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Abstract

The magnitude and spatio-temporal patterns of particulate material flux from the surface 

ocean through mesopelagic and bathypelagic depths determines sequestration of 

atmospheric carbon and the food supplied to deep-dwelling ocean life. The factors that 

influence how and where this organic material is exported from euphotic depths are 

poorly understood. Zooplankton are thought to play a key role in modulating the transport 

of surface-produced particles to depths through consumption, fragmentation, active diel 

vertical migration, and fecal pellet production, thus it is important to study both 

particulate matter and zooplankton in tandem. In this study, I use an in-situ optical 

instrument, the Underwater Video Profiler 5 (UVP5), to describe broad scale patterns of 

large (> 100 μm) particles and zooplankton across a longitudinal transect of the Pacific 

Ocean during April to June 2015. Satellite-derived surface chlorophyll-a was employed 

to describe the timescales over which particles arrive in meso- and bathypelagic depths 

after a productivity peak. High abundances and volumes of particles are noticeable 

beyond the euphotic zone across the Equator, transition zone, and the sub-arctic Pacific, 

indicating increased export in these high-nutrient low-chlorophyll (HNLC) areas. In two 

of these areas, the Equator and transition zone, large abundances and volumes of particles 

extend into bathypelagic depths. High abundances of zooplankton were seen in all areas 

where high abundances of particles are seen in bathypelagic waters. Rhizaria were 

revealed to be pervasive across all biogeographic regions, and appear to play a role in 

particle attenuation in the sub-arctic Pacific. The insight into patterns between particles, 

zooplankton, and productivity identify HNLC regions as deserving more detailed 

examination in future studies of biological pump efficiency.
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Introduction

Increasingly, one of the tasks of oceanographers is to predict the impact of climate 

change on marine ecosystems and these systems' ability to regulate increasing 

atmospheric carbon dioxide (CO2). The ocean has, and will, continue to serve as a 

reservoir for carbon over long time scales, from hundreds to thousands of years. Carbon's 

fates are determined by the vertical flux of both dissolved and particulate material by 

both physical and biological pumps (Sarmiento and Gruber 2006). The physical carbon 

pump refers to the movement of dissolved inorganic carbon (DIC) from the surface to the 

interior of the ocean via physical movement of water parcels. The biological pump 

encompasses the set of processes by which DIC in surface waters is transformed by 

photosynthesis into particulate organic carbon (POC) and dissolved organic carbon 

(DOC), both of which have a variety of fates. A portion of this organic matter is 

transported out of the euphotic zone in the form of particles to deeper layers of the ocean 

and an even smaller amount eventually reaches the ocean floor. Carbon exported to depth 

from the euphotic zone is considered sequestered, at least until it cycles back to the 

surface. These pumps facilitate the ocean's role as a long-term ‘storage-unit' for CO2, 

helping mitigate changes in atmospheric CO2 (Sarmiento and Le Quere 1996). It is 

estimated that without the influence of the ocean's biological pump, the concentration of 

CO2 in the atmosphere would be at least 150ppm higher than current levels (Sarmiento 

and Toggweiler 1984; Maier-reimer et al. 1996).

Carbon in the form of particles can move quickly through the water column 

allowing for storage in deep waters. The term particle vaguely describes anything that can 

be trapped on a filter or mesh, spanning sizes from about 0.02μm to centimeters in 
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diameter. This description encompasses both living organisms (i.e., zooplankton, 

phytoplankton, bacteria and archaea) and non-living organic matter (i.e., marine snow 

and detritus), as well as lithogenic matter and other inorganic minerals (Stemmann and 

Boss 2012a).

For society to prepare for the changes in the carbon cycle ahead, it is imperative 

to understand the mechanisms responsible for variation in both the physical and 

biological pumps so as to quantify the ocean's uptake and storage of carbon. The 

variation in the strength of the two pumps arises due to the differences in both physical 

dynamics, such as temperature and mixing, as well as biological dynamics, such as 

primary production and heterotrophic activity. Concerns about climate change are 

motivating multinational investigations into the carbon cycle including, most recently (in 

2018), the NASA-funded ‘Export Processes in the Ocean from RemoTe Sensing' 

(EXPORTS) to “develop a predictive understanding of the export and fate of global 

ocean net primary production and its implication(s)” (Siegel et al. 2016).

Constraining both the physical and biological pumps is a complex undertaking. 

The physical carbon pump is a transport mechanism relying on the solubility of gases in 

seawater: gases are more soluble at lower temperatures and under greater pressure, 

resulting in the deep ocean acting as a large storage compartment for CO2. Comparisons 

among models of the physical carbon pump suggest that the major difference in CO2 

sequestration estimates is related to how deep-water formation is handled within each 

model (Toggweiler et al. 2003). Models of the biological pump are more poorly 

constrained than those of the physical pump. The fate of material generated by primary 

production in surface waters is impacted by higher trophic levels, aggregation and 
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fragmentation processes, as well as remineralization. Transport of material out of the 

surface ocean by the biological pump consists of three main mechanisms: passive sinking 

of POC, transport by animals including zooplankton, and mixing of dissolved organic 

matter (Volk and Hoffert 1985). Aggregation and fragmentation of particles are important 

components of the numerous and interrelated processes which influence the rate at which 

material sinks (De La Rocha and Passow 2007). These sinking rates are estimated using 

Stokes' Law, which predicts that larger and denser particles sink faster than smaller, less 

dense particles. The speed at which particles sink is of fundamental importance because 

the majority of remineralization of POC and other biological interactions with particles 

occur in the top 1000 meters of the ocean (Martin et al. 1987; Burd and Jackson 2009). 

The faster particles sink through these depths, the lower the chances of their 

remineralization and fragmentation into DIC and DOC, and the greater their probability 

of long term carbon storage.
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Figure 1. Biological pump schematic. A simplified depiction of the biological carbon 
pump. Red arrows indicate aggregation, dark blue arrows indicate disaggregation, light 
blue arrows remineralization from POC to DOC, and black arrows indicate sinking. 
Suspended material, shown in green, includes small phytoplankton, particles produced 
locally, and non-sinking lithogenic particles. Sinking aggregates are shown in brown, and 
comprise of phytoplankton, fecal pellets, and lithogenic ballasting material. [From Lam 
& Marchal 2015]
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Unfortunately, it is difficult - if not impossible - to pinpoint the biologically- 

influenced particle transformation processes such as sloppy feeding (disaggregation) or 

fecal pellet production (aggregation) by zooplankton. To better understand these 

transformation processes, efforts have focused on either regionalizing the 

parameterization of export processes (e.g. Boyd and Trull 2007) or describing the 

distribution of particles and zooplankton, both vertically throughout the water column 

and spatially across large distances (e.g. Jackson et al. 1997; Guidi et al. 2008). With 

filtration techniques and sediment trap collection, particles are examined in the laboratory 

by sizing particles, classifying type (by morphology or source), and finding chemical 

composition in addition to their concentration. Optical instruments have the advantage of 

quick size analysis, but lack composition data without further effort. Comparisons of 

biogeochemical models attempting to constrain the biological pump using the size and 

composition of particles have also highlighted the importance of aggregation processes 

that increase particle size, as well as the composition of the zooplankton community, 

although the specific role of each zooplankton taxa remains elusive (Stemmann et al. 

