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Abstract

Contaminant biodegradation is one of many ecosystem services aquifer microbiota can provide to 

humans. Sulfolane is a water-soluble emerging contaminant that is associated with one of the largest 

contaminated groundwater plumes in the state of Alaska. Despite being widely used, the biodegradation 

pathways and environmental fate of sulfolane are poorly understood. In this study, we investigated the 

biodegradation of sulfolane by the microbial community indigenous to this contaminated subarctic aquifer 

in order to better understand the mechanisms and rates of loss, as well as the environmental factors 

controlling them. First, we conducted aerobic and anaerobic microcosm studies to assess the 

biodegradation potential of contaminated subarctic aquifer substrate and concluded that the aquifer 

microbial community can readily metabolize sulfolane, but only in the presence of oxygen, which is at 

low concentration in situ. We also investigated the impacts of nutrient limitations and hydrocarbon co

contamination on sulfolane biodegradation rates. To identify exactly which community members were 

actively degrading sulfolane, we combined DNA-based stable isotope probing (SIP) with genome- 

resolved metagenomics methods. We found a Rhodoferax sp. to be the primary sulfolane degrading 

microorganism in this system and obtained a near-complete genomic sequence of this organism, which 

allowed us to propose a new metabolic model for sulfolane biodegradation. Finally, we assessed the 

distribution of sulfolane-degrading bacteria throughout the contaminated subarctic aquifer by sequencing 

16S rRNA genes from 100 groundwater samples and two sulfolane treatment systems and screening for 

the sulfolane degrader previously identified using SIP. This assessment revealed that sulfolane 

biodegradation potential is widespread throughout the aquifer but is not likely occurring under normal 

conditions. However, the sulfolane-metabolizing Rhodoferax sp. was the most dominant microbe in an 

effective experimental air-sparge system, suggesting that injecting air into the aquifer can stimulate 

sulfolane biodegradation in situ. These studies are the first to investigate sulfolane biodegradation 

potential in a subarctic aquifer. Through this work, we learn there are several important factors limiting 
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biodegradation rates, we expand the known taxonomic distribution of sulfolane biodegradation, and we

shed insights into the mechanisms underlying an effective in situ sulfolane remediation system.
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Chapter 1: General Introduction

Humans are producing large quantities of synthetic chemicals every year for use in a variety of 

industrial and domestic applications. Through intentional or unintentional releases, these anthropogenic 

chemicals can enter surrounding ecosystems and associated food webs1. While some of these chemicals 

are unstable or easily degraded, others are chemically stable by design, which enables them to accumulate 

in the environment2. Remediation of environmental pollutants can be challenging, costly, and often is 

only employed when there is a risk to human health. Common contaminant clean-up methods involve 

chemical or physical treatments, which can be invasive, expensive, and not always feasible for large 

contaminated areas3. Fortunately, many xenobiotics are analogous in structure to naturally occurring 

organic compounds that can be metabolized or co-metabolized by environmental microorganisms4-6. For 

common environmental pollutants (e.g. hydrocarbons and tetrachloroethene), biodegradation has been 

well documented and successfully exploited to achieve effective, low-cost remediation alternatives3.

However, there are many contaminants of emerging concern that are widely used but for which little or no 

information is available regarding their potential rates of natural attenuation. Understanding the 

biodegradation potential of emerging contaminants is valuable to determining their environmental fate 

and persistence, as well as to identifying effective remediation strategies. One such organic pollutant of 

emerging concern is sulfolane.

Sulfolane (tetrahydrothiophene 1,1-dioxide) is an organosulfur compound that was developed by 

the Shell Oil Corporation in the 1940s 7 and is now used in a variety of industrial applications with 18,000 

- 36,000 tons produced worldwide annually 8. Sulfolane has a chemically stable molecular structure, is 

non-volatile (0.0062 mm Hg at 27.6 °C), miscible in water, and has a low aquifer sorption coefficient 

(Kd= 0.008-0.14) meaning sulfolane has the potential to be persistent and highly mobile in aqueous 

environments9-11. Despite widespread global use, sulfolane is not included in routine groundwater quality 

assessments, which can result in large areas of contamination by the time a problem is recognized. In 
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2009, sulfolane was first detected in a residential drinking well in North Pole, Alaska, and its source 

traced to a petroleum refinery where it was used as part of the refining process since 198512. Further 

investigation revealed a groundwater plume that extended ~5 km downgradient from the source, was ~4 

km wide, and affected hundreds of residential drinking supplies, which classified it as the largest 

contaminated groundwater plume in the state of Alaska to date (Alaska Department of Environmental 

Conservation, personal communication). At that time, there was limited information available regarding 

the ability of environmental microorganisms to degrade sulfolane13-15 and all previous published research 

was conducted in temperate environments. It remained unclear if those studies would be relevant to a 

subarctic aquifer which is generally cold, oligotrophic, and situated within discontinuous permafrost.

This dissertation describes the microbial ecology and biodegradation potential of sulfolane in the 

contaminated portion of the North Pole aquifer and includes this general introduction, three research 

chapters, and overall conclusion of the results. The second chapter investigates the biodegradation 

potential of contaminated subarctic aquifer sediment and groundwater and identifies factors that simulate 

or inhibit degradation. Microcosms containing groundwater and sediment were established under aerobic 

and anaerobic (NO3- -, Fe (III) -, and SO42- -reducing) conditions. We only observed sulfolane loss under 

aerobic conditions that contained the microbial community indigenous to groundwater and sediments and 

not in sterile controls, and we concluded that microbial biodegradation was the mechanism of action. We 

also assessed the impact of nutrient amendments on biodegradation rates and we found that at high 

sulfolane concentrations (100 mg L-1) the addition of mineral nutrients increased sulfolane biodegradation 

rates. However, at sulfolane concentrations representative of those found in the North Pole aquifer, 

biodegradation was not nutrient limited. Since regions of the sulfolane-contaminated plume are co

contaminated with aliphatic hydrocarbons, we also investigated the impact of hydrocarbon co

contamination on sulfolane biodegradation rates. We found that an aliphatic hydrocarbon solution 

(kerosene) reduced biodegradation rates by ~30% suggesting that co-contaminated regions of the 

sulfolane plume will be more resistant to sulfolane biodegradation. These studies are the first to 
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investigate the sulfolane biodegradation potential of subarctic aquifer substrate and reinforces the 

importance for researchers modeling sulfolane half-lives to not only incorporate a biodegradation term in 

their models, but also to consider the variability of biodegradation rates associated with differing 

environmental conditions, including oxygen availability and co-contamination.

Microbiology has historically been hindered by the fact that only ~1% of microorganisms can be 

cultivated and evaluated in a laboratory setting16. In recent decades, DNA sequencing techniques have 

allowed insights into the unculturable microbial majority but linking microbial identity to specific 

functions in complex communities remains a challenge. Combining isotope-labeling techniques with 

advanced molecular methods allows identification and evaluation of the community members involved 

with the metabolism of a specific substrate17. In chapter 3, we demonstrate the power of integrating DNA- 

SIP with metagenomics to circumvent culture bias and enable characterization of the aquifer microbial 

community members responsible for the biodegradation of sulfolane. We found that one OTU comprised 

the majority (85%) of the sulfolane-assimilating community. After obtaining a 99.8% complete genome 

for this sulfolane metabolizing organism, we identified it as a Rhodoferax sp. 99% identical to the type 

strain Rhodoferax ferrireducens T118. We then searched the genome for genes associated with the 4S- 

dibenzothiophene desulfurization pathway, which was previously proposed to be the metabolic pathway 

for sulfolane biodegradation18. While we found an incomplete 4S pathway, we did find the gene that 

opens the dibenzothiophene ring structure (dszA) at the end of an alkane sulfonate transport operon and 

repeated five times on an associated plasmid. In addition to expanding the known taxonomic distribution 

of sulfolane biodegradation, we proposed a new metabolic model for sulfolane biodegradation based on 

these findings.

In chapter 4 we investigate the microbial ecology of the contaminated subarctic aquifer and two 

sulfolane remediation systems. One remediation system sorbs sulfolane from a homeowner's well water 

prior to consumption using granular activated carbon. The other was an experimental air sparge system 

that injected atmospheric air into the aquifer which locally lowered sulfolane concentrations to below 
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detection limits (6.88 μg L-1) in down-gradient test wells through unknown mechanisms. The microbial 

communities were characterized in 100 groundwater monitoring wells and the remediation systems using 

16S rRNA gene sequencing. The community structure of the collection of samples was then correlated to 

environmental variables collected to at the time of sampling. We paid special attention to abundances of 

the sulfolane-assimilating Rhodoferax sp. identified in chapter 3 and found it to be widely distributed 

throughout the aquifer although generally in low abundance (average relative abundance 0.59 ± 0.77%). 

However, the Rhodoferax sp. was the most abundant species in the air sparge system and indicator species 

analysis identified it as a strong and significant indicator of the air sparge samples. Alternatively, the 

Rhodoferax sp. was only detected in half of the granular activated carbon samples at very low abundances 

(maximum relative abundance of 0.37%) indicating that sulfolane biodegradation is not likely occurring 

in the GAC systems. Although the entire microbial community decreased in richness and evenness with 

depth, the only environmental variable measured that correlated with the abundance of the sulfolane 

assimilator was dissolved manganese within the highly-oxygenated air sparge system where this species 

was most dominant. We also conducted a small-scale study to assess differences in soil and groundwater 

(i.e., attached and suspended) microbial communities and concluded that despite significant differences in 

composition, members of the Rhodoferax genus can be reliably detected in groundwater samples. These 

results demonstrate that sulfolane biodegradation potential is widespread throughout the aquifer and we 

conclude that air sparging appears to be a way to locally stimulate sulfolane biodegradation in-situ.

The information in this dissertation advances the fundamental understanding of sulfolane 

biodegradation and will benefit those trying to assess and remediate sulfolane-contaminated groundwater 

plumes or related efforts. The biodegradation rates generated under a variety of possible contamination 

scenarios may be useful in generating more accurate models of plume migration and longevity. Through 

genomic analysis of a sulfolane-metabolizing microorganism, we have proposed a new metabolic model 

for sulfolane biodegradation and highlight specific genes to target for future studies. In addition, we 

provide insights into the underlying mechanisms of an effective sulfolane remediation system and ways to 
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stimulate sulfolane biodegradation in situ. Overall, these studies advance both basic and applied science

related to the environmental fate of the emerging contaminant, sulfolane.
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Chapter 2: Factors Limiting Sulfolane Biodegradation in Contaminated 
Subarctic Aquifer Substrate1

1 Kasanke, C. P. & Leigh, M. B. Factors limiting sulfolane biodegradation in contaminated subarctic aquifer 
substrate. PLoS One 12, 1-17 (2017).

Abstract

Sulfolane, a water-soluble organosulfur compound, is used industrially worldwide and is associated with 

one of the largest contaminated groundwater plumes in the state of Alaska. Despite being widely used, 

little is understood about the degradation of sulfolane in the environment, especially in cold regions. We 

conducted aerobic and anaerobic microcosm studies to assess the biological and abiotic sulfolane 

degradation potential of contaminated subarctic aquifer groundwater and sediment from Interior Alaska. 

We also investigated the impacts of nutrient limitations and hydrocarbon co-contamination on sulfolane 

degradation. We found that sulfolane underwent biodegradation aerobically but not anaerobically under 

nitrate, sulfate, or iron-reducing conditions. No abiotic degradation activity was detectable under either 

oxic or anoxic conditions. Nutrient addition stimulated sulfolane biodegradation in sediment slurries at 

high sulfolane concentrations (100 mg L-1), but not at low sulfolane concentrations (500 μg L-1), and 

nutrient amendments were necessary to stimulate sulfolane biodegradation in incubations containing 

groundwater only. Hydrocarbon co-contamination retarded aerobic sulfolane biodegradation rates by 

~30%. Our study is the first to investigate the sulfolane biodegradation potential of subarctic aquifer 

substrate and identifies several important factors limiting biodegradation rates. We concluded that oxygen 

is an important factor limiting natural attenuation of this sulfolane plume, and that nutrient amendments 

are unlikely to accelerate biodegradation within in the plume, although they may biostimulate degradation 

in ex situ groundwater treatment applications. Future work should be directed at elucidating the identity of 

indigenous sulfolane-degrading microorganisms and determining their distribution and potential activity 

in the environment.
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Introduction

Anthropogenic organic compounds are present as environmental contaminants throughout the 

world [1]. Many of these chemicals were engineered for industrial purposes, in which resistance to 

degradation is advantageous [2]. However, this desirable characteristic becomes problematic when 

compounds of this nature are released into the environment since recalcitrance correlates to persistence

[3] . In addition, many synthetic organic compounds are designed for specific applications, which creates a 

diverse suite of potential environmental contaminants that are unique in their reactivity and persistence

[4] . Often these compounds are not included in routine environmental monitoring protocols, as they are 

not regulated or well researched in terms of their toxicity or fate in the environment. This lack of 

understanding is a cause for concern when an unregulated industrial solvent enters a residential drinking 

water source. An example of this scenario occurred in Interior Alaska, where accidental industrial releases 

of sulfolane (tetrahydrothiophene 1,1 dioxide) from a petroleum refinery created one of the largest 

groundwater contamination plumes in the state (Alaska Department of Environmental Conservation, 

personal communication).

Sulfolane is an anthropogenic organosulfur compound used in various industrial processes, such 

as natural gas and petroleum refining, with 18,000 - 36,000 tons produced worldwide annually [5]. 

Sulfolane is miscible in water, has a low affinity for aquifer materials (Kd=0.008 - 0.14), and is more 

stable than many common co-contaminants such as hydrocarbons and diisopropylamine [6,7]. These 

qualities make sulfolane a mobile and persistent groundwater contaminant once released into the 

environment [8]. Although the human health effects are unknown, toxicity studies, in which rats were 

exposed to sulfolane through their drinking water, found lowered white blood cell counts in females and 

neuropathy in males after 90 days [9]. No other studies have reported the effects of chronic, low-dose 

sulfolane exposures on humans or other animals [10].
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There are no practical strategies to actively remediate such a large sulfolane plume in this region 

and remediation efforts have been recently replaced with groundwater monitoring [11]. However, 

previous research has demonstrated that sulfolane can be biodegraded by microorganisms found in sludge 

from wastewater treatment plants, biologically activated carbon, and in aquifer materials [12-14]. 

Exploiting the metabolic capabilities of microorganisms naturally occurring in areas of contamination, 

using techniques such as monitored natural attenuation or biostimulation, may be a way to remediate 

sulfolane-contaminated aquifers. Before employing bioremediation strategies, an understanding of the 

sulfolane biodegradation potential of microorganisms present in contaminated environments and the 

environmental factors controlling their activity must be achieved. Prior to this study no such information 

existed for subarctic aquifers.

The ability of indigenous microorganisms from a contaminated aquifer to perform sulfolane 

biodegradation has been reported previously in western Canada [13,15,16], and Australia [17]. Aerobic 

incubations using aquifer sediment from western Canada revealed that lower temperatures (i.e. 8 °C vs. 

28 °C) limited sulfolane biodegradation and that the addition of nitrogen and phosphate stimulated 

biodegradation rates [13,15,18]. The biochemical pathway for sulfolane biodegradation has not yet been 

elucidated, but sulfate, one predicted end product of sulfolane biodegradation, was produced as sulfolane 

degraded [19]. Anaerobic sulfolane biodegradation studies that have been reported in the scientific 

literature have not generated consistent results. One study suggests sulfolane is readily degradable under 

unspecified anaerobic conditions [17], while another found inconsistent anaerobic biodegradation only 

under nitrate- and Mn(IV)-reducing conditions [15]. This discrepancy may be due to the difference in 

experimental methods and the biogeographic differences in microbial communities associated with the 

substrates tested (i.e. Australian and Canadian aquifer materials respectively) [20]. Subarctic aquifers are 

generally cold, a condition that is known to limit microbial activity. Therefore, it was necessary to assess 

the sulfolane biodegradation potential of the microbial community associated with subarctic aquifer 

substrate.
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We conducted microcosm studies to assess the microbial (aerobic and anaerobic) and abiotic 

degradation potential in subarctic aquifer substrates from a contaminated groundwater plume in the 

interior Alaska city of North Pole. Our objectives were to identify degradative processes that contribute to 

the fate of sulfolane in the environment, and to identify environmental factors that may limit them in situ. 

