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Abstract

Species network inference is a challenging problem in phylogenetics. In this work, we 

present two results on this. The first shows that many topological features of a level-1 network 

are identifiable under the network multispecies coalescent model (NMSC). Specifically, we 

show that one can identify from gene tree frequencies the unrooted semidirected species 

network, after suppressing all cycles of size less than 4. The second presents the theory 

behind a new, statistically consistent, practical method for the inference of level-1 networks 

under the NMSC. The input for this algorithm is a collection of unrooted topological gene 

trees, and the output is an unrooted semidirected species network.
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Chapter 1: Introduction

Phylogenetics is a branch of evolutionary biology whose main objective is to infer evolu­

tionary relationships between species. Recently, more evidence has appeared showing that 

hybridization has played an important role in such relationships [Nakhleh , 2011]. In partic­

ular, there is strong evidence showing hybridization as an crucial factor in the evolution of 

some groups of plants, fish, and frogs [Rieseberg et al., 2000; Ellstrand et al., 1996]. How­

ever, methods for inferring hybridization in a statistical framework are only beginning to be 

developed.

One tool used to depict the relation between species in the presence of hybridization is 

a species network [Steel , 2016]. A species network N is a branching diagram, such as that 

in Figure 1, composed of edges, depicted by “tubes,” representing populations. When two 

edges are incident this represents either a speciation event or a hybridization event. Two 

edges that are incident representing a hybridization event are called hybrid edges (hybrid 

populations), edges that are not hybrid are called tree edges. In the species network of Fig­

ure 1 the hybrid edges are colored in red and the tree edges in white. In such a figure, the 

leaves, the ends of terminal edges labeled as a, b, c, and d, represent the current species being 

related. The rest of the edges represent ancestral populations. The root, the edge on the top 

of the diagram, is the most recent common ancestor of all the species that are being related. 

Even if not explicitly marked, the edges in the diagram are directed away from the root. 

This is interpreted as time flowing from the root (the past), to the leaves (the present). A 

hybridization event is depicted by the heads of two edges being incident, while a speciation 

event is depicted by the tails of two edges being incident.

Phylogenetics is also concerned with quantifying how distant the relationships are be­

tween species. We can assign to each population in a species network an edge length, which
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Figure 1: A species network relating species a, b, c and d.

Figure 2: A non level-1 species network relating species a, b, c and d.

represents how much time, in number of generations, has passed between speciation or hy­

bridization events. We also assign a number γ(e) ∈ (0, 1), called hybridization parameter, to 

any hybrid edge e. This number represents the probability that a lineage that is below e has 

an ancestral lineage in e. We formalize this in Chapter 2.

Due to the complexity of an arbitrary species network, it is common to work with net­

works with a simpler structure. In this work we restrict to level-1 networks. Informally, a 

level-1 network is a network whose cycles have no edges in common.

A common approach of inference methods for a species network is to use as data gene 

trees, see for example [Degnan and Salter , 2005; Carstens et al., 2007; Chifman and Kubatko,
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Figure 3: (Left) A gene tree within the species tree. In this case one lineage was sampled 
from each species. (Right) The same metric gene tree as the gene tree in the left.

2015; Solis-Lemus and Ané, 2016]. Gene trees are acyclic, connected graphs [Semple and 

Steel , 2005], that show the relation between genes of individuals sampled from the different 

species of interest. They show direct ancestral relationships from child to parent and are 

inferred from DNA sequences. There exist various methods of gene tree inference [Allman 

and Rhodes, 2005], but in this work we do not focus on any of these methods , but assume 

gene trees are somehow known. A gene tree could also contain metric information. We 

denote by (G, t) a metric gene tree, where G contains the topological information (the shape 

of the tree) and t the edge length information of G. On the right in Figure 3 a gene tree 

relating lineages A, B, C , and D is depicted.

There is much evidence showing that for a given set of species, trees for different genes 

relate the species differently. This is known as gene tree incongruence. There are several 

sources of gene tree incongruence, for example, the presence of hybridization [Degnan, 2010], 

and incomplete lineage sorting [Syring et al., 2005; Pollard et al., 2006; Carstens et al., 2007]. 

Hybridization occurs when, going forwards in time, two distinct populations merge geneti­

cally to produce a new population. Incomplete lineage sorting occurs when, going backwards 

in time, two lineages that enter the same population do not coalesce after until they leave 

that population, so they may coalesce with lineages from more distantly related organisms 
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first. For example, in Figure 3 (Left), we see that lineages B and C enter the population 

colored in blue, but they do not coalesce until the root population. There are other possible 

sources of gene tree incongruence, for example, gene loss and gene duplication [Olson , 1999], 

but here we only consider gene tree incongruence due to hybridization and incomplete lin­

eage sorting. That already is a challenge for inference methods.

Incomplete lineage sorting together with hybridization is modeled by the network mul­

tispecies coalescent model (NMSC) [Meng and Kubatko , 2009], which is a generalization of 

the coalescent model for lineages in a single population [Kingman , 1988]). We describe both 

models in Chapter 2.

In using a model-based inference method, a goal is typically to estimate the parameters 

underlying the data. Specifically, for model-based statistical inference to have a solid basis, 

we need the parameters of the model to be identifiable. That is, the probability distribution 

for the model must uniquely determine the parameters (i.e the model parametrization map 

is injective).

In this work we undertake two main investigations, both based under the network multi­

species coalescent model. The first one is presented in the paper “Identifying species network 

features from gene tree quartets under the coalescent model,” published in the Bulletin of 

Mathematical Biology [Baños, 2019]. Its main result is to solve a model identifiability prob­

lem: given information on frequencies of gene trees, under the NMSC, for some unknown 

network N , what can be determined about the topology of N? This work consists of 3 

stages: 1) Provide rigorous arguments for gaps left unaddressed in previous literature; 2) 

describe gene tree frequencies for subtrees with four species using algebraic statistics; and 

3) use the frequencies of the subtrees with four species to reconstruct most of the network 

features using graph theoretical methods.
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The second main result is an algorithm, that we refer to by the acronym “NANUQ.” 

NANUQ is a new practical method of species network inference. It takes as input a set 

of gene trees and produces an unrooted network with certain properties. The algorithm 

steps are to 1) determine the gene tree frequencies for subtrees with four species; 2) use 

a statistical test to determine whether any subset of four species display hybridization; 3) 

construct a distance between species using information on tree and networks for subsets of 

four species; 4) use SplitsTree4 [Huson and Bryant , 2006] to obtain a circular splits graph; 

and 5) give an interpretation of the circular splits graphs produced by SplitsTree4 to recon­

struct the network. This work is presented in the preprint “NANUQ: A method for inferring 

species networks from gene trees under the coalescent model,” which is a joint work with 

J. A. Rhodes and E. S. Allman [Allman et al., 2019].

For NANUQ, Step 1 is based on the insights of [,Solís-Lemus and Ané, 2016; Baños, 2019]; 

Step 2 is based on the statistical test developed in [Al lman et al., 2018a]; Step 3 is done 

by generalizing the distance method for trees in [Rhodes, 2017]; Step 4 uses NeighborNet 

[Bryant and Moulton, 2004], and an algorithm that constructs circular splits graphs [Dress 

and Huson, 2004], both implemented in SplitsTree4; Step 5 required developing new theory 

on splits graphs for networks.

An outline of this thesis is as follows: Chapter 2 gives a detailed explanation of the 

coalescent model and the network multispecies coalescent model. Chapter 3 contains the 

paper “Identifying species network features from gene tree quartets under the coalescent 

model.” Chapter 4 contains the paper “NANUQ: A method for inferring species networks 

from gene trees under the coalescent model.” Finally, in Chapter 5 we present conclusions 

and outline future work.
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Chapter 2: The Network Multispecies Coalescent model

Before introducing the coalescent model, we formalize the idea of edge lengths and hy­

bridization parameters mentioned in Chapter 1. We associate to a topological network N 

a function τ : E(N) → [0, ∞), where E(N) is the set of edges (i.e populations) on N not 

including the root. The function τ gives the number of generations spanned by a population 

or the edge length. This represents how much time, in number of generations, has passed 

between speciation or hybridization events. For the root r, we set τ (r) = ∞. We also assign 

to N a function γ : Eh(N) → (0, 1), where Eh(N) is the set of hybrid edges ofN, and require 

for any two incident hybrid edges e and ^ ∈ Eh(N), that γ(e) = 1 — γ(e). The number γ(e) 

is called the hybridization parameter of e.

We assign additionally to each edge e a function Ne(t) : [0, τ(e)) → R>0, where τ(e) is 

the edge length of e. The function Ne(t), called the population function of e, represents the 

population size in number of generations in edge e at time t. We denote the set of population 

functions of a network N by {Ne}. The quadruplet (N,τ,γ, {Ne}) is called a metric species 

network [Steel , 2016]. A metric species network with no hybridization events is also known 

as a metric species tree.

1 The coalescent model

The simplest form of coalescent theory models the formation of gene trees within one 

population. The coalescent model traces, backwards in time, the ancestries of a finite set of 

individual copies of a gene as the lineages coalesce to form ancestral lineages. The model 

has as parameters a population size function and gives a distribution of metric gene trees. 

For now, we assume that any lineage from the population can trace back in time infinitely,
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Figure 1: (Left) A single population with 4 lineages sampled. Each horizontal line of dots 
represents a generation, and each dot represents an individual. (Right) The resulting gene 
tree observed from the coalescent process in the population on the left.

that is, the population has a infinite number of past generations. On the left of Figure 1 

we observe lineages A, B, C , and D sampled from a population, each horizontal sequence 

of dots represents a generation, and each dot represents an individual. Each lineage traces 

backwards in time from an individual to an individual in the previous generation. The first 

coalescent event in Figure 1 occurs at the 3th generation, and it involves lineages B and 

C. The second coalescent event occurs at the 6th generation, and the last coalescent event 

occurs at the 7th generation before the present. On the right of Figure 1 we see the resulting 

gene tree of this process. This depiction of the coalescent model with discrete time and pop­

ulation size is known as the Wright-Fisher model. We focus on the continuous version of the 

coalescent model, that is, considering continuous notions of both the number of generations 

and population sizes. This model is known as the Kingman coalescent model. We refer the 

reader to [Wakeley , 2008] for a detailed explanation, history and survey of both models. For 

now on, we refer to the Kingman coalescent model as the coalescent model.

For simplicity in presentation of the model, we measure time u in coalescent units (cu). 

Coalescent units are obtained by scaling time t in number of generations, inversely by pop-
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ulation size (∆u = Δt/N(t)))·

In the coalescent model, coalescent events between any two lineages occur independently 

by a Poisson process with the instantaneous rate of coalescence 1. That is, coalescent events 

between any two lineages occur rarely, with equal probability in any small interval of a fixed 

size. The probability of simultaneous coalescence of more than two lineages is zero. After a 

coalescent event occurs this process re-starts but with one fewer lineage. Because the rate of 

coalescence for any two pairs of lineages is the same, all lineages behave the same in the coa­

lescent process. This important observation is expressed by saying lineages are exchangeable.

Let h(uk ) be the probability that no two lineages out of k lineages present have coalesced 

by time uk within a population. There are k2 possible pairs of lineages, and each of the 

k2 possible coalescent events occur are independently. Also, since coalescent events follow 

a Poisson process, h(uk ) should decrease and the instantaneous rate of the possible k2 

independent events should be added, to obtain the rate for the first coalescent event. Thus 

the instantaneous rate h'(uk) is negative and equal to

2-8

Also, given k gene lineages in a population, the probability density of the time uk until the

first pair of lineages coalesce is given by
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Figure 2: A population y with length δy in cu, where 3 lineages enter y and 2 leave it. Time 
uy3 has elapsed between the lineages entering y and the coalescent event that reduces the 
number of lineages from 3 to 2.

tions, which will be needed in the next section. Let y be a population of length δy ∈ (0,∞) in 

cu, p be the number of lineages entering y and q be the number of lineages leaving it. There 

are then p - q coalescent events in y. In Figure 2 we see that in the population shaded in 

gray p = 3, and q = 2. Let uyk denote the time from the moment lineages entered population 

y to the time of the coalescent event that reduces the number of lineages in this branch from 

k to k - 1. Figure 2 depicts u3y, that is, uy3 is the time from the moment lineages A, B, and 

C entered y, to the coalescent event that reduces the number of lineages from 3 to 2. By the 

exchangeability property, when there are j lineages present at a certain point in time, all 

pairs are equally likely to coalesce, so the density for a coalescent event has to be weighted by 

1/ j2 . Therefore we can write the joint density of coalescent times uyp, upy-1, ..., uqy+1 within 

population y as 

where we define uyp+1 = 0. It follows from Equation 1, that the probability that there are no 

coalescent events in y, i.e, q = p, is given by
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Equations (3) and (4) describe the coalescent process in a single population y of length δy.

2 The network multispecies coalescent model (NMSC)

The network multispecies coalescent model (NMSC) generalizes the coalescent model. It 

applies the coalescent model to multiple populations connected by a species network. The 

parameters of the model are a metric species network (N, τ,γ,{Ne}), and it gives a dis­

tribution of metric gene trees. When there is no hybridization in the species network, i.e. 

the network is a tree, the NMSC is simply referred to as the multispecies coalescent model 

(MSC) [Pamilo and Nei , 1988]. The NSMC is used to obtain the probability of a metric gene 

tree in the presence of incomplete lineage sorting. By marginalization over branch lengths 

in N, the NMSC gives a distribution of topological gene trees. We briefly explain how to 

obtain the density of a metric gene tree.

When a lineage L is in a population y that is below two hybrid populations h and h', 

like population y depicted in blue in the species network of Figure 3, the probability that 

L traces backwards in time from an individual in y to an individual in h is given by γ(h). 

Analogously, the probability that L trace backwards in time from an individual in y to and 

individual in h' is γ(h') = 1 — γ(h). The random variables determining which hybrid edge is 

entered are independent of any other lineages leaving y. For example, in the species network 

of Figure 3, the population shaded in blue is below the hybrid populations h and h', so any 

lineage sampled from b has probability γ(h') of tracing its ancestry back through h'. More­

over, the probability that, for example, both lineages B and C, conditioned on not having 

coalesced below the hybrid populations , trace through to h is γ(h)2.

Let G = (G, t) be a metric gene tree and let N = (N, τ, γ,{Ne}) be a metric species 

network. To find the density of the metric gene tree G conditional on the species network N

2-10



Figure 3: (Left) A metric gene tree G. (Right) The two different embeddings of G in N .

we introduce the following. An embedding K of G in N (also denoted by K(G|N )), encodes 

a coalescent process of observing G in N . We say two embeddings are distinct if there is 

at least one lineage in G that traced through different populations of N in each embedding. 

For example, the left of Figure 3 shows a metric gene tree and the right of the figure shows 

the two distinct embeddings of it in a species network. For any metric gene tree the number 

of embeddings is finite, and if there are no hybridization events in the species network, there 

is a unique embedding.

For a given embedding K = K(G|N), the number of lineages entering and leaving any 

given population are specified. Since the coalescent processes within different populations 

are conditionally independent, the probability densities for individual populations (as in 

equation (3)) of such embedding can be multiplied to obtain the probability density for the 

embedding K. This is

2-11

where T is the set of tree edges of N , H is the set of hybrid edges of N, py is the number of 

lineages entering population y, and qy is the number of lineages leaving y. Thus the density



of the metric gene tree G conditional on the species tree N is given by

f(G|N) = g(Ki) (6)

where the index i of the finite sum is over different embeddings of G in N .

Note that when there is no hybridization in a species network, computing the probability 

of observing a metric gene tree is challenging, but straightforward algorithmically [Pamilo 

and Nei , 1988]. The presence of hybridization complicates this probability computation due 

to the different embeddings of G in N . However, the probability of a topological gene tree 

is even more difficult to compute on N , since we need to consider all possible metric struc­

tures of gene trees that can be embedded in the species network, in addition to all possible 

embeddings.

Inference of species networks for gene trees using “standard” approaches (such as Maxi­

mum likelihood or Bayesian methods) needs the computations of gene tree densities. Also, 

one might prefer to work with topological gene trees because the metric information that 

most gene tree inference methods produce may not be reliable and could lead to a wrong 

conclusion in the species network inference. The next chapters indicate a way around these 

challenges.
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Chapter 3: Identifying Species Network Features from Gene Tree Quartets Under the 

Coalescent Model

In this chapter we present the paper “Identifying Species Network Features from Gene 

Tree Quartets Under the Coalescent Model.” As mentioned in Chapter 1 this paper consists 

of 3 parts.

The first part (Sections 1 through 5) give rigorous arguments for gaps left unaddressed 

in previous literature. In [Solís-Lemus and Ané, 2016], the authors present a statistical 

method, based on the NMSC and a pseudo-likelihood function, to infer level-1 species net­

works. While their method is novel, some of the results presented on identifiability did not 

contain complete statements, nor proofs. To build on their work, it was necessary to revise 

some of the claims and formally provide introductory definitions and arguments to fully ad­

dress both the claims and the extensions of them.

The second part (Sections 6 and 7) consists of describing gene tree frequencies, under 

the NMSC, for subtrees with four taxa. This is the main idea used in the detection of “big 

cycles” in the species network. That is, we can determine whether there is hybridization 

among a set of four species by looking at the gene tree frequencies for those species. These 

ideas are also used in NANUQ, and this will be fully addressed in Chapter 4.

The last part (Sections 8 and 9) describe how to use frequencies of subtrees with four 

taxa to reconstruct most topological features of the network. The main tools used in these 

sections are combinatorial and graph theoretical.
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Abstract
We show that many topological features of level-1 species networks are identifiable 
from the distribution of the gene tree quartets under the network multi-species coales­
cent model. In particular, every cycle of size at least 4 and every hybrid node in a cycle 
of size at least 5 are identifiable. This is a step toward justifying the inference of such 
networks which was recently implemented by Solís-Lemus and Ané We show addi­
tionally how to compute quartet concordance factors for a network in terms of simpler 
networks, and explore some circumstances in which cycles of size 3 and hybrid nodes 
in 4-cycles can be detected.
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1 Introduction

As phylogenetic analysis of DNA data has progressed, more evidence has appeared 
showing that hybridization is often an important factor in evolution. As surveyed in 
Nakhleh (2011), hybridization has played a very important role in the evolutionary 
history of plants, some groups of fish and frogs (Ellstrand et al. 1996; Linder and 
Rieseberg 2004; Mallet 2005; Noor and Feder 2006; Rieseberg et al. 2000). Other 
biological processes, such as introgression, lateral gene transfer and gene flow, also 
require moving beyond a simple treelike view of species relationships.

Phylogenetic networks are the objects used to represent the relationships between 
species that admit such events (Arnold 1997; Bapteste et al. 2013). These networks 
are often thought of as obtained from phylogenetic trees by adding additional edges,

This research was supported in part by the National Institutes of Health Grant R01 GM117590, awarded 
under the Joint DMS/NIGMS Initiative to Support Research at the Interface of the Biological and 
Mathematical Sciences.

HectorBanos
hdbanoscervantes@alaska.edu

1 University of Alaska Fairbanks, P.O. Box 756660, Fairbanks, AK 99775-6660, USA

Published online: 09 August 2018 123
3-14

https://doi.org/10.1007/s11538-018-0485-4
mailto:hdbanoscervantes@alaska.edu


Author's personal copy

H Banos

so that some nodes in the tree have two parents. Nodes with two parents, called hybrid 
nodes, represent species whose genome arises from two different ancestral species. 
Inference of phylogenetics networks from biological data presents new challenges, 
with methods still being developed, as shown by recent works including Ané et al. 
(2007), Meng and Kubatko (2009), Solís-Lemus and Ané (2016), Zhang et al. (2018), 
Yu et al. (2014) and Yu et al. (2011).

Another challenge in inferring evolutionary history arises from the fact that many 
multi-locus data sets exhibit gene tree incongruence, even without suspectedhybridiza- 
tion. One possible reason is incomplete lineage sorting (ILS), which is described in 
the tree setting by the multi-species coalescent model Pamilo and Nei (1988). See, for 
example, Carstens et al. (2007), Pollard et al. (2006), and Syring et al. (2005) where 
ILS is explained in the biological setting.

Meng and Kubatko (2009) formulated a model of gene tree production, based on the 
multi-species coalescent model, incorporating both hybridization and ILS. Wereferto 
this model as the network multi-species coalescent model, which is further developed 
in Yu et al. (2012), Zhu et al. (2016), and Solís-Lemus et al. (2016), to mention some. 
The model determines the probability of observing any rooted gene tree given a metric 
rooted phylogenetic species network.

Solís-Lemus and Ané (2016) recently presented a novel statistical method, based on 
the network multi-species coalescent model, to infer phylogenetic networks from gene 
tree quartets in a pseudolikelihood framework. The quartets themselves might come 
from larger gene trees inferred by standard phylogenetic methods. The pseudolikeli­
hood in this work is built on quartet frequencies, or concordance factors, extending an 
idea of Liu et al. (2010) from the tree setting. The pseudolikelihood approach is sim­
pler and faster than computing the full likelihood and makes large-scale data analysis 
more tractable. They demonstrate positive results in reconstructing the evolutionary 
relationships among swordtails and platyfishes.

However, the theoretical underpinnings of the method of Solís-Lemus and Ané 
(2016) are not complete. In using a model for statistical inference it is important to 
know whether it is theoretically possible to uniquely recover the parameters from the 
data the model predicts. In more precise terms, for model-based statistical inference 
to have a solid basis, we need that the probability distribution for data which arises 
under the model uniquely determines the parameters. This is known as identifiability 
of the model parameters.

While Solís-Lemus and Ané (2016) showed that any particular hybridization in a 
level-1 network with h hybridizations and n taxa can be generically detected under 
certain assumptions, their study never addressed the full identifiability ofthe network 
topology, only the detectability of a specific hybridization event. Working in the set­
ting of level-1 networks, which is also adopted here, their arguments do not include 
investigations on networkproperties such as cycle sizes, and the structure ofthe whole 
network. These properties are crucial to determine, for example, whether two networks 
with different cycle sizes, or different number of cycles, could produce the same set 
of gene tree quartet probabilities.

The primary purpose ofthis work is to begin to address some ofthese identifiability 
questions raised in Solís-Lemus and Ané (2016). That is, we study the question: given
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information on gene quartet probabilities for some unknown level-1 network N , what 
can be determined about the topology of N ?

Although others have considered the problem of constructing large networks from 
small ones, these works do not seem to be applicable to the question studied here. 
Most of these works, including Huber et al. (2017a, b) and Keijsper and Pendavingh 
(2014), are primarily combinatorial in nature. In particular, these studies do not address 
semidirected networks, ILS through the network multi-species coalescent model, nor 
the types of inputs that might be obtained from biological data.

The main result of this work, Theorem 4 of Section 8, is that under the network 
multi-species coalescent model on level-1 networks, we can generically identify from 
gene quartet distributions “most” of the unrooted topological network, including all 
cycles of size at least 4, and hybrid nodes in the cycles of size greater than 4. “Gener­
ically” here means for all values of numerical parameters except those in a set of 
measure zero. The methods used are a mix of the semialgebraic study of quartet gene 
tree frequencies (in terms of linear equalities and inequalities they satisfy) with combi­
natorial approaches to combining this knowledge for many quartets. As a side benefit 
the proofs suggest combinatorial methods for reconstructing networks, as opposed to 
just showing identifiability. However, we do not explore how such methods might be 
implemented in the presence of the noise that any collection of inferred gene trees will 
have.

Another result of this work, in Sect. 5, is a rigorous derivation of how gene quartet 
probabilities can be computed for large networks under the coalescent model. Although 
this parallels some of the results in Solís-Lemus and Ané (2016), the arguments given 
here are more rigorous, as is necessary for them to form the basis of our main results. 
Our approach is to express quartet frequencies as convex combinations of those on 
simplified networks, ultimately leading to expressions in terms of trees, as is done 
in other situations Zhu and Degnan (2017). This is different from the approach in 
Solís-Lemus and Ané (2016) of finding networks With less hybridizations displaying 
the same gene quartet probabilities.