2004a; Gehlen et al. 2006).

Due to the complexity of interactions between zooplankton and particles, studies 

that couple the analysis of both, along with other physical and biological data, are 

essential to describe the influence of zooplankton on particle export. Zooplankton transfer 

carbon and other elements from surface waters to depth in two main ways: passively 

through fecal pellets sinking and actively when vertically migrating animals release 

carbon that was originally ingested in shallower waters into deep waters via respiration 

and excretion/defecation. In addition, the forces exerted by the swimming motion of 
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zooplankton can also affect the particulate matter they pass that is otherwise passively 

sinking. For example, the swimming action of euphausiids can fragment particles passing 

within 8-10 mm of them, thereby increasing the number of particles and decreasing 

particle size along the pathway of their daily vertical migration (Dilling and Alldredge 

2000). Presumably, the diel migrations by other zooplankton also have the potential to 

tear apart larger particles and therefore slow down their sinking rate.

Different ingestion mechanisms by zooplankton also have varying effects on the 

size of particles, which in turn impact the flux of material. Ingestion mechanisms are 

broadly described by zooplankton taxa. Predatory zooplankton, including chaetognaths 

and some crustaceans, target other plankton and particles and tend to engulf their prey, 

removing these large particles from the water column and driving down the mean size of 

particles present. Filter-feeders, such as suspension-feeding copepods, pteropods, and 

larvaceans, coagulate small particles and repackage them into larger parcels. Larvaceans 

and pteropods produce large mucus structures, collecting small particles into a larger 

mass during filtration. These structures are sometimes discarded, and end up making up a 

significant portion of large marine particles known as ‘marine snow' (Alldredge 2005). 

Copepods and other zooplankton that actively ‘sweep' the water column using comb-like 

appendages are able to tease out small particles from the water column before ingestion, 

repackaging and egestion of material as fecal pellets. In food-rich environments, many of 

these fecal pellets can contain densely packed, poorly-digested particulate organic matter 

that is able to sink quickly once egested.

Fecal pellets make up significant portions of the total flux of POC to depth in 

different regions, though their source and magnitude are highly variable. Copepods and 
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euphausiids produce fecal pellets that have high sinking rates, but while they typically 

dominate zooplankton communities, their fecal pellets' contribution to export and 

sequestration flux is highly variable and dependent on the type and concentration of food 

present (Turner 2002). Pelagic tunicates have been shown to contribute substantially to 

pellet flux when they are abundant (Madin et al. 1982, Gorksy and Fenaux 1998). 

Similarly, pteropods create a large mucus structure that is reingested, then later released 

in pellet form, with their pellets contributing as much as 10-30% of the total POC flux to 

180 m annually in Terra Nova Bay, Ross Sea (Manno et al. 2010). Even fecal pellets 

from chaetognaths can contribute up to 12% of total vertical carbon flux to 360 m depth 

in the Lazarev Sea (Giesecke et al. 2010). Phaeodarians, a member of the large protist 

Rhizaria taxa, have recently been able to intercept > 20% of sinking particles before they 

reach a depth of 300 m in the California Current system (Stukel et al. 2018). These 

examples reinforce the idea that zooplankton community composition plays a key role in 

particle export.

The biological pump is described as varying in both magnitude (strength) and 

remineralization length scale (transfer efficiency) of POC flux (Lam and Marchal 2015). 

Multiple approaches have been taken to estimate both the strength and transfer efficiency. 

Until recently, most of the decrease in particle flux through mesopelagic depths was 

estimated using a single parameterization of POC flux vs depth (Martin et al. 1987), or 

quantification and examination of particles from sediment traps deployed at depths 

beyond 1000 meters (Honjo et al. 2008). Currently, sinking particles are studied in 

various ways, including in situ bottle collection or pumping (Trull and Armand 2001; 

Savoye et al. 2008), sediment traps (Honjo et al. 1987; von Bodungen et al. 1995), optical 
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instruments (McDonnell and Buesseler 2012), and combinations of these methods (Guidi 

et al. 2008; McDonnell and Buesseler 2010). Each method has different strengths and 

weaknesses to be balanced or combined to reach desired research goals (McDonnell et al. 

2015). Chemical measurements on particles, such as the disequilbrium of 234Thorium 

relative to its parent 238Uranium, are used for estimating export fluxes. Buesseler and 

Boyd (2009) introduced new useful parameters to describe POC flux out of the euphotic 

zone relative to net primary production (Ez-ratio) and the ratio of flux of POC 100m 

below the depth of the euphotic zone (Ez) to POC flux at Ez (T100). These terms have 

helped to characterize the spatial and temporal patterns of surface export and subsurface 

flux attenuation, however, different methods result in often contradictory evidence. 

Satellite data (chlorophyll and sea surface temperature) combined with algorithms 

developed from deep-moored sediment traps and flux derived from 234Th disequilibria 

data suggest that attenuation of particles happens most rapidly in cold waters at high 

latitudes (Henson et al. 2012). In contrast, Marsay et al (2014), combined deep sediment 

trap fluxes from neutrally-buoyant sediment traps (NBSTs) with climatological satellite 

temperature data and found that colder waters and higher latitudes correlate with 

increased transport efficiency and slower attenuation of particles with depth (See Figure 3 

in Marsay et al. 2014). Although rationale has been suggested to resolve this apparent 

disagreement, the prevalence of contradictory evidence about POC flux highlights the 

need for larger scale measurements of particles than are possible with sediment traps and 

thorium data. Thorium and sediment trap data are limited in particular by the logistics 

and wire time necessary to deploy and recover the required equipment.
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There has been, until now, no data gathered on the size, abundance, and type of 

particles present throughout the entire water column across large scales in the ocean. 

With the development of in situ imaging systems, the spatial and temporal resolution of 

particle distribution, type, and size has substantially increased. The Underwater Vision 

Profiler 5 (UVP5) is one such instrument used to describe patterns in particles and 

zooplankton with high spatial resolution (Picheral et al. 2010; Forest et al. 2012; 

Stemmann and Boss 2012b; Biard et al. 2016; Guidi et al. 2016; Ramondenc et al. 2016). 

