differences.

3.4 August 2012 Cyclone

Another cyclone discussed in this chapter occurred on the Pacific side of the Arctic Ocean in August 

2012. The August 2012 cyclone was a deep low pressure system that developed off the East Siberian Sea 

coast and moved into the Central Arctic Ocean in the summer of 2012. Concurrent with the movement and 

intensification of the August cyclone, sea ice concentration dramatically deteriorated [Zhang et al., 2012].
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Areas of low sea ice concentration, encompassing coastal parts of the East-Siberian, Chukchi, and Beaufort 

Seas, were most affected by the cyclone (Fig. 3.14). The cyclone developed on August 2, 2012, and 

deepened to 988 hPa on August 4 (Fig. 3.14A and 3.15C). On August 6, the low developed into a very 

intense cyclonic system, covering the Central and Western Arctic. In the center of the cyclone, sea level 

pressure reached 968 hPa. Having stalled over the Central Arctic Ocean, the August 2012 cyclone began to 

dissipate and eventually split into multiple weaker low pressure systems on August 10.

Figure 3.14: Simulated sea ice concentration (colors) (Unit: [fraction of 1]), ERA-Interim reanalysis sea

level pressure (contours) (Unit: [hPA]) valid for August 2 0000 UTC (A), August 4 0000 UTC (B), August

6 0000 UTC (C), and August 10 0000 UTC (D).

After the Arctic storm developed on August 8, the area of high pressure gradient resulted in the 

southerly movement of continental, warm air towards the East-Siberian and Chukchi Seas (Fig. 3.15). 

Sustained southerly winds on August 2 were increasing during the August 2012 cyclone and reached their 

maximum speed of 20-25 m/s on August 6.
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Figure 3.15: ERA-Interim reanalysis surface wind speed (colors) (Unit: [m s-1]) and direction (arrows) valid 

for August 2 0000 UTC (A), August 4 0000 UTC (B), August 6 0000 UTC (C), and August 10 0000 UTC 

(D).

During the August 2012 cyclone, increased winds determined the pattern and speed of sea ice drift. 

Moderate sea ice drift at 8 to 12 cm/s prevailed over the Pacific side of the Arctic Ocean from August 3 

until August 5 (Fig. 3.16). Sea ice drift speed accelerated up to 15-20 cm/s during the maximum phase of 

the storm development on August 6 through August 7. Sea ice drift, being primarily wind-driven, was 

counterclockwise with the maximum drift speed along the coasts of the East-Siberian and Chukchi Sea 

coasts. As winds diminished during the decay of the cyclone on August 10, the speed of sea ice drift reduced 

to 5-10 cm/s.
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Figure 3.16: Simulated sea ice drift (colors) (Unit: [cm s-1]) and direction (arrows) valid for August 2 0000 

UTC (A), August 4 0000 UTC (B), August 6 0000 UTC (C), and August 10 0000 UTC (D).

3.4.1 Dynamic and Thermodynamic Forcing on Sea Ice

In the Western Arctic, the sea ice area reduced at an accelerated rate during the August 2012 

cyclone, resulting in a 20% reduction over the East-Siberian, Chukchi, and Beaufort Seas (Fig. 3.17). On 

August 1 before the August 2012 cyclone, the sea ice area over the Pacific side of the Arctic was 2.8 106 

km2. On August 12, after the cyclone dissipated, the sea ice area was 1.85 106 km2. This diminution reveals 

a rate of sea ice area reduction of approximately 90.000 - 100.000 km2 per day during the August 2012 

cyclone.

In CTR, sea ice reduction rate was more robust than in DYN and THERMODYN simulations. 

The CTR-DYN and CTR-THERMODYN difference in sea ice area was at its maximum on August 12. The 

sea ice area reduced by 0.65 106 km2 from August 1 to August 12 in CTR and by 0.45 106 km2 in DYN and 

THERMODYN. The equal rates of deterioration of sea ice area in August reveal that thermodynamic and 

dynamic cyclonic forcing had an equal impact on sea ice area over the East-Siberian, Chukchi, and Beaufort 

Seas, however, for different reasons
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Figure 3.17: CICE-POP-reproduced sea ice area (Unit: [106 km2]) over the East-Siberian - Chukchi - 

Beaufort Seas in Control, Thermodynamic, and Dynamic experiments (A). Sea ice area difference (Unit: 

[103 km2]) over the East-Siberian - Chukchi - Beaufort Seas between Control and Dynamic; Control and 

Thermodynamic experiments (B).

The CTR-DYN and CTR-THERMODYN differences of sea ice concentration show that the impact 

of cyclone dynamic and thermodynamic forcing on sea ice was the most notable in the marginal ice zones 
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of the northern East-Siberian, Chukchi and Beaufort seas (Fig. 3.18). On August 12, sea ice reduction was 

at a maximum in the northern Beaufort Sea and was primarily wind-driven (Fig. 3.18B). The impact of 

surface air temperature and radiation fluxes had a secondary role in sea ice reduction in the East-Siberian, 

Chukchi, and Beaufort Seas (Fig. 3.18A).

Figure 3.18: Simulated sea ice concentration (Unit: [fraction of 1]) differences between the Control and 

Dynamic experiments (A), Control and Thermodynamic experiments (B) both valid for August 12, 2012.

3.5 Comparison of March 2011 and August 2012 Storms

An important finding in this study is that global climate coupled ocean-sea ice model CICE-POP is able 

to reproduce the sea ice response to extreme Arctic cyclones (spatial pattern, seasonal variations, dynamic 

and thermodynamic processes). Verification of CICE-POP output against available observational data 

showed the sea ice and ocean are well represented in the model data. The model has a positive bias in 

reproducing ocean temperature in North Atlantic, sea ice area in the Barents Sea, and sea ice thickness in 

the Canadian Arctic Archipelago, the velocity of sea ice drift along the eastern coast of Greenland is also 

greater than the observations. Biases of maximum and minimum of model simulated sea ice area vary from 

year to year and indicate no relation to one another.