The outline of this work is as follows: Sect. 2 introduces basic definitions and 
establishes some terminology on graphs and networks. Section 3 sets forth insights 
and tools for studying the structure oflevel-1 networks. Section 4 reviews the network 
multi-species coalescent model of Meng and Kubatko (2009), as well as quartet con­
cordance factors and some of their properties. In Sect. 5 we show how concordance 
factors of quartet networks can be expressed in terms of simpler networks. Section 6 
introduces the “Cycle property” of concordance factors, and Sect. 7 defines the “Big 
Cycle” property of concordance factors. In Sect. 8, the main result on topological 
network identifiability is proved using the Big Cycle property, and in Sect. 9 some 
extended results on the “Cycle property” are shown.

2 Phylogenetic Networks

We adopt standard terminology for graphs and networks, as usedinphylogenetics;see, 
for example, Semple and Steel (2005) and Steel (2016). All undirected, directed, or 
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semidirected graphs will not contain loops. If G is a directed or semidirected graph, the 
undirected graph of G, denoted by U (G), is the graph G with all directions omitted.

2.1 Rooted Networks

To set terminology, we begin with some fundamental definitions.

Definition 1 A topological binary rooted phylogenetic network N + on taxon set X 
is a connected directed acyclic graph with vertices V and edges E , where V is the 
disjoint union V = {r} ∟ VL ∟ VH ∟ VT and E is the disjoint union E = EH ∟ ET, 
and a bijective leaf-labeling function f : VL → X with the following characteristics:

1. The root r has indegree 0 and outdegree 2.
2. A leaf v ∈ VL has indegree 1 and outdegree 0.
3. A tree node v ∈ VT has indegree 1 and outdegree 2.
4. A hybrid node v ∈ VH has indegree 2 and outdegree 1.
5. A hybrid edge e ∈ EH is an edge whose child is a hybrid node.
6. A tree edge e ∈ ET is an edge whose child is a tree node or a leaf.

Definition 2 LetN+ be a topological binary rooted phylogenetic network with |E|= 
m and |EH| = 2h. A metric for N+ is a pair (λ,γ), where λ : E → R>0 and 
γ : EH → (0, 1) satisfies that if two edges h1 and h2 have the same hybrid node as 
child, then γ(h 1) + γ(h 2 ) = 1.

If (λ, γ ) is a metricforN +, then we refer to (N +,(λ,γ))as a metric binary rooted 
phylogenetic network.

Note that Definition 1 differs from that of Steel (2016) in that it allows up to two 
edges between a pair of nodes. An edge weight λ(e) is interpreted as the time (in 
coalescent units) between speciation events represented by the ends of edge e. For any 
hybrid edge h with child v,thevalueγ(h ) = γh is the probability that a lineage at v 
has ancestral lineage in h and is often called hybridization parameter or inheritance 
probability. Since we are focusing on parameter identifiability, we will use the term 
hybridization parameter.

2.2 Lowest Stable Ancestor

We review and show some properties of the lowest stable ancestor, a network analog 
of the most recent common ancestor on a tree.

Definition 3 LetN+ be a (metric or topological) binary rooted phylogenetic network. 
We say that a node v is above a node u, and u is below v, if there exists a non-empty 
directed path in N + from v to u. We also say that an edge with parent node x and 
child y is above (below) a node v if y is above or equal to v (x is below or equal to v).

Note that since N + has no directed cycles, u cannot be both above and below v.

Definition 4 Steel (2016) Let N + be a (metric or topological) binary rooted phylo­
genetic network on X and let Z ⊆ X .LetD be the set of nodes which lie on every
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Fig. 1 (Left) A binary rooted phylogenetic network on X , with LSA( X ) the node labeled x , and (Right) its 
induced unrooted semidirected network. In a depiction of a rooted network, all edges are directed downward, 
from the root, but arrowheads are shown only on hybrid edges. For the unrooted network, all edges except 
hybrid ones are undirected

Fig. 2 A binary rooted 
phylogenetic network where the 
node labeled y is ancestral to all 
taxa in X but is not LSA(X ). 
LSA(X ) here is the root of the 
network

directed path from the root r ofN+ to any z ∈ Z. Then the lowest stable ancestor of 
Z of N +, denoted by LSA(Z , N +), is the unique node v ∈ D such that v is below all 
u ∈ D, u = v.

When N+ is clear from context, we write LSA( Z ) for LSA(Z, N+). To see that 
LSA(Z) is well defined for any Z ⊆ X, note first that D ≠ 0 since r ∈ D. Also, since 
every pair of nodes u,v ∈ D both lie on a path, we have a notion of above and below 
for u and v, i.e., a total order on D, and hence a minimal element.

While the definition ofLSA agrees with the most recent common ancestor for trees, 
it is more subtle. In particular, if N+ is a network on X,LSA(X) need not to be the 
root of the network, as Fig. 1 (left) shows. Furthermore, there can be nodes below 
LSA(X) which are ancestral to allof X,asFig.2shows.

Lemma 1 Let N + be a (metric or topological) binary rooted phylogenetic network 
on X with root r, and let Z ⊆ Y ⊆ X. Then

(i) the indegree of LSA(Z) is at most one for any Z ⊂ X;
(ii) at most one of the out edges of LSA(Z) is hybrid;

(iii) if Z ⊆ Y ⊆ X then LSA(Z) is below or equal to LSA(Y ).
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Proof To see (i), suppose that the indegree of LSA(Z ) is two. Then the outdegree 
would be one, and the child of LSA(Z ) would be in any path from the root to any taxa 
in Z , contradicting the definition of LSA(Z).

For (ii), suppose the out edges of LSA(Z ), e1 and e2, are both hybrid. If e1 and e2 
have the same child, then every path from r to any z ∈ Z would contain that node, 
contradicting the definition of LSA(Z ).

Now denote by x 1 = x2 the child nodes of e1 and e2, respectively. If both x1 and x 2 
had parents below LSA(Z ), then x1 has a parent below x2 and x2 has a parent below 
x1 giving a directed cycle. Thus, without loss of generality, assume x 1 has parents 
LSA(Z ) and v with v not below LSA(Z). Let z ∈ Z with z below x1. If we remove 
the LSA(Z) from N + there is still a path from r toz (which goes from r tov tox1 to 
z). This contradicts the fact that LSA(Z ) is on all paths from r to any z ∈ Z.

For (iii) we observe that since Z ⊆ Y , LSA(Y ) must be equal or above LSA(Z) 
since the set of paths from r to any taxa in Y contains the set of paths from r to any 
taxon in Z .

Lemma 2 Let N + be a (metric or topological) binary rooted phylogenetic network 
on X and let Z ⊂ X, |z| ≥ 2. For exery X ∈ z, there is a X ∈ Z Such that 
LSA(x, y) = LSA(Z).

Proof Let m = LSA( Z), fix X ∈ Z and let P be a path from m to X. By definition of 
LSA, for all X ∈ Z, LSA(X , X) is a node in P and is below or equal to m by Lemma 1. 
Suppose that LSA(X , X) is below m for all X ∈ Z.Letz ∈ Z be such that LSA(X, z) 
is above or equal to LSA(x, y) for all y ∈ Z\{z}.

We claim that any path from m to X ∈ Z passes through LSA(X , z ). Suppose there 
exists taxon y with path P' from m to y that does not pass through LSA(x, z). But 
P' must pass through LSA(x, y). Since LSA(x, y) is below LSA(x, z), there is apath 
from m to LSA(X, y)toX that does not contain LSA(X, z). This is a contradiction.

But every path from m to any y ∈ Z passes through LSA(X, z), contradicting that 
LSA(x, z)is below m. □

By this lemma we can characterize LSA(Z) as the highest node of the form 
LSA(X, y)forsomeX, y ∈ Z, or the highest node of that form for fixed X ∈ Z.

2.3 Unrooted Networks

Let G be a directed or semidirected graph with z a degree two node. Let X and y be the 
two nodes adjacent to z. Then, up to isomorphism, the subgraph on X, y and z must be 
one of the graphs shown on the left of Fig. 3, which we denote by H . By suppressing 
z we mean replacing H in G by the graph to the right of it in Fig. 3.

Definition 5 Let N + be a binary topological rooted phylogenetic network on a set of 
taxa X. ThenN- is the semidirected network obtained by (1) keepingonlytheedges 
and nodes below LSA(X); (2) removing the direction of all tree edges; (3) suppressing 
LSA(X). We refer to N- as the topo؛ogica؛ unrooted semidirected network induced 
from N +.
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Fig. 3 On the left are all the semidirected graphs, up to isomorphism, on a degree two node z and its adjacent 
vertices x and y . On the right are the corresponding graphs obtained by suppressing z

Figure 1 shows an example ofa network N + and its induced N -. We now introduce 
a metric on - induced from one on +.

Definition 6 Let (N +,(λ,γ))be a metric binary rooted phylogenetic network and let 
N - be the topological unrooted semidirected network induced from N +. Denote by 
e* the edge of N- introduced in place of the edges e1 and e2 in N+ when LSA(X) 
is suppressed. Define λ' : E(N-) → ℝ>0 such that λ'(e*) = λ(e1) + λ(e2) and 
λ'(e) = λ(e) for e ∈ N-, e = e*. If e* is not hybrid, γ' = γ, else let γ'(K) = γ(h) 
for all hybrid edges of N- other thAn e* and γ'(e*) = γ(ei),where ei is,by Lemma1, 
the single hybrid edge in {e1, e2}. We refer to (N-, (λ', γ')) as the metric unrooted 
semidirected network induced from (N+,(λ,γ)).

The networks considered in this work are always induced from a rooted binary met­
ric phylogenetic network. To simplify language, we refer to a (metric or topological) 
binary rooted phylogenetic network as a (metric or topological) rooted network and 
to a induced (metric or topological) unrooted semidirected phylogenetic network as a 
(metric or topological) unrooted network.

We note that not all binary semidirected graphs are topological unrooted networks, 
since some graphs are not compatible with suppressing the root on any rooted network. 
Moreover, N- might be induced from several rooted networks N+. See Fig. 4.

Although an unrooted network N- does not have a root specified, since hybrid 
edges are directed, the suppressed LSA(X) of N+ must have been located ‘above' 
them. Thus, in N-, we still have a well-defined notion ofwhich taxa are descendants 
ofahybridnodev.Thesearethetaxax such that there exists a semidirected path from 
v to x in N- . In this case we say that x descends from v.

2.4 Induced Networks on Subset of Taxa

Since later arguments require an understanding of the behavior of the network multi­
species coalescent model on a subset of taxa, we introduce some needed definitions.
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Fig. 4 The top graph is not a 
topological unrooted 
semidirected phylogenetic 
network, since its directed edges 
cannot be obtained by 
suppressing the root of any 
6-taxon topological binary 
rooted phylogenetic network. 
The middle graph is the induced 
topological unrooted network 
from either of the bottom rooted 
networks, as well as others

Definition 7 LetN+ be a (metric or topological) rooted network on X and let Z ⊂ X. 
The induced rooted network NZ+ on Z is the network obtained from N + by (1) 
retaining only edges and nodes in paths from the root to any taxa in Z; (2) suppressing 
all degree two nodes except the root; (3) in the case the root then has outdegree one, 
contracting the edge incident to the root.

Note that LSA(Z, NZ+) = LSA(Z, N+). If |Z|=4 then NZ+, the induced rooted 
quartet network on Z, will also be denoted by Q+Z to emphasize it involves only 4 
taxa.

Definition 8 LetN+ be a (metric or topological) rooted network on X and let Z ⊂ X. 
The induced LSA network of Z, denoted Nz, is the rooted network obtained from 
N Z+ by deleting everything above LSA( Z , N + ).

In particular, we note that NZf has root LSA(Z, N+). If |Z|=4 then NZf,the 
induced LSA quartet network on Z, is also denoted by QfZ.

Definition 9 Let G be a semidirected graph and let x , y be two nodes in G.Atrek in 
G from x to y is an ordered pair of semidirected paths (P1, P2) where P1 has terminal 
node x , P2 has terminal node y, and both P1 and P2 have starting node v. The node v 
is called the top of the trek, denoted top( P1, P2).Atrek( P1, P2) is simple if the only 
common node among P1 and P2 is v.

This definition is adopted from non-phylogenetic studies of statistical models on 
graphs, such as Sullivant et al. (2010).

Definition 10 Let N- be a (metric or topological) unrooted network on X and let 
Z ⊆ X .Theinduced unrooted network (N-)Z on a set of taxa Z is the network 
obtained from N- by retaining only edges in simple treks between pairs of taxa in Z , 
and then suppressing all degree two nodes.
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Note that it is not immediately clear that for a network N +, the networks (N -)Z 
and (NZ+)- are isomorphic. Proposition 1 shows that the operations of unrooting and 
inducing a network on a subset of taxa commute. While this statement is intuitively 
plausible, its rather technical proof is in “Appendix.”

Proposition 1 LetN+bea(metricortopological)rootednetworkonXandletZ ⊆ X. 
Then (N -)Z and (N Z+ )- are isomorphic.

If|Z|=4 then (N -)Z , the induced unrooted quartet network on Z , is also denoted 
by Q-Z .

2.5 Cycles

Although the networks N +, N - are acyclic (in both, the directed and semidirected 
settings), their undirected graphs U(N+), U(N-) may contain a cycle. Thus, the term 
‘cycle' may be used to unambiguously refer to cycles in the undirected graphs. We 
formalize this with the following definition:

Definition 11 Let N be a (metric or topological, rooted or unrooted) network. A cycle 
inN isa non-empty path from a node to itself, allowing edges to be traversed without 
regard to their possible direction. The size of the cycle is the number of edges in the 
path. A k-cycle is a cycle of size k.

By contracting or shrinking a cycle C in a graph we mean removing all edges in 
C and identifying all nodes in C .

3 Structure of level-1 Networks

The class of all phylogenetic networks is often too large to obtain strong mathematical 
results(Steel2016),soitiscommontorestricttonetworksthathaveasimplerstructure, 
for instance, the class of level-1 phylogenetic networks.

Definition 12 Let N be a (rooted or unrooted) topological network. If no two cycles 
in N share an edge, then N is level-1.

If N is a level-1 network, any subnetwork or induced network of N is also level-1.
Given a hybrid node v, denote the hybrid edges whose child is v by hv and h'v. 

Then hv and h'v are called the hybrid edges of v.

Lemma 3 Let N be a (topological or metric, rooted or unrooted) level-1 network and 
letC beacycleofN.ThenC contains exactly one hybrid node v, and the associated 
hybrid edges hv , h'v. Furthermore, each rode of N is in at most one cycle and, as a 
resuit, v, hv and h'v are in exactly ore cycle of N.

The proof of each statement ofthis lemma, using different terminology, is given by 
Rossell and Valiente (2009).
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Fig. 5 In a level-1 network on 
X , the structure between the root 
and m = LSA(X ) is a chain of 
two cycles. The number of two 
cycles in the chain could be zero

Proposition 2 Let N + be a topological level-1 rooted network on X. The structure of 
all the nodes and edges above LSA(X) in N + is a (possibly empty) chain of 2-cycles 
connected by edges, as depicted in Fig. 5.

Proof Let m = LSA(X), and denote by r the root of N +. The proof is by induction 
on the number of the edges above m . If there are no edges above m , then m = r and 
the result is trivially true. By Lemma 1, one easily sees that there cannot be only 1 
or 2 edges above m in a binary phylogenetic network. That is, if there were just 1 
edge above m the outdegree of the root would be 1, contradicting the definition of 
binary phylogenetic network. Suppose there are 2 edges above m. By definition of 
binary phylogenetic network the outdegree of r is 2 and by definition of LSA(X ) all 
paths from the root to x ∈ X contain m . Therefore, m has indegree 2, contradicting 
Lemma 1 part (i ).

Now assume the claim holds when there are at most k edges above m and suppose 
there are k + 1 edges above m . Note that r has outdegree 2 by the definition of N + .

Suppose that edges incident to r have different children, x and y. Note neither x 
nor y can be m. The outdegree of one of x or y must be 2, otherwise both would be 
hybrid nodes, which would require x above y and y above x. Without loss of generality 
suppose x has outdegree 2, and denote by e1 and e2 its out edges, and denote by e3 
the edge (r , y). Since every path from r to a leaf goes through m, there are at least 3 
distinct paths P1, P2, P3 from r to m, where Pi contains ei .

This contradicts the level-1 condition. Thus, x = y , and the edges from r form a 
2-cycle.

Now since x is a hybrid node, it has outdegree 1, with child v. Also, there are k - 3 
edges above m that are also below v. Applying the inductive hypothesis to N + with 
edgesabove v removed,theresultfollows. □ا

Proposition 2 applied to NZ+ illustrates the structure of the common ancestry of a 
subsetZ of taxa. When we pass to a LSA network or an induced unrooted network, we 
“throw away” this structure. We show in Sect. 5 that under the network multi-species 
coalescent model this structure has no effect on the formation of quartet gene trees.

Let v be a hybrid node in a level-1 (rooted or unrooted, metric or topological) 
network N on X and let Cv be the cycle containing v. By removing the edges ofCv 
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from N we obtain a partition of X according to the connected components of the 
resulting graph. We refer to this partition as the v -partition and its partition sets as 
v-blocks.

Note that each node in Cv can be associated with a v -block. That is, a v -block Bu 
is associated with a node u in Cv if by removing u from the network (and therefore 
the edges adjacent to u), the induced partition of taxa is {Bu, X\Bu}. We refer to 
the v-block Bv , whose elements descend from v,asthev-hybrid block. Two distinct 
v-blocks Bu, Bw are adjacent ifthe nodes u,w∈ Cv are adjacent.

LetD ={C1,...,Cn} be a collection of cycles in N. The partition of X obtained 
by removing all the edges in the cycles of D is the network partition induced by D 
and its blocks are network blocks induced by D. When D is the set of all cycles in N 
of size at least k, the partition is the k-network partition and its blocks are k-network 
blocks. The 4-network blocks play an important role in Sect. 8. For now and on, we 
will refer to removing all edges of a cycle C from a network N as removing the cycle 
CfromN .

The following is straightforward to prove.

Lemma 4 Let N be a level-1 (rooted or unrooted) topological network on X. Let 
D ={C1,...,Cn} be a collection of cycles in N . For any two taxa a and b in 
different network blocks induced by D, there exists a hybrid node v of some cycle in 
D such that a and b are in different v-blocks.

If two taxa a and b are in the same network block induced by D, then they are 
connected when all cycles in D are removed. As a result they are connected when 
a single cycle in D is removed. This comment together with Lemma 4 yields the 
following.

Corollary 1 Let N be a level-1 (rooted or unrooted) topological network on X. Let 
D ={C1,...,Cn} bea collection of cycles in N , with vi the hybrid node associated 
with Ci . The network partition induced by D is the common refinement of the vi - 
partitions for 1 ≤ i ≤ n.

Since contracting cycles in level-1 networks does not introduce loops or multi­
edges, we can define a notion of a tree of cycles which is useful for the proof of 
Theorem 4.

Definition 13 LetN- be a topological unrooted level-1 network. LetT be the graph 
obtained from N - by (1) removing all pendant edges, repeatedly, until no pendant 
edges remain; (2) suppressing all vertices of degree two that are not part of a cycle; 
(3) contracting each cycle in the network obtained from steps 1 and 2. We refer to T 
as the tree of cycles of N -.

In the tree of cycles ofN- certain nodes, including alltheleaves, represent a cycle 
of the original network N -. The notion of tree of cycles is different from “tree of 
blobs” of Gusfield et al. (2007), as there is no deletion of the non-cycle edges in the 
tree of blobs. In Fig. 6 we see an example of a tree of cycles.
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Fig. 6 (Left) A level-1 unrooted network N - and (Right) the tree of cycles of N -

4 The Network Multi-Species Coalescent Model and Quartet
Concordance Factors

Coalescent theory models the formation of gene trees within populations of species. 
The coalescent model for a single population traces (backward in time) the ancestries 
of a finite set of individual copies of a gene as the lineages coa؛esce to form ancestral 
lineages (see Wakeley 2008). The mu؛ti-species coa؛escent (MSC) mode؛ is a gener­
alization of the coalescent model, formulated by applying it to multiple populations 
connected to form a rooted population tree, or species tree. It is commonly used to 
obtain the probabilities of gene trees in the presence of incomplete lineage sorting.

Meng and Kubatko (2009) extended the MSC by introducing phenomena such as 
hybridization or other horizontal gene transfer across the species-level and Nakhleh 
et al. further developed it Yu et al. (2012); Zhu et al. (2016). This model describes any 
situation in which a gene lineage may “jump” from one population to another at a spe­
cific time. The model parameters are specified by a metric binary rooted phylogenetic 
network as defined in Sect. 2. Different from models such as the structured coalescent 
with continuous gene flow (see Wakeley 2008), the network model approach assumes 
the gene transfer occurs at a single point in time along hybrid edges. We refer to this 
extended version of the MSC as the network mu؛ti-species coa؛escent (NMSC) mode؛.

The NMSC model assumes that speciation by hybridization results in what Meng 
and Kubatko refer to as a mosaic genome. One assumption of the NMSC model, 
inherited from the MSC model, is that all gene lineages present at a specific point 
on the species tree behave identically above this point. That is, the probability of any 
event conditioned on a set of lineages being present at a certain point on the species 
tree is invariant under permutation of those lineages. This feature is known as the 
eXchangeabi؛ity property.
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Example 1 We illustrate how to compute the probability of a gene tree topology under 
the NMSC with an example. Suppose we have the rooted metric species network 
given in Fig. 7.LetA, B, C and D be genes sampled from species a,b, c and d, 
respectively. We compute the probability that a gene tree has the unrooted topology 
((A, B),(C, D)) under the NMSC model.

First observe that until B and C trace back to the edge with length z there cannot 
be a coalescent event. In that edge these lineages cannot coalesce if the gene tree 
((A, B),(C, D)) is to be formed. The probability of no coalescence on this edge is 
e-z . Now there are 4 cases, illustrated in Fig. 8:

1. with probability γ 2, lineages B and C enter the edge of length w;
A.

2. with probability (1 - γ)2, B and C enter the edge of length v;
D.

3. with probability γ(1 - γ), B enters the edge of length w and C enters the edge of 
length v;
with the edge with lineage A and C enter the edge that joins with the edge with 
lineage D.

4. with probability (1 - γ)γ, B enters the edge of length v and C enters the edge of 
length w.

Observe that each case is now reduced to a standard MSC scenario with sev­
eral samples per population (see Degnan 2010). Let Pi the probability of observing 
((A, B),(C, D)) under the MSC of case i. Then the probability of observing 
((A, B),(C, D)) is e-z(γ2P1 + (1 - γ)2P2 + γ(1 - γ)P3 + γ(1 - γ)P4).

Fig. 7 Two gene trees within a species network with one hybrid node

Fig. 8 Cases 1-4 (Left-Right) of Example 1, of how lineages may behave under the NMSC model on the 
network of Fig. 7
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Many arguments toward the main result of this work use the ordering of CFabcd, and 
not its precise values.

5 Computing Quartet Concordance Factors

In this section we show how to express the concordance factors arising on a LSA 
quartet network as a linear combination of the concordance factors arising on quartet 
trees using a similar approach as in Yu et al. (2014). This enables us to see how the 
ordering of concordance factors reflects the network topology, and how the precise 
root location does not matter.

123
3-27

Following Solís-Lemus and Ané (2016), we are interested in the probability that a 
species network produces various gene quartets under the NMSC. This motivates the 
following definition.

Definition 14 Let N+ be a metric rooted network on a taxon set X.LetA, B,C, D 
be genes sampled from species a,b,c,d, respectively. Given a gene quartet AB|CD, 
the quartet concordance factor C FAB|CD is the probability under the NMSC on N + 
that a gene tree displays the quartet AB|CD, and

CFabcd = (CFAB|CD, CFAC|BD,CFAD|BC)

is the ordered triple of concordance factors of each quartet on the taxa a, b,c, d.

Whena,b,c,d are clear from context, we write CF for CFabcd.
In the particular case where N + has no hybrid edges, so the network is a tree, it 

is known that the quartet concordance factors do not depend on the root placement 
AllmAnétal.(2011).Forexample,leta,b,c,dbetaxaandconsideranyrootplacement 
in the unrooted species tree with topology ab|cd and internal edge of length t . Then

As mentioned in Solís-Lemus and Ané (2016), for unrooted species networks the 
concordance factors do not depend on the placement of the root in the species network, 
as long as the root is placed in a way consistent with the direction of the hybrid 
edges. This fact is shown in Sect. 5, as we explore quartet concordance factors more 
thoroughly.