This instrument samples at finer spatial and temporal scales than more conventional 

methodologies such as net tows, bottle sampling, and in situ pumps, and can provide new 

observations of particle and zooplankton distributions and processes in the mesopelagic 

and bathypelagic zones. In situ imaging systems such as the UVP5 also avoid biases 

attributed to sediment traps related to hydrodynamics, zooplankton, and solubilization of 

POC (Buesseler et al. 2007). The UVP5 can be deployed across large areas allowing for 

snapshots of particles and zooplankton on scales difficult to access by other methods.

This study provides a full-ocean-depth ‘snapshot' of particles and zooplankton 

within the water column that represent the accumulation of material present within the 

water column from events that happened over the past few weeks to months. The particle 

size distribution (PSD) revealed here are the final reflection of patterns in aggregation 

and fragmentation of particles (Burd and Jackson 2009). The first objective of this study 

is to qualitatively describe the size structure, abundance, and volume of particles through 

the water column across a large, diverse seascape in order to illuminate patterns in 

zooplankton communities synonymously with particles. The second objective is to 

enumerate broadscale features that can lead to mechanistic insight into vertical carbon 

9



pumping within the ocean. This study utilizes data collected via the UVP5 in conjunction 

with readily-available satellite imagery to describe productivity, particle, and 

zooplankton patterns across a large swath of the Pacific Ocean. By looking at the patterns 

in productivity that coincide with the time of the collection of these data, I describe the 

time that it takes for particles to be injected into sub-surface layers following a 

phytoplankton peak, and role that zooplankton communities may play. Broad-scale 

collection of information about particle dynamics across diverse regions, such as this 

study provides, enhances our understanding of the underlying processes contributing to 

this important carbon export pathway.
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Methods

Study Area and Sampling Strategy

The dataset herein was gathered during the CLIVAR repeat hydrography cruise

P16N in 2015 (Figure 2). These data cover a large study area, spanning from 16°S to 

56°N along the 150°W line of longitude sampled from April 10 to June 27, 2015. There 

are extremely diverse ecoregions within this span, including the Equatorial Pacific, North 

Pacific Gyre, and the sub-polar Gulf of Alaska. These diverse biogeographic regions have 

unique productivity and plankton communities which can impact particle flux. Highly- 

productive open ocean regions, such as the Equatorial Pacific, have the potential to 

contribute to carbon sequestration at a larger scale than subtropical regions, but this 

potential is more vulnerable to shifts in vertical mixing than corresponding changes at 

high latitudes (Antia et al. 2001). The oligotrophic North Pacific has low productivity due 

to low nutrient availability, and is therefore unlikely to be a region with high particle 

export. The transition zone is a highly variable area that spans the area between the 

northern extent of the North Pacific gyre and the southern boundary of the sub-Arctic 

gyre; here, we consider the bounds to be 35°N to 42°N, where the surface temperature 

during the sampling period was 15°C, and notably different than temperatures to the 

South and North. Both the transition zone and sub-Arctic Pacific are broadly described as 

high-nutrient low-chlorophyll (HNLC) regions. Recent evidence indicates that the North 

Pacific, although considered to have low seasonality and low production, could be highly 

productive in terms of carbon despite lacking a significant seasonal chlorophyll peak 

(Westberry et al. 2016). Data from long-term oceanographic station P indicate El Nino 

events increase particle flux (Wong et al. 1999) but the strength and transfer efficiency of 

the biological pump in this region remains elusive.
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CTD casts to full ocean depth were performed at a distance of 0.5° latitude 

separation, with the exception 2°S to 2°N where tighter sampling occurred. The UVP5 

was incorporated onto the CTD-rosette package and programmed to start and end 

acquisition based upon the instrument's internal pressure sensor. This resulted in 170 

full-depth profiles parsed into 10-meter bin resolution, except where battery faults 

occurred, across the transect.

Figure 2. Station Map of P16N CLIVAR repeat hydrography cruise. Stations sampled 
with the UVP during the 2015 P16N CLIVAR repeat hydrography cruise. Black lines 
indicate the boundaries of biogeographic regions as described by Longhurst 
(2007):Pacific Sub-Arctic Gyre (PSAG), North Pacific Polar Front (NPPF), North Pacific 
Tropical Gyre (NPTG), North Pacific Equatorial Countercurrent (PNEC), Pacific 
Equatorial Divergence (PEQD), and South Pacific Subtropical Gyre (SPSG).
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Data Collection and Processing

The Underwater Vision Profiler 5 (UVP5) is an in-situ autonomous underwater 

imaging instrument that collects particle size distribution data for particles 0.06 mm to 

2.7 mm in diameter. The technical specifications and initial processing protocols for the 

UVP5 are described in Picheral et al (2010). The UVP5 used in the present study, serial 

number 009, was developed to withstand full ocean depth-pressure (6000m) and to be 

mounted on various CTD rosette frames. When deployed in mixed-processing mode the 

UVP5 measures and records the size and greyscale level of all objects >100 μm. 

Vignettes (extracted individual images) of all objects >500 μm in size are stored on 

internal memory for further analysis. Images were recorded at a frequency of 6 Hz.

The light from the UVP flash is known to distort the edges of imaged particles 

and make them appear larger, particularly for smaller objects; this bias was accounted for 

during the conversion from pixels to mm2 using the power function: Am=0.0032*Ap1.36 

where Am is the area in mm2 and Ap is the area of the photographed particle in pixels. 

The constants 0.0032 and 1.36 were found through tandem deployment of this specific 

UVP5 with a previously calibrated UVP5 performed by immersion in a tank with known 

sized particles (see Picheral et al. 2010). Each UVP5 has a slightly different volume per 

image, the volume determined for our unit was 0.94L. These calibration factors have 

since been re-calculated, and will be updated before archiving of the final data. Thus, the 

results presented here show slightly lower numerical abundances than will be shown with 

final results. Equivalent spherical diameter (ESD) was calculated using the area in mm2 

of the 2-dimensional shapes captured in the image:

ESD = 2√Am /π
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Volume was calculated from ESD assuming spherical particles:

Volume (mm3) = πESD3∕6

Data from the UVP were processed and downloaded utilizing Zooprocess, a 

macro plugin software for the Java-based Image-J image-processing program. Only 

downcast data were used for both image sorting and particle volume analysis. A custom 

MATLAB script calculated the mean size of particle present in 10 meter depth intervals 

for each station using raw data produced by the instrument (Turner 2015 see Appendix). 

An update to the original script included the calculation of total volume of particles 

within each 10 meter bin for particles larger than 161 μm. Anomalous values of volume 

were excluded from plotting if they were 100 times larger than the volume present in 

either the bin above or below. These values represented rare large particles, often 

jellyfish, that are not representative of large scale patterns.

Image Sorting

Image sorting was accomplished using newly-developed machine-learning 

software EcoTaxa (Picheral et al. 2017). This tool utilized a validated training set of 

images to generate predicted image identities from the unsorted P16N CLIVAR dataset. 