Groundwater and sediment were combined as the inoculum in the majority of incubations since a greater 

portion of aquifer microbiota are thought to be associated with aquifer sediment [21]. Because the water 

table in North Pole, Alaska is shallow, and groundwater pumping followed by storage or treatment is 

often required for construction activities, we also conducted a comparative study to determine the 

biodegradation potential of the planktonic microbial community associated with the groundwater alone. 

We assessed the potential stimulatory effects of nutrients, including mineral nutrients and a complex 

organic amendment (beer fermentation settlings) on biodegradation rates in order to evaluate nutritional 

limitations and to possibly identify biostimulation strategies. Since hydrocarbon contamination (primarily 

jet fuel) co-exists with sulfolane in portions of the North Pole aquifer [22], we also examined the impact 

of aliphatic hydrocarbons on sulfolane biodegradation rates. Sterile microcosms were also run in parallel 

and in the dark to assess abiotic chemical degradation processes. We hypothesized that sulfolane 

degradation in subarctic aquifer substrate occurs primarily as the result of microbial processes, and that 

biodegradation is limited by oxygen and in situ nutrient availability.

Materials and methods

Aerobic microcosm studies

The North Pole, Alaska aquifer is part of the greater Tanana River aquifer, which is fed by the 

Alaska Range. Subsurface samples used as inoculum for aerobic microcosm studies were collected from 

Flint Hills Resources property located in North Pole, Alaska (64.7511° N, 147.3519° W) with permission 

of the property owners. Sulfolane use at this site began in 1985 and ended in 2014 when the plant stopped 

refining crude oil. The plume morphology and fate is impacted by the presence of discontinuous 

10



permafrost in the aquifer and groundwater sulfolane levels range from 0 - 34.8 mg L-1 [22]. All sediment 

used in this study was collected in March 2013, from one sampling event of augured material from the 

installation of a new monitoring well at depths between 3 and 9 m below ground surface. Sediment was 

stored at 4°C (up to 13 months) and sieved through a 2 mm screen prior to use. Twenty liters of 

groundwater was collected in September 2012 using a peristaltic pump and stored at 4°C until use (up to 

18 months). Groundwater came from an existing monitoring well approximately 30 m from where 

sediment was collected. The well was screened 18.25 m below the ground surface and has stable 

historical sulfolane concentrations of approximately 125 μg L-1 [22]. The top of the water table at time of 

sampling was 3 m below ground surface and the aquifer has an average temperature of 3.4 °C [22].

Incubations of aerobic sediment-groundwater slurries ± mineral nutrients

Aerobic sulfolane degradation rates were assessed at two different sulfolane concentrations.

“High concentration” slurries contained 25 g of aquifer sediment, 100 ml of groundwater, and sulfolane to 

a target concentration of 100 mg L-1, and “low concentration” slurries contained 50 g of aquifer sediment, 

250 ml of groundwater, and sulfolane to a target concentration of 500 μg L-1 including background 

contamination. To observe the effects of nutrient amendment on biodegradation rates at high and low 

sulfolane concentrations, a Bushnell-Hass (BH) mineral nutrient solution was added to a subset of both 

slurry types (5 replicates). Each BH-amendment added 8 μg L-1 magnesium sulfate, 1.8 μg L-1 calcium 

chloride, 90 μg L-1 monopotassium phosphate, 90 μg L-1 dipotassium phosphate, 90 μg L-1 ammonium 

nitrate, and 4.5 μg L-1 ferric chloride. Two types of experimental controls were established: no-sulfolane 

controls and sterile controls (3 replicates) (Table 1). No-sulfolane controls were created exactly as 

described above, but without sulfolane addition. Sterile controls were autoclaved. Sterile aerobic 

conditions were maintained by loosely covering all incubation vessels with aluminum foil and shaking at 

100 rpm at 4 °C, that temperature being the approximate year-round average of the North Pole aquifer 

[22]. Aliquots of liquid (1-2 ml) were routinely sampled every 5-7 days for sulfolane and sulfate analysis. 

High concentration incubations were monitored for 106 days, at which point monitoring ceased due to 
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logistical reasons. Low concentration incubations were monitored for 47 days; more time than was 

necessary to no longer detected sulfolane in the live slurries.

Aerobic incubations using groundwater only

It has been suggested that the majority of aquifer bacteria are attached to sediment particles rather 

than living as planktonic cells in the groundwater [23]. The biodegradation potential of sulfolane by 

planktonic microbes residing in groundwater alone was examined in microcosms similar to those 

described above, but with the omission of aquifer sediment. Groundwater-only microcosms were created 

by combining 150 ml of groundwater and sulfolane to a target concentration of 500 μg L-1 including 

background contamination. The flasks were then divided into different treatment groups (Table 2-1). The 

effect of mineral nutrient and complex organic nutrient amendments was assessed separately. Microcosms 

amended with mineral nutrients contained BH mineral nutrient broth as described above and obtained by 

dilution. The complex organic nutrient solution used as an alternative amendment was created by 

autoclaving a four-fold dilution of fermentation settlings obtained from a local brewery. Microcosms 

amended with organic nutrients received 0.5 ml of the complex organic nutrient solution. Sterile controls 

were created by autoclaving a subset of each treatment group. Groundwater-only incubations were 

monitored for 80 days when sulfolane was no longer detectable in the nutrient amended treatment groups. 

All treatment groups were replicated in triplicate. Sampling conditions were the same as described above 

(Table 2-1).

Microcosms co-contaminated with sulfolane and hydrocarbons

Since petroleum hydrocarbons and sulfolane are both found in portions of the aquifer within the 

refinery property, co-contamination studies were conducted to assess the impacts of hydrocarbon co

contamination on sulfolane biodegradation. Sediment slurries were created using 25 g of aquifer 

sediment, 100 ml of groundwater, and sulfolane to a target concentration of 750 μg L-1 including 

background contamination. Kerosene was selected as a surrogate for jet fuel and diesel fuel, which are the 
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primary forms of petroleum contamination onsite, since the mixtures are composed of a similar array of 

hydrocarbons (primarily aliphatic). Fifty μL of kerosene were added to a subset of the microcosms (5 

replicates) after sterilization through a 0.22 μm filter. Although kerosene is not miscible with water, 

constant agitation on a shaker table ensured that it was uniformly mixed in the amended microcosms. 

Controls, incubation conditions, and sampling were the same as previously described (Table 2-1). 

Sulfolane concentration in co-contaminant incubations was monitored for 22 days, at which point 

sulfolane was no longer detectable in the live slurries.

Anaerobic microcosms

Aquifer sediment used as inoculum in anaerobic microcosm studies was obtained from a capped 

soil core from a depth of 5.25 - 5.75 m below ground surface, collected from the refinery property 

described above. After collection, samples were placed in gas-tight containers equipped with septa, 

flushed with N2 to maintain an anoxic environment, and stored at 4 °C until use approximately 2 months 

after collection. Groundwater used in these incubations was collected from a pre-existing monitoring well 

on refinery property that had historical sulfolane concentrations of approximately 500 μg L-1. Media 

bottles were filled to the top to eliminate oxygen in the headspace and stored at 4 °C overnight to allow 

biological consumption of dissolved oxygen. Resazurin was added to a final concentration of 1 mg L-1. 

The groundwater was then degassed with N2 and reduced using sodium sulfide for the nitrate- and sulfate

reducing incubations. No reducing agent was added to the substrate used in iron-reducing microcosms.

Nitrate- and sulfate-reducing incubations

To evaluate sulfolane biodegradation potential in anaerobic aquifers, sulfolane biodegradation 

test microcosms were established under anaerobic conditions. For each anaerobic microcosm, 50 g of 

sediment was combined with 75 ml of groundwater. Microcosms were divided into two groups for 

nitrate-reducing and sulfate-reducing incubations. In the nitrate-reducing microcosms, KNO3 was added 

to a final concentration of 1.01 g L-1. In sulfate-reducing microcosms, Na2SO4 was added to a final 
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concentration of 1.42 g L-1. There were 14 microcosm replicates of each reducing condition, which were 

divided into four treatment groups. Three microcosms were not amended and served as controls for 

background metabolic activity. To generate positive controls to verify the presence of an active microbial 

community, a relatively labile carbon source, benzoate was added to three microcosms to a final 

concentration of 50 mg L-1 molecular carbon. The remaining eight microcosms were amended with 

sulfolane to a final concentration of 50 mg L-1 molecular carbon, three of which were autoclaved as sterile 

biological controls and the other five were replicates to assess sulfolane biodegradation. All microcosms 

were incubated at 4 °C in the dark and were not disturbed until sampling, which occurred eight times in 

1021 days. Aliquots from all microcosms were periodically taken for sulfolane and sulfate/nitrate 

analysis. All activity was conducted under strict anaerobic conditions. Nitrate- and sulfate-reducing 

incubations were monitored for 1021 days.

Iron-reducing incubations

Twelve iron-reducing microcosms were established by combining 50 g of aquifer sediment and

65 ml of groundwater. Amorphous iron oxide was made in house, checked by X-ray diffraction to 

confirm amorphous structure, and added to each microcosm resulting in a final concentration of 5.91 g L-1 

per microcosm [24]. Three of the twelve microcosms received no further amendment to monitor 

background metabolic activity. Three others were amended with benzoate (final concentration 50 mg L-1 

molecular carbon) and served as positive controls. The remaining six microcosms were amended with 

sulfolane to a final concentration of 50 mg L-1 molecular carbon; three served as the treatment group and 

three were autoclaved and used as sterile controls. All microcosms were incubated at 4 °C in the dark and 

were not disturbed until sampling, which occurred four times in 391 days.
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Chemical analyses

Sulfolane extraction and quantification

To quantify changes in sulfolane concentration over time and among treatment groups, three 

rinses of dichloromethane were used to perform an organic liquid - liquid extraction of aqueous aliquots 

from each microcosm. An aqueous solution of sulfolane-d8 was added to monitor extraction efficiency. 

Nitrobenzene - d8 was used as the internal standard. All sulfolane quantification was done on an Agilent 

5975 gas chromatography mass spectrometer (GC-MS) (Santa Clara, California). A fluorinated 30-m 

RTX - 200 column (Restek) was used for these samples as it separated based on lone pair electrons, 

allowing for exclusion of potential hydrocarbon co-contaminants. Two GC-MS methods were developed 

to analyze sulfolane content in both high (100 mg L-1) and low (500 μg L-1) sulfolane concentration 

incubations. High concentration incubation samples were analyzed with a method using splitless 

injection. Low concentration samples were analyzed using a pulsed-splitless injection method where the 

injection pressure was increased to 40 psi and held for one minute. The lowest quantifiable amount of 

sulfolane detectable in water samples was 40 μg L-1.

Nitrate, sulfate, and Fe(II) quantification

Nitrate and sulfate concentrations were analyzed using standard ion chromatography on a 

Dionex-200 liquid chromatograph coupled to a conductivity detector. A carbonate - bicarbonate buffer 

was used as the mobile phase. This instrument was demonstrated to be sensitive down to 1 mg L-1 for 

each ion of interest. Dissolved iron (Fe(II)) was measured using the Ferrozine assay [25] and was 

demonstrated to be sensitive down to 10 μg L-1.

Statistical analyses

To determine if sulfolane degradation had occurred, treatment groups within the same experiment 

(Table 1) were compared to each other at each time-point using analysis of variance (ANOVA); sulfolane 
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concentration being dependent on treatment type. A p-value of 0.05 or less was considered statistically 

significant. Due to the dramatic differences between treatment groups and low number of ANOVA tests 

performed, corrections for repeated measurements were not necessary. If significant differences in 

sulfolane concentrations were detected based on treatment (e.g. live slurry, sterile control) specific 

differences between treatments were identified using post-hoc Tukey tests. All values are reported ± 

standard deviation from the mean. All statistical analyses were run using R statistical software [26].

Results

Aerobic microcosms

Biological vs. abiotic degradation

Biodegradation was the only mechanism of sulfolane removal observed in aerobic microcosms 

(Fig 2-1) with no statistically significant losses being detected in sterile controls. One nutrient-amended 

sterile control replicate from the high concentration microcosm study was excluded from analysis, as 

sulfolane loss due to microbial contamination was identified after 15 days of incubation. To rule out 

abiotic degradation, a 59-day follow-up incubation of six sterile control replicates under the exact same 

conditions (i.e. 100 mg L-1 sulfolane amended with mineral nutrients) was performed. No sulfolane loss 

was observed in the sterile replicates, confirming biodegradation as the only mechanism of sulfolane loss 

in these incubations.

Effect of nutrient amendments at high and low sulfolane concentrations

The addition of a dilute mineral nutrient solution significantly increased the rate of sulfolane 

biodegradation in high concentration sediment-slurry microcosms (Fig 2-1A). For the first 10 days of 

incubation, there was no significant change in sulfolane concentration in any high concentration treatment 

groups. After 22 days of incubation, however, differences in sulfolane concentrations among treatments 

were detected (ANOVA, F3,10=195, p <0.001). By day 22, sulfolane in nutrient-amended live slurries had 

16



dropped from the initial concentration of 95.45 ± 8.18 mg L-1 to 12.02 ± 7.14 mg L-1, resulting in a 

significant concentration difference when compared to the sterile control (p <0.001). After 28 days of 

incubation, the mean sulfolane concentration in nutrient-amended slurries was below 1 mg L-1 (0.47 ± 

0.7) with three of five replicates having no detectable sulfolane remaining. The unamended live slurries 

also contained less sulfolane than their sterile counterparts on day 28 (p=0.028), and within 106 days of 

incubation, sulfolane concentrations had decreased from 86.45 ± 6.17 mg L-1 to 55.82 ± 12.61 mg L-1. 

The highest biodegradation rate observed in high concentration, unamended incubations was 2.93 mg L-1 

day-1, while that in the nutrient-amended slurries was 6.19 mg L-1 day-1 (Fig 2-1A).

In contrast to the high-concentration sediment slurry microcosms incubated under aerobic 

conditions, the addition of a dilute mineral nutrient solution had no effect on the rate of sulfolane 

biodegradation at low sulfolane concentrations (p=0.97) (Fig 2-1B). At 7 days of incubation, there were 

differences detected between the sterile controls and live slurries (ANOVA, F3,12=275, p <0.001) with the 

live treatment groups having significantly lower sulfolane levels than the sterile controls (p <0.001). By 

day 13, the sulfolane concentration dropped from 462.07 ± 54.41 μg L-1 and 506.53 ± 19.75 μg L-1 to below 

detection limits in all replicates of the nutrient amended and un-amended microcosms respectively. 

Sulfolane biodegradation occurred at an average rate of 38.96 μg L-1 day -1. There was no lag time detected 

in biodegradation activity in live slurries, and no loss of sulfolane was observed in the sterile controls over 

the course of the 47-day incubation.

Effect of mineral and organic nutrients on sulfolane biodegradation in groundwater

Sulfolane biodegradation did not occur in groundwater-only microcosms without nutrient 

amendment during the 80-day incubation period (Fig 2-1D). Sulfolane biodegradation occurred more 

quickly in the live microcosms amended with mineral nutrients than in those amended with complex 

organic nutrients. ANOVA testing revealed differences in sulfolane concentrations due to treatment after 

39 days of incubation (ANOVA, F7,16=10.83, p <0.001) attributed to sulfolane loss in the mineral nutrient 
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treatment (p <0.001). Sulfolane loss was observed in microcosms amended with organic nutrients when 

compared to the sterile controls after 49 days of incubation (ANOVA, F7,15=32.86, p <0.001; post-hoc 

Tukey test, p <0.001). At that time (day 49) there was no detectable sulfolane remaining in the mineral 

nutrient treatment. After 80 days of incubation, sulfolane was no longer detected in microcosms amended 

with complex nutrients. Biodegradation rates were calculated to be 33.3 μg L-1 day-1 and 14 μg L-1 day-1 in 

the mineral and complex nutrient amended microcosms respectively. No sulfolane loss was observed in 

any of the sterile controls.