Definition 15 Let + be a metric rooted level-1 network on X. Given a set of distinct 
taxa {a, b, c, d}, we define the ordering of C Fabcd on N + as the natural decreasing 
order of CFAB|CD, CFAC| BD, CFAD| BC in the real line.

For example, ift > 0theorderingoftheconcordancefactorsinEq.(1)isgivenby

CFAB|CD > CFAC| BD = CFAD|BC.
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The final results of this section are largely in Solís-Lemus and Ané (2016). However, 
we provide formal arguments and take in consideration some matters that were left 
unaddressed. For example, we address the possibility that an induced 4-taxon network 
does not contain the root of the original network.

LetN+ bea (metric or topological) rootedlevel-1 network on X andlet{a,b,c,d} 
be a set ofdistinct taxa ofX. Then the induced unrooted network on 4 taxa Qa-bcd is a 
(metric or topological) unrooted level-1 network. By Proposition 1, Qa-bcd is the same 
graph as (N+abcd)- and (Nabcd)-, where Nabcd is the LSA network of Definition 8. 
Any cycle Nabcd = Qabcd induces a cycle in Q-abcd . A cycle C in Qabcd of size k, 
induces a cycle in Qa-bcd of either size k (when C does not contain LSA(a, b, c, d)) 
or size k - 1 (otherwise). For convenience when we refer to the size of a cycle C in 
Qabcd we mean the size of the induced cycle in Q-abcd.

Lemma 5 Let Qa-bcd be a metric urrooted level-1 quartet retwork. The rumber of 
k-cycles ir Qa-bcd is 0 for k ≥ 5, atmost 1 for k = 4 ir which case there is ro 3-cycle, 
ard at most 2 for k = 3.

Proof Suppose that Qa-bcd has a cycle C = Cv of size k. Then there is an associated 
partition oftaxa into k v-blocks. Trivially none ofthese blocks can be empty, so k ≤ 4.

Suppose that there are two cycles, a cycle C1 of size k1 and C2 of size k2 with 
ki ≥ 3, i = 1,2. Since Qa-bcd is level-1, by removing these two cycles we induce a 
partitionofthetaxa into atleastk1+k2-2blocks. None ofthe blocks ofthis partition 
canbeempty,sok1+k2-2 ≤ 4. Hence there is a most one cycle of size 4 or at most 
two cycles of size 3. Moreover, there cannot be a cycle of size 3 and a cycle of size 4 
in the same unrooted quartet network.

Suppose that there are three cycles, a cycle C1 of size k1, C2 of size k2, and C3 of 
size k3 with ki ≥ 3, i = 1, 2, 3. By removing these three cycles we induce a partition 
of the taxa into at least k1 + k2 + k3 - 3 blocks, so k1 + k2 + k3 - 3 ≤ 4 which is a 
contradiction since ki ≥ 3. □

Our arguments will depend on the number of descendants on the hybrid node 
of a cycle, so we introduce additional terminology. An r-cycle with exactly k taxa 
descending from the hybrid node is referred to as a rk-cycle. Figure 9 shows the 6 
different types of 2-, 3-, and 4-cycles possible in an unrooted quartet network.

Fig. 9 (Left) The three types of 2-cycles in an unrooted quartet network (21-,22 - and a 23-cycle); (Center) 
The two types of 3-cycles in the unrooted quartet network (31- and a 32-cycle). (Right) The only type of 
4-cycle in an unrooted quartet network (a 41-cycle). The dashed lines represent subgraphs that may contain 
other cycles
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Fig. 10 A graph with two 32 
cycles. Each dashed edge 
represents a chain of 2-cycles 
with, possibly, other cycles

Fig. 11 Possible structures for unrooted quartet networks. Every dashed arrow represents a chain of an 
arbitrary number of 2-cycles, as the one in the bottom of the figure. The direction of these 2-cycles must be 
such that the obtained graph is induced from a rooted network

Lemma 6 Let Qa-bcd be a metric unrooted level-1 unrooted quartet network. Then 
Qa-bcd cannot have two 32 -cycles, or a 22 -cycle and a 41 -cycle.

Proof Suppose Q = Qa-bcd has two distinct 32-cycles, Cu and Cv . Suppose Cu has 
u-hybrid block {a, b} and u -blocks {c} and {d }. If we remove Cu from Q,bythe 
level-1 assumption Cv is in one on the connected components. This implies that 2 of 
the 3 v-blocks must be contained in one of {a, b}, {c} or {d }. This is only possible if 
the v-hybrid block is {c, d }, and the other v-blocks are {a} and {b}. Thus, Q must be 
as the network in Fig. 10, where u is below v and v is below u , contradicting that Q 
is induced from a rooted network.

Now suppose that Q has a 4-cycle and a 22-cycle. The 4-cycle induces 4 singleton 
blocks. By the level-1 condition at least one of the blocks induced by the 22-cycle has 
to be contained in a singleton block. That is impossible since the blocks induced by 
the 22-cycle have size 2. □

Lemmas 5 and 6 determine all possible topological structures for unrooted quartet 
networks which are shown in Fig. 11.

5.1 Concordance Factor Formulas for Quartet Networks

Next we prove a number of “reduction” lemmas relating concordance factors for 
quartet networks to those for networks with fewer cycles. This allows us to express 
the network concordance factors as a linear combination of concordance factors of 
trees. The following observation is useful through this section.

Observation 1 Given a rooted metric species quartet network, under the NMSC model 
the first coalescent event (going backward in time) determines the unrooted topology 
of a quartet gene tree.
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Fig. 12 A level-1 rooted 
network where the root differs 
from the LSA (a, b, c, d )

As illustrated in Fig. 12, in passing from a rooted network on X to a rooted induced 
network on Z ⊂ X , NZ+, we may find there is a network structure above LSA(Z ), a 
chain of 2-cycles by Proposition 2. Apriori, this could have an impact on the behavior 
of the NMSC model on N Z+ . For quartet concordance factors, however, this additional 
structure has no impact, and we effectively snip it off. Formally, we have the following. 

Theorem 2 Let + be a level-1 rooted metric network on X and let a,b, c, dbe 
distinct taxa of X. Under the NMSC model, C Fabcd can be computed from the LSA 
network Qabcd.

Proof In any realization of the coalescent process if there are fewer than 4 lineages at 
the LSA(a, b, c, d)inNa+bcd = Qa+bcd , then a coalescent event has occurred below and 
therefore the unrooted gene tree topology has been determined. Thus, we condition 
on 4 lineages being present at LSA(a, b, c, d ).

There are 2 rooted shapes for 4-taxon gene trees, the caterpillar and balanced trees. 
Regardless of the ancestral chain of 2-cycles above LSA(a, b, c, d ), conditioned on 
one of these shapes, exchangeability of lineages under the coalescent tells us all labeled 
versions of that specific shape will have equal probability. While the rooted shapes 
might have different probability, since there is only 1 unrooted shape, all labelings 
of it must be equally probable. This is the same as if there were no ancestral cycles. 
therefore, CFabcd(Qabcd) = CFabcd(Q+abcd) □

This argument can be modified to apply to 5 taxa, but not 6 or more, since then 
there is more than 1 unrooted shape■

Let Qθ = Qabcd be a level-1 LSA quartet network and let Cv be a cycle in Qʘ,with 
hybrid node v and hybrid edges h1 and h2, where γ = γh1 ■ The following notation is 
used throughout this section:
• Q1f denotes the rooted quartet network obtained from Qf by removing h2■
• Q2f denotes the rooted quartet network obtained from Qf by removing h1■
• Q0f denotes the rooted quartet network obtained from Qf by contracting Cv;if 

therootofQf isinCv,thenodeobtainedinthecontractionprocessistherootof 
Q0f■

Note that Qif,fori = 1,2 have degree 2 nodes, and thus are not binary■ This does not 
affect the coalescent process in any way and by suppressing such nodes we obtain a 
binary LSA network■ In a slight abuse ofnotation, weuse Qif to denote both ofthese 
networks, as needed in our arguments■

To compute concordance factors we often need to designate how many lineages 
are present at a hybrid node in a realization of the coalescent process■ To handle 
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this formally, given a rooted metric species network N + on X, we define the random 
variable Kv to be the number oflineages at node v, where Kv takes values in {1, ...,lv }, 
where lv is the number of taxa below v. We can extend this concept to hybrid nodes in 
N-, since ahybrid node in N- induces an orientation ofthe nodes that are descending 
from it.

Let Q φ = Qabcd be a level-1 LSA quartet network and let Cv be a cycle in Q®, with 
hybrid node v, which induces a cycle C'v in Q-abcd. If C'v has size 2, then 1 ≤ lv ≤ 3; 
if C'v has size three, then 1 ≤ lv ≤ 2; andif C'v has size fourthen lv = 1. For example, 
let Q® betheLSAnétworkshownintheleftofFig. 14andletCv bethecyclein Q®. 
By unrooting Q® note that Cv induces a 3-cycle C'v. Note also that Q- is isomorphic 
to the network in Fig. 18.

We show that cycles in Qa®bcd that induce 21-cycles or 23-cycles in Qa-bcd have 
no impact on concordance factors. But first we state Propositions 3 and 4, proven in 
Allman et al. (2011), which are useful in arguments to come.

Proposition 3 Let T + be a binary rooted metric species tree on X. For |X |=4, T - 
is identifiable from the unrooted topological gene tree distribution under the multi­
species coalescent model on T +,butT + is not.

Proposition 4 Proposition 3 remains valid when T + is not binary.

Lemma 7 Let Q® = Qa®bcd be a metric level-1 LSA quartet network and let Cv be a 
cycle in Q® that induces a 21-cycle in Qa-bcd. Then CF(Q®) = CF(Q0®).

Proof LetK = Kv.SinceCv induces a 21-cycle in Qa-bcd, P(K = 1)=1.Then

CF(Q®)= P(K =1)CF Q® |K =1
= P(K =1) γCF Q1® |K = 1 +(1-γ)CF Q2® | K =1
= γCF Q1® + (1 -γ)CF Q2®

If the root of Q® is not in Cv , no lineages can coalesce on the edges that differ in 
Q1® and Q2® since there is only one lineage in such edges. Thus,

CF Q1® =CF Q2® = CF Q0® ,

and the claim is established in this case.
Now suppose the root r of Q® is in Cv, and Cv hasnodesr,u,v,andedges(r,v), 

(r,u), (u,v). Without loss of generality suppose that the taxon below v isd. Since 
u is a tree node, it has another descendant y. Note that Q1® and Q2® have the same 
topology; moreover, they just differ in the edge length from the root to y. Define a 
random variable K', by K' = 1 if there has been a coalescent event before a, b, and 
c trace back to y and K' = 0 otherwise. If K' = 1, the unrooted topology has been 
determined and thus

CF (Q® | K' = 1) = CF(Q2 | K' = 1) = CF(Q0 | K' = 1) .
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If d is in the first coalescent event, by the exchangeability property of the NMSC, 
a , b or c are equally likely to be the other lineage involved in that event. This is the 
same as if the cycle was contracted, so

CF(Q® | K = 3, D = 1) =(3, 1, 3) = CF (Q® I K = 3, D = 1)

If d is not in the first coalescent event, this event involves only two of a , b, and c, with 
each pair equally likely by exchangeability. This is also the same as if the cycle was 
contracted, so

CF(Q® I K = 3, D = 0) =(1/3, 1/3, 1/3) = CF (Q0® I K = 3, D = 0)

Thus, by Eqs. (2) and (3), CF(Q®) = CF(Q0®). □

Together, the preceding lemmas yield the following.
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Also, by Proposition 4,

CF(Q® I K' = 0 = CF(Q® I K' = 0) = CFQ I K' = 0 .

Thus, CF(Q®) = CF(Q®). □

Lemma 8 Let Q® = Qa®bcd be a metric level-1 LSA quartet network and let Cv be a 
cycle in Q®, that induces a 23-cycle in Qa-bcd. Then CF(Q®) = CF(Q0®).

Proof Let K = Kv,soK takes values in {3, 2, 3}. Therefore,

If K = 3 or 2 then at least one coalescent event has occurred, so the unrooted gene 
tree topology is already determined, and

CF(Q® I K =k) = CF Q0® I K = k for k = 3,2.

The case K = 3 requires more argument. Without loss of generality suppose that 
the three taxa descending from v are a, b, and c. Denote by D the random variable 
defined by D = 3 if the lineage d is involved in the first coalescent event and D = 0 
otherwise. Thus,
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LotoWsY^. Let Q® = Q^bcdbe a metc le|e--l LSA quet eLworL crnd Iet Q® 
be the LSA network obtained by contracting all cycles that induce either 23 -ora 
21-cycles in Qa-bcd. Then CF(Q®) = CF( Q ® ).

While 21- and 23-cycles have no impact on concordance factors, things are not quite 
so simple for other types of cycles.

Lemma 9 Let Q® = Qa®bcd be a metric level-1 LSA quartet network and let Cv be a 
cycle in Q®, that induces a 22-cycle in Qa-bcd. Then

CF(Q®) = γ2CF Q1® +(1-γ)2CF Q2® +2γ(1-γ)CF Q0® .

Proof Let K = K v with values in {1, 2}, so that

CF(Q®) = P(K = 1)CF( Q ® | K = 1)+ P(K = 2)CF(Q® | K = 2).

Suppose the root r of Q® is not in Cv,soCv is also a 22-cycle in Q®. Note that

CF(Q® | K = 2) = γ2CF Q1® | K = 2 +(1-γ)2CF Q2® | K = 2
+ 2γ(1 - γ)CF Q0® | K = 2 .

Thus, we will express CF(Q® | K = 1) in a similar fashion. If K = 1 the gene tree 
topology has been determined before the lineages enter v. Thus, CF( Q i® | K = 1) = 
CF(Q® | K = 1) fori ∈{0, 1, 2} and
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by summing the result holds when r is not in Cv .
Now suppose that r is in Cv, and Cv has nodes r , v, u. Without loss of generality 

suppose that the taxa below v are c and d . Since u is a tree node, it has another 
descendant y. Define a random variable K y to be the number of lineages at y. Note 
that K and Ky are independent, with values in {1, 2}. If either K or Ky is 1, one 
coalescent event has occurred and the unrooted gene tree topology has been determined 
so CF( Qi® | K = 1orKy = 1) are equal fori ∈{0,1,2},and

Even though Eq. (5) is equal to CF( Q 0® | K = 1orKy = 1), we express it in a 
similar fashion to the claimed result. Now suppose that K and K y are both 2. Let Tc 
and Td be the trees shown in Fig. 13. Therefore,
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Fig. 13 The two trees Td and Tc 
in the proof of Lemma 9, 
obtained when K = 2, K y = 2 
and the lineages c and d trace 
different hybrid edges

CF(Q® | K = 2, Ky = 2) = γ2CF (Q® | K = 2, Ky = 2)

+ (1 - γ)2CF (Q® | K = 2, Ky = 2)
+ γ(1 - γ)C F(Tc | Ky = 2)
+ γ(1 - γ)CF(Td | Ky = 2).

By Proposition 3, CF(Td | Ky = 2) = CF(Tc | Ky = 2), and in fact they equal 
CF(Q0® | K = 2, Ky = 2). This is because in Q0® the contraction of the cycle 
identifies the nodes r , u, and v, so conditioned on K = 2, Ky = 2 we may view the 
coalescent process on Q0® as that in the 4-taxon tree ((a, b) : l,(c, d) : 0) where l is the 
length of (u, y). By Proposition 4, CF(Tc | Ky = 2) = CF(Q0® | K = 2, Ky = 2). 
Therefore,

CF(Q® | K = 2, Ky = 2) = γ2CF Q1® | K = 2, Ky = 2
+ (1 - γ)2CF Q2® | K = 2, Ky = 2 + 2γ(1 - γ)CF Q0® | K = 2, Ky = 2 .

This together with Eq. (5) implies the claim. □

Lemma 10 Let Q® = Qa®bcd be a metric level-1 LSA quartet network and let Cv be a 
cycle in Q®, that induces either a 4-cycle or a 31-cycle in Qa-bcd. Then

CF(Q®) = γCF Q1® + (1 - γ)CF Q2® .

Proof Letting K = Kv, then P(K = 1) = 1. Thus,

CF(Q®) = P(K = 1)CF Q® | K = 1
= P(K = 1) γCF Q1® | K = 1 + (1 - γ)CF Q2® | K = 1
= γCF Q1® + (1 - γ)CF Q2® .

□

It remains to consider a 32-cycle. For this case it helps to introduce new terminology. 
Let G be a semidirected graph and v be a node in G with indegree 2 and outdegree 0. 
Let h v and hv be the edges incident to v and let u and u' the parent nodes in h v and h v, 
respectively. We refer to disjointing h v and hv from v as the process of (1) deleting
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Fig. 14 A LSA quartet Qf with a cycle C that induces a 32 -cycle in the unrooted quartet and the graphs 
obtained by deleting everything below the hybrid node, disjointing, and labeling the leaves

v from G; (2) introducing nodes w and w'; (3) introducing directed edges (u, w) and 
(u', w').

Let Qf = Qafbcd be a metric level-1 LSA quartet network, and Cv a cycle in Qf , 
that induces a 32-cycle in Qa-bcd . Without loss of generality suppose that a and b are 
the taxa below v. Let Qaf be the network obtained from Qf by (1) deleting everything 
belowv;(2)disjointingh1andh2fromv;(3)labelingaleafthatiscurrentlyunlabeled 
bya andtheotherunlabeledleafbyb.Weconstruct Qbf by swapping the labels a and 
b in Qaf. Figure 14 depicts an particular example of this.

Lemma 11 Let Qf = Qafbcd be a metric level-1 LSA quartet network, Cv be a cycle 
in Qf, that induces a 32-cycle in Qa-bcd and let K = Kv. Suppose that the two taxa 
below v are a and b, then

CF(Qf) = γ2CF Q1f +(1-γ)2CF Q2f
+ P(K = 1)2γ(1-γ)CF Q0f | K = 1
+ P(K = 2)γ(1-γ) CF Qaf +CF Qbf .

Proof By hypothesis K takes values in {1, 2} and

CF(Qf) = P(K = 1)CF Qf | K = 1 + P(K = 2)CF Qf | K = 2 .

If K = 1 the unrooted tree topology has been determined and CF(Qf | K = 1) is 
given by the expression in equation (4). If K = 2,

CF Qf | K = 2 = γ2CF Q1f | K = 2 +(1-γ)2CF Q2f | K = 2 
+ γ(1- γ)CF Qaf +γ(1-γ)CF Qbf .

Therefore,

CF(Qf) = P(K = 1)(γ2CF Q1f | K = 1 +(1-γ)2CF Q2f | K = 1
+ 2γ(1-γ)CF Q0f | K = 1

+ P(K = 2) γ2CF Q1f | K = 2 +(1-γ)2CF Q2f | K = 2 

+γ(1 - γ)CF Qaf + γ(1 - γ)CF Qbf ,
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Whichyieldstheclaim. □

These lemmas together imply that concordance factor for rooted quartet networks 
actually depend only on the unrooted network. This is formalized in the following.

Proposition 5 Let Q = Qafbcd and Q = Qafbcd be metric level-1 LSA quartet networks 
which irdtcce the same Imrooted networl ζα—bcd = Q-bc<t∙ H C F ٢Q) = C F ٢Q١.

Proof We prove this by induction on the number of cycles in Qa-bcd. When there are no 
cycles in Qa—bcd, Q and Q aretrees, and by Proposition 3, CF(Q) = CF(Q). Assume 
now the resultis true when there are fewer than k +1 cycles and that Qa—bcd has k + 1 
cycles. LetCv be a cycle in Qabcd with hybrid edges h1 and h2, by Lemmas 7, 8, 9, 10, 
and 11, we can express the concordance factors of Q and Q in terms of networks with 
one fewer cycle. Note that these networks for Q and Q have the same unrooted metric 
structure. Thus, by the induction hypothesis CF(Qi) = CF(Qi),fori = 0, 1, 2, and 
therefore CF(Q) = CF(Q). □

Corollary 3 Let N + be a level-1 rooted metric network on X and let a, b, c, dbe 
distinct taxa of X. Under the NMSC, C Fabcd = CF(Qafbcd) can be computed from 
the unrooted network Qa—bcd.

We indicate how to compute the concordance factors of a LSA network Qafbcd 
from the unrooted quartet network Q = Qa—bcd without having to introduce a root. For 
Q = Qa—bcd a unrooted metric level-1 quartet network, where using Corollary 3 we 
define CF(Q) = CF(Qafbcd) :

(i) Let Q' be he graph obtained from Q by contracting all 23- and 21- cycles. By 
Corollary 2, CF(Q) = CF(Q'). If Q has a4-cycle goto step (ii), otherwise go 
to step (iii).

(ii) By Lemmas 5 and 6 there are no 31-, 32- or 22-cycles in Q, and thus none in 
Q'. Then Q' only has a 4-cycle so apply Lemma 10 to Q'. Since Q1 and Q2 are 
quartet trees, use the formula in Eq. (1) to complete the calculation.

(iii) There are at most two 31-cycles in Q'. Choose one arbitrarily and apply 
Lemma 10. If Q1 and Q2 still have a 31-cycle, apply Lemma 10 again to Q1 and 
Q 2.

(iv) We have now expressed concordance factors of Q interms ofconcordance factors 
of unrooted quartet networks withno 21-,23-,31—, or 4-cycles. Apply Lemma9 
to these networks, by for instance choosing a 22-cycle with smallest graph theo­
retical distance from its hybrid node to a leaf, repeating until no 2-cycle remains.

(v) We have now an expression of the concordance factors of Q in terms of con­
cordance factors of unrooted quartet networks with at most one 32-cycle. Apply 
Lemma 11. Then we have suppressed all cycles, and the concordance factors are 
now in terms of unrooted quartet trees. The formula of Eq. (1) completes the 
calculation.

The use of these lemmas and theorem is illustrated by a few examples.
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Fig. 15 An unrooted quartet 
with a single 22-cycle

Fig. 16 An unrooted quartet 
with a single 31-cycle

Example 2 Consider the unrooted quartet network shown in Fig. 15. By Lemma 9, 
with xi = e-ti , the quartet concordance factors are given by:
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Example 3 Consider the unrooted quartet network shown in Fig. 16. By Lemma 10, 
with xi = e-ti , the quartet concordance factors are given by:

Example 4 Consider the unrooted quartet network shown in Fig. 17. By Lemma 10, 
with xi = e-ti , the quartet concordance factors are given by:
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Fig. 17 An unrooted quartet 
with a single 41 -cycle

Fig. 18 An unrooted quartet 
with a single 32 -cycle

6 The Cycle Property

In this section we focus on the ordering by magnitude of the concordance factors.

Proposition 6 Let Q = Qa-bcd be a metric unrooted level-1 quartet network with 
no 3^-c^ete.Ηe Odring OfCFabcdعQ) is the ordering OfCFabcd^ى) here Q’ is 
obtained from Q by contracting all 2-cycles and all 31 -cycles.

Proof By Corollary 2, CF(Q) = CF(Q*), where Q* is obtained from Q by con­
tracting all 21- and 23-cycles. Therefore, we can assume Q has no 21- or 23-cycles. If 
Q has a 4-cycle, ithas no 31-andno 22-cycles andtheclaimis established.
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Examples 1-5 agree with those in Solís-Lemus and Ané (2016).

Example 5 Consider the unrooted quartet network shown in Fig. 18.Given K = 1,one 
coalescent event has occurred below the hybrid node, so a and b coalesced. Therefore, 
CF(Q0 | K = 1) = (1,0,0).ByLemma11,withxi = e-ti , the quartet concordance 
factors are given by:
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So suppose Q has only 22-cycles and 31-cycles. We proceed by induction in the 
number of cycles, with the base case of 0 cycles trivial. Assume the result is true for 
unrooted quartet networks withk 31- and 22-cycles and suppose Q has k +1. Picking 
one cycle and applying one of Lemmas 9 or 10 to Q, we can express the concordance 
factorsofQ asaconvexcombinationofCF(Q0), CF(Q1) andCF(Q2).Notethat Q0, 
Q1 and Q2 have the same topology and by induction hypothesis, CF(Q0), CF(Q1) 
and CF(Q2) have the same ordering as the concordance factors of Q0, Q1 and Q2, 
respectively, the networks obtained after contracting all 22- and 31-cycles from Q0, Q1 
and Q2. Since Q0, Q1, Q2 and Q are trees with the same topology, their concordance 
factorshave the same ordering by Eq. (1). Thus,CF(Q0),CF(Q1) andCF(Q2) have 
the same ordering, and ergo so does CF(Q). □

One consequence of Proposition 6 is that for any unrooted metric level-1 quartet 
network Q without a 32- or a 4-cycle, the ordering of the concordance factors is the 
same as the ordering of the concordance factors of a quartet tree. That is, the two 
smallest elements of the concordance factors are equal. When this happens we say 
thatQ is treelike, since we could use Eq. (1) to find a quartet tree with appropriate edge 
lengths and concordance factors equal to CF(Q). However, not all unrooted quartet 
networks are treelike.