After the initial prediction process was completed, images were manually validated. The 

manually-validated images were then be used to re-predict image identities of 

unvalidated images within the same dataset. The initial learning set used to predict 

images was provided by Marc Picheral, with an additional learning set provided by 

Tristan Biard from a California Current Ecosystem Long Term Ecological Research 

(CCE-LTER) cruise.
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Figure 3 - Examples of zooplankton images captured by the UVP5. Images were 
collected during the 2015 P16N CLIVAR cruise from each sorted category: a) Crustacea 
(general), b) Gelatinous, c) Chaetognatha, d) Rhizaria, e) Annelida, f) Mollusca, g) Other 
(unknown), h) Copepoda.

The image categories chosen for this project spanned numerous zooplankton 

groups plus general ‘detritus'. The zooplankton categories used for this project were 

Annelida, Chaetognatha, Copepoda, (other) Crustacea, gelatinous, Mollusca, Rhizaria, 

and other (Figure 3). The gelatinous category included the following subcategories: 

Siphonophorae, Hydrozoa, Ctenophora, and Tunicata. The rhizaria category included the 

following subcategories: Acantharea, Aulacantha, Aulosphaeridae, Collodaria, collonial, 

solitaryblack, solitaryfuzzy, solitaryglobule, and solitarygrey. These groups were chosen 

based on images sorted into these categories by other EcoTaxa projects and previously 

published work (Picheral et al. 2010; Biard et al. 2016).
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The total number of images stored by the UVP during the 152°W northern 

transect of the P16N cruise numbered nearly 400,000. Initially, three areas were selected 

for image sorting associated with interesting features in the (unsorted) particle size 

structure. All images were sorted from stations located within these three regions: 1.5°S 

to 1.5°N (equatorial), 15°N-25°N (oligotrophic gyre), and 38°N-42°N (part of the North 

Pacific Polar Front, NPPF - Figure 2). This approach left large latitudinal gaps in the 

dataset with no validated zooplankton data, so every fifth station outside of those initial 

regions underwent zooplankton image validation. Ultimately, over 235,000 images were 

sorted and validated, representing 59.7% of all images collected across the transect.

Using Data from Ecotaxa Database

After vignettes were validated, data were exported from the Ecotaxa database in 

station files containing information on each vignette such as validation status, image 

category, depth (meters), and object area (pixels - Ap). MATLAB scripts found in 

Appendix counted the number of each type of validated zooplankton present in 1 meter 

intervals at each sampled station. A MATLAB database that contained the volume of 

water imaged within each depth interval was provided by Marc Picheral, as this was not 

(at the time) part of the direct Ecotaxa export.

The abundance of particles in each size class were downloaded from the Ecotaxa 

particle database in detailed form, ODV format (see Appendix). Total abundance of 

particles was produced by summation of sizes classes at each station before plotting in 

Ocean Data View (ODV).
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where n represents the count of zooplankton. A threshold of 0.50 uncertainty was 

selected to determine the most appropriate vertical bin sizes for zooplankton abundance 

comparisons, with the goal to preserve as much vertical resolution as possible. This 

approach resulted in vastly different vertical bin sizes, particularly in the top 200 meters, 

among biogeographic regions: as high as 10 meter resolution in PSAG to as low as 100 

meter resolution in NPTG. To directly compare zooplankton abundances between 

biogeographic regions, we selected the lower of these resolutions for the reporting of data 

in this study. The number of zooplankton imaged (Zi) was divided by the volume of 

water imaged (Vi) to calculate zooplankton abundance (AZoo) in each vertical depth bin:

17

Calculation of Zooplankton Abundance

The water column was divided into vertical intervals (bins) scaled in range to maintain 

statistically-relevant counts of zooplankton. Zooplankton counts were considered to 

follow a Poisson distribution with an uncertainty of:

Satellite- Derived Chlorophyll-a

Surface chlorophyll-a data gathered by MODIS-Aqua and averaged across 8-days

at 0.5° resolution was downloaded from the NASA Ocean Color website. This data 

represents an estimate of phytoplankton living in surface waters. Gaps in data were 

frequent, due to cloud cover. Peaks in surface chlorophyll-a were identified as values at a 

latitude that were at least twice the median of chlorophyll present at that latitude between 

April 7-June 10, 2015.



Results

Patterns in Particle Abundance, Size, Volume, and PSD

There were two locations where increased abundances of large particles were 

present in bathypelagic depths: around the equator and at 38°-45°N (Figure 4). Elevated 

abundances of particles were encountered around 53°-55°N, however, depths beyond 

2000 meters were not consistently sampled in this area, so confirmation of particles 

though bathypelagic depths cannot be confirmed. Both microscopic particles (MiPs) 

0.163-0.203 μm in size and macroscopic particles (MaPs) sized between 0.203 - 2.58 mm 

show higher abundances around the equator, at 38-40°N, and at 53°-55°N, the same 

patterns reflected in total particle abundance; both MiPs and MaPs are driving these 

patterns. MaPs and MiPs were abundant into bathypelagic depths around 53°-55°N, but 

the abundance of particles in the euphotic zone was much lower than in other regions 

where MiPs and MaPs were abundant to deeper depths. Mean particle size was largest in 

northern latitudes, particularly north of 40° (Figure 7). Larger mean sizes were most 

noticeable around the equator, north of 40°N and 53°-55°N.

Similar to the patterns of total particle abundance, there were two regions with 

elevated volumes of particles through bathypelagic depths: around the equator and 40°- 

43°N. A high volume of particles was also seen between 53°-56°N but, again for the 

reasons stated before, this pattern could only be confirmed to around 2000m (Figure 8). 

The penetration of large volumes of particles was strongest north of 40°N, weaker around 

the equator and there was no particle penetration observed within the oligotrophic gyres.
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Figure 4. Total particle abundance. Total abundace of large (0.161-2.58 mm) particles 
(#/L) across the 2015 P16N CLIVAR cruise.

Figure 5. Microscopic particles (0.161-0.203 mm) abundance (#/L). MiPs during the 
2015 P16N CLIVAR cruise.
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Figure 6. Macroscopic particles (0.203-2.58mm) abundance (#/L). MaPs during the 2015 
P16N CLIVAR cruise.

Figure 7. Mean size (mm) of particles.
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Figure 8. Particle volume (mm3 L-1). Total particle volume during the 2015 P16N 
CLIVAR cruise.