Effect of hydrocarbon co-contamination on sulfolane biodegradation

Sulfolane degraded more slowly in the presence of petroleum hydrocarbons when compared to 

the sulfolane-only microcosms (Fig 2-1C). Average initial sulfolane concentrations in all treatment groups 

were between 730 μg L-1 and 830 μg L-1. After nine days of incubation, both live slurry treatments had 

significantly lower sulfolane concentrations than their sterile counterparts, indicating that biodegradation 

of sulfolane was occurring (ANOVA, F3,11=59.88, p<0.001; post-hoc Tukey, p<0.001). Furthermore, 

hydrocarbon-containing slurries had higher concentrations of sulfolane remaining than the sulfolane-only 

treatments (p=0.006). Within 15 days of incubation, sulfolane concentrations in the treatment group 

without petroleum co-contamination dropped from 730.96 ± 32.85 μg L-1 to a non-detectable level in all 

replicates. In the treatment group containing hydrocarbon co-contamination, sulfolane levels declined to a 

lesser extent, from an initial sulfolane concentration of 750.48 ± 31.68 μg L-1 to 205.25 ± 150.17 μg L-1 

and was no longer detected after 22 days of incubation. Sulfolane biodegradation rates were calculated to 

be 48.7 μg L-1 day -1 in the non-hydrocarbon containing live slurries and 34.09 μg L-1 day -1 in the live 

slurries containing hydrocarbons. No sulfolane loss was observed in the sterile controls.

Dissolved sulfate increases as dissolved sulfolane biodegrades

Dissolved sulfate, a predicted end-product of sulfolane biodegradation, increased in concentration 

as sulfolane biodegraded (Fig 2). However, much more sulfate was generated than could have originated 
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from sulfolane alone. The concentration of sulfur associated with dissolved sulfate increased from 28.8 

mg L-1 to 84.5 mg L-1 after 28 days of incubation in the nutrient-amended live-treatment group. No 

significant change in sulfate concentration was observed in either the sterile control or the no-sulfolane 

control. The sulfur associated with sulfolane in the slurries decreased from a starting concentration of 

25.5 mg L-1 to 0.126 mg L-1. Therefore, no more than 25.4 of the 55.7 mg sulfur L-1 that accumulated in 

the form of dissolved sulfate can be attributed to sulfolane degradation. Similar trends were observed in 

the non-nutrient amended incubations.

Anaerobic incubations

Anaerobic sulfolane biodegradation by aquifer biota was not detected under nitrate, sulfate, or 

iron reducing conditions (Table 2-2). Dissolved sulfate and nitrate losses and Fe(II) generation were 

detected in the benzoate-amended samples indicating the presence of an active anaerobic microbial 

community. Yet, no sulfolane degradation was observed in any anaerobic microcosm throughout the 

course of these experiments (1021 days for nitrate and sulfate-reducing conditions and 391 days for iron- 

reducing conditions).

Discussion

Sulfolane concentrations reduced exclusively via aerobic biodegradation

These microcosm incubation studies demonstrated that aerobic sulfolane biodegradation potential 

exists in this subarctic aquifer and that biodegradation can occur at in situ temperature (4 °C) under 

aerobic conditions. This result is consistent with previous reports of aerobic sulfolane biodegradation in 

aquifer substrate from Western Canada [13,15,18]. However, in contrast to other studies, sulfolane did not 

biodegrade in the aquifer substrate under anaerobic (nitrate, sulfate, Fe(III)-reducing) conditions. This 

lack of degradation may be due to biogeographic and/or biogeochemical differences in the microbial 

communities in this Alaskan aquifer compared to Western Canada. Sulfolane was reported to readily 

biodegrade in Australian aquifer sediment bioreactors in the absence of oxygen at a temperature of 32 °C 
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[17]. Sulfolane also biodegraded in some anaerobic microcosm incubations conducted at 10 °C under 

nitrate- and Mn(IV)- reducing conditions in contaminated aquifer sediment from western Canada [15]. 

Although sulfolane biodegradation occurred in the Canadian studies, it was not observed in all treatment 

replicates or at a higher incubation temperature (28 °C). Differences in incubation temperatures do not 

fully account for the inconsistency observed between replicates in the Canadian microcosms. Rather, 

inconsistent results between treatment replicates suggest there may be an uneven distribution of anaerobic 

sulfolane degraders in the environment. We incubated samples at 4 °C, which is the approximate water 

temperature of the North Pole subarctic aquifer [22]. Repeating our experiments at higher temperatures 

might reveal anaerobic sulfolane biodegradation potential if it is present but being limited by temperature.

Although it was not examined in this study, previous research has found sulfolane to 

anaerobically biodegrade in the presence of Mn (IV) [15]. Since manganese is only sporadically 

dispersed throughout the aquifer we did not simulate Mn (IV) reducing conditions [22]. Future 

biodegradation experiments simulating Mn (IV) reducing conditions using subarctic aquifer substrate 

could reveal if such biodegradation potential exists in the aquifer, elucidate the importance of Mn (IV) on 

the persistence of sulfolane in this system, and help to reveal the geographic distribution of that trait.

Mineral nutrients stimulate biodegradation rates at high concentrations; no effect at low

Mineral nutrient amendment of sediment slurry microcosms stimulated aerobic biodegradation at 

high sulfolane concentrations (100 mg L-1), but not at low sulfolane concentrations (500 μg L-1) (Figs 2-1A 

and B). This difference is likely related to the difference in nutrient requirements necessary to process 

differing amounts of a substrate. Our studies are the first part-per-billion biodegradation assays on aquifer 

substrate attempting to mimic subarctic aquifer conditions. We report an average biodegradation rate of 

38.96 μg L -1 day -1 in the low concentration sediment slurries regardless of nutrient amendments. This 

suggests that the North Pole aquifer has sufficient ambient nutrients to support microbial processing of 

small quantities of sulfolane. However, in an aquifer the movement of groundwater tends to replenish 
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contaminants at a given location. Therefore, it is unknown whether nutrient additions in situ would be 

necessary to maintain sulfolane biodegradation within the aquifer, given sufficient oxygen.

At high experimental sulfolane concentrations (100 mg L-1) we found that amendment with a 

mineral nutrient solution increased the aerobic biodegradation rate from 2.93 mg L-1 day-1 to 6.19 mg L-1 

day-1 and promoted complete sulfolane removal (Fig 2-1 A). This is consistent with previous 

biodegradation findings in sediment and groundwater from a contaminated aquifer in Western Canada 

[13,18]. In aerobic shake flask microcosms containing 20 mg L-1 sulfolane and incubated at 8 °C, 

biodegradation rates increased from 0.8-1 mg L-1 day-1 to 4 mg L-1 day-1 after the addition of N and P [13]. 

Another study from Western Canada using contaminated soil as the only inoculum found that N and P 

addition reduced the lag time in sulfolane biodegradation activity from 77 days to 2 days and increased 

biodegradation rates from 4.56 mg L-1 day-1 to 45.6 mg L-1 day-1 [18]. Observing similar results from 

different environmental samples suggests that nutrient limitation may be a universal constraint on aerobic 

sulfolane biodegradation at high sulfolane concentrations.

We also observed slightly higher degradation rates than found in aquifer substrate from Western 

Canada despite having a lower incubation temperature (4 °C vs. 8 °C) [13]. This was unexpected since 

temperature has been positively correlated with sulfolane biodegradation activity [13,15] and enzymatic 

activity in general [27,28]. The discrepancy may be due to differences in the amount of sediment used as 

the source of inoculum [29,30]. Fedorak and Coy (1996) used 50 g of aquifer sediment and 450 ml of 

groundwater (1:9 sediment water ratio) while we used 25 g of sediment and 100 ml of groundwater (1:4 

ratio). Alternatively, differences between biodegradation rates might be accounted for by community 

composition differences between samples. Plate counts have shown that the abundance of sulfolane 

degraders is variable between samples [16,18]. Further investigations identified a Variovorax sp. as being 

capable of mineralizing sulfolane, although mixed cultures demonstrated greater mineralization than 

isolated degraders [19]. Although modern molecular techniques such as Next Gen sequencing have not 

yet been employed on this topic, determining the identity of sulfolane degraders and their in situ 
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distribution in respect to environmental variables may reveal other controls on sulfolane biodegradation; 

enabling more accurate estimates of plume longevity. Therefore, future work should be focused on 

examining the microbial community involved in active sulfolane biodegradation and determining the 

spatial distribution of specific sulfolane degraders.

Nutrient addition necessary for biodegradation in groundwater alone

The water table is close to the ground surface in North Pole, Alaska and often needs to be 

lowered during the construction season for building activities to occur. Water is pumped out of the ground 

and transported elsewhere through a process known as dewatering [31]. Typically, extracted groundwater 

is discharged to the ground surface in drainage ditches that connect to established stormwater flow 

systems (Alaska Department of Environmental Conservation, personal communication). If the 

groundwater contains sulfolane, this process could increase human exposure risk and contaminate 

previously uncontaminated areas. Therefore, examining the biodegradation potential of the planktonic 

community in groundwater has implications for dewatering waste management strategies. Since the 

majority of the microbial biomass in aquifers is thought to be associated with the aquifer sediment [21], 

we predicted that the biodegradation potential of sulfolane in groundwater alone would be lower than that 

of sediment slurries.

No sulfolane biodegradation occurred in groundwater without the addition of nutrients, indicating 

that sulfolane biodegradation is limited at in situ sulfolane concentrations (Fig 2-1C). The impact of 

nutrient amendment on groundwater-only microcosms was unexpected, as there was no difference in 

biodegradation rates between nutrient amended and non-nutrient amended microcosms containing 

sediment at similar sulfolane concentrations. This difference might be explained by the differences in 

biomass and/or microbial community composition between sediment and groundwater [21,32]. It is also 

possible that this difference is due to the presence of nutrients in aquifer sediment, which may be 

sufficient to support active microbial growth while those available in groundwater alone are too limited.
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Mineral nutrients stimulated sulfolane biodegradation in groundwater more effectively than complex 

organic nutrients (beer fermentation settlings), but both nutrient additions were effective at increasing the 

biodegradation rate. This result may be related to the fact that mineral nutrients are more bioavailable 

than complex organics; ammonium being the preferred nitrogen source for bacteria [33]. Labile organic 

carbon might also have been preferentially utilized over the more recalcitrant sulfolane, slowing 

degradation rates [34].

Hydrocarbon co-contamination retards sulfolane biodegradation in alluvial substrate

Petroleum hydrocarbon contamination has also been found in the groundwater on the refinery and 

is mainly in the form of jet and diesel fuel [22]. We demonstrated that kerosene, which is similar in 

composition to onsite hydrocarbon contaminants, retards the rate of sulfolane biodegradation in aerobic 

sediment slurries by approximately 30% (Fig 1C). This finding agrees with previous research that found 

sulfolane biodegradation rates to be lower than those for common co-contaminants, such as 

diisopropylamine and hydrocarbons [6,7] although to our knowledge no competitive degradation 

experiments have previously been conducted. Our findings suggest co-contaminants are utilized 

preferentially over sulfolane and/or there is a toxic effect of co-contaminants on sulfolane-degrading 

microorganisms. Therefore, the suppressive effects of hydrocarbons on sulfolane biodegradation rates 

should be taken into consideration when modeling sulfolane biodegradation in co-contaminated aquifers.

Mineralization product of sulfolane biodegradation produced

The end products of sulfolane mineralization are proposed to be carbon dioxide and sulfate [19]. 

Previous biodegradation experiments found that up to 97% of the sulfur in sulfolane was converted into 

sulfate in mixed culture incubations, suggesting that complete mineralization of sulfolane was occurring. 

We also found that sulfate was produced while sulfolane biodegraded in our microcosm studies and 

similarly sulfate was the only biodegradation product we detected. However, much more sulfate was 

detected than could have originated from sulfolane alone (Fig 2-2). This discrepancy may be due to the 

23



additional degradation of other organosulfur-compounds in the sediment, which contain functional groups 

such as sulfonates and sulfate esters [35-37]. It is also possible that microorganisms are liberating sulfur 

from sulfur containing minerals (e.g. pyrite) as a result of biological activity [38,39]. However, biological 

activity alone cannot account for this discrepancy, as there was no sulfate produced in the sulfolane-free 

live slurry, which also contained live microorganisms. It is well known that supplying a microbial 

community with an abundance of a specific substrate can stimulate the growth of organisms capable of 

utilizing the substrate and similar compounds while suppressing the growth of those that cannot [40]. We 

propose that a similar situation is occurring in our microcosm studies and that an amendment with the 

organosulfur molecule, sulfolane, stimulates the growth of microorganisms able to degrade many types of 

organosulfur molecules naturally occurring in aquifer sediment. In an aerobic aqueous solution, the end 

product of the sulfur atom removed from organosulfur compounds during biodegradation is often sulfate 

[36].

Our results suggest that an increase in sulfate concentrations observed in complex media is 

indicative of sulfolane biodegradation, yet represents a combination of sulfate liberated from sulfolane 

and other sulfur compounds found in the aquifer materials. Therefore, to conclusively determine if 

biodegradation has occurred, sulfolane concentrations should always be measured, rather than using 

sulfate production alone as a proxy. The degradation pathway for sulfolane has not yet been elucidated 

and it is not known what, if any, biodegradation intermediates accumulate. Isotopic analyses of sulfolane 

and its degradation products containing isotopically labeled sulfur could also be fruitful for identifying the 

pathways involved.

We found that sulfolane biodegraded only in the presence of oxygen. We also demonstrated that 

ambient nutrient concentrations were sufficient for sulfolane biodegradation to occur at the sulfolane 

concentrations being detected within the plume, but only when oxygen is available. The results of our 

research suggest that the sulfolane contamination associated with the Tanana aquifer in North Pole, 

Alaska is not likely to undergo biodegradation under ambient aquifer conditions, with possible exceptions
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being locations where trace amounts of oxygen may be present, such as the leading edge of the 

contaminant plume, locations where groundwater and surface waters interact (e.g., edges of surface water 

bodies, such as ponds), or possibly in shallow portions of the aquifer susceptible to infiltration (e.g., 

oxygenated stormwater runoff). It has been shown that the leading edge of contaminant plumes tend to 

have dissolved oxygen that gets consumed as organic contaminants degrade; a phenomenon known as the 

plume “fringe” effect [41]. Groundwater monitoring wells along the North Pole, Alaska sulfolane plume 

fringe have dissolved oxygen concentrations up to 5 mg L-1 [22]. Our studies were only conducted under 

fully aerated conditions, so it remains uncertain whether sulfolane biodegradation can occur under the 

low-oxygen conditions observed in situ, including at plume fringes. A similar effect may be observed at 

the groundwater-surface water interface of gravel ponds. Determining if sulfolane biodegradation occurs 

under suboxic conditions characteristic of those at the plume “fringe” or other oxygenated regions of the 

plume would allow for more accurate estimates of the contaminant's fate and transport. Also techniques 

such as “air sparging”, where the aquifer material is flushed with atmospheric air to stimulate sulfolane 

biodegradation in situ should be further researched as a localized remediation strategy for sulfolane 

contaminated aquifer substrate [18,42].

Conclusion

The subarctic aquifer that underlies North Pole, Alaska contains an active microbial community 

capable of performing aerobic sulfolane biodegradation, however oxygen is likely the primary limiting 

factor in situ. The presence of petroleum co-contamination retards aerobic sulfolane biodegradation and 

may contribute to low degradation rates in the subsurface. At the sulfolane concentrations prevalent in the 

plume, nutrient levels were sufficient to support biodegradation when sufficient oxygen was present, so 

nutrient addition would not be expected to accelerate biodegradation in the plume. Our study reinforces 

the importance for researchers modeling sulfolane half-lives under various aquifer conditions to not only 

incorporate a biodegradation term in their models, but also to consider the variability of biodegradation 

rates associated with differing environmental conditions, including oxygen availability and co
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contamination. The microbial community associated with groundwater alone has a lower biodegradation 

potential than that associated with groundwater-sediment mixtures, however nutrient amendments were 

successful in stimulating aerobic degradation in groundwater alone, which has implications for 

remediation of dewatering waste. Anaerobic conditions do not appear to support sulfolane 

biodegradation. Yet low oxygen conditions, such as those that often prevail at the leading edge of a 

plume, may have the potential to foster biodegradation activity as seen for some other organic 

contaminants [41], but warrants further investigation.

