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Summary 
 

According to World Health Organization, unsafe food contaminated with harmful 

bacteria, viruses, parasites or chemical substances, causes more than 200 diseases. 

Annually, around 2 million people died by the consequences of food- and waterborne 

diseases. Foodborne diseases are a threat for the socioeconomic development of the 

regions, straining health care systems, leading to malnutrition particularly in infants, 

children, elderly and immune-compromised people. Globalization has triggered growing 

consumer demand for a wider variety of foods, resulting in an increasingly complex food 

chain. In addition, changes in consumer habits have increased the number of people 

consuming ready-to-eat food products, increasing the risk of contaminated food with 

Listeria monocytogenes.  

Since 1980s, after the first food-related outbreaks, the control of the pathogen has 

become a priority for food safety authorities worldwide because of its consequences on 

human health. Listeriosis has one of the highest rates of hospitalization and case-fatality 

among foodborne diseases. 

One of the technologies for controlling L. monocytogenes is high pressure processing. 

The lethal effect of this non-thermal technology on microorganisms is due to the 

molecular changes induced by high hydrostatic pressure up to 600 MPa. The technology 

has demonstrated to be efficient in the control of Listeria monocytogenes. However, the 

efficacy of the technology as a preservation method depends on the intra-species 

diversity of the target pathogen and the food matrix. While strain variability gives to 

Listeria monocytogenes the ability to withstand different stress conditions, food matrix 

and its components can exert a baroprotective effect. This makes challenging the 

selection of processing conditions that allow a considerable inactivation of the 

pathogen. Therefore, we hypothesized that the response of Listeria monocytogenes to 

high pressure processing depends on the strain, and this variability among strains could 

be influenced by both the food matrix and the processing conditions. 
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The first part of the work consisted of the selection of a representative set of Listeria 

monocytogenes strains for covering the natural diversity of the pathogen. Thirty out of 

the initial 120 strains from three L. monocytogenes collections were selected based on 

the geno- and phenotypical characterization done and the information provided by 

collections’ hosts. The thirty strains represented the four lineages, the four serogroups, 

human-clinical and foodborne, epidemic and sporadic-related, and diverse virulence-

factors of Listeria monocytogenes.   

Following, the strain characterization and selection, the response (inactivation and 

sublethal) of these strains to high hydrostatic pressure in a model system was evaluated. 

The pressure resistance of L. monocytogenes in a buffer varied among strains depending 

on the high pressure processing conditions.  The strain variability was higher at 

intermediate processing conditions. Most of the strains exhibited a low-intermediate 

resistance, existing three strains considerably more pressure-tolerant than the rest. 

Pressure-resistance of the strains did not correlate with geno- and phenotypical 

characteristics (lineage, serogroup, virulence factors, pathogenicity or origin). 

Since food matrices influence the lethal effect of high pressure processing, the strain 

variability of Listeria monocytogenes to high pressure was evaluated but now, in meat 

matrices. Cooked ham and dry-cured ham were selected based on its importance in 

Spanish and European meat industry and the problems associated to the presence of 

Listeria monocytogenes in these products. The pressure-resistance of 15 meat-borne 

and human clinic strains was evaluated. The pathogen exhibited differences in its 

pressure-tolerance at strain level. The strain variability depended on the holding time at 

600 MPa and the meat matrix, finding a larger number of pressure-resistant strains in 

dry-cured ham than in cooked ham. These findings could indicate a cross-protection 

phenomenon between salt and hydrostatic pressure stresses.  Pressure-resistance of 

the pathogen strains, in both meat products, showed no correlation with lineage, 

serogroup, virulence factors, pathogenicity or origin. 

The results of this PhD thesis about strain variability of the pathogen allowed the design 

of a cocktail comprised of five pressure-resistant strains of L. monocytogenes for being 

used in challenge tests of high pressure-processed ready-to-eat (RTE) meat products. 



Summary / Resumen 

3 
 

The cocktail was resistant to high hydrostatic pressure in most of the evaluated meat 

matrices except in dry-fermented products, probably due to an acid sensitivity of one or 

more of the strains included. 

A meatborne strain of Listeria innocua was included in strain variability evaluation for 

comparison purposes. L. innocua UBU strain exhibited a high pressure-resistance 

comparable to that exhibited by the most pressure-tolerant L. monocytogenes strains in 

the buffer system as well as in cooked and dry-cured ham. The inactivation levels of 

Listeria innocua UBU were similar to or lower than the levels of the proposed cocktail of 

five-strain pressure-resistant L. monocytogenes in raw, cooked, cured and dry-

fermented meat products. This results suggested that this strain of L. innocua can be 

used as a surrogate of L. monocytogenes in diverse high pressure-processed meat 

products. 