Example6 Let Q-bcd be the unrooted 32-cycle quartet in Fig. 18, where γ = 1, 
t1 = -log(7), t2 = - log(6), t3 = -log(⅛)and t4 = -log(13).Bytheequations 
in (9) we observe that the concordance factors are:

The fact that such a quartet network cannot be treelike was identified in Solís-Lemus 
et al. (2016), where it was pointed out that this may cause species tree methods not to 
be robust to the presence of gene flow.

This motivates the following definition.

Definition 16 Let N + be a metric rooted level-1 network on X. We say that a set of 
four distinct taxa s ={a, b, c, d} satisfies the Cycle property ifQs- is not treelike, that 
is, if the two smallest values of CFs = CF(Qs-) are not equal.

The Cycle property is best understood geometrically. Denote by Δ2 the two­
dimensional probability simplex, the set of points in R3 with nonnegative entries adding to 1. Observe that CFabcd ∈ Δ2 for any distinct taxa a, b, c, d. Figure 19 (left) 

depicts the simplex where the black lines are the points where the Cycle property is 
not satisfied; that is, the treelike unrooted quartet networks are those with concordance 
factors (x, y, z) satisfying x > 3, y = z or y > 3, x = z or z > 1, x = y. All points 
off these segments satisfy the Cycle property. For simplicity in arguments to come, 
note that we can interpret concordance factors, CFabcd, as a function that depends on 
a metric network on {a, b, c, d} and has for image points in Δ2.
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Fig. 19 On the left a planar projection of the simplex Δ2 , where the black lines represent concordance 
factors that are treelike. In the center, the gray segments in Δ2 represent all the concordance factors 
arising from unrooted quartet networks with a 32 -cycle. On the right, the black lines represent the variety 
V ((x - z )(y - z )(x - y ), x + y + z - 1), these are all concordance factors not satisfying the BC property 
of Definition 17

whose maximum value is 12 and it is attained at γ = ١. For these values, we obtain 
CF(Q-) → (⅛, 12, ⅛). To minimize CFAD|BC it is enough to let t1 → ∞, so 

CF(Q-) → (1, 0, 0).
Let L be the open line segment with endpoints (1, 0, 0) and (⅛, 12, ⅛). Since 

CF(Qs-) is continuous in ti and γ, its image is a connected set on the line (x, y, y) 
containing points arbitrarily close to the endpoints of L. Thus, the image of CF(Qs-) 
is L. Permuting taxon names shows every point in the set I is a concordance factor 
for a network with a 32-cycle.

Now suppose Qs- has a 32 cycle with a, b descending from the hybrid node, and 
possibly other cycles. We may contract all 21- and 23-cycles by Corollary 2 without 
affecting CF(Qs-). By Lemmas 9 and 10, we may suppress 22- and 31-cycles by 
expressing CF(Qs-) as a convex sum of networks with a 32-cycle, but one fewer 
cycle. Thus, CF(Q-) is a convex sum of points in L, which lies in L. □

In the supplementary materials of Solís-Lemus and Ané (2016) it is stated that an 
unrooted quartet network Qabcd with a 32-cycle can be always reduced to an unrooted 
quartettreewithsomeadjustmentintheedgelengths.Thisisnottrueingeneral;thatis, 
when {a, b, c, d} satisfies the Cycle property it is not treelike. However, Proposition 7 
indicates that sometimes unrooted quartet networks with 32-cycles are treelike.
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Proposition 7 Let Q = Qa-bcd be a metric unrooted level-1 quartet network with a 
3^-^cte٠ rH^(^n CF(^Q) iies in the set I d<^i^*^ed, ولأ X > ١١ و = ة  or و > ١١  X = ة or 

ة > ١١  X = لا, Shoi on the n^He Of Fig. 19. Fnrtrntore, for CR point (X لا, ή in 
this set there is such a Q with (x, y, z) = CF(Q).

Proof Let s ={ع , b, c, d} be a set of four distinct taxa and suppose that Qs- contains 
only a 32-cycle, as in Fig. 18. ThenCF(Qs-) is givenbyEq. (9)with Xi = e-ti, and 
in particular CFAC|BD = CFAD|BC. To maximize CFAD|BC in (9), let ti → 0for 
i ∈{1, 2, 4} and t3 →∞to obtain a quadratic polynomial in γ,
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To conclude this section, we show the Cycle property can give positive information 
about a network.

Proposition 8 Let Qs- be an unrooted ؛eve1-؛ quartet network on a set of taXa s = 
{a, b, c, d}. If s satisfies the Cyc؛e property, theunrootedquartetnetworkQs- contains 
either a 32-cyc؛e or a 4-cyc؛e.

Proof Proposition 6 shows that if Qs- has neither a 32-cycle nor a 4-cycle, the con­
cordance factors of Q- are those of a tree. □

7 The Big Cycle Property

In this section we investigate how to detect 4-cycles in a network from quartet con­
cordance factors.

Even though the Cycle property gives us some information about an unrooted 
quartet network, it is not sufficient to tell us what the unrooted quartet network is. 
This is shown by the following example, where a 4-cycle network lead to identical 
concordance factors as those in Example 6.

Example7 Let Q-bcd be the 4-cycle unrooted quartet in Fig. 17, where γ = ⅛, ti = 
— log (48) = t⅛. By the equations in (8) the concordance factors are:

These agree with those of Qa-bcd in Example 6.

This motivates the following definition.

Definition 17 Let N + be a metric rooted level-1 network on X. We say that a subset 
of four distinct taxa {a, b, c, d}⊂ X satisfies the Big Cyc؛e property (denoted BC)if 
all the entries of CFabcd are different.

Let{a, b, c, d} be a subset oftaxa satisfying the BC property. Denote by qaBbCcd the 
unrooted quartet corresponding to the smallest entry ofCFabcd.

Forexample, ifCFAB|CD< CFAC|BD < CFAD|BC, thenqaBbCcd = AB|CD.
Note that if s satisfies the BC property then s satisfies the Cycle property but the 

Cycle property is weaker than the Big Cycle property.

Proposition 9 Let Qs- be an unrooted ؛eve1-؛ quartet network on a set of taXa s = 
{a, b, c, d}. If s satisfies the BC property, then the unrooted quartet network Qs- 
contains a 4-cyc؛e.

Proof By Proposition 8, Qs- contains either a 3⅛-cycle or a 4-cycle, and by Proposi­
tion 7, Q— cannot have a 3⅛-cycle. □

A converse of Proposition 9 also holds, provided we include an assumption of 
generic parameters.
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Proposition 10 LetNtbeametricrootedlevel-1or XwithIXI≥4.Let{a, b, c, d}⊂ 
X such that Qa-bcd has a 4-cycle. Ther {a, b, c, d} satisfies the Cycle property. More­
over, for gereric rumerical parameters or Nt, {a, b, c, d} satisfies the BC property. 
That is, for all rumerical parameters e*cept those ir a set of measure zero, the BC 
property holds.

Proof Let s ={a, b, c, d}⊂X be such that Qs- has a 4-cycle. Without loss of 
generality suppose that c is the descendant ofthe hybrid node and the hybrid block {c} 
ofQs- is adjacent to the v-blocks containing b and d. Since N- is level-1, the only 
otherpossiblecyclesin Q- are21or23-cycles.ByCorollary2, CF(Q-) = CF(Q'), 
where Q is the network obtained after contracting all cycles other than the 4-cycle. 
Note that Q' is the network shown in Fig. 17, and by Eq. (8), CF(Q') depends only 
on the length ofthe non-hybrid edges in the 4-cycle and the γ parameter of the hybrid 
edges of Qs- . Moreover, Eq. (8) shows that{a, b, c, d} satisfies the Cycle property.

WhenQs- isobtainedfromN-,thelengthsoftheedgesofQs- are the sum ofedge 
lengthsfromN-.LetΘ - = (0, ∞)m×[0, 1]h be the numerical parameter space for 
N- and let Θ's = (0, ∞)2 × [0, 1]-Thus, we can define a map Vs : Θ٨٢- → Θs such 
thatforanymetric(λ, γ)ofN-,νs((λ, γ)) encodes the edge length ofthe non-hybrid 
edges in the 4-cycle and the γ parameter of the hybrid edges. In particular, this map 
is linear and surjective.

WitI χs = (0, 1)2 × [0, 1], let η : Θs → χs be defined as η(l1, l2,γ) =
(e-l1, e-l2,γ),soη is a biholomorphic function. Defining f : χs → Δ2 by

f ((L1, L2, γ)) = (1 - γ)(1 - 2L1/3, L1/3, L1/3) t γ(L2/3, L2/3, 1 - 2L2/3),

the quartet concordance factor map can be viewed as a composition

⅜- → θs → χs → Δ2 -

It is straightforward to see that the image of f restricted to γ = 0 and γ = 1isthe 
red (skewed) and blue (vertical) segments shown on the right of Fig. 20.

Let V = V((* - z)(y - z)(* - y), * t y t z - 1), thatis, let V be the algebraic 
variety composed ofthe points on which (* - z)(y - z)(* - y) and * t y t z - 1 
are zero, as depicted on the right of Fig. 19. Observe that V is the points in Δ2 that, 
if interpreted as concordance factors, would rot satisfy the BC property.

Since f is a polynomial map whose image is not contained in V , the pre-image 
of V under f is contained in a proper sub-variety ofχs, and therefore, f-1(V) has 
measure zero in χs. Since η is biholomorphic, then η-1( f-1(V)) has measure zero. 
Sinceν is linear surjective, thenν-1(η-1( f-1(V))) has measure zero. Thus, generic 
points in Θ٨٢- are mapped to concordance factors satisfying the BC property. □

To better understand the geometry of the map f inthisproof,lets ={a, b, c, d}be 
a subset of four distinct taxa satisfying the BC property. Figure 20 depicts the subset 
of χs that is mapped by f to those segments of the shaded triangle inside Δ2.The 
interior of χs is mapped to the interior of the shaded triangle.

The following theorem follows immediately from Propositions 10 and 9.
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Fig. 20 The function f maps the cube χs (left) to Δ2 (right). The blue facets (rear and top) of the cube 
are mapped by f to the blue (vertical) segment and the red facets (bottom and right) to the red (skewed) 
segment. The full cube is mapped onto the shaded triangle with all the concordance factor displayed by a 
network with a 4-cycle. The three line segments, two on the boundary of and one within the shaded triangle, 
are comprised of points not satisfying the BC property

Theorem3 Let N+ be a metric rooted level-1 network on X with | X | ≥ 4 and 
{a, b, c, d}⊂X. For generic numerical parameters, {a, b, c, d} satisfies the BC 
property if and only if Qa-bcd has a 4-cycle.

Theorem 3 and Proposition 8 yield the following.

Corollary4 LetN- beametricunrootedlevel-1 networkon Xandlets ={a, b, c, d} 
be a set of distinct taxa in X. Then if s satisfies the Cycle property but not the BC 
property for generic parameters, then Qs- contains a 32-cycle.

The converse of Corollary 4 does not hold, as pointed out by Proposition 7.
If a set of 4 taxa satisfy the BC property, we can deduce some finer information 

about the 4-cycle on the unrooted quartet network and a larger network, as proved in 
the following.

Proposition 11 Let N- be a metric unrooted level-1 network on X and let 
{a, b, c, d}⊆ X satisfy the BC property, so Qa-bcd contains a 4-cycle Cv. Then 
qaBbCcd = AC| BD if and only the v-blocks of Qa-bcd containing a and c are not adja­
cent.

Proof Let Q = Qa-bcd . Since N- is level-1 the only possible cycles in Q, other 
than Cv, are 21 and 23-cycles. Let Q be the network obtained after contracting all 
21 and 23-cycles, so Q' has only a four cycle. By Corollary 2, CF(Q) = CF(Q'). 
Example 4 shows that if the v-blocks of Qa-bcd containing a and c are not adjacent 
then qaBbCcd = AC| BD. Interchanging taxon labels in this example shows that when 
qBCcd = AC|BD, then a and c are not adjacent. □

Lemma12 LetN- be a metric unrooted level-1 networkonXwithgenericnumerical 
parameters. There exists {a, b, c, d}⊆X satisfying the BC property if and only if 
N- contains a cycle Cv of size k ≥ 4 with one of these taxa is in the hybrid block, 
and the others in distinct v-blocks on -.

Proof Suppose that N- has acycleofsizek forsomek ≥ 4 with hybrid nodev. Choose 
fourtaxa{a, b, c, d}, such that a isinthehybridblockanda, b, c anddarein distinct 
v-blocks. This set of taxa induces a unrooted quartet network with a 4-cycle, and so by
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Fig. 21 Four unrooted metric level-1 quartet networks with the same concordance factors

Theorem 3 this set of taxa satisfies the BC property for generic parameters. Suppose 
conversely, that there exists {a,b, c,d} satisfying the BC property. By Theorem 3, 
Qa-bcd has a 4-cycle, so N - has a cycle of at least size four and one of these taxa is a 
descendant of the hybrid node. Since the other taxa are in distinct v-blocks of Qa-bcd, 
they must be in distinct v-blocks of N-. □

For a level-1 metric unrooted network - ,letS be the collection of sets of 4 distinct 
taxa satisfying the BC property and VH be the set of hybrid nodes. We observe that 
for any s ∈ S, there is a natural map ψ : S → VH, where ψ(s) = v ifv is the hybrid 
node associated with the cycle of size 4 in Qs-. In this case we say that s determines 
the hybrid node v.

Lemma 13 Let N- be a metric unrooted level-1 network and let {a, b, c, d } and 
{a, b, c, e} be subsets of the taxa satisfying the BC property. The set {a, b, c, d } deter­
mines v if and only if {a, b, c, e} determines v.

Proof Let {a,b,c,d} determine v, {a,b,c,e} determine u, and suppose that u = v. 
Let Cv and Cu the cycles in N- containing v and u, respectively, so Cu and Cv do 
not share edges. Since {a, b,c,d} satisfies the BC property, by Lemma 12, a, b, c, 
and d belong to different v-blocks, so that in N- \E(Cv) the taxa a, b and c are in 
different connected components. Since N- is level-1, Cu is in one of the connected 
components of N- \E(Cv), say K. In particular, note that all the taxa not in K are in 
the same u-block. But at least two of a, b and c are not in K, so at least two of a, b 
and c are in the same «-block. This contradicts Lemma 12, so u = v. □

Interestingly, under the NMSC the ordering of quartet concordance factors is insuf­
ficient to identify the hybrid node of cycles of size 4. For example, the networks 
shown in Fig. 21 all have the same ordering of their concordance factors despite dif­
ferent hybrid nodes. The concordance factors for all those networks have the same 
values:
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Fig. 22 Each section of the 
simplex is depicted with an 
unrooted quartet network 
topology whose image under the 
concordance factor map fills that 
region, independent of the 
placement of the hybrid node

Figure 22 shows the 4-cycle network topologies drawn in the regions of Δ2 which 
their concordance factors fill. In each case it does not matter which of the cycle nodes 
is the hybrid node; all those unrooted quartet networks define concordance factors that 
fill that region.

8 Identifying Cycles in Networks

Having shown that the BC property can detect the existence of 4-cycles in networks, 
for generic parameters, we are poised to prove our main result. Our arguments now 
are mainly combinatorial.

Given a network N + on X ,letS denote the set of 4-taxon subsets of X satisfying 
the BC property. Recall that for a unrooted level-1 network N - on X, the 4-network 
partition is the partition of X according to the connected components of the graph 
obtained after removing all cycles of size at least 4 from N -. Recall also that the 
blocks of such partition are referred to as 4-network blocks.

Lemma 14 Let + be a metric rooted level-1 network on X. Then under the NMSC 
model with generic parameters the 4-network blocks of N + can be determined from 
the set S.

Proof If |X | < 3 there is nothing to prove. The case |X |=4 follows from Proposi­
tion 9, so we assume |X| ≥ 5. By Lemma 12, for any {a, b, c, d} ∈ S each taxon a, 
b, c, d must belong to a different 4-network block. Let
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Then Ya is the complement of the 4-network block containing a. To see this, note that 
for any taxon b that does not belong to the 4-network block of a, by Lemma 4, there 
exists a cycle Cv of size at least 4 such that a and b are in different v-blocks. Now 
choose any two different taxa c and d, such that all taxa a, b, c, d are in different 
v-blocks and one of a, b, c or d is in the v-hybrid block. Then {a, b, c, d}∈ S, and 
thus b ∈ Ya .

It follows that X∖Yx is the 4-network block containing taxon x. Since x was 
arbitrary, all 4-network blocks can be determined. □
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Lemma 15 Let N + be a metric rooted ؛eve1-؛ network on X with cyc؛e Cv of size 
kv ≥ 4. Then for generic parameter choices, the v-b؛ocks and the size kv can be 
identified from the set S. If kv ≥ 5 the v-hybrid b؛ock can a؛so be identified.

Proof Let{a, b, c, d} ∈ S andletvbethehybridnodedeterminedbyit. ByLemma 1⅛, 
each of these taxa belongs to a different v-block, and hence to a different 4-network 
block. Denote by A, B, C, D the v-blocks containing a, b, c and d, respectively.

Let Zabc be the setofall taxae such that{a, b, c, e}∈S. By Lemma13, all such 
{a, b, c, e} ∈ S determine the same hybrid node v. Consider now Zbcd, Zacd and Zabd. 
If kv = 4, then, by the last statement of Lemma 1⅛, Zabc = D, Zbcd = A, Zacd = B 
and Zabd = C, so all pairwise intersections of Zabc, Zbcd, Zacd, Zabd are empty. If 
kv > 4, then, again by Lemma 1⅛, for some distinct taxa i, j, k ∈{a, b, c, d}, Zijk 
is the v-hybrid block, and for any ؛, m, n ∈{a, b, c, d} with {؛, m, n} ={i, j, k}, 
Zimn = (L ∪ M ∪ N)c. Note that Zijk ∩ Zimn = 0 since one of L, M, N is the 
v-hybrid block. Since Z؛mn contains at least one v-block other than A, B, C or D,for 
any l', m', n' ∈ {a, b, c, d}, with {1', m', n'} = {i, j, k}, Zimn ∩ Zi∣m∣n∣ = 0. Hence we 
can determine whether kv > 4orkv = 4: if all pairwise intersection of Zabc, Zbcd, 
Zacd, Zabd are empty then kv = 4,elsekv > 4. Ifkv > 4 we can determine the hybrid 
block, by noting which ofthe sets Zabc, Zbcd, Zacd, Zabd has empty intersection with 
any other set in this family. At this point we have determined either that kv = 4 and 
all v-blocks, or that kv > 4 and the hybrid block.

Inthe case kv > 4, without loss ofgenerality, suppose that A is the v-hybrid block. 
Lety ∈/ Zabc = (A∪ B∪C)c,soy isinoneofA, B andC.Forsomeu,w∈{a, b, c}, 
s' = {y, u, w, d} ∈ S, which shows y and the taxon g ∈ {a, b, c}\{u, w} are in the 
same v-block. Thus, we can determine A, B and C.

Note that for any taxon X that is not in any of A, B or C, then s ={a, X, b, c}∈S. 
Since s determines v, following the steps of the last paragraph identifies the v-block 
that contains X. Therefore, all v-blocks can be determined, and thus kv as well. □ 

Lemma 16 Let N + be a metric rooted ievei-1 network on X. Then for any hybrid 
node v with kv ≥ 4 the order of the v-biocks in the cycie can be determined from the 
ordering of the concordance factors.

Proof If kv = 4, the claim is established by Proposition 11. Now suppose that kv > 4, 
so by Lemma 15 we know the v-hybrid block. Let A1, ..., Akv be the v-block par­
tition with A1 the v-hybrid block. Let ai ∈ Ai be an element of the i-th v-block. 
By Proposition 11, A1 and Aj are adjacentifand only if qaB1Caj Xy = a1aj|Xy for any 
distinct X, y ∈ {a⅛,..., akv }\{aj}. Thus, we can identify the two v-blocks adjacent 
to A1. Suppose that such v-blocks are Ap and Aq. We find the other v-block adja­
cent to Aq from {qBCapajam} for all distinct j, m ∈ {⅛, 3, 4,..., kv}\{p, q}. This 
is, Aq and Aj are adjacent if and only if qaB1CajapX = a1aj|Xap for any distinct 
X ∈ {a⅛, ..., akv }∖{ap, aq, aj} and j = 1, p, q .Continuing in this way, the full 
orderofblocksaroundthecyclecanbedetermined. □

We reach the main result.

Theorem 4 Let + be a metric rooted ievei-1 network on X. Then under the NMSC 
modei, for generic parameters, the coiiection of orderings of quartet concordance 
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factors identifies tbe unrooted semidirected topological network N obtained from 
N - by contracting all 2- and 3-cycles, and directions of bybrid edges in 4-cycles, 
wbile retaining directions of bybrid edges of k-cycles for k ≥ 5.

Proof We proceed by induction in the number of cycles of size ≥ 4. Suppose there 
are no such cycles. Then every induced quartet tree will have no cycle of size 4, and 
the ordering of the concordance factors determines the topology of the quartet tree 
obtained by contracting all 2- and 3-cycles. These then determine the topology N by 
a standard result Semple and Steel (2005).

Suppose there is exactly one cycle of size at least 4. Then there is just one hybrid 
node v in N - with kv ≥ 4. By Lemmas 15 and 16 we can determine the size kv of 
the cycle, the v-blocks and the order of the v-blocks in the cycle. If kv ≥ 5wecan 
identify the hybrid node v and thus identify the direction of the hybrid edges. Let Pu 
be a v-block where u is a node in Cv, and q ∈ X\ Pu. Let K be the induced network 
on Pu ∪{q} with all 2-cycles and 3-cycles contracted. Note that K is a tree, and the 
quartet concordance factors for taxa in Pu ∪ q identify its topology. Viewing q as an 
outgroup of Pu induces a rooted tree on Pu. Therootcanthenbe joined with an edge 
to u. Doing this for all v-blocks establishes the claim.

Now suppose that the result is true for networks with l cycles of size at least 4, and 
N - contains l + 1 such cycles. We can first determine all 4-network blocks and the 
v-blocks and its cycle order for every cycle of size at least 4 by Lemmas 14, 15, and 
16. Following Definition 13, consider T , the tree of cycles ofN. A leafofT arises 
from a cycle Cv onN- ifandonly ifall v-blocks but one are 4-network blocks. We 
may therefore determine the v-blocks of some cycle Cv that is a leaf of T .

Letu bethevertexinCv associated with the v-block that is not a 4-network block. 
Note thaN\{u} is a disconnected graph, with two connected components N1 and 
N2.LetN1 be the component containing all nodes of C except u, and Si the set of 
taxa on Ni, i ∈{1, 2}.Letsi ∈ Si. Then NS-∪{s } for i, j ∈{1, 2}, i = j, has at 
most l cycles of size at least 4. By the induction hypothesis we can determine the 
semidirected topological network Ni obtained from NS-∪{s } by contracting all 2- and 
3-cycles, and directions of the hybrid edges in 4-cycles, while retaining directions of 
the hybrid edges of k-cycles for k ≥ 5. We obtain N by identifying s1 in N2 with s2 
in N1 and suppressing that node. □

Figure 23 shows a phylogenetic metric rooted network N+ and N, the unrooted 
semidirected topological network which is identified by Theorem 4. Thecyclecolored 
in green is a 4-cycle and, though, its hybrid node is not identified from quartet concor­
dance factors. However, itshybrid nodehas to be such that N is induced from arooted 
network. Thus, the node labeled x in Fig. 23 cannot be the hybrid node. This illustrates 
that although we cannot always identify the hybrid node on 4-cycles, sometimes the 
structure of the resulting network N restricts the possible nodes for its placement.