Future work should be directed at elucidating the identity of the microorganisms involved in 

sulfolane biodegradation. Doing so may reveal new taxa as well as provide taxonomic indicators of the 

potential for active sulfolane biodegradation in situ at a contaminated site. Determining the distribution 

and potential activity of sulfolane-degrading microorganisms under the range of redox and 

biogeochemical conditions present, including suboxic conditions, would also aid efforts to more 

accurately predict the fate of sulfolane in the environment and to perform monitored natural attenuation.
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Figures

Figure 2-1: Sulfolane concentration over time in aerobic microcosm incubations. (A) Sulfolane 
biodegradation is nutrient limited in high concentration sediment slurry microcosms. (B) Sulfolane 
biodegradation is not nutrient limited in low concentration sediment slurry microcosms. (C) Hydrocarbon 
co-contamination retards the rate of sulfolane biodegradation in sediment slurry microcosms. (D) Nutrient 
amendment is necessary to stimulate sulfolane biodegradation in groundwater only microcosms. Live 
slurries contained an active microbial community and sulfolane. Sterile controls were heat-killed. (N) 
indicates amendment with a dilute mineral nutrient solution. (H) indicates treatments amended with 
hydrocarbons. (O) indicates treatments amended with a complex organic nutrient solution. Error bars 
indicate standard deviation from the mean.
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Figure 2-2: Analysis of dissolved sulfur over time in high concentration, nutrient-amended sediment 
slurry microcosms. Solid lines indicate dissolved sulfur attributed to sulfolane. Dotted lines indicate 
dissolved sulfur attributed to sulfate. Sulfate values are normalized to starting concentrations. Error bars 
indicate standard deviation from the mean.
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Tables

Table 2-1: Experimental design for aerobic sulfolane biodegradation microcosm studies.

Treatment groups Replicates Sulfolane Microbes Other amendment
Live slurry 5 + + None
Live slurry (N) 5 + + Mineral Nutrients*

High and Low 
Concentration Sterile control 3 + - None

Slurries Sterile control (N) 3 + - Mineral Nutrients*
No sulfolane control 3 - + None
No sulfolane control (N) 3 - + Mineral Nutrients*
Live slurry 5 + + None

Hydrocarbon
Co-

Live slurry (K) 5 + + Kerosene

contaminant Sterile control 3 + - None
Slurries Sterile control (K) 3 + - Kerosene

No sulfolane control 5 - + None
Live slurry 3 + + None
Live slurry (N) 3 + + Mineral Nutrients*

Groundwater Live slurry (O) 3 + + Organic Nutrient**
Only Sterile control 3 + - None

Sterile control (N) 3 + - Mineral Nutrients*
Sterile control (O) 3 + - Organic Nutrient**

Conditions tested were high (100 mg L-1) and low sulfolane concentrations (500 μg L-1) in sediment slurries, hydrocarbon and 
sulfolane co-contamination in sediment slurries, and biodegradation in groundwater only. (N) indicates treatments amended with 
mineral nutrients. (K) indicates kerosene amendment. (O) indicates amendment with organic nutrients. * Amended with an 11
fold dilution of a 1X Bushnell-Haas mineral nutrient broth. ** Amended with a complex organic nutrient solution. In the high 
concentration incubations there were only two replicates of the nutrient amended sterile control while there were three replicates 
in the low concentration incubations (refer to the results section for a detailed explanation).
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Table 2-2: Summary of the time required to achieve 95% sulfolane biodegradation for all microcosm studies in aquifer 
substrate from North Pole, Alaska.

Incubation type 95% Sulfolane degraded (days)

High concentration Slurry Not achieved: ~ 40% in 106 days
28*

Low Concentration Slurry
13
13*

Groundwater Only
No activity
49*
80**

Hydrocarbon Co-Contaminated Slurry 22
Anaerobic Sulfate Reducing No activity
Anaerobic Nitrate Reducing No activity
Anaerobic Iron Reducing No activity

* Indicates amendment with a dilute mineral nutrient solution. ** Indicates amendment with an organic nutrient source
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Chapter 3: Identification and Characterization of a Dominant Sulfolane
Degrading Rhodoferax sp. via Stable Isotope Probing Combined with 

Metagenomics 1

1 Kasanke, C.P., Collins, R.E., and Leigh, M.B. (2019). Identification and Characterization of a Dominant Sulfolane
Degrading Rhodoferax sp. via Stable Isotope Probing Combined with Metagenomics. Scientific Reports 9, 3121 
(2019).

Abstract

Sulfolane is an industrial solvent and emerging organic contaminant affecting groundwater 

around the world, but little is known about microbes capable of biodegrading sulfolane or the pathways 

involved. We combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics to 

identify microorganisms associated with sulfolane biodegradation in a contaminated subarctic aquifer. In 

addition to 16S rRNA gene amplicon sequencing, we performed shotgun metagenomics on the 13C- 

labeled DNA to obtain functional and taxonomic information about the active sulfolane-degrading 

community. We identified the primary sulfolane degrader, comprising ~85% of the labeled community in 

the amplicon sequencing dataset, as closely related to Rhodoferax ferrireducens strain T118. We 

obtained a 99.8%-complete metagenome-assembled genome for this strain, allowing us to identify 

putative pathways of sulfolane biodegradation. Although the 4S dibenzothiophene desulfurization 

pathway has been proposed as an analog for sulfolane biodegradation, we found only a subset of the 

required genes, suggesting a novel pathway specific to sulfolane. DszA, the enzyme likely responsible for 

opening the sulfolane ring structure, was encoded on both the chromosome and a plasmid. This study 

demonstrates the power of integrating DNA-SIP with metagenomics to characterize emerging organic 

contaminant degraders without culture bias and expands the known taxonomic distribution of sulfolane 

biodegradation.
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Introduction

Sulfolane is an anthropogenic organo-sulfur molecule used in some oil and natural gas refineries, 

resulting in contamination of groundwater at industrial sites around the world 1-3, including in North Pole, 

Alaska, where it has contaminated hundreds of private drinking water wells. Despite its emerging 

importance as a groundwater contaminant, little is known about the environmental fate of sulfolane. 

Sulfolane biodegradation potential exists in activated sludge, contaminated aquifer substrate, and pristine 

soil, but the identity of the microorganism(s) responsible remains largely unknown 4-6. Three sulfolane 

degraders have been previously identified through pure-culture-based studies, with mixed enrichment 

cultures reportedly degrading sulfolane more quickly than pure cultures 7-9. It remains unknown how 

diverse, widespread, or abundant sulfolane degraders are in the environment, particularly in contaminated 

aquifers, where this information is valuable in assessing plume longevity and identifying remediation 

strategies, including natural attenuation and accelerated bioremediation.

Molecular techniques like stable isotope probing (SIP) are powerful tools for examining the 

active members from environmental microbial communities involved in the biodegradation of emerging 

organic contaminants such as sulfolane. 13C-based SIP is the process of exposing a microbial community 

to a chemical compound highly enriched in 13C, which otherwise accounts for roughly 1% of all carbon. 

The microorganisms that metabolize the 13C-labeled substrate will incorporate the heavy isotope into their 

biomolecules 10. Analyzing the 13C-enriched DNA enables the identification of functionally relevant 

community members through DNA sequencing approaches including 16S rRNA gene amplicon and 

shotgun-metagenomic sequencing. Shotgun metagenomic sequencing can also shed light on the functional 

capabilities of the active organisms and identify metabolic pathways potentially being utilized 11,12.

The environmental microorganisms known to be capable of degrading sulfolane to date have all 

been isolated from temperate regions. They include a Shinella sp. from Okinawa Japan, a Variovorax sp. 

from Alberta Canada, and a Pseudomonas sp. from Illinois USA 7-9. To our knowledge, the identity of 
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sulfolane degrading microbes in a subarctic aquifer, like that found in North Pole, Alaska, have not 

previously been reported. We performed DNA-SIP with 13C-labeled sulfolane in subarctic aquifer 

substrate to elucidate the identity of subarctic sulfolane degraders while circumventing culture bias. We 

combined DNA-SIP with shotgun metagenomics to taxonomically identify microbes involved in 

sulfolane degradation as well as to gain insights into their genetic potential and possible degradation 

pathways that may be being used to process sulfolane. To our knowledge, this study is the first to 

combine these techniques to identify and examine active sulfolane-degrading microorganisms from 

environmental samples.

Results

Isolation of 13C-labeled DNA

Quantitive PCR results showed a clear separation between the heavy and light DNA in the 

density gradient (Figure 3-1). In addition, there was an increase in the relative abundance of labeled DNA 

over the course of the incubation in the microcosms amended with labeled sulfolane. That indicated the 

labeled carbon was being assimilated by members of the microbial community. As expected, there was no 

quantifiable heavy (13C-labeled) DNA in any of the control microcosms amended with 12C-sulfolane.

Microbial Community Analysis

The microbial community associated with the 13C-labeled DNA fractions was very low in 

richness (Chao1 65.6 ± 27.8) and diversity (Inverse Simpson index 1.4 ± 0.3) with only one OTU (OTU1) 

comprising 85.7 ± 8.7 % of the total labeled microbial community (Figure 3-2). A BLAST comparison of 

the 253-bp partial 16S rRNA gene sequence for OTU1 showed this gene fragment was 99% identical to 

five different species from three genera of the Comamonadaceae family (Rhodoferax ferrireducens, 

Rhodoferax saidenbachensis, Limnohabitans parvus, Acidovorax facilis and Acidovorax radicis). 

Analysis of the full 16S rRNA gene uniquely identified OTU1 as a Rhodoferax sp., as detailed below.
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The next two most abundant community members were Lysobacter sp. and Bacteriovorax sp., which, 

when combined, comprised less than 3% of the total labeled community (1.3 ± 2.0% and 1.1 ± 0.9% 

respectively). The dominant phylotype in the unlabeled or “light” fractions of the 13C-sulfolane incubation 

was OTU15 from the Sphingomonadaceae family, which represented 7.4% of the unlabeled community. 

OTU1 comprised 4.9% of the light fraction's total community.

Although OTU1 (presumably Rhodoferax sp.) was uniquely dominant in the 13C-labeled 

microbial community, it was not the only dominant organism detected in the total community analysis of 

the control microcosms that were exposed to 12C-sulfolane. In the 12C-control cultures, OTU1 was co

dominant with OTU3 (identified as Arthrobacter sp.), which represented 23.2 ± 3.4 % of the total 

microbial community, while OTU1 constituted 21.3 ± 6.0 %. OTU3 was also significantly more 

abundant than OTU1 in the starting community (paired t-test, df = 2, t = -8.28, p = 0.014). Even though 

OTU3 was a dominant member of the total community in 12C-sulfolane control cultures, it was ruled out 

as a sulfolane degrader due to its lack of incorporation of 13C from sulfolane into DNA.

Statistical analyses showed that the microbial communities in the SIP “heavy” fractions, SIP 

“light” fractions, and 12C-sulfolane controls were all significantly different from each other (MRPP, p < 

0.05). These groups were also significantly different from the time-zero total community samples with the 

largest difference between T0 and the 13C-labeled communities (A=0.66, p <<0.05). However, once a 

community shift occurred and sulfolane degradation was initiated by day 28, there was no significant 

change in the microbial community profile over the course of the incubation within the SIP “heavy” 

fractions, SIP “light” fractions, and 12C-sulfolane controls. As expected, the microbial community showed 

more OTU richness and diversity prior to sulfolane exposure (Chao1 2209.0 ± 89.1, Inverse Simpson 

140.2 ± 12.7). The dominant 13C-enriched OTU1 was the 18th most abundant phylotype in the T0 total 

community and comprised less than 0.1% of the microbial community prior to sulfolane exposure and 

incubation. The two most abundant T0 total community phylotypes were identified as Geobacter spp. and 

represented 4.2 % and 3 % of the total community, respectively. These OTUs were not found in the SIP 
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“heavy” community. Although there was a small subset of archaea in the T0 microbial community, no 

labeled archaeal DNA was detected in the sequence data.

Metagenomic analyses

By shotgun sequencing the low-diversity heavy SIP fractions we were able to obtain a high- 

quality draft metagenome assembled genome (MAG) of the putative sulfolane-degrading microorganism. 

A total of 2.9 M paired-end 2×250 bp reads (1.5 Gbp) remained after quality control and trimming, which 

produced an assembly containing 12,437 nodes and a total length of 14 Mbp. A single large connected 

scaffold made up 49% of the total size (6.9 Mbp) with a mean sequencing depth of 53x (Supplementary 

Figure 3-1). This component was composed of 395 contigs with an N50 of 146 kbp and a longest contig 

of 614 kbp. An additional 262 kbp were contained in 41 contigs on 5 additional connected components, of 

which two were closed circular plasmids and one was complete but not circular (Supplementary Figure 3

2). The average length of the 11,998 unconnected contigs was 572 bp; the mean k-mer depth of these 

contigs was 0.7x. The 395 contigs from the large connected component were defined as a MAG and 

annotated in JGI-IMG/ER. A total of 6537 protein coding genes were identified; the GC content was 

60.84%. CheckM analysis found the genome to be 99.8 % complete with only 0.50 % contamination 

(defined as redundancy of putative single-copy genes).

The 16S rRNA gene for the MAG was aligned to the representative sequence of OTU1, the 

sulfolane-degrading Comamonadacaea sp. identified in the community dataset, using BLAST 13. The 

16S rRNA gene assembled from the metagenome was 100% identical to the amplicon, matching 253 of 

253 bases and identifying this draft genome as the genome of the labeled sulfolane degrader. BLAST 

comparisons of the full 16S rRNA gene sequence from the metagenome-assembled genome identified the 

sulfolane degrader as a Rhodoferax sp., being 99% identical to Rhodoferax ferrireducens strain T118. A 

phylogenetic tree based on the 16S rRNA gene shows this sulfolane degrader as a member of the 

Rhodoferax clade (Figure 3-3).
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We searched the MAG for genes that may be involved with sulfolane degradation. It has been 

suggested that sulfolane biodegradation may follow the 4S-pathway described for diobenzothiophene 

desulfurization 8. This pathway employs the genes dszA, dszB, and dszC to oxidize the sulfur to sulfite, 

which abiotically oxidizes to sulfate in aerobic conditions. A protein BLAST search found a gene that is 

homologous to dszA (42% identical, 59% positive, e-value of 10-109) in the genome and a second, distantly 

related homolog (Supplementary Figure 3-3), repeated 5 times on an associated plasmid (Supplementary 

Figure 3-4). The MAG does not contain dszB, which cleaves the sulfite moiety to complete the 

remineralization of sulfur in the 4S-desulfurization pathway 14,15. The MAG also lacks the thdF gene, 

which is associated with the degradation of sulfolane-related compounds in Escherichia coli mutants 16,17. 

However, the genome of the Rhodoferax sp. does have 84 genes involved with sulfur metabolism, 

including complete sulfur oxidation (sox) and alkanesulfonate utilization (ssu) pathways (Supplementary 

Figure 3-5).

Discussion

Using DNA-SIP combined with metagenomics, we have identified a single OTU as the primary 

sulfolane-degrading organism in subarctic aquifer substrate and provided DNA evidence that strongly 

suggests it is a member of the Rhodoferax genus (Figure 3-3). Of the 178 OTUs detected in the 13C- 

labled SIP fractions, OTU1 was identified as the dominant microorganism incorporating carbon from 

sulfolane in this subarctic aquifer substrate. Although initial analysis of the 253-bp amplicon data 

revealed OTU1 as a member of the Comamonadaceae family, the full 16S rRNA gene provided a more 

rigorous genus-level taxonomic resolution. Phylogenetic analysis showed that OTU1 was 99% similar to 

type strain Rhodoferax ferrireducens T118 (Figure 3-3), which was isolated from subsurface sediments 

collected in Oyster Bay, VA, USA. This relationship was also supported by whole genome database 

comparisons. When non-type strains were included in the phylogenetic analysis, most of the closest 

relatives were found in contaminated soil or groundwater with the top 20 originating from freshwater or 
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terrestrial environments (Figure 3-4). Although this is the first report of a Rhodoferax sp. degrading 

sulfolane, it is not surprising since members of the Rhodoferax genus are commonly found in 

contaminated freshwater environments and have been implicated in the degradation of other contaminants 

including herbicides, naphthalene, and benzene 18-20.

Prior to identifying Rhodoferax sp. OTU1 as a sulfolane degrader, the only environmental 

microorganisms known to degrade sulfolane originated from subtropical, humid subtropical, or humid 

continental climates. In Western Canada a sulfolane degrader was isolated from a contaminated aquifer 

and identified as a Variovorax sp. which is in the same family (Comamonadaceae) as Rhodoferax sp. 