Patterns in Satellite-derived Surface Chlorophyll-a

Satellite imagery of surface chlorophyll-a showed bands of productivity 

throughout the sampling period (Figure 9), with higher surface chlorophyll-a along the 

equator and north of the oligotrophic North Pacific Gyre. The adaptive threshold of 

chlorophyll increases highlights four distinct times and regions where peaks in 

chlorophyll-a were present, indicating a phytoplankton peak: April 7-14, 2015 from 38°- 

40°N, May 1-8 around 42.5°N, and June 2-9, 2015 at both 45-46°N and 51°-53°N. Of 

particular interest is the time between when these peaks occurred and when the ship 

arrived and sampled the area. The peak at 38°-40°N occurred about eight weeks prior to 

the ship's arrival, in stark contrast to the ship's arrival about one week after the peak at 

51-53°N. The ship arrived at the location of the 42.5°N peak four weeks after the peak 

took place and was present for the end of the peak 45-46°N, within a week after this 

chlorophyll max.
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Figure 9. Surface Chlorophyl-a with cruise track. The 2015 P16N CLIVAR cruise track 
(red dots) superimposed across 8-day average satellite derived surface chlorophyll, with 
warmer colors indicating higher chlorophyll values. Chlorophyll values that were twice 
the median of values at the same latitude during the time which the cruise took place are 
highlighted with black boxes.

Patterns in Zooplankton Distribution and Abundance

Zooplankton tended to be most abundant in surface waters (<100m) and at higher 

latitudes across the transect. In the northernmost biogeographic region (>45°N - PSAG), 

high abundances of zooplankton were found in the upper mesopelagic to 500 meters 

(Figure 10); abundances in this region reached over 50 individuals m-3. Three other 

regions showed noticeably high zooplankton abundances: 38-45°N (NPPF), 5°-11°N 

(PNEC), and 5°S to 5°N (PEQD). Significant regional variation within zooplankton 

abundance (# m-3) both in the top 100 m and 500 m was confirmed by one-way ANOVA 

(p-value < 0.01), with higher abundances in PSAG identified by the multicompare
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function in MATLAB. These bands of high zooplankton abundance were found in 

conjunction with productivity patterns (see Figure 9).

Figure 10. Zooplankton abundance (#/m3). Abundance of zooplankton across the 2015 
P16N CLIVAR cruise transect of the Pacific Ocean. The biogeographic zones, in 
accordance with those described by Longhurst (2007), are labeled above the plot.

Community composition of zooplankton varied across biogeographic region and 

depth (Figure 11). Rhizaria dominated the majority of regions and depths with a 

noticeable exception within PSAG surface waters, where copepods and other crustaceans 

were the most numerically abundant. Rhizarians, copepods, and crustaceans made up 

over 75% of the community composition of readily identifiable zooplankton across all 

d /Users/jessicapretty/Documents/OMDAVT/LPA16B_/SNeocvtieomnb.serc_Data_Wojrekss/iUcappdraettetdy_@0pJte5ss_ibcian-sPNroetvt2y8s 

drove most of the variability observed in the latitudinal zooplankton distribution (Figure 

12). Although dwarfed in abundance by the more numerous taxa, others group such as 
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annelids, chaetognaths, and gelatinous zooplankton displayed particularly patchy 

abundances and tend to be more common at depths below 200 meters.

Figure 11. Zooplankton community composition. The relative contribution of 
zooplankton categories separated by biogeographic region and depth along the 2015 
P16N CLIVAR transect. The contribution is defined as percentage of zooplankter within 
a depth bin, with circle size scaled to reflect average abundance within each region and 
depth bin. The largest average abundance (PSAG 0-100 meters) was 37.3 individuals/m3, 
and the smallest abundance (NPTG > 500 meters) was 1.7 individuals/m3.
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Figure 12. Abundance of zooplankton taxa. Abundance of zooplankton categories in the 
upper 1500m across the 2015 P16N CLIVAR transect of the Pacific Ocean. Note the 
different scales of abundance for each type of zooplankton: Annelida, Chaetognatha, and 
gelaintous abundances are enumerated using much smaller ranges than those for 
Copepoda, (other) Crustacea, and Rhizaria.
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Discussion

The timing and large area covered by these data offer a unique snapshot of a large 

swath of the Pacific Ocean during an important time of year both for production, and 

carbon burial. By examining patterns in particles, productivity, and zooplankton, I aimed 

to determine whether large spatial patterns are present using optical and remote sensing 

methods. The dataset introduced here encompasses biologically and geographically 

diverse areas of the ocean and, to my knowledge, offers the first trans-Pacific, full-ocean- 

depth description of particle size and abundance.

Patterns in Particles Across the Pacific

Two regions contain large particles in bathypelagic waters indicating increased 

biological pump efficiency: beneath the equator (PEQD) and the transition zone (NPPF). 

The sub-Arctic Pacific (PSAG) appears to be developing a similar pattern, but particles 

are only present into the mesopelagic, which could be a result of either timing or an 

indication of strong mid-water column attenuation. This distinction among regions during 

the spring peak offers a unique perspective into time scales between phytoplankton peaks 

and the penetration of particles.

By examining a subset of the overall transect and focusing on the transition zone 

(NPPF) of the Pacific Ocean, this dataset captures four distinct time scales from satellite­

chlorophyll peaks to when the ship arrived in the area to sample: 1) 7-8 weeks, when 

particles have reached deep waters all the way to the ocean floor in high numbers, but a 

high volume of particles was not present, 2) 4 weeks, when both abundance and volume 

of particles to the ocean floor were noticeably higher, 3) 1 week, when both abundance 

and volume of particles were high to nearly 1500 meters, but both droped off rapidly with 
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increasing depth, and 4) no lag time, when the ship was sampling during the 

phytoplankton peak and neither abundance or volume were elevated. These observed 

patterns suggest that large particulate matter, created in the euphotic zone, sinks through 

the mesopelagic zone within a week. Within four weeks after a peak, material has made it 

to the seafloor. By 6-8 weeks after a phytoplankton peak the majority of material has 

been remineralized or disaggregated. These observations are consistent with the lower 

limit of estimated sinking speed, 175 meters day-1 at Station P (Wong et al. 1999). In 

contrast, in the North Atlantic, the sinking speed of large particles has been estimated at 

75 meters day-1 (Briggs et al. 2011), suggesting there could be major differences in 

sinking speed of particles in different ocean basins. Briggs et al. (2011) interpreted 

glider-mounted optics to estimate aggregate sinking speeds, while Wong et al. (1999) 

calculated sinking rates from sediment traps. These methodological differences could be 

the cause for differing sinking rate estimates. These differences may also arise due to the 

type of aggregates that are sinking, or the zooplankton communities present within each 

region (Taucher et al. 2018). How quickly material sinks through the water column can 

be both directly and indirectly affected by zooplankton, so patterns in zooplankton 

abundance and composition need to be considered to help understand why some regions 

have particles in bathypelagic waters, while others do not.

Patterns in Zooplankton Across the Pacific

This dataset offers a unique opportunity to look at pelagic deep ocean 

zooplankton in addition to the typically-sampled depths near the euphotic zone. 