9 Further Results on 32-Cycles

Under some special circumstances, for example, when a set of taxa satisfy the Cycle 
property but not the BC property, it is possible to detect further information about the
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Fig. 23 A rooted metric phylogenetic network N + (left) and the network structure N (right) that can be 
identified by Theorem 4. The 4-cycle on the network in the right, colored gray, has 3 different candidates 
for the hybrid node

topologyofthenetworkthanthatgiveninTheorem4.Forinstance,some3-cyclesare 
identifiable under such hypothesis. In this section, we discuss these extensions briefly, 
as it is difficult to formulate general statements on identifiability.

Recall that a 32-cycle may lead to concordance factors satisfying the Cycle property, 
but it need not, as shown in Proposition 7. There is a full-dimensional subset of 
parameters space on which concordance factors indicate a 32-cycle and another in 
which it fails to. Nonetheless, the following gives a positive, but limited, identifiability 
result.

Proposition 12 Let N+ be a metric rooted level-1 network on X and suppose 
{a, b, c, d}⊂X satisfies the Cycle property but not the BC property. Then under the 
NMSC model, for generic parameters, if there is no taxon e ∈ X such that {i, j, k, e} 
satisfies the BC property for any distinct i, j, k ∈{a, b, c, d} then N- contains a 
3-cycle with at least two descendants of the hybrid node.

Proof Since {a, b, c, d}⊂X satisfy the Cycle property but not the BC property, by 
Proposition 8, there is a 32-cycle in Qa-bcd. Thus, three taxa of a, b, c, d are in distinct 
v-blocks in Qa-bcd . This implies that there exists a cycle Cv in N- where three taxa of 
a, b, c, d are in distinct v-blocks. Since {i, j, k, e} does not satisfy the BC property 
forany distinct i, j, k ∈{a, b, c, d}, this implies Cv is not a k-cycle for k ≥ 4. Thus, 
by Proposition 7, Cv has size 3 and at least two of a, b, c, d descend from v. □

Let Qa-bcd be an unrooted level-1 quartet network where {a, b, c, d} satisfies the 
Cycle property but not the BC property. It can be shown that if, for example, the 
smallest entry in CFabcd is theonecorresponding to the quartet AB|CD, then either 
a, borc, dareinthev-hybridblock.ThisproofisverysimilartothatofProposition11.

LetN+ be a network such that N (in the network obtained from N+ in Theorem 4) 
isasshowninFig.24.Observethat{a, b, c, d} satisfies the BC property by Theorem 3. 
If {a, e, b, d} satisfies the Cycle property, then the following Proposition indicates the 
hybrid node in the network shown in Fig. 24 can be determined.

Proposition 13 Let N+ be a metric rooted level-1 network on X and let Cv be a 4- 
cycle in N-. Let a, b, c, d ∈ X be in different v-blocks in N-. Suppose under the
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Fig. 24 A network N with a 
four cycle such that if {a, b, c, e} 
satisfies the Cycle property, the 
hybrid block can be detected

NMSC model, for generic parameters, for distinct i, j, k ∈{a, b, c, d}, there exists a 
taxon e ∈ X such that {i, j, k, e} satisfies the Cycle property but not the BC property. 
Then the v-block containing e is the v-hybrid block.

Proof Without loss of generality suppose that i = a , j = b and k = c. Note that e 
is not in the same v-block as d, otherwise {a, b, c, e} would satisfy the BC property. 
Thus, e is the same v-block as a, b or c. Without loss of generality suppose that is in 
the same v-block as a. Thus, {e, b, c, d} satisfies the BC property and by Theorem 4 
the order of the cycle can be determined. Without loss of generality suppose that the 
order is the one as in Fig. 24. By Lemma 13, {a, b, c, d} and {e, b, c, d} determine the 
same hybrid node v. Since {a, b, c, e} satisfies the Cycle property, Corollary 4 shows 
Qa—bce has a 32-cycle. The 4-cycle in Qa—bcd and the 3-cycle in Qa—bce have to have the 
same hybrid edges, otherwise the level-1 condition would be violated. Observe that 
the only possibility for Q-bce having a 32-cycle is if e and a are in the hybrid block. □

In Solís-Lemus and And (2016) it is stated that one could identify the hybrid node 
in a 4-cycle when the number of taxa in the network is greater than 4 by using multiple 
concordance factors at once.

10 Discussion

In this work, we show that for generic numerical parameters, under the network multi­
species coalescent model the collection of orderings of quartet concordance factors 
identifies the unrooted semidirected topological network obtained from N — by con­
tracting all 2- and 3-cycles, and ignoring the directions of hybrid edges in 4-cycles, 
while retaining directions of hybrid edges in larger cycles.

As mentioned in the introduction, the proof of this result suggests combinatorial 
methods for constructing the network under noiseless data, but the question remains 
open in the presence of noise. There are two challenges when noise is introduced. 
The first one consists of detecting whether a quartet network contains a 4-cycle or 
not. We would never expect the empirical concordance factors to be exactly treelike. 
For this challenge, one could develop a statistical test to determine when concordance 
factors are sufficiently close to treelike to doubt the presence of a 4-cycle. The second 
challenge arises after determining such test. Since the test will not be accurate all 
the time, some quartets will not be inferred correctly and thus we need a method to 
reconstruct the network with some erroneous quartets. We leave this for future work.
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Appendix

Here, Proposition 1 of Section 2 is proved. The argument uses the following.

Lemma 17 LetNt bea(metricortopological)rootedretworkor X ardlet Z ⊂ X. 
Foraryedgee belowLSA(Z), with adescerdartir Z, thereare *, y ∈ Z such thate 
is ir a simple trek ir Nt from * to y whose edges are below LSA(Z).

Proof Let * ∈ Z be below e. By Lemma 2 there exists y ∈ Z with LSA(*, y) above 
e.

Suppose y is not below e.LetP* be a path from LSA(*, y)to* containing e and 
let Py be a path from LSA(*, y)toy.Letu be the minimal node in the intersection 
of P* and Py. Since y is not below e, u cannot be below e. Then the subpath of P* 
from u to *, which contains e, and the subpath of Py from f to y form a simple trek 
containing e.

Now assume y is below e. Since e is below LSA(*, y), there exists a path from 
LSA(*, y) to one of y or * that does not pass through the child of e. Without loss of 
generality suppose such a path Py goes from LSA(*, y)toy.LetP* be a path from 
LSA(*, y)to* that passes through e. Let A = A(P*, Py) bethesetofnodesabovee, 
common to Py and P* .Leta ∈ A be the minimal node in A.

Let B(Py, P*) bethesetofnodesbelowe, common to Py and P*. We may assume 
that we choose P* and Py such that B = B (Py, P*) has minimal cardinality. If B = 0 
then the desired trek is easily constructed, wit! top a. So suppose B = 0 has minimal 
element b- and maximal element bt. We are going to contradict the minimality of 
B. Note that bt must be the hybrid node of a cycle containing e (see Fig. 25 for a 
graphical reference).

Since b- is not LSA(*, y), there exists a path P* from LSA(*, y) to one of * or y 
that does not pass through b-. Note that P* has to intersect at least one of Py or P* 
at an internal node below b-. Let C1 be the set of nodes below b-, common to P* 
and Py andlet C2 be the set ofnodes below b-, common to P* and Py.Letc be the 
maximal node in C1 ∪ C2. We can assume, without loss of generality, that c is in Py. 
This is because if instead, c were in P*, we can consttuct paths P* and Py where Pri 
contains all the edges in Pi above b- and all edges of Pj below b- for i, j ∈{*, y}, 
i = j. Note that P* passes through e and does not contains c, while Py does not pass 
through e, contains c, and B = B(Py, P*).

Denote by W the set of nodes in(P* ∩ Py) ∪(P* ∩ P*) andletw be the minimal 
node of W above b-. Since Nt is binary, w cannot be a or bt (see Fig. 25 for a 
graphical reference). There are 5 different cases of the location of w in the network 
composed by the paths Py and P*. These are
1. w is in Py, above bt but belowa.
2. w is in P*, above bt but below e.3. w is in P* , above e but below a.
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Fig. 25 In gray we see the 
subgraph composed by P and 
P', the dashed edges represent 
that P and P' could intersect, 
the dotted segments represent 
just a succession of edges. In 
black we see the different cases 
of the possible edges in P * 
above b but below ًا

4. w is in one or more of Px or Py, above a.
5. w is in one or more of Px or Py, above b- but below b+.

Figure 25 depicts in gray the graph composed by the paths Py and Px, and in black 
we see the possible subpaths of P* from w to c. In any of case 1, 2 or 3 we can find a 
simple trek containing e as depicted in Fig. 26 by choosing the appropriate edges, and 
thus, B was not minimal. For case 4 and 5 there are two possibilities; (i) w is in both 
Py and Px ; (ii) w is only in one of Py or Px . For case 4 (i), the situation is simple, and 
we can find a simple trek as depicted on the left in Fig. 27. For case 4 (ii), we first find 
thenodein A thatis rightabovew.ThenasdepictedontheleftofFig. 27wecanfind 
a simple trek.

For case 5 we do not find a simple trek directly, instead we construct two paths P1 
and P2 fromLSA(x, y)tox, y,respectively,onlyoneofwhichcontainse with at least 
onelessnodein B(P1, P2) than B. Forcase5(i), wejusttake P1 tobethesameas Px 
and for P2 we consider the same edges that are in Py above w, the edges below c, and 
theedges in P* between w andc. Forcase5 (ii), we assume without loss ofgenerality 
that w is in Px.Letb be the node in B right above w. Let P1 be the path containing 
the edges in Px that are above b, the edges in Py that are below b but above the node 
b' ∈ B right below w, and at last the edges in Px below b'. Let P2 the path containing 
the edges in Py that are above b, the edges in Px that are above ًا but below b,the 
edges in P* that are above c but below w and at last the edges in Py that are below c. 
Figure 27 (right) depicts P1 (red) and P2 (blue) for(i) and(ii).Since B(P1, P2) hasat 
least one less node that B and we assumed B, the minimality of B is contradicted. □

Proof (of Proposition 1) Let M + = NZf.LetM- be the graph obtained from M + by 
ignoring the direction of all tree edges andthensuppressingtheLSA(Z, N+), thatis, 
the induced unrooted networkfrom M+.Denote by M M the graph obtainedby ignoring 
all directions ofthe tree edges in M+, so thatby suppressing degreetwo nodes ofeither 
M- or Mf gives (N+)-.Let K be the graph obtained by considering all the edges in 
simple treks in N- from x to y for all x, y ∈ Z, so that suppressing degree two nodes 
in K gives (N-)z. Showing either M' = K or M- = K, will prove the claim.

First we show that if LSA(Z, N+ )=LSA(X, N+) then M' = K, by argu­
ing that M' and K have the same edges. Let e be an edge of M'. Since
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Fig. 26 The treks in case 1 (left), case 2 (center), and case 3 (right)

Fig. 27 (Left) The treks in the two possibilities of case 4. (Right) The two possibilities of case 5, where the 
black segments represent possible edges red and blue at the same time

LSA(Z, N+)=LSA(X, N+), MM is a subgraph of N- and e is directed in M+. By 
Lemma 17, e is in a simple trek in M+ from x to y,forsomex, y ∈ Z .Thistrek 
induces a simple trek in M' from x to y, and therefore a simple trek in N- from x to 
y. Thus, e is in K .

Now let e be an edge of K. Then there exists a simple trek (P1, P2) in N- from x 
to y,forsomex, y ∈ Z containing e.Letv =top(P1, P2) and let T be the sequence 
of incident edges in N+ from x to v conformed of edges inducing those in P1 and P2. 
Since (P1, P2) is simple, T does not have repeated edges. Following T in N+ from 
x to y, edges are first transversed “uphill” (in reverse direction) until there is a first 
“downhill” edge (u,w). The next edge in T cannot be uphill, as otherwise it would be 
hybrid and (P1, P2) would have not been a trek in N-. This argument applies for all 
consecutive edges in T until weend at y. Thus, there is a simple trek (P1, P2) from 
x to y in N+ with top u. Note that u must be below or equal to LSA(Z, N+) since 
otherwise the trek would not be simple. Moreover, P1 and P2 contain only edges in 
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M+ and thus in M' after the directions of the tree edges is omitted. Thus, e is in M', 
so ^M'.

If LSA(Z, N +)=LSA(X, N +) then M— = K follows from a straight forward 
modification ofthe previous argument to account for the suppression ofLSA(z, N +) 
in both M— and K .
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Chapter 4: NANUQ: A method for inferring species networks from gene trees under the 

coalescent model

The proof of Theorem 4 in [Banos, 2019], presented in Chapter 3, suggests a method to 

infer level-1 species networks under noiseless data, but empirical data contains noise. The 

sources of noise include both stochastic noise from having a finite sample and additional 

noise from having obtained that “sample” not directly from the model but from an earlier 

inference of gene trees. In this chapter we present the paper “NANUQ: A method for in­

ferring species networks from gene trees under the coalescent model,” an inference method 

under the NMSC for a topological species network from gene tree data.

This method not only obtains a statistically consistent estimator but it is also robust 

under missing taxa on gene trees. Another strength of NANUQ is that it provides signals 

of when the NMSC and level-1 assumptions are not satisfied. This is a unique and novel 

feature of it, not present in any existing network inference schemes, and can help identify 

data sets that arise from other processes. NANUQ is designed to be an aid for biologists to 

analyze data in the suspected presence of hybridization.

We have implemented the first three steps of NANUQ in R [R Core Team, 2013], and 

use existing software, SplitsTree4 [Huson and Bry ant , 2006], for the next two steps. The 

last step is an “interpretation” that is to be performed by the user.

Even though in this paper we mainly present the theory behind NANUQ, we also present 

the analysis of two empirical data sets of yeast and butterflies. We also analyze a data set 

that was simulated using Hybrid-Lambda [Zhu et al., 2015].

My main contributions for this paper include the following:
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Initial conjecture explorations and coding with simulated data,

• first draft of some sections (“Phylogenetic networks”, “Quartet concordance factors”, 

“32 -cycles”, “Network split systems and distances”, part of “Split networks from the 

network quartet distance”, and “Examples”),

• contributions to the formulation and proofs of some theorems of the split graph section, 

and

• editing throughout.
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NANUQ: A METHOD FOR INFERRING SPECIES NETWORKS FROM 
GENE TREES UNDER THE COALESCENT MODEL

HECTOR BANOS, ELIZABETH S. ALLMAN, AND JOHN A. RHODES

University of Alaska Fairbanks

Abstract. Species networks generalize the notion of species trees to allow for hybridization 
or other lateral gene transfer. Under the Network Multispecies Coalescent Model, individual 
gene trees arising from a network can have any topology, but arise with frequencies depen­
dent on the network structure and numerical parameters. We propose a new algorithm for 
statistical inference of a level-1 species network under this model, from data consisting of 
gene tree topologies, and provide the theoretical justification for it. The algorithm is based 
in an analysis of quartets displayed on gene trees, combining several statistical hypothesis 
tests with combinatorial ideas such as a quartet-based intertaxon distance appropriate to 
networks, the NeighborNet algorithm for circular split systems, and the Circular Network 
algorithm for constructing a split graph.

1. Introduction

In this paper we provide the theory supporting a new, statistically consistent method 
of inferring most topological features of a level-1 hybridization network under the network 
multispecies coalescent (NMSC) model. The method uses as data a collection of unrooted 
topological gene trees, which may themselves have been inferred from sequences.

Unlike psuedo-likelihood methods [23, 28], it does not require an assumed limit on the 
number of hybridization events in the network, nor does it involve a time-intensive search 
over the space of possible networks. Instead, it computes a certain distance between taxa 
which, under ideal circumstances, corresponds to a circular split system. When this expected 
distance is processed through particular algorithms to produce a split graph, interpretation 
rules allow one to read off network information. The total theoretical running time of the 
algorithm is O (n4 m) for an input of m binary gene trees on n taxa, making it computationally 
feasible when n has moderate size.

While we illustrate the method's utility through several examples with simulated and 
empirical data, our focus in this work is on providing its theoretical basis. This draws on 
a number of independent research works, but also requires new results on the nature of the 
split graphs that are produced under ideal circumstances.

We call this new method the Network inference Algorithm via NeighbourNet Using Quartet 
distance, or by the acronym NANUQ* 1. It involves the following steps, applied to a collection 
of unrooted gene tree topologies assumed to have arisen under the NMSC on an unknown 
binary level-1 network:

Date : March 28, 2019.
1The word for “polar bear” in Inupiaq and other Inuit languages, pronounced and sometimes written as 

‘Nanook'.
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(a) For each subset of 4 taxa, determine the empirical quartet count concordance factors 
from the gene trees, which will reflect possible cycles on the network, as shown in 
[3, 23].

(b) Apply a statistical hypothesis test to these counts, as in [2], to judge evidence as to 
whether or not the quartet species network displays a 4-cycle.

(c) Use the test results on quartets to construct a network quartet distance between 
taxa, extending the ideas of [19].

(d) Apply the NeighborNet [6] and Circular Algorithms [9] to construct a split graph 
from the quartet distance.

(e) Interpret the abstract network produced in the previous step by certain rules devel­
oped in Section 6 of this paper to infer most features of the unknown network.

All but the last step have been fully automated, in R for the steps (a-c), and SplitsTree4 
[12] for step (d). While it is conceivable the last step could be as well, there are advantages 
to not doing so until more experience with the method has accumulated. For instance, some 
data sets may not support a hypothesis of evolution on a level-1 hybridization network, and 
a human interpretation of both the hypothesis test results and the SplitsTree4 output may 
suggest this, while simply showing a hybridization network most in accord with the output 
might be misleading.

While we show NANUQ is statistically consistent as an inference tool on its own, we 
suspect the greatest usefulness of this method is likely to be in an initial stage of data 
analysis, in which an empiricist seeks to explore the possibility and extent of hybridization 
among some taxa. Indeed, NANUQ offers several important advantages over other network 
inference methods we know of, in that it can indicate poor model fit to the level-1 NMSC 
and, in the case of reasonable fit, indicate the number of hybridization events. In contrast, 
pseudo-likelihood methods, which can be used for network inference [23, 28], are known 
broadly to be poor for judging model fit, though often perform well for inference. Moreover, 
while NANUQ gives information only on network topology, psuedo-likelihood can be used 
to obtain metric information as well. We thus view NANUQ as a complementary tool to 
the quartet-based pseudo-likelihood approach of SNAQ [23], and suggest using the two in 
tandem.

Several recent works [25, 30] have taken a Bayesian approach to inference of species net­
works from genetic sequence data, to obtain a joint posterior on both species networks and 
gene trees. As attractive as one might find this as a conceptual approach, it produces a 
formidable computational challenge for data sets with many taxa or gene trees. Indeed, the 
largest analysis in these works are quite small, involving only 7 taxa and 106 gene trees from 
a yeast dataset we also analyze. The alternative approaches offered by NANUQ and the 
pseudo-likelihood algorithms easily handle much larger datasets, with thousands of genes, 
as have already been assembled by researchers.

We note that this is the first instance, to our knowledge, of a split graph being given a 
firm interpretation as supporting a biological process underlying a data set. Split graphs 
are generally viewed as exploratory devices for judging the extent to which a data set is 
“tree-like,” and authors often warn against interpreting them as supporting any particular 
biological mechanism. We fully agree with this general statement; only in the framework of 
our multi-step algorithm do we claim that an interpretation of support for a hybridization 
network is fully justified by theory. While an earlier step in this direction was taken by [13], 
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that work assumed no incomplete lineage sorting was involved in the formation of gene trees, 
and provided less detailed description of the form of the split graph than does our work here.

The theory we present is based thoroughly on consideration of the quartets displayed on a 
collection of gene trees, but it differs in important ways from the more purely combinatorial 
work of [10] on undirected networks of level-1 and higher. First, we crucially focus on un­
rooted phylogenetic networks in the sense of [3], which retain the direction of hybrid edges 
from the rooted species network underlying the biological model, rather than fully undi­
rected networks of [10]. This leads to a different notion of the trees and quartets displayed 
on the network, and the set of splits we associate to a network. Second, unlike most purely 
combinatorial studies, our algorithm takes into account that due to the coalescent process 
some gene trees will display quartets inconsistent with the species network. It nonetheless 
provides a means of determining, up to statistical inference error, which quartets are dis­
played on the network. Third, if these quartets are known exactly, we are able to recover 
not only the undirected version of the network (modulo contraction of 2- and 3-cycles) but 
even directions of hybrid edges in cycles of size 5 or larger.

This paper proceeds as follows: Sections 2 through 6 outline and develop theory behind 
our algorithm in a purely theoretical setting with no discussion of data. Section 7 more 
carefully outlines the algorithm for data analysis. Section 8 concludes with a few examples 
of network inference.

In more detail, Section 2 formally defines the type of rooted directed networks which 
underly our model, as well as unrooted semidirected networks induced from them. While 
this notion of unrooted network appeared in [3], it is not standard to the literature, yet it 
is essential to our work. Section 3 briefly recalls the network multispecies coalsecent model 
(NMSC) and the notion of a quartet concordance factor (CF). It summarizes results of 
[23] and [3] indicating how these concordance factors reflect quartet network topology, and 
provides a new analysis indicating the extent to which one can avoid the one important case 
of ambiguity in interpreting CFs. In Section 4 after recalling terminology for split systems, 
we define a split system associated to a unrooted semidirected level-1 network. In Section 
5, we define a new quartet intertaxon distance for a level-1 topological network, and explore 
its relationship to the network. Section 6 investigates the form of a split graph computed 
from the quartet distance of a binary level-1 network. This requires establishing some new 
theoretical results which enable us to directly relate the form of a level-1 hybridization 
network to the form of the split graph of our network quartet distance.

Section 7 presents our algorithm in full, making use of all the theory above, as well as 
hypothesis testing using CFs as developed in [2], as well as the NeighborNet algorithm [6] 
and Circular Network Algorithm [9] as implemented in SplitsTree4 [12]. We give a running 
time analysis for NANUQ and establish its statistical consistency. As our primary goal in 
this paper is to provide the theoretical background to our algorithm, and not to extensively 
investigate its performance on simulated data or demonstrate its applicability to biological 
data, we offer only a minimial set of example analyses in Section 8. A later work, directed 
more at empiricists, will focus further on issues arising in data analysis.
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2. Phylogenetic Networks

2.1. Rooted and unrooted phylogenetic networks. We begin by establishing termi­
nology for phylogenetic networks. Throughout, X = {x1 , x2 , . . . , xn } denotes a fixed set of 
taxa.

Our focus is on a explicit network [14], that can be interpreted as providing an evolutionary 
history of species relationships, including hybridization or other forms of lateral gene transfer 
that occur at discrete moments in time.

Definition 1 ([3, 24]). A topological binary rooted phylogenetic network N + on taxon set 
X is a connected directed acyclic graph with vertices V and edges E , where V is the disjoint 
union V = {τ} U VL U VH U Vτ and E s the ⅛s⅛ot union E = EH U Eτ, together with a 
bijective leaf-labeling function f : VL → X with the following characteristics:

1. The root τ has indegree 0 and outdegree 2.
2. A leaf v ∈ VL has indegree 1 and outdegree 0.
3. A tree node v ∈ VT has indegree 1 and outdegree 2.
4. A hybrid node v ∈ VH has indegree 2 and outdegree 1.
5. A hybrid edge e ∈ EH is an edge whose child is a hybrid node.
6. A tree edge e ∈ ET is an edge whose child is a tree node or a leaf.

Definition 2. Let N+ be a topological binary rooted phylogenetic network with |E| = m and 
|EH| = 2h. A metric for N+ is a pair (λ, γ), where λ : E → R≥0 assigns edge lengths and 
γ : EH → (0,1) assigns hybridization parameters satisfiing

1. λ(e) > 0 for e ∈ ET ,
2. γ(e1) + γ(e2) = 1 whenever e1, e2 ∈ EH have the same hybrid-node child.

If (λ,γ) is a metric for N+, then we refer to (N+,(λ,γ)) as a metric binary rooted phylo­
genetic network.

While the idea of unrooting a tree is simple, unrooting a network is more subtle. For 
example, it may not be clear how to proceed when the two edges incident to the root have 
the same child. We follow [3] in elucidating this concept.