OTU1 8. Two other environmental isolates have been reported to degrade sulfolane. Pseudomonas 

maltophilia was isolated from the soil of an abandoned strip mine near Cambria, Illinois; USA and grew 

on sulfolane as the sole carbon source 7. A novel Shinella sp. was isolated from soil in the Yambaru area 

of Okinawa Main Island; Japan and grew on sulfolane as the sole sulfur source 9. To our knowledge, the 

only other report of a sulfolane-degrading bacterial species was a mutated strain of Escherichia coli, 

which was not isolated from the environment but did yield insights into sulfone degradation pathways 16. 

A mutation in the thdA gene allowed this E. coli strain to degrade sulfolane via a novel sulfone oxidase 

enzyme. The authors proposed thdA to be a regulator gene for several genes involved in the metabolism 

of organo-sulfur compounds, including thdF thiophene oxidase 16. The novel sulfone oxidase was never 

identified and thdA has not been sequenced, but the genetic sequence for thdF has been published 17. We 

did not find thdF homologs in the MAG of the degrader, but that does not rule out the unidentified 

sulfone oxidase as being involved in sulfolane metabolism.

It has been proposed that the biodegradation of sulfolane followed the 4S-desulfurization pathway 

for dibenzothiophene due to structural relatedness of the compounds and the production of sulfate as a 

mineralization product 8. This pathway involves the use of the dsz operon involving genes dszA, dszB, and 

dszC 21. The gene product of dszA opens the ring structure after dibenzothiophene is converted to 

dibenzothiophene-5,5-dioxide by dszC 15. We found no evidence of dszB being present in the MAG for 
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the degrader, suggesting that sulfolane biodegradation in this strain does not utilize the 4S-desulfurization 

pathway. However, the MAG does encode a homolog to dszA at the end of an alkanesulfonate utilization 

pathway (Figure 3-5). In addition, 5 copies of another dszA homolog are present on an IncP-family 

plasmid in the metagenomic co-assembly (Supplementary Figures 3-2, 3-3, and 3-4). This plasmid has a 

copy number of about 3 relative to the chromosome, suggesting that the plasmid-borne dszA homolog is 

present at 15 times the copy number of the genomic dszA homolog. This result is perhaps not surprising 

considering that the dibenzothiophene pathway is also generally plasmid-borne 22,23. If either of these 

DszA homologs can act on sulfolane as DszA does to dibenzothiophene, the remaining compound would 

be 4-hydroxy-butane sulfinic acid. Under aerobic conditions sulfinic acids can oxidize to sulfonic acids, 

with aliphatic sulfinic acids being more reactive than aromatic ones 24. Although speculative, it is feasible 

that the resulting product (4-hydroxy-butane-sulfonic acid) is then degraded in a similar fashion to other 

alkanesulfonates and/or taurine, which this species is genetically equipped to process (Figure 3-6, 

Supplementary Figure 3-5).

Greene et al. previously found that mixed cultures are more efficient at degrading sulfolane than 

isolates, but it was unclear if this was due to the exchange of specific nutrients between organisms, the 

removal of growth-inhibiting products, the combined metabolic attack on the substrate, or some 

combination 8. We were surprised to find no compelling evidence of sulfolane assimilation in any species 

other than Rhodoferax sp. OTU1 throughout the course of this labeling study. Although there were other 

labeled microbes in this community, they were in extremely low abundance and were likely labeled due 

to the scavenging of labeled biomolecules 25. In addition, the 13C-labeled community structure did not 

change substantially over the entire SIP incubation period, which might be expected if sulfolane 

metabolites were being degraded in series. Although Rhodoferax sp. OTU1 represented ~25% of the 

community in the control (unlabeled sulfolane) microcosms, it was co-dominant with an Arthrobacter sp. 

Despite the abundance of the Arthrobacter sp. in the controls, we found no labeled Arthrobacter DNA, 

which strongly suggests it is not involved in sulfolane biodegradation. However, it is possible that other 
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members of the community were able to degrade sulfolane yet were not assimilating the carbon and 

therefore were not identified with the methods we used. We are currently working to isolate Rhodoferax 

sp. OTU1 into pure culture in order to enable definitive characterization of the sulfolane degradation 

pathway.

Conclusion

We have identified a Rhodoferax sp. as being the dominant and likely the exclusive sulfolane

degrading microorganism in enrichment cultures from contaminated subarctic aquifer substrate. By 

combining 13C-DNA-SIP with 16S rRNA gene amplicon sequencing and shotgun metagenomics, we were 

able not only to resolve the taxonomy of this degrader, but also gain insights into how it may be 

metabolizing sulfolane. We also suggest that sulfolane degradation does not proceed following the 

previously proposed model 8. Although an Arthrobacter sp. comprised ~25% of the total community in 

the 12C-sulfolane controls during active sulfolane biodegradation, it was not assimilating sulfolane carbon 

into its DNA and therefore likely not involved in the biodegradation process. We caution that simply 

analyzing changes in the microbial community profile during sulfolane biodegradation studies is not 

sufficient to determine species function and may be misleading. Obtaining a pure culture of Rhodoferax 

sp. OTU1 would allow of the confirmation of its degradation abilities and investigations into the 

pathways utilized. The genomic data obtained in this study could further assist in that pursuit. Although 

this study cannot confirm that Rhodoferax sp. OTU1 actively degrades sulfolane within the contaminated 

aquifer, it enables further studies of biodegradation potential in situ, such as through characterizing the 

environmental distribution of this organism and identifying environmental factors driving its abundance.

Methods

Subsurface samples used as inoculum for SIP studies were collected from Flint Hills Resources 

property located in North Pole, Alaska (64.7511° N, 147.3519° W) where groundwater sulfolane 

concentrations ranged from 0 to 34.8 mg L-1 26. The sediment and groundwater samples used in this study 
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came from a sulfolane-contaminated subarctic aquifer and a detailed site characterization and history of 

sulfolane use can be found in Kasanke and Leigh 3. The aquifer sediment used in this study consisted of 

augured material from the installation of a new monitoring well at depths between 3 and 9 m below 

ground surface. All sediment was stored at 4 °C (the approximate average aquifer temperature) and was 

sieved through a 2-mm screen prior to use. Groundwater used in this study came from an existing 

monitoring well approximately 30 m from where sediment was collected. The well was screened 18.25 m 

below the ground surface and has stable historical sulfolane concentrations of approximately 125 μg L-1 

26. Groundwater was collected in September 2012 and sediment in March 2013. Both were stored at 4 °C 

until use in February 2016. The top of the water table at time of sampling was 3 m below ground surface 

and the aquifer has an average temperature of 3.4 °C 26.

Stable Isotope Probing

SIP microcosms each contained 12.5 g of soil and 40 ml of groundwater combined in a 160-ml 

serum bottle. Since previous sulfolane biodegradation studies showed more predictable degradation 

curves when nutrients were added, 5 ml of a 1X Bushnell-Haas mineral nutrient solution was added to 

each microcosm (final concentration: magnesium sulfate 0.022 g L-1, calcium chloride 0.0022 g L-1, 

monopotassium phosphate 0.11 g L-1, diammonium hydrogen phosphate 0.11 g L-1, potassium nitrate 

0.011 g L-1, ferric chloride 0.006 g L-1). To examine the composition of the initial microbial community, 

three of these microcosms were immediately harvested and stored at -80 °C for DNA extraction and 16S 

rRNA gene sequencing. The remaining microcosms were assigned to two treatment groups containing 

nine microcosms each. One group was amended with a sterile aqueous solution of custom-synthesized 

13C-labeled sulfolane (Microbial Insights, TN) and the other was amended with commercially available 

(predominantly 12C) sulfolane (Acros Organics, Belgium) as a control. The target starting sulfolane 

concentration in all microcosms was 100 mg L-1. All microcosms were incubated under aerobic 

conditions at 4 °C. Aliquots (1 ml) of the liquid phase were periodically sampled from each microcosm 

for sulfolane quantification using gas chromatography-mass spectrometry 3. Once significant sulfolane 
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loss was detected (39.15 % removed at 28 days of incubation), three microcosms from each treatment 

group were destructively harvested for microbial community characterization (Figure 3-1a). The 

remaining microcosms were harvested in the same manner for two additional timepoints (days 32 and 36 

of incubation) when additional sulfolane loss was observed (89.64 % and 100 % respectively) (Figure 3- 

1a).

DNA extraction

To obtain enough bacterial DNA from these low-biomass samples for density gradient separation 

(>1 μg), DNA was extracted using a modified version of the MO BIO PowerSoil DNA isolation kit (MO 

BIO Laboratories #1288-100). For each DNA extraction, 0.5 g of microcosm sediment and 100 μl of 

microcosm supernatant was combined into a single PowerSoil Bead Tube, with five DNA extractions 

performed for every harvested microcosm. Extractions were performed following the MO BIO PowerSoil 

protocol except that DNA was concentrated by combining all five extracts from a microcosm onto a 

single PowerSoil Spin Filter and eluted into a single collection tube using 100 μl (2 x 50 μl) of C6 elution 

buffer. Double-stranded DNA was quantified using a Qubit fluorometer. All DNA extracts contained 

between 1.84 and 4.8 μg total DNA.

Separation and detection of 13C-DNA

13C-labeled DNA was separated from the unlabeled DNA via isopycnic centrifugation in cesium 

trifluoroacetate (CsTFA) following a previously described protocol 27. Briefly, between 1.8 and 3 ng of 

total DNA was added to 5 ml of a CsTFA solution (Amersham 17-0847-02) diluted to a buoyant density 

of ~ 1.62 g ml-1. Density gradients were created by ultracentrifugation in a Beckman Coulter Optima L- 

100 XP ultracentrifuge using the fixed-angle Beckman NVT 100 rotor at 45,600 r.p.m. and 25 °C for 72 

hours. The gradients were divided into 20 fractions (buoyant density 1.28 - 1.82) and qPCR targeting the 

bacterial and archaeal 16S rRNA gene was performed on each fraction 28. The normalized abundance 

values for targeted genes were calculated by dividing the abundance of each fraction by that of the most 
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abundant fraction within the same gradient. Fractions containing heavy DNA (labeled) were pooled 

together and those containing light DNA (unlabeled) were pooled together (Figure 3-1) within each 

individual gradient. The primarily 12C-sulfolane controls were also fractionated and pooled similarly to 

control for any DNA contamination in heavy fractions. Pooled fractions from all samples were then 

subjected to 16S rRNA gene sequencing as described below.

16S rRNA gene sequencing

The V4 region of the bacterial and archaeal 16S rRNA gene was amplified using Illumina fusion 

primers as described by Caporaso et al. 29. PCR output for all samples was normalized using a Life 

Technologies SequalPrep Normalization plate. The normalized products were pooled. After Ampure 

clean up, QC and quantitation the pool was loaded on a 500-cycle reagent cartridge (v2) Illumina MiSeq 

flow cell and sequenced in paired end 2x250 bp format using custom V4 sequencing and index primers 29. 

Base calling was done by Illumina Real Time Analysis (RTA) v1.18.54 and output of RTA demultiplexed 

and converted to FastQ with Illumina Bcl2fastq v1.8.4.

FASTQ files were analyzed using mothur software (1.35.1) following a modified version of the 

standard MiSeq SOP (accessed March 2016) 30,31 as described by Martinez et al. 28. Briefly, all sequences 

had a quality score of 25 or greater and the maximum contig length was set to 275. All unique sequences 

were aligned against the SILVA SEED v119 database and chimera checking was performed using the 

mothur implementation of UCHIME 31,32. Unique operational taxonomic units (OTUs) were defined at a 

level of 97% sequence similarity and taxonomy was assigned using SILVA SEED v119 taxonomy 

database 32. To account for differences in sequence coverage, the number of sequences was subsampled 

to the number of sequences in the least covered sample (8142). Differences between microbial 

communities were assessed using nonparametric Multi-Response Permutation Procedures (MRPP) from a 

Bray-Curtis distance matrix 33. All statistical analyses were performed with R statistical software using 

the vegan package 34.
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Metagenomic sequencing

Shotgun metagenomic sequencing was performed on one 13C-labeled DNA extract from each of 

the sampling timepoints. The DNA was prepared for sequencing using a Nextera XT DNA Library Prep 

Kit and sequencing was performed on an Illumina MiSeq using a standard v3 flow cell and paired end 

2x300 bp sequencing format with an average insert size of 275 bp. Raw reads were trimmed and quality 

filtered using bbduk in the bbmap package (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user- 

guide/). After trimming and filtering, raw sequences were error corrected and assembled using SPAdes 

version 3.10.1 35. The de Bruijn graph assembly was visualized with Bandage 36, which indicated the 

presence of a large connected component containing a single metagenome assembled genome (MAG) and 

several complete plasmids (Supplementary Figure 3-2). As a check, contigs were also binned by 

tetranucleotide frequency using VizBin 37 into a single MAG. For further processing we used the large 

connected component MAG. MAG bin quality was assessed for contamination and completeness using 

CheckM and the MAG and plasmids were annotated using RAST, PATRIC, and JGI/M ER pipelines 38-41. 

Phage and plasmid genes were also identified with PHASTER 42. The full-length 16S rRNA gene (1541 

bp) was extracted from the MAG and queried against Genbank and RDP databases using BLASTN to 

determine the relationship of this genome to other known microorganisms 43-45. Using BLASTN, the full

length 16S rRNA gene from the MAG was queried against the representative OTU sequences in the 16S 

rRNA amplicon dataset to identify the OTU of the genome we obtained 46. Raw reads from the 16S rRNA 

amplicon sequencing and shotgun metagenomic sequencing are available in the sequence read archive 

(SRA) under accession #SRP136637. This Whole Genome Shotgun project has been deposited at 

DDBJ/ENA/GenBank under the accession QEII00000000. The version described in this paper is version 

QEII01000000. The MAG assembly and annotation is publicly available in the JGI IMG/ER database 

under accession # 181102. Sequence assemblies for the plasmids extracted from the MAG are available in 

the supplementary materials.
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Phylogeny

We compared the full-length 16S rRNA gene (1541 bp) of the dominant 13C-labeled organism to 

that of both the type strain and non-type strains of the closest relatives. The 16S rRNA sequences of close 

relatives were obtained from the RDP and GenBank databases 43,44. Prior to tree construction the 

sequences were aligned using the RDP tree builder program and manually checked using Seaview version 

4 43,47. The maximum likelihood phylogenetic tree was constructed using PhyML 48 in SeaView under the 

GTR model 47 after alignment in MUSCLE 49 and edited online using iTOL 50. Shimodaira-Hasegawa 

approximate likelihood ratio test (SH-aLRT) node confidence values were calculated during tree 

construction 51.
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Figures

Figure 3-1: A) Sulfolane loss over time in SIP microcosms. Dashed arrows indicate when triplicate 
microcosms were destructively harvested. Error bars represent standard deviation. B) Quantitative PCR 
results showing relative abundance of 16S rRNA gene copies in density gradient fractions after separation 
of the labeled and unlabeled DNA in representative microcosms amended with 13C-labeled sulfolane. 
The 13C-labeled fractions increase in relative abundance over time demonstrating the incorporation of 
13C into prokaryotic DNA as sulfolane is biodegraded.
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Figure 3-2: Abundance of OTU1 in all 16S rRNA gene amplicon community types. Since no differences 
were found between community structure over the course of incubation, all replicates from each timepoint 
(28, 32, and 36 days) were averaged together for the control (n=7), unlabeled fraction (n=9), and labeled 
fraction (n=9) communities. Time zero represents the subarctic aquifer substrate prior to sulfolane 
exposure (n=3). “Control” refers to the community incubated with unlabeled sulfolane. Error bars 
represent standard deviation from the mean.
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Figure 3-3: Phylogenetic tree of Rhodoferax sp. OTU1 compared to closest type strain bacteria. Tree is 
based on full-length 16S rRNA gene sequence similarity. SH-aLRT node confidence values ≥ 0.70 are 
shown.
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Figure 3-4: Phylogenetic tree of Rhodoferax sp. OTU1 and closest related non-type strain bacteria based 
on full-length 16S rRNA gene similarity. All non-type sequences represented here are >99% similar to 
Rhodoferax sp. OTU1. SH-aLRT node confidence values ≥ 0.70 are shown. Rhodoferax ferrireducens is 
in bold for reference.
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Figure 3-5: Order of alkanesulfonate metabolism genes in Rhodoferax sp. OTU1 and Rhodoferax 
ferrireducens strain T118. Open arrows indicate shared ssu genes. The checkered arrow is the 
monooxygenase ssuD which is present in this operon in strain T118 but not the sulfolane assimilating 
species. However, a homolog to SsuD is elsewhere in the genome of the sulfolane-assimilating 
Rhodoferax sp. The dszA homolog is present in both species at the end of the ssu operon.
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Figure 3-6: Schematic of proposed sulfolane biodegradation pathway. Protein identifications and Kegg 
Orthology values are as follows: Sulfonate transport system substrate-binding protein (SsuA; K15553), 
Sulfonate transport system ATP-binding protein (SsuB; K15555), Sulfonate transport system permease 
protein (SsuC; K15554), Dibenzothiophene sulfone monooxygenase (DszA; K22220). The flavin 
reductase refers to either SsuE (flavin reductase; K00299) or DszD (Genbank Accession AB051429.1; no 
KO or E.C. values available), which have coding regions in close proximity to dszA on the chromosome 
and plasmid respectively.