Zooplankton across this transect of the Pacific are mainly concentrated within and just 

below the euphotic zone, which is an expected pattern since zooplankton rely on
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production from surface layers for food. The counts of zooplankton in bathypelagic 

depths are low, which does not allow for statistically relevant descriptions of abundance 

or community composition between biogeographic regions, but instead are discussed as a 

single, deep region. Gelatinous zooplankton, chaetognaths, and annelids all appear to 

have patchy abundances in these deep waters, though this apparent ‘patchiness' could be 

a direct result of the low counts. The UVP may sample too small a volume to describe 

deep, dilute zooplankton populations, especially at the higher speeds a CTD rosette 

typically travels in deep water (~60 meters/minute), but the paucity of available data on 

bathypelagic zooplankton populations still leaves something to be gained from the 

information gathered. With further analysis of this dataset, and the sorting images from 

more stations, it may be possible to gain a better picture of the depths are which taxa are 

most commonly found, and particularly beyond the depths most commonly sampled with 

net tows.

An important pattern discovered within the zooplankton was the large numerical 

contribution of rhizarians to the zooplankton community across all depths and nearly all 

biogeographic regions. This is a surprising finding since crustaceans, and usually 

copepods, are thought to dominate zooplankton communities. This finding merits further 

scrutiny, so we compared UVP data with net tow abundances form occasion when both 

were deployed at the same station.

The data available for such comparsion between UVP zooplankton and net- 

gathered zooplankton data come from the Spring 2018 Northern Gulf of Alaska Long 

Term Ecological Research (NGA-LTER) cruise. The station selected for comparison was 

an offshore station, GAK15, expecting its patterns will be most similar to the open ocean 
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stations of P16N. The UVP was mounted on a similarly sized CTD rosette on P16N and

NGA-LTER. Multinets with 505 μm nets were used to collect large zooplankton and 

partition the water column. Here, a comparison between the two zooplankton collection 

techniques is made for the top 100 meters of the water column (Table 1, K. Coyle and R. 

Hopcroft, unpublished). This comparison is primarily aimed to examine possible biases 

of the UVP-measured community composition data towards less motile zooplankton such 

as Rhizaria. Rhizaria have limited mobility and are likely unable to avoid sampling; in 

contrast, copepods have documented sampling avoidance associated with pressure waves 

generated by towing nets through the water (Fleminger and Clutter 1965). The pressure 

wave generated by a CTD rosette, loaded with instrumentation and bottles could very 

well generate a similar, if not larger pressure wave, thereby increasing the avoidance by 

motile zooplankton. A previous study in the Arctic indicated the UVP, while mounted on 

a rosette, reliably captured the abundance of copepods larger than 1mm ESD (Forest et al. 

2012). Towed nets reliably sample copepods larger than 2.5 times the mesh size 

(Hopcroft et al. 2001), so a comparison between a 0.5 mm mesh should yield similar 

abundances. This comparison suggests copepods abundances are estimated to be 18 times 

lower with the UVP than with a net tow, while total zooplankton abundances are two 

times higher for UVP samples than the net tow (Table 1).

Net tows are likely to undersample Rhizaria, as they are easily destroyed by nets, 

and not well recognized while sorting through plankton samples (Stoecker et al. 1996); 

this could account for the large discrepancy in total zooplankton abundance. Nonetheless, 

the huge discrepancy in copepod abundance between the UVP and nets is surprising; 

Forest et al (2012) may not have found a similar discrepancy due to how the CTD was 
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loaded and deployed (and thus the generation of pressure waves). Although this single 

comparison is not conclusive, these data indicate there is a clear discrepancy between net 

tow and UVP zooplankton data in the sub-Arctic Pacific that needs to be more fully 

explored. It appears that while the UVP is baised against copepods, nets are even more 

severly biased against Rhizaria. If we assume the UVP is systematically undersampling 

copepods and crustaceans and apply a ‘correction factor' of 18 to UVP copepod and 

crustacean abundances across the transect, rhizaria no longer dominate the community 

composition across regions south of PSAG.

Table 1. Comparison of zooplankton abundances from two sampling techniques: UVP
and 0.5mm mesh Multinet vertica l tow.

Sampling
Device

Depth
Zooplankton 
Abundance 

(#/m3)

Copepod
Abundance 

(#/m3)

Rhizaria 
Abundance 

(#/m3)
UVP 0-100 meters* 468 10** 452

0.5mm 
Multinet 0-100 meters 201 184 N/r***

* UVP data are reported in 5-meter depth bins, so data were integrated over the top 100 
meters for this table
** All crustaceans are reported in aggregate
*** Presence was not reported (N/R)

Whether Rhizaria are more abundant than copepods or not, these large protists 

appear to be mostly ignored in zooplankton assessment throughout the Pacific Ocean 

(Stoecker et al. 1996; Biard et al. 2016). Little is known about these large protists; 

attempts to estimate the role of Rhizaria in the carbon (Stukel et al. 2018) and silica 

cycles (Biard et al. 2018) reveal large gaps in our ability to estimate the biomass and 

metabolic requirements of these plankton. Other optical plankton instruments have also 

suggested the abundance of Rhizaria may be severely underestimated by several orders of 
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magnitude (Dennett et al. 2002). Larger abundances of protists, particularly foraminifera 

and acantharea, have been associated with El Nino patterns in the equatorial region 

(Stoecker et al. 1996); the strong El Nino in the Pacific through 2015 very likely 

contributed to the high abundances of Rhizaria noted here.

If large Rhizaria follow similar grazing habits as their smaller relatives, then they 

are likely grazing down a large portion of the phytoplankton community across much of 

the open ocean (Calbet and Landry 2004). Rhizaria have been identified as a culprit for 

increased particle attenuation due to their ability to capture sinking particles, which are 

some rhizarian's primary food source (Stukel et al. 2018). The generational turnover of 

some phaeodarians (type of rhizaria) has been estimated as ~5 days, while deeper 

dwelling species are slower growing and have a longer turnover time, ~10 days (Stukel et 

al. 2018). These turnover times and feeding habits can explain why abundances of 

Rhizaria are greater around 200 meters compared to euphotic depths more than a week 

after a peak in PSAG. What little we do know about Rhizaria life histories, combined 

with their large abundances revealed in this study, highlight the importance of analyzing 

rhizarians alongside particles counts. This relationship, as well as total zooplankton 

abundance relative to particles, is discussed below.

Connecting Particles and Zooplankton

Two key features connect the regions with high abundances of particles in 

bathypelagic waters (PEQD and NPPF); the first feature is a high abundance of 

zooplankton in surface waters. Within these clusters of zooplankton both the size and 

abundance of particles decrease, while the volume and size of particles below the clusters 

increases. This pattern suggests zooplankton communities initially attenuate the flux of 
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material (Taucher et al. 2018), then repackage material into larger parcels such as fecal 

pellets. Large abundances of particles in deep waters are due to repackaging by 

zooplankton and passive aggregation unrelated to zooplankton (Stemmann et al. 2004b; 

Burd and Jackson 2009). The relative contribution of each process is not yet 

ascertainable.