The conducted study presents an analysis of two storm cases that occurred over different areas of 

the Arctic Ocean (Atlantic side and Pacific side of the Arctic) and in different seasons (March and 

September). Both storms are characteristic for the rapid sea ice area reduction in the area where the storms 

were occurring. In case of the March 2011 storm, sea ice reduction in the region encompassing the Barents 
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and Kara Sea was approximately 0.17 106 km2. In case of the August 2012 storm, sea ice reduction in the 

area covering the East-Siberian, Chukchi, and Beaufort Seas was approximately 0.95 106 km2.

Based on the completed analysis of cyclonic forcings on sea ice, it is possible to state that the studied 

storms resulted in amplification of sea ice, ocean, and atmosphere interactions and sea ice decline. On the 

basis of the results obtained from the two case studies, we showed that various storm-induced forcings 

resulted in sea ice reduction and that through time these changes may impact the Arctic weather and climate 

on short and long-term time scales. The extent of those impacts is left for further analysis.

To understand how much of sea ice loss was resulted from dynamic and how much was from 

thermodynamic factors, we partitioned prescribed atmospheric forcing utilized by CICE-POP model into 

thermodynamic forces (air temperature at 2 m, specific humidity, downward shortwave and longwave 

radiation fluxes) and dynamic factors (surface wind speed and direction, and sea level pressure). This 

approach enabled to assess actual sea ice loss in comparison to sea ice loss that occurred if only dynamic 

(or thermodynamic) forcing was considered. Using modified forcing, sensitivity simulations were produced 

and results analyzed by comparing the output of sensitivity runs with control, unperturbed simulation. We 

found that there is no clear signal as to whether dynamic mechanisms prevail over thermodynamic or vice 

versa. For example, in March 2011 storm, the dynamic forcing produced a much stronger reduction of sea 

ice than thermodynamic forcing, however, in the case of August 2012 storm dynamic and thermodynamic 

forcings resulted in about equal amount of sea ice reduction. In case of the March 2011 storm, sea ice 

primarily responded to dynamic forcing in the marginal ice zone in the Barents Sea whilst in case of the 

August 2012 storm, the dynamic forcing caused sea ice reduction primarily in the coastal areas of the 

Chukchi, East-Siberian, and Beaufort Seas.
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Chapter 4 Possible Processes and Forcing in Arctic Cyclone Development: A Case Study with
WRF Model Simulations

4.1 Introduction

The North Atlantic is regarded as one of the world's most cyclonically active regions [Tsukernik et 

al., 2007]. Intense cyclogenesis in this region is persistently driven by robust baroclinic energy, arising out 

of contrasting temperature and moisture conditions over the Gulf Stream and Greenland air masses. The 

high cyclone count over the Atlantic sector of the Arctic Ocean basin extends from the Iceland/Greenland 

Sea northward into the Barents Sea [Zhang et al., 2004]. Cyclone activity on the Atlantic side of the Arctic 

has undergone a notable change in recent years that includes a poleward shift of cyclonic tracks, increased 

cyclonic duration, count, and intensity. Arctic cyclones are key elements in transporting moisture and heat 

into the Arctic [Sorteberg and Walsh, 2008b]. Occasionally, intense cyclones, developing in the 

Barents/Kara Seas, may lead to extreme and dramatic winter positive temperature and moisture anomalies 

in the Arctic Ocean [Boisvert et al., 2016]. Sea ice extent and thickness on the Atlantic side of the Arctic 

has simultaneously experienced rapid and significant decline in recent decades [NSIDC, 2016].

The main driving force for mid- and high-latitude cyclogenesis is baroclinic instability [Eady, 

1949]. Baroclinic instability is strongly dependent on a variety of factors including surface heating, 

convective instability, reduced static stability, moisture availability, and latent heat release [Schultz and 

Vaughan, 2011]. The release of latent heat as a result of condensation of moisture can contribute notable 

baroclinic energy to atmospheric eddies, causing the regeneration of a dissipating cyclone [Branscome et 

al., 1989]. Sea ice and oceanographic conditions are as important to cyclogenesis as the aforementioned 

factors and vary notably depending on the surface forcing (the ratio of sea ice to open water coverage) 

[Walsh et al., 1996; Zhang et al., 2004].

Studies show that the high storm count over the Barents/Kara Seas is inconsistent with the 

variability of sea ice extent in the Barents Sea [Ruggieri et al., 2016]. This contrasts with the observed 

acceleration of the westerly oceanic inflow by cyclone activity and sea ice reduction in the Barents Sea 

[Sorteberg and Kvingedal, 2006]. Hence, more studies are needed to clarify how cyclone activity interacts 

with sea ice on the Atlantic Side of the Arctic and what the impact of moisture and ocean heat capacity is 

on Arctic baroclinic instability.

By employing the high-resolution, state-of-the-art, mesoscale Weather Research and Forecasting 

Model (WRF) [Skamarock et al., 2008], this study investigated the mechanisms that affected baroclinic 

instability in the Arctic during the intense cyclone in March 2011.
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The underlining objectives for this research were to investigate:

(i) the ability of WRF to reliably reproduce the atmospheric conditions and baroclinic 

instability during the lifecycle of a cyclone;

(ii) the impact of surface forcing (sea ice and SST);

(iii) the impact of latent heat release (LHR) in the development of the March 2011 cyclone.

This chapter is structured as follows: Synoptic analysis of the storm case is given in Section 4.2; 

Section 4.3 summarizes the configuration and forcing of the WRF model; a model validation assessment is 

given in Section 4.5; the model experimental design is described in Section 4.4; the impact of sea ice 

concentration, SST and latent heat release on the cyclonic lifecycle is discussed in Sections 4.6.2 and 4.6.3, 

respectively; and the conclusions are given in Section 4.7.