(Supplementary information available online)
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Chapter 4: Distribution of Sulfolane-metabolizing Microorganisms 
throughout a Contaminated Subarctic Aquifer and Groundwater Treatment 

Systems1

1 Kasanke, C.P., Willis, M., and Leigh, M.B. (2019). Distribution of Sulfolane-metabolizing Microorganisms 
throughout a Contaminated Subarctic Aquifer and Groundwater Treatment Systems, Water Research. (in prep.)

Abstract

Sulfolane, an emerging contaminant, has been found in the groundwater surrounding a refinery in 

Interior Alaska, where it was used for decades and has migrated over three kilometers from the source. 

Recently, a microorganism from this aquifer was identified with the capability to metabolize sulfolane 

under aerobic conditions. We assessed the distribution of this sulfolane-assimilating Rhodoferax sp. 

throughout the contaminated subarctic aquifer using 16S-rRNA-amplicon-sequence-based microbial 

community analyses of ~100 samples collected from groundwater monitoring wells and two sulfolane 

treatment systems. One treatment system was an air sparging system where air was injected directly into 

the aquifer and the other was a granular activated carbon filtration system for treatment of water from 

private wells. We found that this organism was present in low abundances throughout the aquifer but was 

significantly more abundant in the groundwater associated with the experimental air sparge system, 

especially 13 weeks after system start-up. We found no correlation between relative abundance of the 

sulfolane-assimilating Rhodoferax sp. and the environmental variables collected (D.O., sulfolane, ORP, 

pH, conductivity, depth, location) in the monitoring wells, however, the abundance of the sulfolane 

assimilator correlated strongly with dissolved manganese after 10 weeks of air sparging. The sulfolane

assimilating Rhodoferax sp. was not a major component of the granular activated carbon filtration 

systems. Community analysis of the aquifer monitoring well samples revealed that depth was inversely 

related to community richness and evenness. We also investigated the community differences between 

subarctic groundwater and aquifer sediment. Although there were significant differences between 
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groundwater and sediment microbial communities, it appears that the sulfolane-assimilating Rhodoferax 

sp. is associated with groundwater as no members of the genus were detected in sediment samples. This 

research is the first to characterize the environmental distribution of a subarctic sulfolane-degrading 

microbe and sheds light on the potential species detection biases when characterizing the microbial 

community in a subarctic aquifer using groundwater samples exclusively. We conclude that air sparging 

appears to be a way to enhance the abundance of aerobic sulfolane-degraders and potentially to locally 

stimulate sulfolane biodegradation in situ.

Introduction

Sulfolane is an anthropogenic organosulfur compound used in industrial applications worldwide 

(Tindal et al., 2006). Developed in the 1950s, sulfolane can now be classified as a contaminant of 

emerging concern due to its persistence, mobility, continued widespread use, and lack of inclusion in 

routine contaminant assessments (Lapworth et al., 2012; Sauve and Desrosiers, 2014). In 2009, an 

environmentally and economically notable case of sulfolane contamination occurred in North Pole, 

Alaska when sulfolane was detected in a residential well near a refinery that used the solvent. Further 

investigation revealed a groundwater plume that was 5.6 km long, 3.2 km wide, over 90 m deep and that 

affected hundreds of residential drinking wells (Magdziuk and Andresen, 2018). The effects of sulfolane 

exposure on humans is unknown, but a study that exposed rats to sulfolane via their drinking water 

resulted in lowered white blood cell counts in females and neuropathy in males (Petersen et al., 2012). 

The refinery currently offers drinking water solutions to the affected residents including providing them 

with alternative drinking water or granular activated carbon (GAC) filters to remove the sulfolane from 

contaminated well water (Magdziuk et al., 2016).

Although sulfolane generally does not readily biodegrade under anaerobic conditions often 

found in subsurface environments, aerobic sulfolane biodegradation has been reported in laboratory 

incubation studies (Fedorak and Coy, 1996; Greene et al., 2000; Kasanke and Leigh, 2017). In North 
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Pole, Alaska, aerobic and anaerobic microcosm studies using groundwater and sediment from the 

contaminated aquifer as inoculum found aerobic biodegradation to be the only observable mechanism of 

sulfolane loss (Kasanke and Leigh, 2017). As part of remediation efforts, an in-situ experimental air 

sparge (AS) system was employed that injected atmospheric air into a small section of the North Pole 

aquifer to limit sulfolane from migrating off of refinery property (Angermann and DeJournett, 2013). 

Although effective at lowering sulfolane concentrations, the mechanisms behind the reduction in 

contaminant concentrations were never conclusively determined (Kurapati et al., 2014).

Recently, a DNA-based stable isotope probing (SIP) experiment using 13C-labeled sulfolane and 

North Pole aquifer substrate identified a Rhodoferax sp. as the dominant sulfolane-metabolizing species 

and showed that this organism comprised 85.7 ± 8.7 % of the 13C-labeled microbial community (Kasanke 

et al. 2019). Other sulfolane-degrading bacteria have been identified through aerobic culturing studies, 

including a Variovorax sp. isolated from Alberta; Canada (Greene et al., 2000), Pseudomonas maltophilia 

isolated from Illinois; USA (Lee and Clark, 1993), a novel Shinella sp. isolated from Okinawa Main 

Island; Japan (Matsui et al., 2009), and most recently a strain of Cupriavidus plantarum isolated from a 

petrochemical wastewater treatment plant (Yang et al., 2019). Although researchers have identified 

environmental microorganisms that can biodegrade sulfolane, the abundance and distribution of these 

microbes throughout a contaminated aquifer and the environmental parameters that may control their 

abundance has not been assessed. Characterizing the distribution of sulfolane-degrading microbes 

throughout a contaminated aquifer and remediation systems informs plume longevity estimates, identifies 

potential areas of active biodegradation, and provides insight into the fundamental mechanisms of 

effective remediation systems.

GAC has been used for the physical removal of sulfolane in home water treatment systems in 

North Pole, Alaska (Magdziuk et al., 2016). Prior to home installation, the North Pole GAC point-of- 

entry water treatment systems installed to treat private wells were tested for effectiveness in sulfolane 

removal (BARR, 2011) and a separate study of the same GAC substrate found evidence of rapid sulfolane 
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sorption (Diaz, 2015). However, another research group found that GAC required inoculation with an 

aerobic, sulfolane-degrading enrichment culture to effectively remediate contaminated groundwater in 

California (Ying et al., 1994). They concluded that biodegradation, not sorption, was responsible for the 

effectiveness of their system. However, that work was done in the presence of the co-contaminants 

dibromochloropropane and ethylene dibromide, which were thought to preferentially bind to the GAC 

over sulfolane. Although microcosm studies using GAC from a North Pole point-of-entry remediation 

system as inoculum found no biodegradation after 10 weeks of incubation under aerobic conditions 

(Janda, 2016), the GAC is replaced in six-month intervals and it is unknown if sulfolane biodegradation 

occurs after a prolonged lag-time (BARR, 2011). Understanding the mechanisms underlying treatment 

system function lends insight into the potential generation of byproducts, such as degradation 

intermediates, that could be relevant to human health.

It is commonly found that environmental parameters are important determinants of microbial 

community composition. For example, pH is often reported as the most significant parameter controlling 

community structure across environments (Barberan et al., 2015; Fierer et al., 2007; Fierer and Jackson, 

2006). Other variables that have been shown to drive the structure of aquifer microbial communities 

include oxygen (Franklin et al., 1999), depth (Probst et al., 2018), and nutrient availability (Hubalek et al., 

2016). In addition, groundwater (suspended) and aquifer sediment (attached) microbial communities have 

been reported to differ (Alfreider et al., 1997; Anantharaman et al., 2016; Flynn et al., 2013). Therefore, 

when conducting aquifer microbial community assessments another important environmental variable to 

consider is aquifer substrate specificity.

In this study, we examined the microbial community in 100 groundwater monitoring wells (MW) 

distributed throughout the North Pole aquifer for the distribution of a recently identified sulfolane

metabolizing Rhodoferax sp. as well as other known sulfolane degraders. We also investigated two 

effective sulfolane remediation systems, an experimental AS system and a fully-operational GAC 

filtration system, for the presence and abundance of these degraders. A more general microbial 
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community assessment was conducted to describe the dynamics within and between the MW, AS, and 

GAC communities. To determine the environmental controls on the subarctic aquifer microbiome, we 

measured DO, pH, and several other environmental parameters and compared them to sulfolane

degrading species abundances as well as overall community composition. To determine if sulfolane

degrading species were attached to aquifer substrate or planktonic, we conducted a supplemental 

sampling campaign to identify differences between subarctic groundwater and aquifer sediment microbial 

communities. Through this effort we were also able to identify and describe potential biases involved with 

sampling groundwater for microbial community characterizations.

Methods

Sampling

Site description

This study focuses on a sulfolane-contaminated groundwater plume located in North Pole,

Alaska, USA (64.7511° N, 147.3519° W), which is part of the greater Tanana River aquifer supplied by 

the Alaska Range. The sulfolane plume originated at a refinery where sulfolane use began at this site in 

1985 and ceased in 2014 when refinery operations ended. The size of the plume is currently estimated to 

be 5.6 km long, 3.2 km wide, and 91.4 m deep and it continues to migrate to the north-northwest 

(Magdziuk and Andresen, 2018). Sulfolane concentrations throughout the plume ranged from 0-34.8 mg 

L-1 at the time of sampling (Kurapati et al., 2014).

Plume-wide sampling

Groundwater samples were collected from MWs installed throughout the contaminated 

groundwater plume. One hundred groundwater samples were collected from two routine sampling 

campaigns by environmental consultants Shannon and Wilson, Inc. under contract from refinery owners 

Flint Hills Resources. Eighty-two samples were collected between October 2nd and December 20th, 2013, 
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and 18 samples were collected between January 7th and March 27th, 2014. Wells were constructed of 5-cm 

diameter pipe with 0.05-cm screens, which were between 1.2 and 1.5 m in length with half of the screen 

above and half below the targeted depth. Well depths ranged from 4 to 46 m below ground surface. Prior 

to sample collection, groundwater was purged until geochemical parameters stabilized or three well 

volumes of groundwater were pumped from the well. A YSI ProPlus multiprobe or equivalent was used 

to monitor geochemical parameters, including temperature, conductivity, dissolved oxygen (DO), pH, and 

oxidation-reduction potential (ORP). One liter of groundwater was collected from each well and stored in 

a sterile 1-L bottle at 4 °C until being filtered through a sterile 0.22-μm filter within 24 hours for 

microbial analysis. A separate liter of groundwater was submitted to SGS Laboratories of Anchorage, 

Alaska for sulfolane analysis using isotope dilution gas chromatography/mass spectrometry following a 

modification of USEPA Method 1625B.

Air sparge system

The air sparge (AS) system pumped atmospheric air into the aquifer through eight injection wells 

with a 0.6-m well screen positioned 6.1 m below ground surface in brown/gray gravely sand to sandy 

gravel soil with trace amounts of silt (Angermann and DeJournett, 2013). The air flow rate at each air 

sparge point was slightly variable and ranged from 42.5 to 76.5 m3 h-1. Eight monitoring wells like those 

described above but surrounding the experimental AS system were also sampled for microbial community 

analysis. One well was placed ~12 m upgradient of general aquifer flow, three wells were down the center 

line of the system, two wells were ~4.5 m outside the system to the west, and two wells were ~4.5 m 

outside the system to the east. When samples were collected from the AS wells sulfolane, temperature, 

conductivity, DO, pH, and ORP were analyzed as described above for MW samples. In addition, 

dissolved iron, dissolved manganese, total organic carbon, and total phosphorus were measured in AS 

samples (Angermann and DeJournett, 2013). Although the upgradient well was intended to be out of the 

influence of the system, it had D.O. concentrations between 0.11 to 1.45 mg L-1 indicating it was also 

impacted by the AS system and fluctuated between being oxic and suboxic (Langmuir, 1997). The D.O. 
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concentrations in the other AS wells ranged between 0.49 and 17.56 mg L-1 with an average of 9.77 ± 

5.51 mg L-1. Initial sulfolane concentrations in the AS system prior to activation ranged from 71.7 to 278 

μg L-1 and were lowered to below detection limits (6.88 ug L-1) in down-gradient test wells after 4 -15 

weeks of operation (Angermann and DeJournett, 2013). The air sparge system was started on March 7th, 

2012 and was shut down on July 10, 2013 after 70 weeks of operation (Kurapati et al., 2014). We 

obtained samples from 10, 13, and 70 weeks after startup but were unable to acquire samples prior to 

system initiation.

Granular activated carbon  from point-of-entry treatment systems

We also examined the microbial community in a point of entry (POE) treatment systems where 

granular activated carbon (GAC) was used to sorb sulfolane from private wells (Supplementary Figure 2) 

(BARR, 2011). On May 15th, 2014, a GAC canister from a POE system was received for microbial 

analysis. The canister had treated 78,160 L of sulfolane-contaminated water prior to replacement. The 

canister was divided into thirds (top, middle, and bottom) and two 500-g samples were taken from each 

section for microbial community analysis (Janda, 2016). The GAC samples were stored at -80°C until the 

DNA was extracted.

Groundwater-sediment comparison

A small-scale assessment was conducted to compare the microbial community associated with 

groundwater to that associated with aquifer sediment. On October 12, 2014, soil cores 1.5 meters in 

length with an inside diameter of 5 cm were collected from a small area within the sulfolane- 

contaminated aquifer (Latitude: 64.74663400; Longitude: -147.36561100) using a Geoprobe push core 

sampler. Once a desired depth was achieved (between 4.25 and 10 meters), the sampler was equipped 

with a sterile collection tube and pushed down for sample collection. Seven soil cores were collected from 

between 4.25 and 6 m below ground surface and one soil core was collected from 7.6-9.1 m below ground 

surface. These eight soil cores were subsampled every 0.3 meters resulting in a total of 21 sediment 
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samples suitable for DNA analysis. Once subsampled, the sediment was stored at -80 °C until DNA was 

extracted for community analysis as described below. Soil particle size was determined using the 

hydrometer method as described in Gee and Bauder (1986). The depth to the water table was 2.75 m 

below ground surface at the time of sampling.

The same borehole from sediment core collection was then used for groundwater sampling. 

Groundwater samples were collected using a Geoprobe ® sampler equipped with a SP16 water sample 

system utilizing a 0.9-meter screen with an expendable point. The system was pushed 0.45 meters past the 

desired depth then the screen was exposed so that 0.45 meters was below the interval and 0.45 meters was 

above. The drill rod was pulled up a total of 0.9 meters exposing the screen to the appropriate sample 

interval. Once the screen was exposed, a tube (inside diameter = 1.5 cm) was inserted through the sampler 

and a peristaltic pump was used to retrieve the sample. Groundwater chemistry was measured using a YSI 

556 Multiprobe system with a 5083-flow cell attachment as described above. After the chemical values 

stabilized, 1 L of groundwater was collected for microbial community analysis. Groundwater samples 

were filtered and stored as described above for MW samples.