In a directed network, we say that a node v is above a node u, and u is below v, if there 
exists a non-empty directed path in N + from v to u. We also say that an edge with parent 
node x and child y is above (below ) a node v if y is above or equal to v (x is below or equal 
to v ).

Definition 3 ([24]). Let N+ be a (metric or topological) binary rooted phylogenetic network 
on X and let Z ⊆ X. Let D be the set of nodes which lie on every directed path from the 
root τ of N+ to any z ∈ Z. Then the lowest stable ancestor of Z of N+, denoted LSA(Z), 
is the unique node v ∈ D such that v is below all u ∈ D, u = v.

The lowest stable ancestor is a generalization (though not the only one) on a network of 
the concept of most recent common ancestor on a tree.

If z is a degree two node on a semidirected graph, with nodes x and y adjacent to z , then 
by suppressing z we mean deleting z and its incident edges, and introducing a new edge from 
x to y . If the deleted edges formed a semidirected path, we direct this new edge consistently 
with that path; otherwise the new edge is undirected.
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Figure 1. (Left) A rooted phylogenetic network N + with root r and lowest 
common ancestor m. (Right) The unrooted network N - induced from N+.

Definition 4. Let N + be a binary topological rooted phylogenetic network on a set of taxa 
X. Then N -, the topological unrooted phylogenetic network induced from N +, is the 
semidirected network obtained by

(1) deleting all edges and nodes above LSA(X ),
(2) undirecting all tree edges, and
(3) suppressing LSA(X ).

If N + has a metric structure, then N - inherits one in an obvious way. Edge lengths on 
N - are the sum of conjoined edge lengths in N +, and hybridization parameters are the same 
as those on N +.

Note that in some other phylogenetic works the term “unrooted network” is used for a fully 
undirected network. An unrooted network in our sense retains directions on hybrid edges, 
and thus encodes some information about possible root locations on N +. Figure 1 depicts 
a topological binary rooted phylogenetic network on the left and its induced topological 
unrooted network on the right.

For simplicity, when we refer to an unrooted network N - later in this paper, we always 
mean a semidirected network induced from a rooted binary phylogenetic network N + by 
this definition. That is, we implicitly assume the existence of N +, even though there exist 
unrooted networks by the standard graph theory definition of that term which are not so 
induced.

Given that a unrooted network still retains some directed edges, a useful definition of 
induced quartet network is more elaborate than the analog for a tree. Recall a trek between 
vertices x, y on a network is the union of semidirected paths from some vertex v to x and 
from v to y. A trek is simple if the two paths intersect only at v .

Definition 5. Let N- be a unrooted network on X, and let a,b, c, d ∈ X. The induced 
quartet network Qabcd is the unrooted network obtained by

(1) keeping only the edges in simple treks between elements of {a, b, c, d}, and
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Figure 2. The quartet networks Qabdf and Qbcef respectively induced from 
the network on the right of Figure 1.

(2) then suppressing all degree two nodes.

If N - is a metric network, Qabcd inherits a metric structure as well. Edge lengths are simply 
sums of lengths of conjoined edges. Since a hybrid edge e in Qabcd arises from conjoining a 
single hybrid edge e of N- with tree edges, the hybridization parameters for e is set equal 
to that for e.

Figure 2 shows several quartet networks induced from the unrooted network in Figure 1.
Finally, most of our results will be established only for a subclass of phylogenetic networks 

exhibiting a level-1 structure. Although the definition we give is not the standard one for 
level-1 (e.g., [24]), it is equivalent for binary directed networks [22]. We also use it in the 
context of unrooted networks, which preserve the notion of hybrid nodes from any rooted 
version of them.

Definition 6. Let N be a (rooted or unrooted) binary topological network. If no two cycles 
in the undirected graph of N share a vertex, then N is said to be level-1.

3. The Network Multispecies Coalescent Model and Quartet Concordance 
Factors

The multi-species coalescent model (MSC) [18, 15] is the standard probabilistic model 
of incomplete lineage sorting, by which gene trees, showing direct ancestral relationships, 
form within species trees composed of mulit-individual populations. It traces, backwards in 
time, the lineages of a finite set of individual copies of a gene, sampled from different extant 
species, as they coalesce at common ancestors.

The network multi-species coalescent model (NMSC) [17, 27, 31] is a generalization of 
the MSC, which allows a finite number of hybridization events, or other discrete horizontal 
gene transfer events, between populations. Its parameters are captured by a metric, rooted 
phylogenetic network, which we assume to be binary, as defined in Section 2. At a hybrid 
node in the network, a gene lineage may pass into either of two ancestral populations, with 
probabilities given by the hybridization parameters γ for that node. This differs from other 
generalizations of the MSC, such a those built on a structured coalescent, where genes may 
switch populations continuously over an interval in time.

3.1. Quartet concordance factors. The NSMC model is often used to obtain the proba­
bility of observing a specific gene tree (metric or topological, rooted or unrooted) in a species 
network. Our algorithm focuses on the probability that a species network produces various 
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gene tree quartets (unrooted topological gene trees on 4-taxa) under the NMSC. The study 
of these probabilities, and their use for network inference, was pioneered in [23], with further 
work in [3]. A key concept is that of a quartet concordance factor, whose definition we recall.

A binary unrooted topological tree on four taxa a, b, c, d is called a quartet, and can be 
denoted as ab|cd if deletion of its internal edge gives a connected component containing a 
and b. We say a large tree displays a quartet ab|cd if the induced unrooted tree on the four 
taxa is ab|cd.

Definition 7. Let N+ be a metric rooted network on a taxon set X. Let A, B,C, D be 
genes sampled from species a, b, c, d ∈ X respectively. Given a gene quartet AB|C D, the 
concordance factor CFAB|CD is the probability under the NMSC on N + that a gene tree 
displays the quartet AB |C D. The concordance factor C Fabcd is the ordered triple

CFabcd = (CFAB|CD, CFAC|BD, CFAD|BC)

of concordance factors of each quartet on the taxa a, b, c, d.

In a modeling context, we generally have a fixed rooted metric network N + in mind, but 
if there could be some ambiguity we denote the concordance factor by CFabcd(N +). When 
a, b, c, d are clear from context (e.g., if N + has only four taxa), we write CF for CFabcd. Also, 
while the language of ‘concordance factor' is sometimes used for both theoretical values and 
empirical estimates, in this work we use it only for the first, being careful to refer to estimators 
of CFs, or empirical CFs, when they are found from gene tree data.

As established in [23, 3], the concordance factors for a level-1 network N + actually depend 
only on the unrooted N -, and, more precisely, CFabcd only depends on the quartet network 
Qabcd induced from N -. Finally, these concordance factors carry information about what 
cycles might be on that quartet network. To elucidate this, we review some of the results of 
those works.

In a level-1 network, each cycle has exactly one hybrid node. An n-cycle with exactly k 
taxa descended from its hybrid node is referred to as a nk -cycle. In a level-1 quartet network 
there are 6 types of cycles that may appear: 21- ,22 -, 23-, 31 -, 32-, and 41 -cycles as depicted 
in Figure 3. There are also several restrictions in the number and types of cycles of certain 
sizes that may simultAnéously appear. For example, Qabcd can have at most one of a 41 -cycle 
or a 32 -cycle.

Figure 3. Cycles in a level-1 quartet network are classified as type nk if they 
have n edges and k descendants of the hybrid node. The only cycles possible 
in a level-1 quartet network are (Left) of type 21 , 22, and 23; (Center) of type 
31 and 32 ; and (Right) of type 41 . The dashed lines represent subgraphs that 
may contain other cycles.
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Definition 8. If the two smallest entries of C Fabcd are equal, then we say the concordance 
factor is tree-like. If a tree-like CF has a unique largest entry, CFXY |ZW , we say it supports 
the quartet xy |zw. If all 3 entries are equal we say it supports all three quartets.

This terminology arises from the fact that if the CF arises from a species tree, then it is 
tree-like, and its largest entry indicates the quartet species tree topology [1]. However, as 
was first shown in [23], certain types of non-tree networks also produce tree-like CFs under 
the NMSC.

Viewing a CF as a point in the probability simplex ∆2 = {(x1 , x2 , x3 )) | xi ≥ 0, xi = 1}, 
as in Figure 4, the tree-like CFs form the 3 line segments radiating from the central point 
(1/3, 1/3, 1/3) to the vertices. With the ordering

CFabcd = (CFAB|CD, CFAC|BD, C FAD|BC ),

the diagonal segment to (1, 0, 0) is those CFs supporting ab|cd, the diagonal segment to 
(0, 1, 0) is those supporting ac|bd, and the vertical segment to (0, 0, 1) is those supporting 
ad|bc.

The following summarizes several results from [3]. By the contraction of a cycle, we mean 
removal of its edges together with identification of all vertices in it.

PropositiOm 9. Ijet N+ he a teret-l bihaaj qiartet netwiork and N- t netwoorh Obttatned 
from N - by contracting all 2- and 3-cycles and then suppressing degree 2 nodes.

لآلأ١ tpe 41 or ؛N- has no epetes 0 ؛1  then tts CF ts treetthe, and Suptports the qnartet N-. 
That s tf N- = ab\ed then

CFAB|CD > CFAC|BD = CFAD|BC .

I؛N- has a 32-cycle, its CF may or may not be tree-like. I؛it is tree-like, it supports the 
qnartet N-. 1؛ tt ts not tree the, the CF ts on the ttne eontatntng the treetthe CFs Suptporttng 
the qiartet N-. More preetset, tf N- = ab\ed then

CFAB|CD ≥ 1/6, and CFAC|BD = CFAD|BC.

IJ N- has a ^|jete, then tts CF s non-treethe, and tfN- dtsptajs a 4⅛jete ootned to 
the taxa in circutar order a, b, c, d, then

CFAB|CD > CFAC|BD and CFAD|BC > CFAC|BD.

This proposition is perhaps most easily understood through Figure 4. Note that the CFs 
for binary quartet networks with no 32 cycles can be used to unambiguously determine 
whether that network had a 4-cycle or not. Applied to large networks through their induced 
quartet networks, this shows CFs carry some information about even large network topology.

But an issue that must be addressed is that, as Figure 4 shows, different quartet networks 
may give the same theoretical CFs. Most of these possibilities are harmless; for instance, as 
Proposition 9 indicates, the presence of any 2-cycle, or of a 31 cycle has no impact on what 
quartet is supported in the tree-like case, or what network(s) in the non-tree-like case. This 
ultimately leads to the non-identifiability of such cycles on a network by the method laid out 
in [3], and will similarly prevent NANUQ from detecting them. Since 2- and 31 -cycles on a 
large network model ‘hybridization' between the most closely related populations (two that 
split and then rejoin, or hybridization between two populations which have just split from a 
common one) inability to infer that such hybridization events occurred by our method may
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Figure 4. On the left a planar projection of the simplex ∆2, where the gray 
lines represent concordance factors that arise from quartet networks with no 
32-cycle and no 4-cycle (including quartet trees). In the center, the gray seg­
ments in ∆2 represent all the concordance factors arising from quartet networks 
with a 32-cycle. On the right, the gray shaded area represents concordance 
factors arising from quartet networks with a 4-cycle with generic numerical 
parameters. In all figures, the quartets labeling line segments, and the quartet 
networks labeling regions, represent the quartet network after contraction of 
all 2- and 3-cycles.

not be too surprising. (Note that the SNaQ algorithm [23] is likewise unable to detect these, 
as it is based on CFs using a pseudo-likelihood framework.)

However, the CFs possibly arising from a 32 cycle must be carefully considered. If they 
are tree-like, then as with the 31-cycle we simply are unable to detect them via concordance 
factors. On the other hand, if they are non-tree-like, the same CF could have arisen from 
a 41-cycle. In the theoretical world, we understand that exact CFs from a network with a 
41- cycle cannot match those from a 32-cycle for generic numerical parameters, since only a 
measure-zero subset of 4-cycle numerical parameters will place the CF where a 32-cycle CF 
may lie. Thus after excluding a negligible set of metric parameters from consideration, we 
can unambiguously determine those non-tree-like theoretical CFs arising from 32 cycles. We 
can then interpret these as supporting the quartet obtained by contracting all cycles in the 
quartet network, and identify the network with all 2- and 3-cycles contracted, as in [3].

An alternative to this is to argue that non-tree-like CFs from 32-cycles are ‘rare,' and 
unlikely to occur in practice. This can be made more precise by determining what metric 
structure on a 32-cycle can produce a non-tree-like CF, and making a formal assumption 
that rules out that possibility. Thus we are motivated to study CFs from 32-cycles in more 
detail.

3.2. 32-cycles. Let N - be the unrooted quartet network shown in Figure 5, with parameters 
ti in coalescent units and γ as shown. Let xi = e-ti for i = 1, 2, 3, 4. As shown in [3, 23], the 
quartet concordance factors of N - are given by:
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We say that a choice of parameters {t1 , t2 , t3 , t4 , γ }, or their transformed versions xi , is 
tree-like if the CF for the network is tree-like when given that metric structure.

The set of tree-like parameters for N - is a region in the 5-dimensional cube,

0 ≤ γ, x1 , x2 , x3 , x4 ≤ 1,

defined by the polynomial inequality

CFAB|CD ≥ C FAC|BD.

To get a sense of the size of the tree-like region, we uniformly at random sampled 1010 

points in [0, 1]5 , and computed the proportion of these sampled parameters that are tree-like. 
We found that 99.468% of the sampled points were tree-like. Thus in some sense, non-tree- 
like CFs due to 32 -cycles are rare. More precisely, since a uniform distribution for xi ∈ [0, 1] 
corresponds to an exponential distribution with mean 1 for ti ∈ [0, ∞), if one assumes edge 
lengths are exponentially distributed random variables, and the hybridization parameter is 
uniformly distributed, the chance of a non-tree-like CF is estimated as ≈ 0.00532. While 
this number is quite small, we caution that we have no real justification for these priors 
on parameters (although exponential priors on branch lengths are often used in Bayesian 
approaches to tree inference).
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Figure 6. The shaded area in the x1 x3 unit square indicates solutions of 
x1 ≤ 4/(5 - x3 ), which lead to treelike CFs on the network of Figure 5. Here 
xi = exp(-ti ), with ti the branch length in coalescent units.

For additional insight on tree-like parameters on N -, we find

(1) CFAB|CD -CFAC|BD = 1+(1-γ)2(-x1x2) +γ(1- γ)(-3x1 +x1x3) +γ2(-x1x4)
≥ 1 + (1 - γ )2(-x1) + γ(1 - γ)(-3x1 + x1x3) + γ2(-x1)
= 1 - x1 + γ (1 - γ )(-x1 + x1x3)
= 1 - x1 - γ(1 - γ )x1(1 - x3)
≥ 1 - Xi - 4Xι(l - x3).

This last quantity is positive, and hence parameters are tree-like, when x1 ≤ 4/(5 - x3 ), a 
region shown in Figure 6. This region represents approximately 89% of the area of [0, 1]2 . More crudely, if x1 ≤ 4/5 (that is, t1 ≥ - log(4/5) ≈ 0. 2231) then a tree-like CF results 

regardless of all other parameter values. Thus non-tree-like parameters require that t1 be 
fairly short, causing substantial incomplete lineage sorting. (For comparison, if the internal branch on a rooted 3-taxon species tree has length t and et > 4/5, then fewer than half of 

the gene trees will have the same rooted topology as the species tree under the MSC.)
While this argument assumed the network of Figure 5, a general level-1 quartet network 

with a 32 cycle may have additional 21 -, 22-, and 31 -cycles. One can show, though, that the 
same result applies as long as the t1 is then taken as the length of the edge descended from 
the 32 hybrid node.

In particular, we have the following.

Proposition 10. If on a level-1 network N + all branches descending from hybrid nodes have length ≥ - log(4/5) , then under the NMSC model all CFs wil l be tree-like except for those 
for which the associated quartet network has a 4-cycle.

4-67



NANUQ: INFERRING SPECIES NETWORKS

Thus parameters will be tree-like if M ≤ χ2 — 3 ٠ In particular, this is satisfied if M ≤ 1 

(min{t2 , t4 } ≥ - log(1/2) ≈ 0.694), independent of all other parameters. Of course these are 
lengths of hybrid edges, and one might not want to make a priori modeling assumption that 
they even have positive length. Figure 7 shows the region where the inequality M ≤ χ2 — 3 

is satisfied. This region represents approximately 95% of the area of [0, 1]2.
While a large network may induce quartet networks with 32-cycles, which may be respon­

sible for non-tree-like CFs, our goal here has been to suggest that one might make reasonable 
assumptions on branch lengths to rule out this possibility. Note that assuming there are no 
32 cycles in a large network is not sufficient, since larger cycles, such as 42-cycles, will lead 
to 32-cycles on some of its induced quartet networks.

4. Network split systems and distances

The ability to use quartet CFs to determine if a 4-cycle is on a quartet network, as 

discussed in the last section, will ultimately allow us to define a distance between taxa from 
which we can infer features of a larger network. But before we do that, we review the concept 
of a weighted circular split system for a set of taxa, and the distance associated to it. We 
also define the split system of an unrooted network in the sense of this paper, which differs 
from the standard definition due to hybrid edges being directed.4.1. Split systems. We adopt standard terminology concerning splits [7]. A split A|B = 

B|A of taxa X is a bipartition X = A Ll B with A, B non-empty. The set of all splits of X 
is denoted by (X). A subset of (X) is often called a split system on X.
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Figure 7٠ The shaded area represents the solutions of M ≤ χ2 — 3 with the 
x1-axis vertical and the M axis horizontal. With M = max(x2, x4), points in 
this region lead to tree-like CFs on the network of Figure 5.
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Definition 11. A split system S ⊆ (X ) is said to be circular if there exists a linear ordering 
x1 < ... < xn of the elements of X such that each split in S has the form A|B with

for appropriately chosen 1 ≤ p < q < n. The ordering of the xi is called a circular ordering 
for S .

A circular ordering for S can always be modified by cyclic permutations (e.g., replaced 
with x2 < x3, < · · · < xn < x1) or inversion (replaced with xn < xn-1 < · · · < x1) and 
will remain a circular ordering for S . We treat such variants as the same, without further 
comment.

where Sxy ⊆ (X ) is the set of splits separating x and y, i.e., splits A|B, with x ∈ A and 
y ∈ B. Clearly dω is non-negative valued, with dω (x, x) = 0, dω (x, y) = dω (y, x).

Recall the support of a weighted split, denoted supp(ω), is the set of splits on which ω is 
non-zero.

Definition 12. A weighted split system ω on X is said to be circular if supp(ω) is circular. 
A distance function d on X is said to be circular if d = d ω for some circular weighted split 
system ω.

As pointed out in [7], it follows from [4] that a circular distance function d uniquely 
determines the weighted split system ω such that d = dω .

4.2. Splits from unrooted networks. Our notion of splits associated to a network, and 
sone related terminology, will not be standard, but is essential to this work. In particular, we 
focus only on phylogenetic unrooted networks as in Definition 4. We remind the reader that 
these networks are always assumed to be induced from rooted phylogenetic networks, and 
thus have additional features, including some directed edges, not implied by term “unrooted” 
as normally used in graph theory.

Definition 13. Let N - be a unrooted network on X. An unrooted tree T on X is said to 
be displayed on N- if it can be obtained from N - by deleting some edges, including at least 
one hybrid edge from each pair, undirecting remaining hybrid edges, and suppressing degree 
2 nodes. The set of all unrooted topological trees on X that are displayed on N - is called the 
grove of N-, denoted G(N-).
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Given a tree T on X , deleting an edge defines a split according to the connected compo­
nents of the resulting graph. The set of all such displayed splits is denoted S(T ), and it is 
easy to see from a planar depiction of a tree that S(T ) is circular.

For a tree, the correspondence between edges and displayed splits allows edge weights to 
be viewed as split weights, by setting weights of non-displayed splits to 0. This is a special 
case of a weighted split system on X , a map
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Figure 8. The two trees in the grove G(N-), where N- is the unrooted 
network of Figure 1.

The notion of displayed tree given here for unrooted networks extends that for an unrooted 
network given in [10], since in that work unrooted networks have no directed edges, hence 
there is no concept of a hybrid edge.

If N - has either 2-cycles or a 3-cycles, then different choices of which hybrid edge in those 
cycles is deleted will yield trees with the same topology, and hence give the same element of 
G(N-). For larger cycles, the choice of hybrid edge to delete does affect the tree topology. 
For a level-1 network N- with k cycles of size ≥ 4, |G(N-)| = 2k. This is, each tree in 
G(N-)is determined by a unique choice of one hybrid edge in each cycle of size ≥ 4. This is 
not true more generally, as shown by the non-level-1 network of Figure 1 and the two trees 
in its grove displayed in Figure 8.

Definition 14. For an unrooted network N -, the set of splits
S(N-)= ∪T∈G(N-)S(T )

is called the (unweighted) split system for N-. A weighted split system for N- is any 
weighted split system with support S(N-).

From the study in [10] of undirected networks, we have the following.

Theorem 15 ([10]). Let S be a split system on a set X and for any undirected network N 
on X let S(N)be the set of splits of all trees displayed on N. Then S is circular if and only 
if there exists an undirected level-1 network N such that S ⊂ S(N).

Since the split system S(N-)we associate to a semidirected unrooted network is a subset 
of the splits of all trees displayed on an completely undirected version of the network, we 
obtain the following.

Corollary 16. If N- is a level-1 unrooted network, then S(N-)is circular.

5. Quartet Distance for level-1 networks

As was shown in [19], topological trees have a natural metrization tied to the quartets 
displayed on a tree. Moreover, intertaxon distances from this metrization can be computed 
from the collection of displayed quartets, without having to know the full tree, giving a means 
of inferring the tree topology. After briefly reviewing this in the tree setting, we generalize 
it to the setting of level-1 networks.
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5.1. Quartet distance on a tree. Recall a quartet means a binary unrooted topological 4- 
taxon tree, and is denoted by ab|cd if taxa a, b and c, d are in different connected components 
when the internal edge is removed.

For an unrooted binary topological phylogenetic tree T on X , any edge e induces a partition 
of X into 4 non-empty blocks, X1 , X2 , X3 and X4 , where the split associated to e is se = 
X1 ∪ X2 |X3 ∪ X4 , and the splits associated to the 4 adjacent edges have an Xi as one split 
set. Similarly, a pendant edge e to taxon a induces a partition into 3 blocks X1 , X2 and {a}, 
where se = {a}|X1 ∪ X2 , and the splits associated to the 2 edges adjacent to e have an Xi 

as one split set. The quartet weight function wT : (X ) → R is defined as

To state a network analog of Proposition 17, we first extend the indicator function ρxy 

used in it to quartet networks.
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This split weight function then induces dwT , the quartet distance function on X . The fol­
lowing theorem shows the distance function can be computed another way, from the set of 
quartets displayed on T .

Proposition 17. [19] For any quartet q on taxa in X with |X | = n, let ρxy (q) = 1 if 
q = xz|yw separates x, y, and 0 otherwise. Then for an unrooted binary tree T on X , and 
any x, y ∈ X ,

5.2. Quartet distance on a network. To generalize Proposition 17 to a binary unrooted 
network N - on X, we begin with the following definition.

Definition 18. The quartet weight function ωN- of a unrooted network N - is defined by

where wT(s) is the quartet weight function on T .

Note that since supp(wT ) = S(T ) for each T, supp(ωN-) = S(N-). Thus by Corollary 
16, the quartet weight function ωN- is a weighted circular split system for N -.
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Figure 9. On the left, two quartet networks Qxyzw , and on the right, the 
networks Qxyzw obtained by contracting all 2- and 3-cycles and suppressing 
degree 2 nodes. For the top network ρxy (Qxyzw ) = 0 since X, y are not separated 
in the quartet. For the bottom ρxy(Qxyzw) = 1/2, since X, y are separated on 
one of the quartet trees obtained by deleting a hybrid edge from Qxyzw but 
not on the other.

Proof. If ρxy(Qxyzw) = 0, then for no T ∈ G(N-) will Txyzw be a quartet separating x, y so 
the equation holds.

If ρxy(Qxyzw) = 1/2, then Qxyzw has the two hybrid edges, which are induced from hybrid 
edges of N -. Each of these is deleted in exactly half of the 2k trees in G(N -), so 2k-1 of the 
T ∈ G(N-) have Txyzw displaying a quartet separating x, y. Thus the equation holds.