4.2 Synoptic Analysis for March 16 - 22, 2011

A low pressure system developed over northeast Greenland on March 16, 2011 (Fig. 4.1A). This 

Parent Cyclone (PC) moved north from March 16 until March 18. On March 18, the PC stalled over the 

North Pole as a decaying cold-core cyclone with a central sea level pressure of 972 hPa (Fig. 4.1B). The 

poleward movement of the PC favored advection of warm air masses from the North Atlantic Ocean along 

the Eurasian Arctic coast into the Central Arctic. Heat and moisture brought by the PC into the Central 

Arctic Ocean further increased the temperature gradient and baroclinic instability in the Barents-Kara Sea 

region. The increased temperature gradient in the North Atlantic and Barents-Kara Seas regions prompted 

the occurrence of a secondary mesocyclone (MC) that developed in the wake of the PC (Fig 4.1B). After 

developing in the North Atlantic, the MC moved into the Laptev Sea on March 18 and approached the 

stalled and decaying PC. On March 19, the PC regenerated after merging with the MC and formed the new, 

very deep, low pressure system (967 hPa), the Regenerated Cyclone (RC). Before merging with the PC, the 

MC was a developing low pressure system with robust warm and cold sectors. The warm and moist air of 

the MC entering the reservoir of cold air in the PC re-enforced the temperature gradient (Fig. 4.1C). After 

regeneration, the central sea level pressure in the RC experienced a notable drop by ~30 hPa to 945 hPa 

within 24 hours (Fig 4.1C). The RC was later cut off from the warm sector, which led to gradual weakening 

and dissipation on March 22, 2011 (Fig 4.1E).
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Figure 4.1: Simulated sea level pressure (contours) (Unit: [hPa]) and surface air temperature (shaded) 

(Unit: [oC]) valid for March 16 1200 UTC (A); March 18 1800 UTC (B); March 19 1800 UTC (C). 

Simulated geopotential height 700 hPa (shaded) over 500 hPa (contours) (Unit: [gpdm]) valid for March 

16 1200 UTC (D); March 18 1800 UTC (E); March 19, 1800 UTC (F). Simulated jet stream at 300 hPa 

(Unit: [m/s]) valid for March 16 1200 UTC (G); March 18 1800 UTC (H); March 19 1800 UTC (I).
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An upper-level jet existed above the surface temperature gradient (Fig. 4.1G). The PC developed 

over northeast Greenland, co-locating the near left exit region of the upper-level jet where ageostrophic 

divergence aloft promoted vertical ascent. The upper-level jet at H300 strengthened over Novaya Zemlya 

and the Taimyr Peninsula while a secondary jet wrapped the Canadian side of the RC (Fig. 4.1I). As 

indicated by the upper-level atmospheric conditions, the upper-level low and the surface PC were not co­

located (Fig. 4.1D, 4.1E). On March 19, the centers of the RC and the upper-level low became stacked upon 

each other indicating the occluded stage of the low pressure system development (Fig. 4.1F).

4.3 Model Configuration

To examine the physical processes responsible for cyclone formation, a series of modeling 

experiments using version 3.2.1 of the Weather Research and Forecasting (WRF) model were conducted. 

WRF is a fully compressible and non-hydrostatic Eulerian model that can be used for both idealized and 

real data applications and applied to the Arctic domain. The European Reanalysis Interim (ERA-Interim), 

produced by the European Center for Medium-Range Weather Forecasts (ECMWF), was utilized as a 

source of initial and boundary conditions data. ERA-Interim has a T255 resolution (approximately 0.7 o 

x0.7o) and is available at 37 vertical levels for the period from 1979 to present [Dee et al., 2011]. The 

analysis considers output from March 15 at 0000 UTC onwards, in order to allow for a spin up period of at 

least 30 hours for all of the simulations. WRF was integrated for ~180 hours. All runs are made with SST 

and fractional sea ice concentration (SIC) updates every 6 hours. Two domains with 30 km (290×280 grid 

points) and 10 km (400×430 grid points) grid increments were nested via a two-way approach. The initial 

data were interpolated to 33 vertical levels with a top pressure of 10 hPa.
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Figure 4.2: Modeling domains for WRF simulation of cyclogenesis in the case study of March 2011 

cyclone.

4.4 Model Experimental Design

An ensemble set of seven model simulations was obtained by using different initialization times 

was used to identify robustness of the key findings in the March 2011 Arctic cyclone simulation. Each 

ensemble simulation was initialized three hours apart. This setup allowed simulation of the storm using 

perturbed initial conditions. The ensemble simulations utilized identical lateral and surface boundary 

conditions. The first ensemble member was initialized on March 14, 1700 UTC. The last ensemble member 

was initialized on March 15, 1500 UTC. All simulations ran to March 22, 1200 UTC.

Ensemble simulations were conducted for each of the modeling experiments: Control (CTR), 

climatological (CLIM), and no latent heat consumption or release during phase transition processes (DRY). 

Analysis of the ensemble mean was conducted on all three experiments (Table 4.1). The control experiment 
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was configured using unperturbed ERA-Interim atmospheric forcing data for March 2011. Similar 

atmospheric forcing data were utilized for the climatological experiment (CLIM) with the exception that 

the observed SST and SIC were replaced with climatological mean values averaged daily from 1981 to 

2010. SST and SIC data for CLIM was obtained from the NOAA Optimum Interpolation Analysis version 

2 [Reynolds et al., 2002].

Table 4.1: Suite of WRF simulations that were analyzed in this study

CTR CLIM DRY

Sea ice concentration 16 - 22 March 2011
16 - 22 March daily 

climatology 1981-2011
16 - 22 March 2011

SST 16 - 22 March 2011
16 - 22 March daily 

climatology 1982-2011
16 - 22 March 2011

Latent Heat Release Yes Yes No

The latent heat experiment was configured similar to CTR with the exception that the release of 

latent heat was set to 0 at every time step of the integration.