DNA extraction

DNA was extracted from the groundwater filters using a phenol-chloroform extraction described 

in Miller et al. (1999) as modified by Hazen et al. (2010). Soil DNA was extracted from sediment solids 

after sieving through a 2 mm screen using a MoBio Power Soil DNA isolation kit (MO BIO, Carlsbad, 

CA) in accordance with manufacturer's instructions. To obtain a more representative sample, three 

randomly selected 0.25-g soil subsamples were independently extracted from each 0.3-meter core section 

and pooled prior to sequencing. DNA was isolated from GAC samples using a MoBio PowerMax Soil 

DNA Isolation Kit following the manufacturer's instructions. GAC samples were extracted in duplicate 

and pooled for sequencing. All DNA extracts were stored at -20 °C prior to sequencing.
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Microbial community analyses

Monitoring well, air sparge, and GAC

The bacterial and archaeal community structure was assessed in MW, GAC, and AS samples by 

sequencing a ~250-bp segment of the V4 region of the 16S rRNA gene using an Illumina MiSeq as 

described in (Kasanke et. al 2019). MW, GAC, and AS samples were sequenced at Michigan State 

University. FastQ files were analyzed using mothur software (1.35.1) following a modified version of the 

standard MiSeq SOP (accessed March 2016) (Kozich et al., 2013; Schloss et al., 2009) as described by 

Martinez et al. 2017 (Martinez-Cruz et al., 2017). All sequences had a quality score of 25 or greater and 

the maximum contig length of 275. All unique sequences were aligned against the SILVA SEED v132 

database and chimera checking was performed using the mothur implementation of Uchime (Kozich et 

al., 2013; Quast et al., 2013). Unique operational taxonomic units (OTUs) were defined at a level of 99% 

sequence similarity and taxonomy was assigned using SILVA SEED v132 taxonomy database (Quast et 

al., 2013). BLASTN was used to obtain higher-resolution taxonomic assignment for dominant community 

members (Mount, 2007). To account for differences in sequence coverage, the number of sequences was 

subsampled to the number of sequences in the least covered sample after quality control steps (8142). 

After subsampling, Chao and Inverse Simpson diversity indices were calculated. MW, GAC, and AS 

samples were analyzed along with a larger dataset including a previously reported DNA-SIP experiment 

where 13C-labeled sulfolane was added to North Pole aquifer substrate identifying a Rhodoferax sp. as the 

dominant sulfolane assimilating microorganism (Kasanke et al. 2019). That dataset was generated using 

the same methods and sequencing center as the MW, GAC, and AS samples allowing for direct OTU 

comparison of the labeled sulfolane-assimilating species throughout these samples. Sequence files used in 

this analysis are publicly available on the sequence read archive (SRA) under accession #PRJNA504308.
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Groundwater-sediment comparison

The DNA extracts from the sediment and groundwater comparison were sequenced at the 

Institute of Arctic Biology Genomics Core Laboratory at the University of Alaska Fairbanks using an 

Illumina Miseq and the Illumina v3 reagent kit. The standard Illumina iTRU two-step 16S rRNA gene 

sequencing protocol was used (Illumina Inc., 2013). A 460-bp segment from the V3-V4 region of the 16S 

rRNA gene was targeted using the primers recommended for Illumina sequencing by Klindworth et al. 

(2013). Fastq files were analyzed using mothur software as described above with the maximum contig 

length set to 480 bp. To account for differences in sequence coverage, the number of sequences was 

subsampled to the number of sequences in the least covered sample after quality control steps (3390). 

After subsampling, Chao and Inverse Simpson diversity indices were calculated. Although direct OTU 

comparison was not possible between this dataset and the DNA-SIP dataset described above, the genome 

of the sulfolane-assimilating Rhodoferax sp. has been sequenced, including the full 16S rRNA gene. To 

determine if the sulfolane-assimilating Rhodoferax sp. was present in the groundwater-sediment 

comparison dataset, the representative sequence of OTUs assigned to the genus Rhodoferax were aligned 

against the full 16S rRNA gene of the degrader using BLASTN (Altschul et al., 1990; Mount, 2007). 

Sequence files used in this analysis are publicly available on the sequence read archive (SRA) under 

accession #PRJNA504308.

Statistical analyses

All multivariate statistical analyses were conducted using PCORD Version 6 statistical analysis 

software (McCune and Mefford, 2011). Differences between microbial communities were assessed using 

nonparametric Multi-Response Permutation Procedures (MRPP) from a rank-transformed Bray-Curtis 

distance matrix (McCune and Grace, 2002). To help identify species differences between the MW, AS, 

and GAC microbial communities, indicator species analysis was performed. Indicator values were 

calculated using the method of Dufrene and Legendre (1997) and significance of the indicator value was 
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determined using 4,999 randomized Monte Carlo simulations. Community data was visualized using 

nonmetric multidimensional scaling (NMS) based on a Bray-Curtis distance matrix and random starting 

configurations with dimensionality of the data determined by comparison of 250 runs with real data and 

250 randomized Monte Carlo simulations (Kruskal, 1964; Mather, 1976). Pearson and Kendall 

correlations of environmental variables with ordination axes was performed and variables with R2 values 

of 0.2 or greater were reported. R statistical software was used to conduct Welches two-sample t-tests, 

one-way analysis of variance (ANOVA) tests, post-hoc Tukey tests, and simple linear regressions (The R 

Foundation for Statistical Computing, 2015). For all analyses, a p-value or equivalent of 0.05 or less was 

considered significant. All reported values are the mean ± standard deviation.

Results and Discussion

Distribution of sulfolane-assimilating species throughout plume and treatment systems

One of the primary goals of this study was to assess the abundance of known sulfolane

metabolizing bacteria throughout a contaminated aquifer and two groundwater treatment systems and to 

investigate environmental factors controlling their relative abundance. One treatment system we 

examined sorbs sulfolane from private wells prior to consumption using GAC (BARR, 2011). The other 

was an experimental AS treatment system which successfully lowered sulfolane concentrations to below 

detection limits (6.88 ug L-1) in down-gradient test wells after 4 -15 weeks of operation (Angermann and 

DeJournett, 2013). Although we found significant differences in overall microbial community 

composition between the AS, GAC, and MW samples as discussed later (MRPP, significance of delta << 

0.001, A= 0.20), the initial focus was on the distribution of a Rhodoferax sp. identified as the dominant, if 

not exclusive, sulfolane-assimilating species in a DNA-SIP study that used substrate from this aquifer as 

inoculum (Kasanke et al. 2019). We also examined the AS, GAC, and MW samples for the distribution of 

other known sulfolane-degrading microorganisms reported in the literature.
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Plumewide abundance and environmental drivers of Rhodoferax sp. distribution

In our plume-wide survey of aquifer monitoring wells (MW), we detected a total of 253 OTUs 

that were classified as Rhodoferax spp., including the third most abundant groundwater bacterium 

detected. By re-analyzing a sulfolane SIP dataset along with the MW, AS, and GAC samples we were 

able to identify one of these OTUs as a previously described sulfolane-assimilating Rhodoferax sp. 

(Kasanke et al. 2019). Based on our detection of this known subarctic sulfolane-assimilating Rhodoferax 

sp. in 70% of the MW samples, we concluded that sulfolane biodegradation potential was widely 

distributed throughout the aquifer. Despite being widely distributed throughout the plume, the sulfolane

assimilating Rhodoferax sp. was generally present in relatively low abundance (maximum relative 

abundance of 4.1%; average 0.59 ± 0.77%). Because this aquifer is generally anoxic (Kurapati et al., 

2014), it is unlikely that this organism is degrading sulfolane under normal aquifer conditions. Our prior 

incubation studies demonstrated that sulfolane biodegradation potential exists in aquifer sediment and 

water under aerobic conditions Although there are reports of anaerobic sulfolane biodegradation at other 

sites (Greene et al., 1998; Kim et al., 1999), our anaerobic sulfolane biodegradation microcosm studies 

using substrate from this aquifer as the inoculum failed to result in sulfolane loss despite incubating for 

over 1000 days (Kasanke & Leigh, 2017).

We found that the AS system fostered significantly higher abundances of the sulfolane

assimilating Rhodoferax sp. than the surrounding aquifer (Welches two-sample t-test, df=23.6, t=4.66, 

p=0.0001) (Figure 4-1A) with this bacterium being the most abundant OTU in the AS samples (maximum 

relative abundance 10.5%; average 3.6 ± 3.2%). Indicator species analysis found the sulfolane

assimilating Rhodoferax sp. to be a strong indicator of the AS samples when compared to MW and GAC 

samples with an indicator value of 80.9 (p = 0.0002) (Supplementary Table 4-1). Previous microcosm 

studies involving air sparging of sulfolane-contaminated soil attributed sulfolane loss exclusively to 

aerobic biodegradation (Greene and Fedorak, 2001) and sulfolane losses have never been reported in 

sterile controls among all sulfolane biodegradation studies published to date (Greene et al., 2000, 1998;
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Kasanke and Leigh, 2017). In fact, all reports of abiotic sulfolane degradation involved the use of strong 

oxidizers, radiation, or both (Agatonovic and Vaisman, 2005; Izadifard et al., 2017); none of which are 

present in the North Pole aquifer. Although difficult to definitively conclude, the dominance of the known 

sulfolane degrader in this system combined with the reduction in sulfolane concentration (Angermann and 

DeJournett, 2013) suggest that the AS system stimulated sulfolane biodegradation in situ.

A one-way ANOVA found significant differences in the relative abundance of the Rhodoferax sp. 

in the AS communities with respect to the amount of time the AS system was active (ANOVA, 

F2,21=14.96, p <0.001). As the sulfolane concentration decreased from week 10 to week 13, the sulfolane

assimilating Rhodoferax sp. increased in abundance (p < 0.009) suggesting biodegradation as a 

mechanism of sulfolane loss in this system (Figure 4-2). After 70 weeks of operation, the abundance of 

the Rhodoferax sp. was significantly reduced (p < 0.001) (Figure 4-2). This decrease may be a result of 

community resilience after contaminant exposure ceases (Boivin et al., 2006) since sulfolane was not 

detected down-gradient of the AS system after 15 weeks of operation (Angermann and DeJournett, 

2013). The decrease in abundance could also result from a depletion of specific nutrients necessary to 

support the growth of this species (Bren et al., 2013), which would be expected if prolonged 

biodegradation was occurring (Kasanke and Leigh, 2017).

The environmental variables we measured (i.e., sulfolane, temperature, conductivity, DO, pH, 

and ORP) did not explain variations in the relative abundance of this species throughout the aquifer. 

Although statistically significant correlations of the Rhodoferax sp. with temperature and sulfolane 

concentration were detected, the goodness of fit value was extremely low (R2= 0.065 and 0.061 

respectively) indicating these variables are not reliable predictors of the distribution of this species. 

Although there were generally higher abundances of the Rhodoferax in the AS system than elsewhere in 

the plume, we also found no correlations with the environmental variables collected for the AS system 

when combining the data from weeks 10, 13, and 70 of system operation. However, during week 10 of 

AS system operation there was a significant (p < 0.001)) and strong (R2 = 0.88) positive correlation 
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between dissolved Mn concentration and the relative abundance of the Rhodoferax sp. (Figure 4-3). This 

correlation did not exist for weeks 13 and 70 of AS system operation. We were unable to measure 

dissolved Mn concentrations in the MW samples, but availability of this element may play a role in either 

stimulating or limiting the growth of this sulfolane-assimilating bacterium. Future attempts to determine 

environmental controls on the distribution of sulfolane degrading microorganisms should include a more 

thorough elemental analysis, including measuring dissolved Mn concentrations.

In the separate sample set in which parallel groundwater and sediment samples were compared, 

we found no OTUs that were exact matches to the sulfolane-assimilating Rhodoferax sp., although we did 

identify one OTU that was 98% identical (E-value 0.0) to the sulfolane assimilator. Despite this OTU 

being the only Rhodoferax detected in the groundwater-sediment comparison dataset, it was present in 

low abundances exclusively in the groundwater samples (maximum relative abundance 0.15%) and was 

not detected in any of the aquifer sediment samples. In combination, these results suggest that despite 

significant differences between attached and suspended microbial communities (described below), 

groundwater is an appropriate aquifer substrate to detect and quantify members of the Rhodoferax genus. 

This finding is consistent with reports that freshwater environments are the described natural habitat for 

members of the Rhodoferax genus (Hiraishi et al., 2015).

Role of sulfolane degraders in granular activated carbon water treatment systems

In the GAC treatment system, the sulfolane-assimilating Rhodoferax sp. was only detected in low 

abundance in three of six GAC samples (relative abundance of 0.37%, 0.11%, and 0.025%). The obligate 

anaerobe Ferribacterium limneticum (99% identical E value = 2e-128) was the most dominant bacterium 

representing 38.6 ± 19.2% of the GAC community suggesting that the GAC system was primarily anoxic. 

(Cummings et al., 1999). Although thermodynamically feasible, anaerobic sulfolane biodegradation has 

only been observed in 4 of 60 anaerobic microcosms inoculated with sediment from Western Canada 

(Greene et al., 1998). Anaerobic incubations conducted using aquifer substrate from North Pole, Alaska 
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resulted in no sulfolane loss after 1021 days of incubation (Kasanke and Leigh, 2017). Column studies 

conducted prior to home installation in North Pole, Alaska have shown predictable sulfolane 

breakthrough curves consistent with sorption models (BARR, 2011). All these findings support the 

conclusion that sorption, not biodegradation, is the mechanism of sulfolane removal in the North Pole 

GAC systems. This conclusion is in contradiction with previous research that found it necessary to 

inoculate GAC with microorganisms obtained from sewage plant effluent to remediate sulfolane (Ying et 

al., 1994). However, that research was done in the presence of the co-contaminants 

dibromochloropropane and ethylene dibromide, which preferentially sorb to GAC. In the absence of co

contaminants or other organics that compete for sorption sites on GAC, it does not appear that 

biodegradation is a necessary component of GAC treatment in order to achieve the removal of sulfolane 

from contaminated water.

Distribution of other known degraders in the plume and treatment systems

In addition to screening for the sulfolane-metabolizing Rhodoferax strain found in our earlier study of this 

aquifer, we also queried our dataset for other previously reported sulfolane degraders from other 

geographic regions. To our knowledge, only four other sulfolane degrading microorganisms have been 

isolated from the environment. Pseudomonas maltophilia was isolated from the soil of an abandoned strip 

mine near Cambria, Illinois; (Lee and Clark, 1993) a novel Shinella sp. was isolated from soil in the 

Yambaru area of Okinaw a Main Island; Japan (Matsui et al., 2009), and a strain of Cupriavidus 

plantarum was isolated form a petrochemical wastewater treatment plant in Taiwan (Yang et al., 2019). 

One OTU in our dataset was classified as a Cupriavidus sp. that was 99% identical (E-value = 4e-131) to 

the known degrader. That OTU was only detected in one MW sample although it did represent 1.9% of 

the community relative abundance. We did not detect any Shinella spp.in the dataset and among the 36 

Pseudomonas spp. detected, none were matches to Pseudomonas maltophilia. In western Canada, a 

sulfolane-degrading Variovorax sp. described as being closely related to Variovorax paridoxus was 

isolated from sulfolane contaminated aquifer substrate (Greene et al., 2000). The sulfolane-assimilating 
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Rhodoferax sp. was detected in all AS wells except one from week 10 where a Variovorax sp. 99% 

identical to Variovorax paradoxus (E-value = 2e-128) represented 86.1% of the community. The elevated 

abundance of this species in a portion of the AS system relative to the MW samples (max relative 

abundance 0.04 %) and close relation to a known sulfolane degrader suggests this bacterium also may 

have been degrading sulfolane. By week 13 a community shift occurred, and this AS well also became 

dominated by the sulfolane-assimilating Rhodoferax sp.

Community structure of contaminated aquifer and treatment systems

To better understand the overall microbial ecology of subarctic aquifers, we investigated 

community structure and environmental factors controlling it across the plume and treatment systems. 

The total prokaryotic microbial community in all samples was primarily dominated by bacteria, with 

archaea only comprising 1.57 ± 1.88% of the total community relative abundance. The microbial 

communities differed significantly between MW, AS, and GAC samples, (MRPP, significance of delta << 

0.001, A= 0.20) (Figure 4-1B). Those associated with the AS samples and the GAC samples were the 

least similar (MRPP, significance of delta << 0.001, A=0.37), which may be explained by the substantial 

differences in environmental conditions between air sparged subsurface groundwater and the water

treatment-system-associated GAC. Indicator species analysis identified several strong (indicator value > 

70) and significant (p < 0.05) indicator species for the AS and GAC treatment systems, however none 

were identified for the aquifer MW communities (Supplementary Table 4-1).