If ρxy(Qxyzw) = 1, so Qxyzw is either a quartet tree separating x,y, or has a 4-cycle with 
x,y opposite in its circular ordering, then for all T ∈ G(N-), Txyzw will display a quartet 
separating x, y, so the equation holds. □
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Definition 20. Let Qxyzw be an unrooted level-1 4-taxon network on 4 distinct taxa x, y, z, w ∈ 
X . After contracting all 2- and 3-cycles, and suppressing degree 2 nodes, we obtain a network 
Qxyjw that s etther a tree OT has a stngte (-eyjete. Let

This definition agrees with that in Proposition 17 in the case Qxyzw is a tree. An intuitive 
way of viewing the extension to networks is that only 4-cycles change the definition, and 
in that case we take the average of the values we would get for the two trees obtained by 
dropping one or the other hybrid edge in Qxyzw. See Figure 9.
Lemma 21. FOr a unrOOted level-1 netwOrk N-, with k eyeles Of size ≥ 4, and x, y, z, w ∈ X, 
let Qxyzw be an indueed unrOOted 4-taxOn netwOrk On x, y, z, w. Then
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The import of this proposition is that from the induced quartet networks on N - we can 
compute the distance dQ,N-, which is, up to scaling, dωN- , the distance from a weighted 
split system. This contrasts with computing dωN - directly from its definition, which requires 
knowing G(N -), the collection of trees on X displayed on N -. This is at the heart of our 
algorithm for network inference under the network multispecies coalescent model, as we can 
obtain information about induced quartet networks from biological data relatively easily, 
using empirical concordance factors, while information about trees displayed on the species 
network does not seem to be directly obtainable.

Furthermore, since by Corollary 16 the underlying quartet weighted split system is circular, 
we have the following.

Corollary 24. Let N - be an unrooted level-1 network. Then the distance dQ,N- arises from 
a weighted circular split system, with support S(N -).

4-73

We now define a distance function in terms of quartet networks displayed on the network.

Definition 22. Let N - be an unrooted level-1 network on X. Then the quartet distance 
dQ,N - is

Note that if N- = T is a tree, dQ,N-(x, y) reduces to the right hand side of equation (2).

The following is a network analog of Proposition 17.

Proposition 23. Let N - be an unrooted level-1 network on X, with k cycles of size ≥ 4. 
Then

Proof. Using Lemma 19, Proposition 17, and Lemma 21, for x = y ∈ X ,
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Thus given sufficient information on induced quartet networks to compute dQ,N- even 
approximately, methods for analyzing distances from weighted circular split systems, such 
as the NeighborNet algorithm, can be productively applied, as we show in the next section.

6. Splits networks from the network quartet distance

The last several sections have shown a path toward obtaining, under the NMSC model, the 
distance associated to the weighted circular split system ωN-. But for this to have value, we 
need to be able to extract from this distance information about features of N-. While there 
is a well developed theory of split graphs associated to distances from such split systems, 
and split graphs are networks, one can not hope that such a split graph give N- directly. In 
particular split graphs have no directed edges, and are generally not level-1.

Our goal in this section is to investigate the relationship between a level-1 network and 
the split graphs obtainable from the quartet distance for that network. We develop precise 
rules by which one can interpret features in a split graph for ωN - to obtain much information 
on the topological features of N-. While there is some overlap between the results in this 
section and those of [13], we give a complete presentation as is necessary for our more detailed 
results.

In a level-1 unrooted network N-, it is convenient to give terminology for several types of 
edges, in addition to the already defined tree and hybrid edges. A cycle edge is an undirected 
edge in a cycle. A cut edge is an undirected edge that is not a cycle edge. Thus any edge is 
either a cut edge, a cycle edge, or a hybrid edge. The cut and cycle edges together comprise 
the tree edges. A k-cycle is composed of k - 2 cycle edges along with 2 hybrid edges.

For any T ∈ G(N-), the edges of T arise from those of N- in one of the following ways:
(1) An edge e of T is obtained directly from an edge of N-. Then e is called a cycle or 

cut edge of T according to its classification in N-.
(2) An edge e of T is obtained from several edges of N- by suppressing internal nodes 

of degree 2. Since N- is level-1, at least one of these conjoined edges of N- is a cut 
edge, so we refer to e as a cut edge of T .

Note that edges in 2-cycles and 3-cycles on N- induce only cut edges on any T ∈ G(N-). 
For k ≥ 4, a k-cycle on N- will induce k - 3 cycle edges on any T ∈ G(N-), since one 
hybrid edge is deleted, one hybrid edge is conjoined with its descendent cut edge, and one 
cycle edge is conjoined with a cut edge.

A split s ∈ S(N- ) is called a cycle split (respectively, a cut split ) if s = se for a cycle edge 
(respectively, a cut edge) e on some T ∈ G(N-). Note that the cut splits are precisely those 
splits obtained from N- by deletion of a cut edge, and that these two classes of splits form 
a partition of S(N-).

The following lemma indicates that the splits from a network N- will show no sign of any 
2- or 3-cycle on it.

Lemmma.25. Let N- Le the gτaph oLtained frem ateuetl Linaj netw^ck, N- Lj COtactng 
each 2ي- and 3-cyc.te to a uetex, and then suppressing degree 2 nodes. Then ωN- = ωΝ-.

Proof. If one or the other hybrid edge in a 2- or 3-cycle on N- is deleted, the resulting 
network has the same topology as contracting the cycle. Thus N- and N- display the same 
topologicaltrees. □ 
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Lemma 26. Let s ∈ S(N-) ؛or a tevet-1 binary network N-. Then the ؛ottowi ng are 
equivatent:

(1) s ∈ S(T) ؛or att T ∈ G(N-),
(2) On every T ∈ G(N-) there is a eut edge e sueh that s = se,
(3) s s Compatibte wiith eυeτj s' ∈ S(N ).

Proo؛. Clearly (2) implies (1). To see (1) implies (2), suppose on some tree T ∈ G(N-) there 
is a cycle edge e with s = se. Then e arises from a cycle edge in N- and that cycle has 
hybrid edges e1 and e2, where e1 was deleted to form T. Then no tree T' ∈ G(N-) which is 
formed by deleting e2 will display s. This contradicts (1).

That (1) implies (3) is immediate. For the converse, observe that since N- is binary, 
so is each T ∈ G(N-). But the set of splits on a binary tree is maximal with respect to 
compatibility,so(3)implies(1). □

While Lemma 26 already implies that a split from a cycle edge in some T ∈ G(N-) will be 
incompatible with some split from a cycle edge on another tree in G(N-), this observation 
is refined by the following.

Lemma 27. Let SS ∈ S(N-) ∫oτ a tevtt binary network N-. Then SS are Irneompatibte 
and ont if there are Cjete edges e,e' (not necessarit distinct) on N- in the same Cjete ؛
C, and T,T' ∈ G(N-) Sich that e,e' indrcces Cjete edges e,e' on T,T' with s = SS = s⅛, 
and T,T' were Obtainedby deteting Tiffferernt hybrid edges from C.
ProoJ Consider incompatible s, s' ∈ S(N-). Then by Lemma 26, there exist T, T' ∈ G(N-) 
with cycle edges ج, ج ' where s = se,s' = se'. The edges ج, ج ' are induced from unique cycle 
edges e,e' in N-.

Suppose e, e' are in cycles C = C'. Now T determines a hybrid edge of C whose removal 
from N-, along with the removal of e, determines the split s, and T' similarly determines 
a hybrid edge of C'. Removing these two hybrid edges, together with one hybrid edge from 
every other cycle on N- determines a tree T'' ∈ G(N-). But T'' has both s, s' as displayed 
splits, which implies they are compatible. Thus e, e' must be in the same cycle on N-.

Moreover, T, T' must be obtained by deleting different hybrid edges in the cycle containing 
e, e', since if the same hybrid edge were deleted, the splits s, s' would be displayed on a 
common tree, and hence be compatible.

For the converse, suppose e, e' are cycle edges in cycle C of N-, which induce cycle edges 
in trees T, T' ∈ G(N-), where T, T' are obtained by deleting different hybrid edges in C. Let 
X = X0 لا X1 لا X2 لا · · · لا  Xn be the partition of X obtained from the connected components 
of the graph resulting from removing all edges of C from N-. Suppose further that the 
ordering of these sets reflecting the ordering around the cycle, so that X0 is descendants of 
the the hybrid node, and X1, Xn are its neighbors, etc. Then, without loss of generality, we 
may assume that split se displayed on T is X0 ∪ · · · ∪Xk∣X⅛∣] ∪ · · · ∪Xn with 1 ≤ k ≤ n — 2, 
while the split se displayed on T' is X0 ∪ Xn ∪ · · · ∪ Xk∣ι X ∪ · · · ∪ X] with 2 ≤ € ≤ n — 1. 
Thesesplitsareincompatibleasclaimed. □

Split networks [14] provide a valuable visual tool for interpreting split systems. In these, 
each edge is colored by exactly one of the splits, with each split possibly coloring multiple 
edges. Deleting all edges with a common color leaves two connected components, with taxon 
labels on the components giving the split sets. Unfortunately split networks are generally 
not uniquely determined by split systems. However, since the split systems of interest here 
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arise from level-1 networks N -, and are thus circular by Corollary 16, we can impose a few 
additional requirements. The Circular Network Algorithm of [9] is the key to both showing 
split networks with additional properties exist in this case, and producing them in specific 
instances.

Recall that the frontier of a planar graph is the subset of edges adjacent to the unbounded 
component of its complement in the plAné (more informally, the “outside” edges of the 
graph). A graph is outer-labelled if the labelled vertices are in the frontier. Also, a blob on 
a network is a maximal set of edges in undirected edge-intersecting cycles.

Lemma28. Let S = ScUSi be a, eheeutar spittt syjstem, with Sc the subset 0؛spittts eompatible 
with all others in S, and Si those incompatible with at least one other. Then the Circular 
Network Algorithm o9]؛] produees an outer-labelled planar split network NS sueh that

(1) I؛s ∈ Sc, then s eolors only one edge in the ؛rontier o؛NS, whieh does not lie in any 
blob.

(2) I؛ s ∈ Si it eolors preeisely 2 edges in the ؛rontier (and possibly additional edges not 
in the ؛rontier) whieh lie in the same blob.

(3) Ii s,s' ∈ Si aτe tueompatbte, then they eotor r∣Ontier edges n the .same btob.
Proo؛. The Circular Network Algorithm works iteratively, by adding new vertices and edges 
as each split is considered in some order, to produce an outer-labelled split graph [9].

We may assume the trivial splits are in the system. The algorithm begins with these splits 
represented by a star tree, and the stated properties hold. Each time an additional split 
is considered, the algorithm ‘duplicates' parts of the frontier, composed of edges labelled 
by splits incompatible with the new one, joining the duplicated section to the old part by 
‘ladder' edges colored by the new split.

In the case of the new split s ∈ Si, this makes the frontier grow by 2 edges colored by the 
new split, and ensures that any previous splits incompatible with it that only colored one 
frontier edge will color two. Any two edges colored by the same split lie in the same blob, 
as do frontier edges coloring incompatible splits.

If the new split s ∈ Sc, then the duplication is of a single vertex, and only one edge is 
introduced and colored by that split. Moreover, this edge is not in a blob. □

The features of the split graphs produced by the Circular Network Algorithm above can 
be characterized in a less algorithm-dependent way. We call an outer-labelled planar split 
graph irontier-minimal if it contains the minimal number of frontier edges of all outer- 
labelled planar split graphs for the split system it depicts.

Proposition 29. Any irontier-minimal split graph ior a eireular split system S has the 
properties listed in the previous lemma. The Cireular Network Algorithm produees a irontier- 
minimal split graph.

Prooi. First, observe every split in S must label at least one frontier edge, else deletion of 
edges labelled by s would not disconnect the graph.

Recall the operation of contraction of a split s in a split network for S , which identifies 
the two endpoints of each edge labelled by s and deletes the edge, yields a split network for 
S \ {s} (Lemma 5.10.1 of [14]). Note that frontier edges resulting from contraction must 
arise from frontier edges in the original split network. If s, s' ∈ Si are incompatible splits in 
a split network for S , then contracting all other splits we obtain a split network depicting 
only these two. Now if only one frontier edge in this split graph were labelled by s, deletion 
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of that edge must separate the graph. But then, since s' is incompatible, s' must label edges 
whose deletion disconnects each of the components obtained by deleting the s edge. But 
this implies that deleting only the s' edges separates the graph into at least 3 components, 
which contradicts that it is a split graph. Thus s labels at least 2 frontier edges.

Thus any split graph has at least |Sc| + 2|Si| frontier edges, and since this minimal count 
is achieved by the split graph output by the Circular Network Algorithm, a frontier-minimal 
split graph has |Sc| + 2|Si| frontier edges.

Since each element of Si colors at least two frontier edges, and each element of Sc at least 
one, given the total count of frontier edges in a frontier-minimal split graph, it must be that 
elements of Si color precisely two frontier edges, and elements of Sc precisely one.

Next, the one frontier edge labelled by an element of Sc cannot lie in a blob, else deleting 
it would not disconnect the graph.

If s ∈ Si, then for any s' ∈ Si incompatible with s, contracting all splits but s, s' in a 
frontier-minimal split graph must give a split graph with 4 frontier edges. By considering all 
possible such graphs, these edges must form a 4-cycle (with edges labelled in order s, s', s, s'). 
Since these four edges are in the same blob on this graph, they must be in the same blob in 
theoriginalgraph. □

In [9] it is shown that the Circular Network Algorithm produces a split graph minimal 
in a different sense: it has the smallest number of edges among all split graphs whose 
bounded faces are parallelograms (i.e., quadrilaterals with opposite sides sharing colors). 
This addresses internal structure of the blobs, which our notion of frontier-minimal ignores. 
We have not investigated whether the two notions of minimality are equivalent, nor to what 
extent a frontier-minimal split graph for a circular split system is unique.

The tree of blobs of a graph is the graph obtained by contracting edges and vertices in 
each blob to a single vertex.

Corollary 30. The tree of blobs of a level-1 network N - is isomorphic to the tree of blobs 
of a frontier-minimal split network for S(N-).

Proof. The tree of blobs of N - displays precisely those splits associated to cut edges of N -. 
By Lemma 26, these are precisely the splits compatible with all others in S(N-). But by 
Proposition 29, the tree of blobs of a frontier-minimal split graph displays the same set. □

To go further, we investigate how the structure of a blob (a cycle) in N- corresponds to 
a related structure of a blob (not generally a cycle) in a frontier-minimal split network such 
as S(N-). The following, which characterizes splits associated to a cycle in N-, follows 
straightforwardly from definitions, so a formal proof is omitted. The argument is readily 
supplied by considering Figure 10, which depicts a single cycle in N -, and the two networks 
obtained from it by deleting one hybrid edge.

Lemma 31. Suppose a level-1 unrooted network N - has k cycles of size ≥ 4. Let C be an 
m-cycle on N-, m ≥ 4,,and X = X0 U X١ U X^ U - - - U Xm4 the patttion 0؛ X Obtatned 
from the connected components of the graph resulting from removing all edges of C from N -. 
Suppose ؛urther that the ordering o؛ these sets reflects the ordering around the cycle, so that 
X0 is descendants o؛ the the hybrid node, and X1, Xm-1 are its neighbors, etc. (see Figure
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Figure 10. A cycle in a level-1 network (L) and the two simpler networks 
(R) produced from it by deleting one hybrid edge. The cycle edges in these 
networks that arise from the original cycle are shown in blue. If N - has a 
single cycle, then the networks on the right are the two trees in G(N -).

10). Then the cycle splits in S(N -) arising from edges in C are

(3) X0 ∪ X1 ∪ · · · ∪ Xi |Xi+1 ∪ · · · ∪ Xm-1 , 1 ≤ i ≤ m — 3,
(4) X0 ∪ Xm-1 ∪ · · · ∪ Xj +1 |Xj ∪ · · · ∪ X1 , 2 ≤ j ≤ m — 2,

all with ωN- (s) = 2k-1. Those splits of the form (3) (respectively (4)) are compatible with 
all others of that form. Spits of the form (3) are incompatible with those of the form (4). 
Splits of the form (3) or (4) are compatible with all other elements of S(N -).

Moreover, (X0 , X1 , X2 , . . . , Xm-1 ) is the only circular ordering of the Xi consistent with 
these splits, and with Xm = X0 the number of cycle splits arising from C that separate Xi 

j⅛om XiW s
m— 3 if i = 0,m —1,
1 if i = 1,m —2,
2 otherwise.

Lemma 32. A frontier-minimal split graph for the cycle splits S(C) arising from a single 
cycle C of size m ≥ 4 in N- as in Lemma 31 forms a single blob whose frontier is a 
cycle of size 4(m — 3). Moreover, there are distinct vertices labelled in circular order by 
X0, X1, . . . , Xm 1 along the frontier, with the number of edges between labels Xi , Xi +1 equal 
to the number of splits in S(C) that separate Xi , Xi +1.

Proof. Consider two splits associated to the cycle. By Lemma 31, they are either incompat­
ible, or they are both incompatible with a third split from the same cycle. By Lemma 28, 
they therefore color edges in the same blob. Thus there is only one blob in the split graph.
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Figure 11. A m-dart, for m = 5, 6, 7 respectively. The frontier edges, shown 
in bold outline, are as characterized in the text. The outer vertices labelled by 
the Xi are the corners. The point of the dart is the unique corner which is m -3 
frontier edges away from both of its closest corners. This figure was obtained 
by applying the Circular Network Algorithm implemented in SplitsTree4 [12] 
to appropriate distance matrices.

Since by Lemma 31 there are 2(m - 3) splits associated to the cycle, by Lemma 28 the blob 
has 4(m - 3) edges in its frontier.

Since from Lemma 31 there are splits separating any Xi, Xj , i = j, the Xi must label 
distinct vertices. Since any split separating Xi and Xi+1 must label at least one edge in any 
frontier path between them, the number of edges in a minimal frontier path between Xi and 
Xi+1 is at least the number of splits separating them. This then implies that the Xi must 
be in order along the frontier, at the distances claimed. □

Suppose C is an m-cycle in N -. If m = 4 this lemma indicates a frontier-minimal split 
graph for the splits associated to C will also be a 4-cycle, that is, the undirected version of 
the cycle. However, if m ≥ 5, the split graph is more complicated, having frontier as those 
depicted in the examples of Figure 11. We refer to such blobs as m-darts. The corners of 
the m-dart are the vertices on the frontier of the dart that are labeled by sets of taxa Xi. 
The point of the m-dart is the unique corner that is m- 3 frontier edges away from the two 
closest corners, which is labelled by X0. Thus, in a closed walk around the frontier of the 
dart, starting at the point, the number of edges between consecutive corners is

m- 3,1,2,2,...,2,2,1,m- 3.

Putting all this together, we have the following.

Proposition 33. Given a level-1 unrooted network N -, the frontier of any frontier-minimal 
split graphs for S(N -) can be obtained by the following steps:

(1) Contract any 2- and 3-cycles to vertices,
(2) Undirect the hybrid edges in any 4-cycle,
(3) Replace any m-cycle, m ≥ 5 with an m-dart pointed at the hybrid node, with the 

m cut edges incident to the cycle connected to the corners of the dart in the same 
circular ordering as in the cycle.

Proof. By Lemma 25, we may assume N - has no 2- or 3-cycles. Let k denote the number 
of cycles of size ≥ 4 on N -, and G a frontier-minimal split graph for S(N -).

By Corollary 30, the tree of blobs of N - and the tree of blobs of G are isomorphic, 
so we identify them. Moreover, since cycles in N - are vertex-disjoint, each cycle of size 
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m ≥ 4 on N- gives rise to a node of degree m in the tree of blobs, so the tree of blobs 
has k multifurcations. This implies G has at least k blobs. Note however, though it could 
conceivably have more than k blobs, since if two shared a vertex they would be collapsed to 
a single node in the tree of blobs.

By Proposition 29 property (3) frontier edges colored by splits associated with a single 
cycle of N- all lie in a single blob of G, since Lemma 31 shows two such splits are either 
incompatible, or both incompatible with a third. Thus G has at most k blobs, hence exactly 
k, and none share a vertex. Moreover, each blob has only splits associated to a single cycle 
coloring its frontier edges. Thus there is a one-to-one correspondence between cycles in N- 

and blobs in G, according to the coloring of frontier edges.
Fixing a cycle C on N-, and contracting all edges of G not labeled by splits associated to 

C preserves the frontier of the blob of G corresponding to C. By Lemmas 32, this frontier is 
either a 4-cycle (if m = 4) or an m-dart (if m ≥ 5). Moreover, the partition of X according 
to the connected components of N- with C deleted is the same is the same as that from 
the labeled corners of the 4-cycle or m-dart, with the same circular ordering, and in the case 
m ≥ 5 the descendants of the hybrid node of C label the dart's point. Thus both C in N- 

and the blob of G associated to C must map to the same multifurcation in the tree of blobs, 
and G Iusthavetheformdescribed. □

Figure 12 illustrates this proposition for a particular network N-. In that figure the 
frontier-minimal split graph produced by the Circular Network Algorithm, as implemented 
in SplitsTree4, is shown.

Importantly for applications, one can apply Proposition 33 “in reverse” to obtain informa­
tion about the original network N+ from the frontier-minimal split graph for S(N-). Note 
that the correspondence between level-1 networks N- and frontier-minimal split graphs as 
described in Proposition 33 is not one-to-one. In particular, one loses all information about 
2- and 3-cycles, as well as an indication of which node in a 4-cycle is the hybrid one. How­
ever, for cycles of size m ≥ 5, the form of an m-dart allows one to infer both the existence 
and ordering of an m-cycle in N- and which node on it was hybrid. In conjunction with 
previous sections of this paper, this recovers the main result of [3]:

Corollary 34. From the gene tree quartet frequencies of the NMSC model on a level-1 
network N+ with generic numerical parameters, one can identify the network obtained from 
N- by suppressing 2- and 3-cycles and undirecting 4-cycles.

Beyond providing a different argument for this corollary, Proposition 33 provides theoret­
ical underpinnings to a practical algorithm for (partial) network inference from a sample of 
gene trees, as outlined in the next section.

7. The NANUQ algorithm for inference of phylogenetic networks

Here we revisit and formalize the NANUQ algorithm sketched in the introduction.

Algorithm (NANUQ).
Input: A collection of unrooted topological gene trees on subsets of an taxon set X, such 

that each 4-element subset of X appears on at least one tree; andtwo hypothesis testing levels 
0 < α, β < 1.

(1) For each subset of 4 taxa, determine the empirical quartet counts across the gene 
trees for each of the 3 resolved topologies. If all four taxa are not on a gene tree,
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Figure 12. An unrooted level-1 network N- (top L), the network obtained 
from it by contracting 2- and 3-cycles and undirecting 4-cycles (top R), and 
the split graph (bottom) obtained from it by Proposition 33. Note the split 
graph has a 4-cycle, a 5-dart, and a 6-dart, arising from the 4-, 5-, and 6-cycles 
of N-. As described in Section 8, the split graph was obtained by applying 
the NANUQ algorithm to a large simulated data set of gene trees, and drawn 
by SplitsTree4 [12].

that tree does not affect the counts. These 3 counts ؛orm an empirical vector quartet 
count concordance factor (QCCF) ؛or the 4 taxa.

(2) For each set o4 ؛ taxa, apply two statistical hypothesis tests to its QCCF, with levels 
α, β, as described below in subsection 7.1, to determine whether to view the QCCF as 
supporting (1) a star tree, (2) a resolved tree, or (3) a 4-cycle network on the taxa. 
In cases (2) and (3), use the maximum likelihood estimate o؛ the topology ؛rom the 
QCCF to determine which tree or network is supported.
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(3) Use the quartet networks/trees from the previous step to construct a network quartet 
distance between taxa, as in Definition 22, with the modification described below in 
subsection 7.2 for unresolved quartets.

(4) Use the NeighborNet Algorithm [6] to determine a weighted circular split system ap­
proximating the quartet distance.

(5) Use the Circular Network Algorithm of [9] to determine a split graph for the circular 
system.

Output: A split graph to interpret via Proposition 33 for features of N +.