4.5 Model Validation

The model validation presented in this study utilized multiple sources of observational data, 

including surface stations, sounding sites, and reanalysis products. In order to quantify the errors, a 

normalized root mean squared error (NRMSE) was calculated by normalizing the bias to the standard 

deviation (σ0) of the observations as given by: 

where N is the total number of data points, Xs is the simulated value, and xo is the observed value. The model 

validation assessment was performed by using the observed meteorological data of 101 Arctic coastal 

stations for surface air temperature, dew point temperature, sea level pressure, wind direction and speed. 

The simulation with the smallest errors was deemed the best performing one. It is clear from the low 

NRMSE for the Arctic Ocean domain that the WRF simulation with ERA-Interim is realistic in reproducing 

the coastal station data (Fig. 4.3). Wind direction has the highest error.
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The lowest error, hence, closest alignment between simulated and observed data, is found for sea

level pressure and surface air temperature.

Figure 4.3: Normalized Root Mean Square Errors of WRF-simulated surface air temperature (A), dew point 

temperature (B), sea level pressure (C), surface wind speed (D), and direction (E) during March 16 to March 

22 2011.
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The WRF vertical atmospheric profiles from 925 hPa to 100 hPa were validated against three 

radiosonde sites (ENAS, ENBJ, ENJA) in Svalbard and Scandinavia. Table 4.2 summarizes the statistical 

measures of model performance: NRMSE, root mean square errors (RMSE), and unbiased RMSE 

(URMSE) for each of the sounding sites

Table 4.2: Statistical evaluation of WRF-simulated air temperature, dew point temperature, geopotential 

height, and wind speed against five sounding sites: ENAS - Ny-Alesund (78.91N; 11.93E), ENBJ - 

Bjornoya (74.5N; 19.5E), ENJA - Jan Mayen (70.93N; 8.66W).

Air

Temperature

Dew Point

Temperature

Geopotential

Height

Wind

Speed

Correlation

ENAS 0.98 0.97 1 0.86

ENBJ 0.99 0.98 1 0.94

ENJA 0.98 0.96 1 0.78

Air

Temperature (oC)

Dew Point

Temperature (oC)

Geopotential

Height (m)

Wind

Speed (m/s)

RMSE

ENAS 4.53 5.54 64.06 6.05

ENBJ 6.14 11.75 123.11 7.16

ENJA 4.9 8.23 84.85 12.75

URMSE

ENAS 2.28 1.27 34.61 0.44

ENBJ 3.32 4.9 116.9 3.6

ENJA 4.63 7.4 64.63 9.33

Mean Bias

ENAS 3.92 5.39 53.91 6.04

ENBJ 5.17 10.68 38.61 6.19

ENJA -1.6 -3.6 54.98 -8.7

Two WRF vertical profiles obtained on March 16, 1200 UTC and on March 19, 1200 UTC were 

compared against the sounding made at the ENAS station (Fig. 4.4). Given the high correlation coefficients 

and low statistical errors, it can be concluded that WRF realistically reproduced the vertical profiles of the 

atmosphere at the initial (March 16) and mature stage (March 19) of the March 2011 cyclone.
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Figure 4.4: Simulated atmospheric vertical profile (black) and observed (blue) at Ny Alesund (78.92N,

11.9E) valid for March 16 1200 UTC (A) and March 19 1200 UTC (B). The dashed red curve is the wet 

adiabatic curve.

where f denotes the Coriolis parameter, N is the Brunt-Vaisala frequency, z is the vertical distance, and v is 

the horizontal wind vector. EGR is used to localize baroclinic zones both horizontally and vertically within 

the troposphere (Fig. 4.5). Throughout the lifetime of the March 2011 cyclone, the observed baroclinic zone 

extended from ~ 850 hPa to ~ 600 hPa indicating deep baroclinicity. It was found that the maximum values 

of baroclinic instability were between 700-600 hPa prior to the regeneration of Arctic cyclone (Fig. 4.5A, 

4.5B), and between 850-700 hPa after its regeneration (Fig. 4.5C). The lowering of the altitude of the
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4.6 Results and Discussions

4.6.1 Baroclinic Instability

As pointed out by Eady [1949], a number of diagnostic parameters can be used for analyzing

baroclinicity, including the Eady growth rate (EGR), which is employed here (Eq. 4.2). The EGR is given 

as:



maximum baroclinic instability is explained in more detail in Section 4.6.3. The area of increased EGR 

forms a comma shape, characteristic of extratropical low pressure system, and resembles the pattern of the 

maximum surface temperature gradient. EGR is increasing with time corresponding to the deepening of the 

low pressure system and increasing temperature gradient. As the MC and, associated with the MC, the 

warm sector moved poleward, the baroclinic instability in the atmosphere over the Arctic Ocean amplified. 

On March 19, 1200 UTC, the EGR reached its maximum in the East Siberian Sea while the pattern of 

increased EGR assumed the characteristic mid-latitude cyclonic “comma” shape.

Figure 4.5: Simulated Eady growth rate at 700 hPa (Unit: [day-1]) valid for March 17 0600 UTC (A); March

19 1200 UTC (B); March 20 0800 UTC (V).

In the Arctic, increased EGR is associated with amplified baroclinic instability due to the movement

of heat and moisture from the North Atlantic into the Arctic (Fig. 4.6).

Figure 4.6: Simulated heat advection at 500 hPa (Unit: [K s-1]) valid for March 17 0600 UTC (A); March

19 1200 UTC (B); March 20, 0800 UTC (C).
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This advection, in turn, resulted in increased baroclinicity in the Arctic and the prolonged lifecycle 

of the March 2011 cyclone. The following mechanisms were investigated in relation to the increased 

baroclinic instability during the cyclone: Decreased SIC and elevated SST (4.6.2), and latent heat release 

(4.6.3).