The AS, GAC, and MW communities also varied in species richness with differences between AS 

(Chao 1872.89 ± 1025.32), GAC (Chao 137.3865 ± 42.45261), and MW (Chao 1341.17 ± 1288.75) 

samples (ANOVA, F2,127 = 5.13, p = 0.007) exclusively attributed to a lower species richness in the GAC 

communities (p < 0.05). There were no statistically significant differences in the community evenness as 

measured by Inverse Simpson (InvSim) diversity index between AS (InvSim 96.31 ± 67.80), GAC
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(InvSim 3.47 ± 1.37), and MW (InvSim 112.79 ± 125.32) microbial communities (ANOVA, F2, 127 = 2.66, 

p = 0.07), which we attribute to the high variability of species distributions in the MW samples.

Plume-wide Community Structure

The aquifer MW dataset was dominated by a Ralstonia sp. that was 99% identical to the plant 

pathogen Ralstonia syzygii (E value = 5e-128) with a relative abundance of 5.9% ± 12.4% throughout the 

aquifer. Ralstonia syzygii is a plant parasite that is reported to live exclusively in the xylem of plants and 

is only transmitted by sucking insects (Purcell and Hopkins, 1996). However, R. syzygii is a member of 

the Ralstonia solanacearum species complex consisting of plant parasites that are genetically similar yet 

diverse in host specificity, pathogenicity, and transmission routes including soilborne pathogens that 

infect open wounds in plant roots (Remenant et al., 2011). Other relatively dominant members of the 

aquifer microbial community include Sulfuricurvum kuijiense (97% identical; E value 2e-118), 

Rhodoferax antarcticus (99% identical; E value 1e-128), Burkhoderia singularis (100% identical; E value 

7e-132), and Pelobacter propionicus (98% identical; E value 3e-120) which respectively represented 

1.5% ± 3.6%, 1.5% ± 5.0%, 1.2% ± 2.5%, and 1% ± 2.4% of the MW community relative abundance.

The MW microbial community decreased in species richness and evenness with depth (Figure 4- 

4A). NMS analysis of groundwater MW data found an optimal dimensionality of 2 axes with a final stress 

of 16.2 and a final instability value of 0.00000 with the proportion of variance explained by each axis in 

the MW NMS being 49.1% for NMS1 and 16.3% for NMS2. Pearson and Kendall correlations with 

ordination axes and MW explanatory variables showed MW community structure correlated with depth 

(NMS1 R2= 0.329). Depth was inversely correlated with Chao and Inverse Simpson diversity indices 

(NMS1 R2 = 0.616 and 0.331 respectively). This correlation is consistent with studies of terrestrial aquifer 

microbial communities in other locations and is generally attributed to increasingly oligotrophic 

conditions at depth (Lee et al., 2018; Lin et al., 2012a). We did observe a higher alpha diversity in the 

near-surface samples in this subarctic aquifer (Chao1 max = 4176) than is reported for a South Korean 
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aquifer (Chao1 max = 2113) (Lee et al, 2018) or an aquifer in Eastern Washington, USA (Chao1 max = 

772) (Lin et al., 2012a). This is somewhat unexpected since those aquifers are much warmer (both >15 

°C) than this subarctic aquifer (4 °C).

Air Sparging System Community Structure

As noted previously, the AS community was dominated by the sulfolane-assimilating Rhodoferax 

sp. Other dominant AS community members include two Sideroxydans species, which BLAST 

comparisons found to be 98% (e-value 2e-123) and 97% (e-value 3e-120) identical to the 

chemolithoautotrophic bacterium Sideroxydans lithotrophicus first isolated from groundwater in Lansing, 

MI, USA (Emerson and Moyer, 1997). These two Sideroxydans spp. represented 2.5 ± 3.3% and 1.4 ± 

1.3% of the AS microbial community respectively. Sampling date was associated with microbial 

community shifts in the AS samples (MRPP significance of delta 0.0001; A = 0.25), which were not 

observed in the broader MW survey. These differences are likely in response to abrupt changes in the 

environmental parameters over time in relation to the length of oxygen exposure within the AS system.

Initial NMS analysis suggested a 1-dimensional solution was most appropriate to visualize the 

differences in the AS community data (final stress = 0.00003, final instability = 0.00000) with one sample 

as an extreme outlier from the other samples. This sample was from week 10 and, as described above, had 

a Variovorax sp. represent 86.1% of the sample community. After removing this sample from the AS 

dataset, NMS analysis found an optimal dimensionality of two axes with a final stress of 10.9 and a final 

instability value of 0.00000 (Supplementary Figure 4-1). The proportion of variance explained by each 

axis was 62.1% for axis 1 (NMS1) and 18.9% for axis two (NMS2) with the differentiation in weeks 

occurring primarily along NMS1. Pearson and Kendall correlations with ordination axes and air sparge 

environmental variables showed the AS community structure was correlated with water table elevation 

(NMS1 R2 = 0.388), manganese (NMS1 R2 = 0.227), and temperature (NMS1 R2 = 0.213).
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Granular activated carbon water treatment system community structure

The GAC community was primarily dominated by two species, the obligate anaerobe 

Ferribacterium limneticum (99% identical E value = 2e-128) and facultative anaerobe Noviherbaspirillum 

denitrificans (99% identical; E value = 2e-126) (Cummings et al., 1999; Ishii et al., 2017). These species 

constituted a relative abundance of 38.6 ± 19.2%, and 30.6 ± 6.9%, respectively, and were strong and 

significant indicators of the GAC samples (indicator value = 99.7 and 99.1 respectively; p = 0.0002 both). 

The dominance of these bacteria in the GAC community suggests the GAC environment is primarily 

anaerobic and unfavorable for sulfolane biodegradation (Kasanke and Leigh, 2017). We were unable to 

obtain environmental data for the GAC samples and were therefore unable to assess environmental 

correlations with GAC community composition.

Comparison of sediment to groundwater community structure

To assess the reliability of performing subarctic aquifer microbial community assessments using 

groundwater samples, we examined how similar groundwater communities were to the surrounding 

aquifer sediment. We found that the groundwater and sediment communities are significantly different in 

composition (MRPP significance of delta < 0.0001; A = 0.37) (Figure 4-5), sharing only 21.7% of the 

total 3752 unique OTUs. Despite having differing species abundance distributions between sample types, 

these shared OTUs represented 88.7 ± 3.9% and 74.7 ±15.9% of the groundwater and sediment 

community relative abundances respectively. This is a larger shared proportion than was previously 

reported for a temperate aquifer (Flynn et al., 2013), but more comparative studies are needed to 

determine if this is a consistent trend. The groundwater community in North Pole, Alaska, was found to 

be more species rich (two-sample T15.2 = 6.29, p < 0.001) (Chao 885.31 ± 159.70) and have a more even 

species distribution (two-sample T7.9 = 3.79, p = 0.006) (InvSim 76.96 ± 32.73) than sediment (Chao 

388.87 ± 232.71; InvSim 26.78 ± 21.82). Archaea represented 0.15% ± 0.26% of the total community 

across all samples.
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The most abundant groundwater community members in this comparison dataset appear to be 

relatively novel bacteria with poor matches to the BLAST database. The three most abundant 

groundwater OTUs included Pelolinea submarina (90% identical E-value 2e-164) that represented 4.8 ± 

2.0% of the total community and two OTUs similar to Bellilinea Caldifistulae that represented 4.4 ± 2.0% 

(91% identical E-value 9e-168) and 3.5 ± 3.2% (90% identical E-value 2e-164) of the total community. 

Phylogenetic analysis showed that these three OTUs form a single clade with Pelolinea submarina and 

Bellilinea Caldifistulae, both anaerobic, non-motile bacteria isolated from marine benthic sediment, 

forming a separate sister clade (Supplementary Figure 4-2) (Imachi et al., 2014; Yamada et al., 2007). 

Other dominant groundwater bacteria include Gaiella occulta (95% identical E-value 0.0) that 

represented 3.3 ± 2.0% of the total community. Gemmatimonas phototrophica (90% identical E-value 

6e-170) that represented 2.5 ± 1.4% of the total community. Apart from the bacteria most similar to 

Gaiella occulta, all these species were strong and significant indicators of the groundwater community 

(Supplementary Table 4-2). The differences in dominant groundwater community members between this 

small aquifer subset and MW samples could be due spatial heterogeneity of the community (Lin et al., 

2012b) (Supplementary Figure 4-3). However, one factor that complicates a direct comparison of the two 

groundwater community datasets was our use of different sequencing primers, which introduces the 

potential for differential amplification biases (Thijs et al., 2017).

In contrast to groundwater, the dominant members of the attached microbial community were 

generally well represented in the BLAST database enabling more accurate taxonomic identification. The 

dominant sediment community members include Burkholderia tropica (99% identical, E-value 0.0) with 

a relative abundance of 14.2 ± 20.3% (maximum 61.1%); Stenotrophomonas rhizophila (99% identical 

E-value 0.0) with a relative abundance of 6.8 ± 4.8% ; Sphingomonas adhaesiva (99% identical E-value 

0.0) with a relative abundance of 4.4 ± 3.0%; Acidovorax delafieldii (99% identical E-value 0.0) with a 

relative abundance of 4.2 ± 3.8% ; and Hydrogenispora ethanolica (86% identical E-value 8e-134) with a 
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relative abundance of 3.1 ± 2.3% of the community. Indicator analysis found that all these bacteria are 

strong and significant indicators of sediment communities in this sample set (Supplementary Table 4-2).

To investigate drivers of sediment community composition, NMS analysis was performed on 

sediment microbial community. NMS analysis of the sediment communities stabilized on a two

dimensional solution after 52 iterations with a final instability of 0.00000 and a final stress of 12.68 

(Figure 4-4B). NMS1 explained 50.2% of the community variability and NMS2 explained 35.7% of the 

community variability. Pearson and Kendall correlations revealed NMS1 correlated with soil moisture (R2 

= .265), percent gravel (R2 = 0.254), and percent sand (R2 = 0.251) and axis 2 correlated with depth (R2 = 

0.376). The importance of these variables on community dynamics is logical since they are influential in 

dictating aquifer hydrological movement in addition to the types and availability of nutrients (Heath, 

1983; Maamar et al., 2015).

Conclusion

This study characterizes the microbial community in a sulfolane-contaminated aquifer via 16S 

rRNA gene sequencing and is the first microbial community analysis of a sulfolane-contaminated aquifer 

not relying on culture-based methods. Our approach enabled us to characterize changes in the overall 

microbial community composition while paying special attention to the distribution of known sulfolane

degrading microorganisms. Sulfolane biodegradation potential is widely distributed throughout this 

contaminated aquifer although not likely occurring under the normal, suboxic conditions based on 

community abundance values of a known sulfolane degrading organisms and the persistence of the 

sulfolane plume. However, air sparging effectively reduced sulfolane levels concomitantly with an 

increase in the relative abundance of a Rhodoferax sp. known to metabolize sulfolane under aerobic 

conditions, suggesting that aerobic biodegradation was the mechanism for sulfolane removal. Extensive 

community analyses throughout the aquifer revealed that depth is a main factor driving microbial 

community structure in both subarctic aquifer sediment and ground water. Our comparative analysis of 
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microbial communities associated with subarctic groundwater to sediment revealed substantial yet 

incomplete overlap in community composition and significantly different community structure between 

the two sample types. Although we confirmed that members of the Rhodoferax genus can be reliably 

detected in groundwater samples, this finding has implications for the reliability of using groundwater 

analyses for characterizing overall aquifer microbial communities. This research provides novel insights 

into the basic microbial ecology of a subarctic aquifer and the fundamental mechanisms behind effective 

sulfolane remediation systems, which will be useful in assessing and remediating sulfolane contaminated 

sites worldwide.
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Figures

Figure 4-1: NMDS of the aquifer monitoring well (MW), air sparge system (AS), and granular activated 
carbon (GAC) microbial communities. A: Marker size is proportional to the relative abundance of the 
sulfolane-assimilating Rhodoferax sp. in each sample. B: Identical NMS plot with equal marker sizes for 
each sample showing the microbial community group by sample type. A stable solution was reached after 
58 iterations with an optimal dimensionality of 2 axes, a final stress of 18.6 and a final instability value of 
0.00000. The proportion of variance explained by each axis was 36.7% for axis 1 and 16.9% for axis two.
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Figure 4-2: Relative abundance of the sulfolane-assimilating Rhodoferax sp. in AS system after 10, 13, 
and 70 weeks of operation
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Figure 4-3: Plot of the linear regression between the relative abundance of the sulfolane degrading species 
and Mn during week 10 of AS system operation (p < 0.001; R2 = 0.88).
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Figure 4-4: A) NMS plot of the suspended groundwater microbial communities from the MW samples 
showing correlations between explanatory variables and ordination axes. Axis 1 explains 49.1% of the 
community variability and axis 2 explains 16.3% of the community variability. B) NMS plot of the 
attached aquifer sediment microbial community data showing correlations between explanatory variables 
and ordination axes. Axis 1 explained 50.2% of the community variability and axis 2 explained 35.7% of 
the community variability.
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Figure 4-5: NMS plot of soil - groundwater comparison data showing differences in community 
composition based on sample type. A stable solution was reached after 45 iterations with an optimal 
dimensionality of 2 axes, a final stress of 11.61, and a final instability value of 0.00000. Axis 1 explains 
56.8% of the community variability and axis 2 explains 25.8% of the community variability.

(Supplementary information available online)
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General Conclusion

This dissertation has described the microbial ecology of a subarctic aquifer polluted with the 

emerging contaminant, sulfolane, including a characterization of the sulfolane biodegradation potential of 

the aquifer and two remediation systems. We also revealed environmental controls on sulfolane 

biodegradation rates and the overall aquifer microbial community composition. In addition, we identified 

a dominant and novel sulfolane-assimilating bacterium and potential genes involved with sulfolane 

metabolism. Our studies provide new basic research into sulfolane biodegradation that can be valuable to 

the applied sciences of predicting contaminant fate and accelerating biodegradation. In addition, this 

series of studies demonstrates the use of a combination of traditional and advanced molecular methods 

that can be applied to other emerging organic contaminants for which limited biodegradation information 

exists.

In our series of studies, we first revealed that sulfolane biodegradation potential exists within this 

aquifer and identified aerobic biodegradation as the only observable mechanism of sulfolane degradation, 

which suggests that oxygen limitation may explain the persistence of sulfolane in this aquifer. We also 

quantified and reported the rates of sulfolane biodegradation in subarctic substrate under a variety of 

conditions that can often be found at contaminated sites (e.g. high/low contaminant concentrations, co

contamination), which may be useful in projecting the fate of sulfolane and in assessing potential 

remediation options in future scenarios. After identifying the importance of aerobic biodegradation in 

sulfolane attenuation, we conducted labeling studies to identify the members of the aquifer microbial 

community actively involved with sulfolane biodegradation. By doing so, we identified one Rhodoferax 

sp. as the primary sulfolane-assimilating organism in this system and expanded the known taxonomic 

distribution of sulfolane-degrading microorganisms. We then generated a near-complete genome for this 

Rhodoferax sp. which led us to propose a new metabolic model for sulfolane biodegradation. Finally, we 

conducted a microbial community analysis of the sulfolane-contaminated aquifer and two remediation 
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systems, allowing insights into the biodegradation potential of the aquifer, mechanisms underlying 

effective sulfolane treatment systems, and drivers of microbial community structure in a subarctic aquifer.

Understanding the microbial ecology of a contaminant plume is important for predicting plume 

longevity and ecosystem resilience to contaminant exposure, and, through these efforts, we have gained 

novel insights into the fate of sulfolane in the environment. We also demonstrated the power of 

combining modern molecular techniques to identify and characterize the microorganisms involved with 

the biodegradation of an emerging contaminant. Future work should be directed at elucidating 

conclusively the biochemical pathway(s) for and genetic basis of sulfolane metabolism. The isolation of 

the sulfolane-assimilating Rhodoferax sp. we describe into pure culture may help toward this goal and the 

genomic information generated from our research could benefit such efforts. The use of controlled 

laboratory experiments would aid in conclusively determining if sulfolane is completely mineralized by 

this strain and would enable more focused genetic and biochemical analyses into the pathways involved. 

Inserting the genes we propose to be involved with sulfolane metabolism into model laboratory 

microorganisms could also yield insights into the mechanisms of sulfolane biodegradation. Overall, a 

better understanding of the microorganisms and genes involved with sulfolane metabolism would advance 

efforts to fully understand the environmental fate of sulfolane and identify alternative remediation 

options.
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