To analyze the running time for this algorithm, suppose |X | = n and the input set contains 
m trees. First note that tallying displayed quartets in Step (1) can be done in time O (n4 m), 
as was shown in [19]. The hypothesis tests for Step (2) are performed in constant time for 
each set of 4 taxa, for a total of O(n4 ). Step (3) in which the distance is computed requires 
running through the inferred quartet trees and networks for an additional time of O(n4 ). The 
NeighborNet algorithm in Step (4) takes time O(n3 ) [6]. Since NeighborNet might produce 
positive weights for all O(n2 ) splits consistent with some circular ordering of the taxa, the 
time for the Circular Network Algorithm in Step (5) is O(n4 ) [9]. Thus the total time for 
NANUQ is O(n4m).

We implemented Steps (1-3) of the NANUQ algorithm in an R package MSCquartets, 
with a function accepting an input file of gene trees, and producing an output file of the 
distances. When this file is opened by SplitsTree4 [12], steps (4) and (5) are performed. 
With these implementations, we have found step (1) by far dominates computational time, 
as is consistent with this analysis. However, the use of R probably slows computations 
considerably over what could be achieved.

The package MSCQuartets is currently available on request from the authors, and will be 
made publicly downloadable after further refinement.

7.1. Testing Empirical Quartet Counts. The statistical tests of step (2) of the NANUQ 
algorithm require more explanation.

We use a hypothesis testing framework, in which two tests are performed. One test is used 
to decide whether the topological signal in a QCCF is weak enough that rather than having 
any belief in a particular resolved network or tree, we should view the quartet as unresolved. 
The second test is used to decide whether the QCCF supports a 4-cycle network or a tree. 
The particular network or tree is then chosen via maximum likelihood.

These tests are performed for each set of four taxa as if they are independent. Of course 
they are not independent, since the quartet trees they consider are drawn from the same 
gene trees for all sets of 4 taxa, and the gene trees themselves are presumed to have formed 
in the same species tree or network. However their lack of independence depends in part 
upon the species tree or network, which is still unknown.

Suppose for a set of 4 taxa, one has tabulated the counts of the quartets displayed on 
the gene trees (ignoring those for which some of the taxa are missing) to obtain the QCCF. 
Assuming the NMSC model, these counts can be viewed as a multinomial sample from 
the distribution given by the theoretical CF. Normalizing by the total count, we obtain an 
empirical CF which estimates the theoretical one. Although in the tree-like case this is 
unlikely to lie exactly on the set where theoretical ones must, an appropriate statistical test 
can be used for deciding whether the QCCF supports a quartet tree or a network.
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For a specific QCCF we first perform a hypothesis test for a star tree. More formally with 
null hypothesis

H0 : The QCCF arises from a 4-taxon star tree.
the alternative is that it does not, which means it may have arisen from either a resolved 
tree or a network (or a more complicated model). As the star tree has theoretical CF 
(1/3, 1/3, 1/3), we perform this test by computing the likelihood ratio statistic from the 
three quartet counts, using a χ2 distribution with 2 degrees of freedom to compute a p- 
value.

With a chosen level β for the test, we reject the star tree hypothesis for p-values smaller 
than β . (Note that β is used here as the probability of a type I error, not the probability of 
a type II error.) For larger p-values, we view the QCCF as supporting the star tree.

Under the NMSC on a binary network, with enough data (sufficiently many gene trees), 
we should always reject star trees. However, with finite and noisy data, this test can be 
important to prevent interpreting a QCCF that is nearly uniform from indicating support 
for a particular tree or network topology. Assuming the data was produced by the NMSC 
on a binary level-1 network, performing this test has no effect on the asymptotic behavior 
of the algorithm as the amount of data increases. Nonetheless, performing it can suppress 
weak and possibly erroneous signals in finite datasets.

Next we perform a test for support for a tree. We formulate a null hypothesis of

H0 : The QCCF is tree-like.

with alternative that it is not tree-like. However, assuming the NMSC model underlies our 
data, and we have restricted our presumed parameter space to avoid non-tree-like CFs from 
32-cycles (as discussed in subsection 3.2), the alternative can be interpreted as the QCCF 
arises from a quartet network with a 4-cycle.

Geometrically, the model for the null-hypothesis is the 3 line segments in the left simplex 
of Figure 4. The alternative model is the remainder of the simplex, the complement of the 
3 line segments. For the test, we compute the likelihood ratio statistic for this hypotheses. 
Using a standard χ2 distribution with 1 degree of freedom (the asymptotic distribution 
for a resolved tree) to judge its value would be a standard approach. However, since the 
model has a singularity at the center of the simplex, and justification for the χ2 depends 
on the model be approximated well by its tangent line, for finite sample sizes this may 
behave poorly in the vicinity of the singularity. While the region on which the asymptotic 
distribution behaves poorly shrinks as the sample size grows, it is present for any finite 
size. However, this particular model has been studied in [2], and an alternative approximate 
distribution, dependent on the sample size, has been developed to address this behavior near 
the singularity. We therefore adopt the test of that work for the likelihood ratio statistic, 
which returns a p-value.

For the algorithm with a chosen level α, we interpret a p-value greater than α as support 
for a tree. The particular tree topology is then chosen as the maximum likelihood estimate 
from the QCCF. This is simply the quartet topology with the largest count in the QCCF. 
A p-value less than α is interpreted as support for a 4-cycle network. The particular 4-cycle 
topology is taken as the maximum likelihood estimate from the QCCF, which is determined 
by which of the 3 triangular regions in the simplex it lies, as in Figure 4.

With two tests being performed in this way, it is possible that for a particular set of 4 
taxa we find we fail to reject the first hypothesis (that the QCCF arises a star tree) but 
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reject the second (that it arises from a tree). This can be forced to occur by taking β quite 
small while α is large, but it may occur for less extreme values. In a such a situation one 
must give priority to one test over the other. We choose to prioritize the first test, so that 
in such a case we view the tests as supporting a star tree, on the principal that evidence for 
hybridization should be judged by the strictest standards.

The output of NANUQ will depend on the choices of α and β , with smaller values of α 
requiring stronger evidence for 4-cycles, and smaller values of β requiring stronger evidence 
for any resolution of the network. Since “empirical” gene tree collections are likely to be 
noisy from the error introduced by inferring them from gene sequences, it is reasonable to 
set α quite small, which imposes a high standard for evidence of hybridization. There is 
no reason that α and β should be chosen to have equal values, and we believe appropriate 
choices of both will depend upon the level of noise in the data. In particular, a priori choices 
of conventional values such as 0.05 may be poor choices. Investigating the impact of a variety 
of choices of α and β on the final split graph is a necessary part of the analysis. We will 
briefly discuss this issue in Section 8 for a few simulated and empirical data sets, but defer 
more detailed comments to a future paper directed at empiricists.

The testing framework described here treats any QCCF judged non-tree-like as supporting 
a 4-cycle. As shown in subsection 3.2, the presence of a 32 -cycle on a quartet network 
can, however, lead to a non-tree-like CF under some circumstances. By an assumption of 
sufficiently long edges descended from all hybrid nodes, one can rule such behavior out, using 
Proposition 10. Nonetheless, an empiricist may prefer not to make such an assumption. 
While in a future version of NANUQ we intend to offer a choice of using an additional 
statistical test for 32 -cycle networks, such a test will also be nonstandard, due to the model 
being composed of three crossing line segments, and thus requires additional theoretical 
development. Moreover, the fundamental non-identifiability problem that some CFs may 
arise either from a 4-cycle or a 32 -cycle means that in some circumstances a quartet network 
could still be miscalled.

7.2. Quartet distance with unresolved quartets. The quartet distance defined for a 
binary network in Section 5 required that all quartet networks, after contraction of 2- and 3- 
cycles be binary, with positive lengths for all tree edges. However, in step 2 of the algorithm 
we include a hypothesis test for a star tree to reduce the possibility of calling a particular 
resolved tree or 4-cycle when the QCCF is nearly uniform and thus give weak evidence as 
to what the resolved topology should be. Thus we must explain how we modify the quartet 
distance computed in step 3 to deal with unresolved quartets.

We seek to modify the distance defined in Definition 22. To do this, we need only extend 
the Definition 20 of ρxy (Qxyzw ). Guided by the results in [19] on quartet distances for non­
binary trees, we set

ρxy (Qxyzw) = 1 if Qxyzw is a star tree.
In particular, this means a star tree is viewed as separating any two taxa on it.

Under our assumptions of a binary network, this modification has no impact on the as­
ymptotic behavior of the algorithm under the NMSC model, as the chance of calling any 
star trees through the hypothesis test goes to 0 as the size of the data set grows.

7.3. Statistical consistency. An inference procedure is statistically consistent for a partic­
ular model if the probability of inferring the correct result from a data set of size m produced 
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in accord with the model approaches 1 as m approaches ∞. Since the NANUQ algorithm 
depends upon choices of two significance levels, α and β, these choices must be taken into 
account in formulating an appropriate notion of consistency for it.

Assuming the unknown network is binary, the value of 0 < β < 1 will not matter in the 
limit as the data set grows. Informally, this is a consequence of the fact that the probability 
of rejecting the null hypothesis of a star tree will approach 1 for each choice of 4 taxa.

However, even for large data sets we expect to reject the null hypothesis of a tree even 
when the quartet network is tree-like with probability α in the limit. In other words, we will 
incorrectly call a positive proportion of the tree-like networks as 4-cycle networks. Even if we 
use a small value of α, this will put some error in the quartet distance, which the NeighborNet 
algorithm may not fully remove in projecting to a circular split system. Although in practice 
this error may be ‘clear' to the human eye in viewing the split network, and easily removed 
by filtering out splits with small support, analyzing this error theoretically would be rather 
involved as it depends in understanding both the error introduced in the quartet distance 
and the impact of NeighborNet on it.

One solution to this problem of understanding the asymptotic behavior of the algorithm is 
to choose a sequence of values of αm dependent on the sample size m so that as m increases 
the probability of calling correct tree-like networks (avoiding type 1 errors) goes to 1 while 
the probability of calling correct 4-cycle networks (avoiding type 2 errors) also goes to 1. 
Taking this approach, we formulate the following.

Proposition 35. Under the NMSC model on a binary level-1 metric phylogenetic network 
N+, for generic numerical parameters in which all induced quartet networks with 32-cycles 
are tree-like, there exists a sequence α1,α2,..., with 0 < αm < 1 and αm → 0 such that 
for any 0 < β < 1 the NANUQ algorithm with significance levels αm and β on a data set 
of m gene trees will, with probability approaching 1 as m → ∞, infer the binary unrooted 
phylogenetic network associated to N+ by Proposition 33.

Proof. It is enough to show that the αm can be chosen so that with probability approaching 1 
the quartet distance computed in the NANUQ algorithm exactly agrees with the theoretical 
one based on the true network. This will follow from showing that as m → ∞ with probability 
approaching 1 the hypothesis tests performed will all reject a star tree and either fail to reject 
a tree-like quartet network when the true one is tree-like, or reject a tree-like quartet network 
when the true one is non-tree-like.

Consider first the hypothesis test for a star tree for a particular choice of 4 taxa. While 
the result we need for this test is essentially a standard one, that the test is consistent, we 
give a full argument as an orientation to what will follow for the second test.

Since the network is binary, the expected CF is (p1, p2, p3) = (1/3, 1/3, 1/3). Then, since 
the likelihood ratio statistic λ for a sample involves the supremum of the log likelihood over 
the alternative hypothesis, it is easy to see

λ ≥ λ 1

where λ1 is the likelihood ratio statistics for a null hypothesis of (1/3, 1/3, 1/3) vs. an alter­
native of (p1, p2, p3). We view a sample of size m with QCCF (m1,m2, m3) as arising from
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where X is a random variable. By the law of large numbers X converges in probability to
c = 2(p1logp1 +p2logp2 + p3logp3 — log(1/3)) > 0.

Thus for any e > 0 there exits an M such that m > M implies P(X > c/2) > 1 — e, and thus 
that P(λ > mc/2) > 1 — e. With any significance level 0 < β < 1 for the χ2 distribution, 
we thus have that for any e > 0 there exists an M such that if m > M then the probability 
of rejecting the null hypothesis is > 1 — e. Thus as m → ∞ the probability of rejecting the 
null hypothesis goes to 1. As there are only finitely many 4-taxon sets, the probability of 
rejecting the null hypothesis for all also goes to 1.

Turning now to the hypothesis test for a tree-like quartet network on 4 specific taxa, 
suppose first the true CF is tree-like. The likelihood ratio statistic is judged according to 
the distribution of the random variable Wm = W described in Theorem 3.1 of [2]. Since 
the true network is binary, from results in that paper Wm has a limiting distribution as 
m → ∞, which is χ12. To ensure that the probability of failing to reject the null hypothesis 
approaches 1 as m → ∞, it is enough to choose any sequence of significance levels α1, α2, . . . 
with αm → 0.

If the true CF is non-tree-like, however, we must pick significance levels more carefully. 
Without loss of generality, suppose the true CF is (p1, p2, p3) with p1 ≥ p2 > p3. Then the 
likelihood ratio statistic satisfies

λ ≥ λ1

where λ1 is the likelihood ratio statistics for a null hypothesis of tree-like-ness vs. an alter­
native of (p1, p2, p3). If for a sample of size m the QCCF is (m1, m2, m3), then

where Y is a random variable. By the law of large numbers Y converges in probability to

d = 2(p2 logp2 I p3logp3 - (p2 I p3) log((p2 I p3)/2) > 0.

Thus for any e > 0 there exits an M such that m > M implies P(Y > d/2) > 1 — e, and 
thus that P(λ > md/2) > 1 — e. Let am = P(Wm > md/2). Then we have that for any e > 0 
there exists an M such that for m > M the probability of rejecting the null hypothesis is
> 1 — e. Thus as m → ∞ the probability of rejecting the null hypothesis goes to 1. As the 
Wm converge in distribution to a χ2, one also sees that am → 0.

Since there are a finite number of non-tree-like subsets of 4 taxa, we choose αm to be 
the minimum of the am for these subsets, to ensure the probability of rejecting the null 
hypothesis for all of them goes to 1 as m → ∞. As am → 0, this sequence has all the desired 
properties. □
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Note that the assumption of the above proposition that all 32 -cyles are tree-like can be 
justified by, for example, Proposition 10 by requiring that no edges descending from hybrid 
nodes have length less than - log(4/5).

Although we do not give a formal proof here, NANUQ remains statistically consistent 
even in the absence of incomplete lineage sorting. Informally, one can “turn off ” ILS in 
the multispecies coalescent model by shrinking all population sizes on the species network. 
Equivalently, if the species network's branch lengths, measured in coalescent units, go to 
∞, then the distribution of rooted topological gene trees approaches that of a hybridization 
model with no ILS. One can thus establish consistency either by taking appropriate limits in 
the argument above, or by analyzing quartet concordance factors for the pure hybridization 
model directly.

7.4. Sources of Error. While NANUQ is a statistically consistent (in the precise sense of 
Proposition 35) method of inferring certain network features from a collection of gene trees 
produced by the NMSC model, in practice it must be applied to a finite set of inferred gene 
trees. Possible sources of errors of conclusions drawn from NANUQ include:

(1) Input of incorrect gene trees, due to their inference from sequence data,
(2) Small sample size (number of gene trees),
(3) Miscalls of evidence for/against hybridization in individual quartets, in step 2,
(4) The NeighborNet Algorithm's pro jection of the split system onto a circular one, in 

step 4,
(5) The presence of non-tree-like 32 -cycles on some induced quartet networks,
(6) NMSC model misspecification due to any of:

(a) a non-level-1 network,
(b) structure within populations,
(c) continuous gene flow between populations.

Thus one should not expect empirical data to necessarily lead to a split graph exactly 
conforming to form described by Proposition 33.

Note that the algorithm of [20] offers an alternative to NeighborNet that might reduce the 
error arising in passing to a circular split system from the quartet distance. However, this 
has not been implemented in general purpose softwares yet, so we were unable to test its 
performance.

We have chosen not to suggest any automatic interpretation of the output of NANUQ, such 
as a mechanism for producing the closest split network (by some measure) that conforms 
exactly to the form described by Proposition 33. Thus the user must visually consider 
the output, which shows some of the error. In particular, SplitsTree offers a capability of 
removing splits with small weight from a split graph, and this can be useful for removing 
some of the noise remaining after pro jecting onto a circular split system.

8. Examples

In this section we present three examples of data analysis with NANUQ. The first uses 
a simulated data set of gene trees (without any gene tree inference error), the second the 
well-known and well-studied yeast data set of [21], and the third a butterfly data set of [16]. 
For the empirical data sets, we use gene trees previously inferred from genetic sequences.
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Figure 13. The species network N+ of Example 36. See Newick notation in 
text for branch lengths and hybridization parameters.

Figure 14. Representative simplex plots from empirical QCCFs, with hy­
pothesis testing results.

Example 36. We first generated a data set o1000 ؛ gene trees using Hybrid-Lambda [32] 
with the species network N+ shown in Figure 13, with branch lengths in coalescent units and 
hybridization parameters given in extended Newick ؛ormat with internal node labels by

(((((a:1.5, (((b:.8,h1#.5:.1)x1:.2, (c:.7)h1#.5:.3)x2:.3)h2#.5:.2)x3:1.5, (h2#.5:.2, d:1.5) 
x4:1.5)x5:2, h3#.5:1.5)x6:0.5, (((e:2, (f:1, ((g:.25, h:.25)x7:.25)h4#.5:.5)x8:1)x9:1, 

(h4#.5:.5, i:1)x10:2)x11:0.5)h3#.5:2)x12:1, ((((j:4.5, (k:3.5, ((l:2.75, m:2.75)x13:.25) 
h5#.3:.5)x14:1)x15:1, ((((n:1)h6#.5:2, h6#.5:2)x16:.5, h5#.3:.5)x17:1, (o:3.5, p:3.5)x18:1) 

x19:1)x20:.25)h7#.5:.5, h7#.5:.5)x21:.25)r;
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Figure 15. Simplex plots for hypothesis test results on the yeast data set, 
with two choices of significance levels α = 10-2 and 10-4 with β = 10-1. The 
choice of β here is largely irrelevant, as no plotted empirical CFs are near the 
center. Smaller α results in fewer empirical CFs being called as supporting 
4-cycles.

This network has unrooted version N- as shown in Figure 12.
Running NANUQ on this dataset, our implementation of steps 1-3 in R required about 76 

s of computation time on a desktop computer. We considered several values of α and β for 
our hypothesis tests. To visualize outcomes of the hypothesis tests, we produced simplex plots 
such as those shown in Figure 14, which plot empirical CFs (i.e., QCCFs normalized to sum 
to 1) for each set of 4 taxa, color coded to indicate test outcomes. Due to the rather clean 
separation of empirical CFs into those close to the 3 tree-like lines and those farther from 
them we found that for 10-17 ≤ α ≤ .01 we drew the same conclusions as to which QCCFs 
supported a 4-cycle. The close clustering around the lines of points not rejected as tree-like 
also suggest little error in them, so that a rather large value of β might be sufficient to test 
for star trees. Using α = .01 and β = .05, from SplitsTree4 we obtain the split graph on 
left of Figure 12. Under the rules of Proposition 33, this leads to the correct inference of all 
features of N- inferable by the method.

Reducing the sample size to 300 gene trees, using the same value of α and β, we obtained 
the same correct inference result.

Example 37. For the second example we use a subset of the yeast data set of [21], which has 
been analyzed by multiple investigators [5, 11, 25, 26, 29, 30]. The data set consists of 106 
gene trees, each with a single allele sampled from seven Saccharomyces species: S. cerevisiae 
(Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. bayanus (Sbay), 
S. castellii (Scas), S. kluyveri (Sklu), and the outgroup fungus Candida albicans (Calb). 
Running time for NANUQ steps 1-3 was about .5 s.

Figure 15 shows the results of hypothesis tests for several choice of α and β. As all of 
the QCCFs are far from the central point of the simplex, only a quite large β would lead 
to failing to reject the star tree for any set of 4 taxa. Thus for this data set, we simply 
set β = 0.1 and call quartet networks as either resolved trees or 4-cycle networks. (We 
also see no empirical CFs plotted where those from 32-cycles that were not tree-like would
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Figure 16. Split networks inferred for yeast dataset of Example 37, with 
α = 10-2 (L) or 10-4 (R) and β = 10-1 .

Figure 17. Simplex plots showing hypothesis test results for Heliconius data 
set of Example 38.

lie, giving us some confidence in NANUQ's assumption that there are none.) We choose 
values of α = 10-4 and 10-2 as the first of these results in only the most extreme (far from 
the tree-like lines) empirical CFs being interpreted as supporting 4-cycle networks, while the 
second brings in the remaining ones that appear far from the lines. Further increasing α to 
> .08 would result in additional cal ls of 4-cycle networks, but we choose to interpret their 
deviations from the tree-like lines as being stochastic (or other) noise.

For each of the choices of α, β , the split graphs produced in NANUQ's use of SplitsTree 
are shown in Figure 16. Since these show only 4-cycles, they can be directly interpreted as 
indicating the undirected version of the true level-1 network topology relating the taxa, with 
al l 2- and 3-cycles contracted. We obtain no information on root location since no cycles 
have size larger than 4.

Example 38. For the third example we use a butterflies data set [16], which was also analyzed 
in [8]. This data set consists of 2909 loci, each with al leles sampled from seven Heliconius
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Figure 18. Split graph for Heliconius dataset of Example 38, with α = 10-40, 
β = 10-6

species: H. rosina, H. metpomene, H. cydno (tabetted chioneus), H. ethitia, H. hecate, H. p. 
sergestus, and H. pardatinus. For three o؛ these taxa, rosina, metpomene, and chioneus, ؛our 
individuats were sampted, with one sampted ؛or the other ؛our taxa. Running time ؛or steps 
1-3 o؛ the atgorithm was about 218 s. Figure 17 shows resutts o؛ hypothesis tests ؛or one 
choice of α and β, witth Ftgurre 18 the resulting spit graph.

White difficutt to see in the SptitsTree4 output, the sptit graph depicts a sptit with very 
smatt weight separating ethitia, sergestus, and pardatinus ؛rom the rest o؛ the taxa. However, 
that so؛tware attows such smatt weight sptits to be fittered out, and doing so teaves a 5-dart. 
Since the 5-dart is pointed at sergestus, the network structure that is in؛erred is as shown 
in 19. Note that with empiricat CFs ptotted so ctose to the centrat point in the simptex o؛ 
Figure 17, the choice o؛ β ted to some o؛ these being treated as unresotved quartets, giving 
the mutti؛urcations in the sptit graph ؛or the muttisampted taxa.

For this data set the 4-cycte separating the groups rosina, metpomene, chioneus and att 
the other taxa remains stabte under a wide range o؛ choices o؛ α and β. However, cyctes 
appear in the singte taxon groups i؛ β is made targer, so that star trees are rejected more 
o؛ten. Varying α to 10-17 or targer, which towers the standard ؛or in؛erence o؛hybridization, 
changes the 5-dart to a different 5-dart pointed at ethitta. Thus white the centrat 4-cycte is 
wett supported, one shoutd probabty not draw firm conctusions on other hybridizations ؛rom 
this data set.
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Chapter 5: Conclusions and future work

In this work we have shown that, under the NSMC, one can recover from expected gene 

tree frequencies most of the topology of a level-1 species network. Also, we have presented 

an algorithm for the inference of level-1 networks under this model.

The main result in Chapter 3 considers only level-1 networks, and though it is a common 

assumpt^on"^nthe‰catureRossel,0 and Vatien2e,2002-1 Hudson, et ait.,2010; HuhCT et at, 

2017; Solís-Lemus and Ané, 2016; Steel, 2016], we have to move beyond this eventually. 

Also, this result focuses only in identifying the topology of the species network and left un­

addressed that question for inferring metric parameters of the species network. These are 

very interesting questions to pursue. One could try to approach these questions by looking 

at several quartet networks at the same time, or maybe move beyond them and consider 

networks on 5 taxa (quintet networks) instead. We leave this for future work.

Also, these identifiability results use as data gene trees, but the question remains open as 

to whether the species network topology is identifiable from whole genome DNA sequences. 

We have been working on a generalization of an species tree inference method developed in 

[Allman et al., 2018b], that is based under a well known DNA sequence metric, the log-det 

distance [Steel, 2016].

As discussed in Chapter 4, there exist 32-cycles that pose challenges to the NANUQ 

algorithm. For future work, one could also investigate more on this to find a way around it.
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