4.6.2 Sensitivity to Decreased Sea Ice Concentration and Elevated SST

According to National Snow and Ice Data Center, the observed sea ice extent in March 2011 was 

lower than the 1979-2011 climatology by 1.2 106 km2. Reduced sea ice cover on the Atlantic side of the 

Arctic, and the associated larger open water exposure with relatively warm SST in March 2011 could be 

responsible for providing moisture and heat fluxes that triggered and sustained the development of an 

intense cyclone. To test the validity of this hypothesis, the difference between CTR and CLIM experiments 

were analyzed. In order to capture the impact of sea ice/SST on baroclinicity in the low- and mid-

troposphere during the March 2011 cyclone, the following fields from the output of ensemble mean CTR 

and CLIM simulations were analyzed: turbulent heat fluxes (sensible and latent heat), sea level pressure 

(SLP), surface air temperature (SAT), geopotential height H700, and air temperature at 700 hPa.

By using the NOAA Optimum Interpolation Analysis version 2 sea ice concentration data, the 

difference of observed SST, sea ice concentration averaged over March 16 to March 22, 2011, and SST, 

sea ice concentration averaged over the same days but using the observed data of 1981-2011 were 

computed. Sea ice areal coverage in the Barents Sea is significantly lower in 2011 compared to the 29-year 

climatology (Fig. 4.7B). The difference between the two simulations shows increased SST (Fig. 4.7A) over 

the areas of pronounced sea ice areal decline, primarily over the Barents and Greenland Seas (Fig. 4.7B). 

In the marginal ice zone in the Southern Barents Sea, negative SST differences correspond to openings in 

the sea ice pack in the CLIM cases where SST was higher than in the CTR cases where, due to the wind- 

induced mixing of water, SST was lower.

The reduced sea ice area in March 2011 led to amplified surface turbulent sensible and latent heat 

fluxes (Fig. 4.7E and 4.7C). Positive turbulent heat fluxes are defined upward. The difference between the 

CTR and CLIM experiments shows that sensible and latent heat fluxes were greater in the North Atlantic 

by 50-100 W/m2 (Fig. 4.7E) and 40-50 W/m2 during the March 2011 cyclone as compared to climatology 

(Fig. 4.7F). Increased release of turbulent heat fluxes into the atmospheric boundary layer is found over the 

marginal ice zone along the eastern coast of Greenland and western coast of Novaya Zemlya. Maximum 

differences of 300-400 W/m2 were found along the sea ice edge. Increasing heat and moisture content of 

the boundary layer and the reduction of sea ice caused elevated baroclinic instability in the lower 

atmosphere. The relationship between low-level baroclinicity and surface fluxes is in agreement with Van 
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Loon [1967], who found that a release of latent heat may increase atmospheric baroclinicity. In March 2011, 

elevated SST and turbulent heat fluxes promoted an increase in near-surface air temperatures over the 

eastern Barents and western Kara Seas of 2K (Fig. 4.7G). The greater sea ice area in CLIM diminished 

surface turbulent heat fluxes, thereby, decreasing the heat and moisture content of the air over the Barents- 

Kara Sea region as compared to the CTR case.

Figure 4.7: CTR - CLIM mean difference for SST (Unit: [K]) (A), SIC (Unit: [fraction of 1]) (B), sea level 

pressure (Unit: [hPa]) (C), geopotential height 700 hPa (Unit: [gdm]) (D), latent heat flux (Unit: [W m-2]) 

(E), sensible heat flux (Unit: [W m-2]) (F), surface air temperature (Unit: [K]) (G), temperature at 700 hPa 

(Unit: [K]) (H).

Alternation of sea ice / SST conditions during the March 2011 cyclone stimulated a poleward shift 

of the area of increased baroclinicity (Fig. 4.5). The physical mechanism behind the baroclinicty shift is 

two-fold: (1) Increased surface warming due to reduced sea ice area and increased SST in March 2011, and 

(2) MC driven transport of this heat surplus towards the center of the PC. The increased warming that 

occurred during the March 2011 cyclone shows in the positive air temperature difference along the Eurasian 

Arctic coast and in the mid-Arctic troposphere at 700 hPa (Fig. 4.7G, 4.7H). The maximum difference of 

air temperature over the Laptev Sea reached 6K at the surface and 2K at 700 hPa. The positive air 

temperature difference indicates a more pronounced and long-lasting warm air advection in CTR than in 

CLIM.
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The March 2011 SST and SIC conditions played an important role in intensifying the dynamic 

development of the March 2011 cyclone. As manifested by a deeper surface low in the CTR compared to 

CLIM experiment, warm air advection from the North Atlantic into the Central Arctic caused air column 

stretching along the Eurasian coast. Based on the SLP and geopotential height fields, it can be concluded 

that the reduced SIC and elevated SST resulted in steepening the sea level pressure / geopotential height 

gradient. Negative sea level pressure and 700hPa geopotential height differences of -6 hPa (Fig. 4.7C) and 

-3.5 gdm (Fig. 4.7D) occurred in the center Arctic Ocean while positive SLP and geopotential height 

differences of 2 hPa (Fig. 4.7C) and 3 gdm (Fig. 4.7D) occurred over the Eurasian Arctic Coast on the 

periphery of the March 2011 cyclone. The sea level pressure gradient between the center and periphery was 

over 10 hPa greater in CTR than in CLIM (Fig. 4.7C). Given the pattern and magnitude of the SLP and 

geopotential height mean difference fields, it therefore can be inferred that perturbed SST and SIC 

conditions resulted in cyclonic deepening and amplified cyclonic vorticity (Fig. 4.7C, 4.7D).

In order to investigate the impact of SIC and SST conditions at various phases of the March 2011 

cyclone development, the time series of central sea level pressure in the PC, MC, and RC phase were used 

(Fig. 4.8). In the PC, central SLP was close in magnitude in both CTR and CLIM cases while in the MC, 

central SLP was 5-10 hPa lower in CTR than in CLIM. In the MC, the lower central SLP indicates deeper 

and, hence, a more intense, low pressure system. As such, it can be stated for the MC in CTR that it 

developed under elevated baroclinic instability conditions that were driven by unperturbed SIC and SST 

conditions in CTR.