The second feature shared between PEQD and NPPF is their designation as high- 

nutrient, low-chlorophyll (HNLC) regions (Minas et al. 1986). This connection is 

especially important when considering the link between zooplankton and particle 

transport in these areas. Zooplankton primarily contribute to particle transport in HNLC 

regions through fecal pellet production both in the euphotic at low latitudes (Kiko et al. 

2017) and in the mesopelagic at high latitudes (Le Borgne and Rodier 1997). The 

increase in size and abundance of particles beneath zooplankton clusters in PEQD and 

NPPF could very likely be a result of fecal pellet production. If this is an HNLC shared 

pattern, why is this pattern missing in the other HNLC region, PSAG? This difference 

might be explained by the deep-dwelling rhizaria populations in PSAG intercepting 

sinking particulates in their extra-capsular cytoplasm and attenuating flux (Boltovskoy 

1999). Protozoan ingestion instead of zooplankton grazing has been postulated as the 

controlling factor preventing large phytoplankton peaks in HNLC regions (Capriulo et al. 

1991; Landry et al. 1993). It remains unknown whether this attenuation pattern is 

persistent or if it is merely an artifact of sampling closer in time to a phytoplankton peak. 

Deeper analysis of these data in future studies could shed some light on the connections 

identified here.
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Conclusions

This study reveals HNLC regions to be of particular importance for consideration 

as areas of increased carbon sequestration. Overall large-scale features in particles follow 

overlying patterns of productivity, however, our results indicate that timing also plays a 

role in sub-regional features as it relates to depth. Large abundances of zooplankton are 

present in the areas where particles penetrate deepest into the ocean though their role in 

the magnitude of flux remains elusive; high abundances of large Rhizaira may attenuate 

flux.

These data offer an important snapshot of where particles sink into the deep sea, 

carrying carbon for long-term storage away from the atmosphere. A time-series of a few 

stations in one or more of these HNLC regions would prove extremely valuable to 

determine if these patterns result from seasonal productivity, or are sustained. Studies 

have already begun to model the aggregation and disaggregation patterns of particles, 

using the particle size-structure data presented here (Cram et al. 2018). Modeling has 

helped constrain our understanding of where particles are disaggregating and 

aggregating, while this study is chipping away at the potential answers to 'how'. High 

zooplankton abundances have now been shown to be associated with large particle 

penetration into bathypelagic waters. To examine the mechanistic relationship, more 

detailed productivity and zooplankton data should be collected in tandem with particle 

analysis, such as is occurring during the EXPORTS campaign. We have yet to introduce 

size-structured zooplankton, as is present in the current data, into biogeochemical cycling 

models that already include phytoplankton (Ward et al. 2012); this could further our 

understanding of how zooplankton influence global scale patterns of both carbon and 
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nutrients. This study has highlighted three distinct regions to focus upon the biological 

pump within the Pacific Ocean, allowing future time and energy to be applied to the most 

promising regions of the oceanic Pacific for carbon burial.
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Appendix

UVP Data Download and Initial Processing Workflow
1) Download raw files to project folder

2) Open raw folder and check whether .bmp images are present in raw folder, or are 

within a subfolder

a. If subfolders are present (Usually titled ‘00', ‘01' etc), cut and paste or 

copy contents of subfolder to the raw folder. Without this step, zooprocess 

is not able to find PID/vignettes so they will not be proessed

3) Copy down UVP filename and determine which CTD cast/event each file is 

associated with

a. UVP filename format: HDRyyyymmddhhmmss

i. If there is not an event/cast time that is associated with a filename 

(or if this is a repeated issue) confirm the UVP and associated 

laptop are in UTC time.

4) Enter UVP filename into comment section of Eventlogger on CTD deployment 

event in the following format: UVP:HDRyyyymmddhhmmss

5) Copy and paste eventlogger into notepad (or save eventlogger as text file if 

possible) and save file as Eventlogger.txt

6) Run Metadata_build.m file

a. When prompted asking whether you would like to use previously 

determined downcast, select ‘YES'

b. Choose appropriate downcast limits for each new cast

i. Currently the line to indicate where downcast choices are goes to 

1000 meters, but if you have deeper casts you will need to change 

this limit (shallower casts will be ok)

7) Once the new metadata file has been processed, copy built metadata file 

‘uvp5_header...' in ‘docs' folder to ‘meta' folder and replace the file already 

present

8) Process .dat and .bru in Zooprocess

a. Open ImageJ
b. From the dropdown menu, select ‘Process DAT BRU and VIGNETTES'
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c. Select the following options:

i. Process dat and bru

ii. Plot Profiles

iii. Skip Processed Files

iv. Batch Process

d. Processing should take about 15 minutes for processing only dat and bru 

files for ~ 20 profiles gathered using ‘Depth trigger' mode. This time 

could be longer for I/O mode started casts.

9) When ImageJ/Zooprocess is finished (first screen with dropdown menu appears) 
open MATLAB

10) Create new folder named ‘analysis' in project folder

11) Prepare UVP_Process_'CRUISEID'.m - This file needs to be adapted for use on 

each cruise and is going to differ slightly depending on which UVP (sn009 or 

sn207) the data being processed is from

a. Copy and paste into new .m file a previous version of UVP_Process script 

and change the following:

i. Search for old project name ” uvp5_sn###_........” and replace with

new project name that was created in zooprocess: 4 places to 

change

1. Line 6 project_name

2. Line 10 output_dir
3. Line 27 readdir

4. Line 28 metadir

ii. Enter the metadata filename you want to process at line 33 

‘meta_filename'

1. The metadata filename is going to be how the project

workspace will be titled (See line 382 ‘save.....')