Based on time series, it was found that the anomalous SIC conditions of March 2011 had an impact 

on cyclonic regeneration. Under modified SIC and SST conditions in CLIM, regeneration of the PC was 

noticeably weaker than in CTR. The rate of deepening of the cyclone after the PC merged with the MC in 

CTR was greater by 10 hPa/12 hours: 35 hPa/12 hours in CTR in contrast 25 hPa/12 hours in CLIM. In 

addition, the time series demonstrated that reduced SIC and elevated SST led to a prolonged lifecycle of 

the March 2011 cyclone. In the CTR case, the RC decayed on March 21 1200 UTC, while in CLIM, the 

RC decayed 36 hours earlier, on March 20 0000 UTC. Also, the merging of the PC and MC occurred 12 

hours earlier in CLIM than in CTR: March 19 0000 UTC in CLIM as opposed to March 19 1200 UTC (Fig. 

4.8). The March 2011 sea ice and SST conditions imposed a profound impact on cyclone dynamic and 

thermodynamic development resulting in elevated baroclinic instability in the lower atmosphere, increased 

near-surface and mid-troposphere warming over the Central and Eurasian Arctic, greater intensity, and a 

more prolonged lifecycle of the cyclone with sea ice conditions observed in March 2011 as compared to 

monthly average March sea ice conditions (1981-2011).
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Figure 4.8: Central sea level pressure (Unit: [hPa]) of the PC and MC in the CTR and CLIM experiments.

4.6.3 Sensitivity to Latent Heat Release

The process of LHR refers to the release of energy as a result of vertical ascent of air, cooling down 

and developing condensation. The hypothesis was that the released latent heat during the condensation of 

warm and moist Atlantic air caused the explosive deepening and regeneration of the March 2011 cyclone. 

In order to test the validity of this hypothesis, simulated LHR in CTR and a series of atmospheric parameters 

simulated in CTR and DRY experiments were analyzed.

To capture the spatial distribution of the maximum released latent heat in the Arctic Ocean during 

the March 2011 cyclone, the simulated LHR in CTR were analyzed. Vertically-integrated LHR fields from 

the surface up to 100 hPa were calculated and analyzed at three times that corresponded to the various 

phases of cyclonic development: The initial phase on March 16 1200 UTC (Fig. 4.9A), the mature phase 

on March 18 2200 UTC (Fig. 4.9B), and the cyclonic decay on March 22 1200 UTC (Fig. 4.9C). The areas 

of maximum latent heat release in the Arctic (Fig. 4.9) encompass the Norwegian-Barents and East-Siberian 

Seas and co-located regions of elevated baroclinic instability (Fig. 4.5). The increased LHR over the ice- 

free Norwegian and Barents Seas is explained by the elevated surface air temperature gradient and ongoing 

condensation of the warm and moist air that was being advected from the North Atlantic during the March 

2011 cyclone. A localized LHR maximum in the East-Siberian Sea occurred on March 18, 2200 UTC 

during the regeneration of the cyclone (Fig. 4.9b). On that day, the release of latent heat was estimated to 
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be roughly 2×109 J kg-1m-2day-1; this amount is comparatively higher than on March 16 (Fig. 4.9A) and 

March 22 (Fig. 4.9C). The increased vertical motion on March 18 2000 UTC was caused by the ascent of 

advected warmer Atlantic air into the cooler Arctic Ocean, its ascent aloft, subsequent cooling, and 

condensation. On March 18 2000 UTC, the maximum vertical wind speed was approximately 0.4 m/s at 

levels 925 hPa up through 500 hPa (Fig. 4.9B). This vertical speed was high compared to the near-zero 

ascent of air on March 16 1200 UTC (Fig. 4.9A) and descent of -0.2 to -0.1 m/s on March 22 1200 UTC 

(Fig. 4.9C).

Figure 4.9: Vertically-integrated latent heat release (Unit: [J kg-1m-2day-1]) valid for March 16 1200 UTC

(a); March 18 1800 UTC (b); March 22 1200 UTC (c) and cross-section of CTR vertical motion (Unit: [m 

s-1]) along (70N, 125E) - (90N, 125E) valid for March 16 1200 UTC (a); March 18 1800 UTC (b); March 

22 1200 UTC (c).

On March 18 2000 UTC, the warm sector of the MC reached the cold-core of the PC that at that 

time, was centered over the East-Siberian Sea. The notable temperature difference between the cold air of 

the PC and warmer, more humid, air of the warm sector of the MC led to the increased ascent of warm and 

moist air aloft and its subsequent condensation. When moisture condensed, the released latent heat added 

additional baroclinic energy into the mid troposphere, increased the temperature gradient between the cold 

and warm sectors of the storm, and reinforced baroclinicity in the low- and mid- troposphere. A rapid spin 
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up of the cyclone, or “seclusion” occurred as LHR was introduced to the PC. By releasing latent heat, air 

in the warm sector became more buoyant resulting in air column stretching, causing increased vorticity.

To assess the vertical distribution of LHR over the East-Siberian Sea, the vertical profile of released 

latent heat at different atmospheric levels from the surface up to 100 hPa for March 18, 2200 UTC was 

analyzed (Fig. 4.10). LHR was maximum at two levels: 925 hPa and 750 hPa with ~2.2×108 J kg-1m-2day-1 

and ~0.5×108 J kg-1m-2day-1, respectively. Owing to the released latent heat and a subsequent increase of 

baroclinic energy aloft, the tropospheric height at which the maximum EGR occurred shifted to 850 - 700 

hPa as pointed out in Section 4.6.1.

Figure 4.10: Vertical profile of released latent heat (Unit [108 J kg-1m-2day-1]) on March 18, 1800 UTC at 

(81N, 125E).

Analysis of the LHR impact on the cyclonic development, before and after the regeneration of the 

cyclone was carried out by investigating the mean difference between DRY and CTR for the following 

variables: SAT; temperature at 700 hPa; SLP; and geopotential height 700 hPa. The CTR-DRY differences 

of air temperature, SLP, and geopotential height fields were near-zero at times prior to the regeneration of 

the PC, indicating an insignificant contribution of LHR to baroclinic energy (Fig. 4.11A-D). In contrast, 

after the regeneration of the PC, the CTR-DRY differences of SLP decreased while those of air temperature 

increased, proving that the release of latent heat aided the development of RC (Fig. 4.11E-H).
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At times after regeneration, the minimum difference of mean SLP between CTR and DRY is 

negative (-12 hPa) while the maximum difference is positive (5 hPa). Similarly, the minimum difference of 

geopotential height at 700 hPa between CTR and DRY is negative (-5 gdm) north of Severnaya Zemlya 

archipelago and positive (3 gdm) over the Canadian Arctic Archipelago (Fig. 4.11B; 4.11D). The pattern 

of negative SLP and geopotential height mean differences encompassed the areas of the Laptev, East 

Siberian Sea, and extended into the Central Arctic Ocean. The negative CTR-DRY differences of SLP and 

geopotential height 700hPa indicated that, owing to LHR, the depth (e.g., intensity) of the March 2011 

cyclone lowered (e.g., increased) in both the near-surface and mid troposphere.

In the Central Arctic Ocean, the heat content increased after the regeneration of the cyclone, as is 

indicated by the CTR-DRY difference of surface and 700 hPa air temperatures. At the surface, the CTR- 

DRY air temperature differences are positive (2-3 K) over the East Siberian Sea and Central Arctic Ocean 

(Fig. 4.11F). The area with positive CTR-DRY air temperature differences has the comma shape 

characteristic of synoptic cyclones (Fig. 4.11G; 4.11H). The maximum CTR-DRY temperature difference 

is found over the North Atlantic with a near-surface air temperature difference of 8K, and over the Northern 

East-Siberian Sea with a difference of 6K.

Figure 4.11: CTR - DRY mean differences for sea level pressure Unit: [hPa]) before (A) and after (E) the 

regeneration; geopotential height at 700 hPa (Unit: [gdm]) before (B) and after (F) the regeneration; surface 

air temperature (Unit: [K]) before (C) and after (G) the regeneration; air temperature at 700 hPa (Unit: [K]) 

before (D) and after (H) the regeneration.
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In order to better capture the timing of LHR impacts on cyclogenesis, the time series of SLP in the 

center of the cyclones (PC, MC, and RC) in CTR and DRY experiments were compared (Fig. 4.12). The 

central SLP of the PC and MC in the DRY case is similar to that in the CTR case indicating that LHR 

negligibly contributed to the baroclinic energy of the cyclone. After regenerating on March 19, in the RC, 

the central SLP was 25 hPa lower in CTR than in DRY. Therefore, LHR that was included in CTR had a 

critical role in the rejuvenation and explosive deepening of the cyclone. Lacking additional baroclinic 

energy from LHR in DRY, the cyclone was unable to re-develop and continued to slowly decay until it 

fully dissipated on March 21. Based on the comparison of the CTR and DRY experiments, the release of 

latent heat had a paramount role in altering the dynamic and thermodynamic structure of the cyclone by 

contributing additional baroclinic energy and increasing the cyclonic lifecycle.

Figure 4.12: Central sea level pressure (Unit: [hPa]) of the PC and MC in the CTR and DRY experiments.
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Chapter 5 Conclusions and Discussions

Arctic storms and sea ice present a complex coupled interaction within the Arctic Climate System. 

This study focused on investigating the physical processes of ocean - sea ice interaction, in the context of 

storm dynamics, occurring within the Arctic atmosphere. Combined climatology and case studies, as well 

as output data from several climate models, were utilized in order to enable the differentiation of processes 

between ones that occur on a climatological scale versus those that are storm-specific. The coupling 

mechanisms of the Arctic sea ice - storm interaction can be separated into two main categories: impact of 

storms on sea ice, and impact of sea ice on storms. The impact of Arctic storms on sea ice is classified as 

dynamic, i.e., related to wind forcing, or thermodynamic, i.e., related to thermal changes of sea ice. Multiple 

findings emerged from the research study into sea ice - storm interaction in the Arctic; these are 

summarized below.

The analysis of the HIRHAM-NAOSIM model output showed the climatological impacts of 

cyclonic forcing on underlying sea ice and ocean in JAS. It was found that JAS Arctic storm count and 

intensity experienced large inter-annual variability with distinct regional characteristics. High storms counts 

were found to occur over the Atlantic side of the Arctic Ocean while fewer storms occurred over the Pacific 

side. In addition, storm intensity was also found to be greater for the cyclones developing over the Atlantic 

side versus the Pacific side of the Arctic Ocean.

Composite analysis indicated that the increased number of JAS storms on the Atlantic side of the 

Arctic Ocean shape a low pressure system that is centered over the Kara Sea. The low pressure system, in 

turn, leads to increased surface winds, ocean circulation, and sea ice drift in the marginal ice zone, increased 

upward heat flux from the ocean into the atmosphere and, ultimately, decreased sea ice concentration (10­

15%) and thickness (10-20 cm) on average. Composite analysis for the Pacific side of the Arctic suggested 

that low pressure forms over the Chukchi Sea causing cyclonic surface winds over the Beaufort-Chukchi- 

East-Siberian Seas, increased ocean circulation and sea ice drift along the coasts, increased upward heat 

fluxes from the ocean into the atmosphere, and reduced sea ice concentration and thickness. On days with 

high number of intense storms, positive SST (0.5-1oC) anomaly over the Barents, Kara, and Beaufort Seas 

was attributed to cyclonically induced sea ice concentration and thickness reduction. During intense storms 

over the Atlantic and Pacific sides of the Arctic, sea ice drift accelerated by approximately 0.1-0.2 m/s as 

compared to climatology. Net surface energy fluxes were positive during periods with both high and low 

numbers of intense storms suggesting that, in JAS, sea ice takes up energy from the atmosphere. On days 

with high numbers of intense storms, the net heat flux was less than on days with low number of intense 

storms; this suggests weakened energy transfer between the atmosphere and sea ice due to sea ice reduction
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and exposure of open water. During JAS in the Arctic, energy transfer between the surface and the 

atmosphere is inhibited due to a weak vertical temperature gradient. The temperature gradient between the 

surface and atmosphere was greater in cases when the underlying surface was sea ice, versus open water. 