2. If you want to process sections of the project instead of the 

whole thing, you can create a different metadata file and 

make ‘subsets' of the whole project to visualize 
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a. Make sure you are aware where the output is saved, 

and change as you see fit to organize subsets

iii. Change longitude (line 142) and latitude (143) for plotting of 

stations (figure 1)

iv. Check that correct pixel size as well as ‘Aa' & ‘bb' are correct for 

camera

1. Line 191 - pixmm

a. 0.097 (sn207)

b. 0.1469 (sn009)

2. Line 192 - Aa

a. 0.0032 (sn207)

b. 0.0092 (sn009)

3. Line 193 - bb

a. 1.19 (sn207)

b. 1.21 (sn009)
4. Line 300 & 301 - adj

a. All 1's for sn207 as adjustment is not needed

b. Uncomment line 300 and comment out 301 for 

sn009 adjustment factors (maybe?? We should 

check on this with new calibrations)

12) Making these corrections, leaving all sections beyond line 391 commented out 

will allow for the following variables to be calculated

a. CSD - Size distribution not normalized

b. CSDn - normalized size distribution

c. Ms_proj - Mean size (mm)

d. Gs_proj - mean greyscale

e. C_total_proj - total abundance of particles per Liter

13) If you want to visualize data more steps are needed:

a. Make sure ‘cm.m' is copied from a previous project into the ‘analysis' 
folder

i. This is a colormap that helps emphasize low values
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b. Change ranges both in depth and latitude/longitude for figures in order to 

properly plot data

Basic Steps to Import Projects into Ecotaxa Database

1) Upload Whole Project onto Ecotaxa FTP Server UNZIPPED

FTP Log-in:

host : plankton.obs-vlfr.fr 

username: ftp_plankton 

password: Pl@nkt0n4Ecotaxa 
Folder to upload to: UVP5_UAF_data

2) Log in to Ecotaxa and select “Create New Project”

3) Upload files from FTP site to Ecotaxa:

For Image Database, only upload ‘Work' Folder when prompted to import data as shown 

below.

For Particle database, upload entire project folder

Notes: Root Folder is the entire project folder - when you have chosen the project, press 

‘read Metadata'. This should fill in most of the other blanks on this page
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- You can, when importing the project into the particle module, choose to upload 

already imported vignette project (if you've already imported the Work folder 

into the Image Database) or ‘Create New'.

If importing CTD Data, carefully follow CTD layout requirements (listed in Ecotaxa). 
Choose SAVE

Navigating Ecotaxa for Image & Particle Data Upload 

1. Contact Marc Picheral for permission to access Ecotaxa & create project
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3. Select Contribute to a project

4. Press ‘Create a new project' and name according to cruise/date (exact method to be 

determined)

5. New project screen opens. From dropdown menu next to ‘Project', select import 

images and metadata.
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6. Depending on the size of the project, manually upload compressed project folder 

generated by ImageJ Zooprocess, or if size is too large, choose project from FTP 

database.

7. Once project is uploaded you are ready to harness Ecotaxa's machine learning power 

and sort images!
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Sorting Images in Ecotaxa

1. Once you are logged into Ecotaxa and have selected ‘Contribute to Project', select 

which project you would like to sort images in.

For a new Project, you must first choose to predict the identity of the images using a 

previously uploaded Learning set. Follow the following steps:

a. Select ‘Train and Predict Identifications'
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b. Select which project you would like to use to base your predictions on. The best 

choices are those with the majority of objects sorted, and with similar sorting levels to 

what you are hoping to achieve.

c. This part is very trial and error, so choose variables you would like to sort images in 
(the lower right portion of the window) and press ‘START Automatic PREDICTION of 

IDs'.
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e. Once this task is complete, you are ready to start validating and sorting images!

- If you don't like the sorting, or want to try a different one then repeat steps above and 

choose different variables or categories. You can do this multiple times throughout the 

sorting process. Continue to steps below to sort and validate images.
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2. Project opens with last filters used, or entire project opens up if this is your first time 

opening it - in example above only one station of data is selected (p16n_002).

3. Basics of Sorting:

a. Click on image and begin typing name of group you would like to sort into.

To Note: You do not need to click anywhere else, the screen on the 

upper left-hand corner will automatically appear. Click ‘Enter' to accept new assignment 

for image. The name changes to red when you have changed the assignment.

b. You can select multiple images and sort them into the same category by clicking on 

multiple images - the selected images will be highlighted in red. If you would like to sort 

them into the same category as was just used, press ‘Command + d' (or ‘Control + d' for 
PC).
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c. Continue sorting as many images as desired, changing those that you would like 

to/need to.

d. When finished with this page, either ‘Save pending changes' which will save all

changes made and validate those changes, or ‘Save changes, validate rest and move to 

next page'. Be aware of which one you choose to do!

e. You can choose how to sort images in the dropdown menu showing ‘area [pixel]'. 

There are many options here that are useful for different things, so try them out.
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f. You can select to zoom in on images (beside the magnifying glass) or zoom out as you 

see fit, as well as select how many images will be shown per page (shown as ‘1000' in 

the above figure.

g. You may choose to only sort one type of predicted image - for example under the 

taxonomy tab, I chose to only look at images predicted to be copepods in the example 

above.
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h.You may choose to only look at certain stations, regions 
(based on lat/lon) or depths using the ‘Other Filters' tabs. 
Remember to select ‘Update and apply filter' to apply this to 
your viewed images.

a. Choose particle module from the home screen, drop down menu
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c. Select any extra filters you may want to constrain the data by, and then press ‘Export 

Selection'
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Particle sample data export
DOWNLOAD OPTIONS 

Samples filters: filt_proj=43,XScale=I
Samples count: 256

Export format Options Description

C Reduced data File format ODV
Filters:

CTD + PARTICLES abundances and biovolumes sorted in 15 reduced classes at vertical steps of 5m 
ZOOPLANKTON selected categories at variable vertical steps
SUMMARY file (TSV format only): metadata of exported sample (including pixel size for zooplankton) 
Apply zooplankton and depth selections from graph
- if you do not select any plankton category, the export will return all categories
- if you enable "Sum abundance of children categories", the children counts will be added to the selected category

Detailed data File format ODV
□ Exclude not living

CTD + PARTICLES abundances and biovolumes sorted in 45 detailed classes at vertical steps of 5m 
ZOOPLANKTON from all categories and summed in parent categories at vertical steps of 5m 
SUMMARY file (TSV format only): metadata of exported sample (including pixel Size for zooplankton) 
Previous screen filter on classification ignored, detph used

C raw Exclude not living 
Include not validated 

objects

PARTICLES (UVP): imported « BRU » data compressed and sorted in 1m bins
ZOOPLANKTON : annotation and main measurements (pixels) for individual items (possibly excluding not_living 
items)
CTD: as imported
SUMMARY file: metadata of exported sample (including pixel size for zooplankton)

In order to ease the transfer of large exported datasets, you can chose to export your files to the Ecotaxa FTP that is utilized to import your data and images. 
Do not forget to delete your exported files from the FTP as they will be visible and available for other users.
Ask Ecotaxa managers (piqv@obs-vlfr.fr) if you do not have yet the permissions on this FTP

 Save export file on "Exported data" folder on the FTP Area

d. Download data in ODV or TSV format by either direct download locally, or export to 

FTP site (suggested for large files)

e. If you'd like total zooplankton abundance, or any parameter that is not included in the 

download, you can edit the tsv/odv file in Excel to add parameters

All screenshots from Ecotaxa database were gathered browsing: http://ecotaxa.obs-vlfr.fr

Picheral, M., S. Colin, and J.-O. Irisson. 2017. EcoTaxa, a tool for the taxonomic 

classification of images. http://ecotaxa.obs-vlfr.fr.
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