This fact explained why the energy exchange was weakened in periods with high numbers of intense storms.

An in-depth analysis of sea ice - storm interaction was conducted for two storms that occurred in 

different seasons (August and March) and over different areas (Atlantic side and Pacific side of the Arctic) 

by employing the sea ice - ocean coupled model CICE-POP. CICE-POP reliably reproduced inter-annual 

sea ice area variability for 1979 to 2011, and the Arctic sea ice concentration, motion, and thickness 

patterns; however, it noticeably overestimated sea ice drift speed. Sea ice concentration was reproduced 

more accurately in summer than in winter as compared to remote sensing data; SIC tended to be 

overestimated in the Atlantic Ocean, and slightly underestimated in the Pacific side of the Arctic.

The March 2011 storm was a deep low pressure system that developed over the Atlantic side of the 

Arctic and resulted in a pronounced sea ice retreat over the Barents and Kara Seas. Cyclonic forcing was 

robust enough to reverse the freeze-up of sea ice and cause it to retreat. The storm-induced reduction of sea 

ice increased the amplitude of fluctuations of surface radiation and turbulent heat fluxes.

The combined dynamic and thermodynamic forcing exerted on sea ice during March 2011 resulted 

in sea ice area loss of 150.000 km2, 80.000 km2 of which was loss due to dynamic forcing. In contrast, 

thermodynamic forcing resulted in a sea ice area gain of 20.000 km2. However, the coupled thermodynamic 

and dynamic forcing that was represented by the control, unperturbed experiment led to more extensive sea 

ice area reduction than that in the thermodynamic experiment. Although there were noticeable fluctuations 

in surface heat energy fluxes, dynamic forcing was deemed to be the main driver for sea ice retreat.

The August 2012 storm was another Arctic low pressure system that caused extensive reduction of 

sea ice concentration. Turbulent heat fluxes underwent the most notable changes during this cyclone. The 

storm developed over Eurasia and moved over the East-Siberian Sea poleward to the Central Arctic. Unlike 

the March 2011 storm where sea ice reduction was predominantly wind-driven, in the case of the August 

2012 storm, sea ice area loss was a result of a combination of dynamic and thermodynamic drivers. The 

total loss of sea ice area over the Beaufort-Chukchi-East-Siberian Seas during the August 2012 cyclone 

was approximately 900.000 km2. Analysis of the sensitivity experiment results showed that dynamic and 

thermodynamic drivers resulted in approximately identical impact. These findings suggest that for the 

August 2012 cyclone, the thermodynamic and dynamic drivers were equally relevant in the deterioration 

of the sea ice pack. The main factors of accelerated sea ice retreat during the cyclone's passage were 

revealed to be increased oceanic heat flux and turbulent heat fluxes.
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To demonstrate that ongoing changes in sea ice and ocean in the Arctic may have an impact on 

storm dynamics, a case study was conducted by employing the ERA-Interim forced WRF model and 

analyzing the output based on the March 2011 storm. WRF yielded realistic and high-resolution simulations 

of storm dynamics. Surface thermal difference between the Gulf Stream waters and the sea ice along the 

coast of Greenland, in conjunction with the presence of a cold-core low pressure system, provided favorable 

conditions for robust baroclinic instability. Sensitivity experiments forced by perturbed boundary forcing 

(SIC and SST were fixed to climatological conditions, averaged over 1981-2011) showed that warm and 

moist air advection from the North Atlantic along the Eurasian coast into the Central Arctic was key for 

storm development. A sustained pattern of warm air advection, increased surface heating due to 

enhancement of the turbulent heat fluxes through cracks and openings in sea ice, and latent heat release of 

condensation in the lower-mid atmosphere, further strengthened the surface temperature gradient and 

allowed continuation of the development of the March 2011 storm. In March 2011, lower than 

climatologically average (1979-2011) sea ice concentration weakened the surface air cooling leading to a 

buildup of additional baroclinic energy. The poleward shift of elevated turbulent heat fluxes, associated 

with diminished sea ice extent and increased SST, contributed an additional source of baroclinic energy 

that enabled the development of secondary mesocyclones. The merger of the parent cyclone with secondary 

mesocyclones resulted in sustained and sufficient baroclinic energy and contributed to a continuous and 

prolonged cyclonic life cycle. Physical analysis of the March 2011 cyclone revealed an increase in poleward 

moisture and latent heat transport, accompanied by an enhancement of cloud cover, and resulted in positive 

downward longwave radiation. A persistent warm air advection poleward occurred concurrently with an 

increased release of surface heat fluxes from open water in the Barents and Kara Sea, making an additional 

contribution to the surface air warming. The cyclonic deepening and regeneration process on March 19, 

2011 was driven by the release of latent heat into the mid-troposphere . The steepening of the temperature 

gradient between the cyclonic core and periphery reinforced baroclinicity aloft. The mechanism led to rapid 

increase in cyclonic vorticity and deepening of the low pressure system.

Arctic storm count and intensity has increased as Arctic Climate has been changing to a warmer 

regime. The poleward movement of the cyclones creates favorable conditions for sea ice reduction in the 

Arctic Ocean. As sea ice retreats, more energy may be supplied for cyclogenesis and generate more intense 

cyclones that can further reduce sea ice area. All in all, while more case studies are recommended to 

determine the role of storm-sea ice interaction in Arctic Climate warming in full climatological scope, the 

findings of this investigation pointed out the fact that storm - sea ice coupling processes, in certain cases, 

may increase the pace of Arctic surface air warming.
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