In conclusion, the response of Listeria monocytogenes to high pressure processing 

differs strain-to-strain. This variability is influenced by the characteristics of the food 

matrix and the processing conditions, pressure and holding time. The knowledge in 

strain variability allows the design of appropriate cocktails and the selection of suitable 

surrogate microorganisms to use in validation studies of high pressure-processed meat 

products. 
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Resumen 
 

 

Según la Organización Mundial de la Salud, los alimentos contaminados con bacterias, 

virus, parásitos o sustancias químicas, son la causa de más de 200 enfermedades. Se 

estima que aproximadamente dos millones de personas mueren anualmente como 

consecuencia de enfermedades relacionadas con el consumo de agua o los alimentos 

contaminados. Las enfermedades alimentarias son una amenaza para el desarrollo 

socioeconómico de las regiones, en tanto que desgastan los sistemas de atención 

sanitaria y conducen a malnutrición, fundamentalmente entre los grupos de población 

de niños, mayores e inmunodeprimidos. La globalización ha desencadenado una 

creciente demanda en la variedad alimentaria lo que resulta en una cadena alimentaria 

cada vez más compleja. Además, los cambios en el estilo de vida de la población, han 

incrementado el consumo de productos listos para consumir, lo que genera un aumento 

del riesgo de contaminación alimentaria por Listeria monocytogenes.  

Desde 1980s, tras los primeros brotes alimentarios, el control de dicho patógeno se ha 

convertido en una prioridad para las autoridades de seguridad alimentaria a nivel 

mundial, por las graves consecuencias que ocasiona sobre la salud humana. Dentro de 

las enfermedades alimentarias, la listeriosis genera una de las mayores tasas de 

hospitalización y mortalidad. 

Una de las tecnologías usadas para el control de L. monocytogenes es el procesamiento 

por altas presiones. El efecto letal sobre los microorganismos que ocasiona dicha 

tecnología se debe a los cambios moleculares inducidos por altas presiones hidrostáticas 

(hasta 600 MPa). Esta tecnología no térmica ha demostrado ser eficaz en el control de 

Listeria monocytogenes. Sin embargo, tal eficacia depende de la diversidad intra-especie 

del patógeno objetivo y de la matriz alimentaria. Variaciones a nivel de cepa son las 

responsables de la habilidad que caracteriza a Listeria monocytogenes para soportar 

distintas condiciones de estrés. La matriz alimentaria y los componentes de la misma 

pueden ejercer un efecto baroprotector. Por todo ello, la selección de aquellas 
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condiciones de procesamiento que permitan una considerable inactivación del 

patógeno constituye un gran desafío para la industria. Por tanto, en la presente Tesis 

Doctoral se hipotetiza que la respuesta de Listeria monocytogenes al procesamiento por 

altas presiones depende de la cepa y que dicha variabilidad cepa a cepa podría estar 

afectada por la matriz alimentaria y las condiciones de procesamiento. 

La primera parte del trabajo consistió en la selección de un número de cepas 

representativo de L. monocytogenes para cubrir la diversidad natural del patógeno. De 

las 120 cepas de partida pertenecientes a tres colecciones distintas, se escogieron 30 

cepas. La selección se basó en una caracterización geno- y fenotípica y en la información 

en parte proporcionada por los proveedores de las colecciones. Las 30 cepas son 

representativas de los 4 linajes, de los 4 serogrupos, aisladas de casos clínicos y de 

alimentos, de brotes epidémicos y casos esporádicos y de diversos factores de virulencia 

de Listeria monocytogenes.   

Tras la caracterización y selección de las cepas, se evaluó la respuesta (inactivación y 

daño subletal) de las cepas a altas presiones hidrostáticas en un buffer. La resistencia de 

L. monocytogenes en buffer se mostró variable cepa a cepa, dependiendo de las 

condiciones de procesamiento.  La variabilidad entre cepas fue más notable en las 

condiciones intermedias de procesamiento. La mayoría de las cepas ofreció una 

resistencia intermedia-baja, observándose tres cepas considerablemente más 

tolerantes a la presión que el resto. La resistencia a la presión de las cepas no 

correlacionó con sus características geno- y fenotípicas (linaje, serogrupo, factores de 

virulencia, patogenicidad u origen). 

Teniendo en cuenta que las matrices alimentarias influyen en el efecto letal generado 

por el procesamiento basado en altas presiones, se determinó la variabilidad cepa a cepa 

de la respuesta de Listeria monocytogenes frente a altas presiones, en este caso en 

matrices cárnicas. Se seleccionaron jamón cocido y jamón curado dada la importancia 

de estos productos en la industria cárnica española y los problemas asociados con la 

presencia de L. monocytogenes en los mismos. Se determinó la resistencia a la presión 

de 15 cepas de origen clínico y cárnico, observándose diferencias en la tolerancia a la 

presión a nivel de cepa. La variabilidad entre cepas dependió del tiempo de 
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procesamiento (a 600 MPa) y de la matriz cárnica, encontrándose un mayor número de 

cepas resistentes a la presión en el jamón curado que en el cocido. Esto podría indicar 

un fenómeno de protección cruzada entre el estrés osmótico y el causado por la presión 

hidrostática. No se encontraron correlaciones entre la resistencia a la presión de las 

cepas de L. monocytogenes y características como el linaje, serogrupo, factores de 

virulencia, patogenicidad u orígen, para ninguno de los productos cárnicos estudiados. 

Los resultados de esta Tesis Doctoral sobre la variabilidad cepa a cepa del patógeno en 

cuestión, permitieron el diseño de un cóctel formado por cinco cepas resistentes a la 

presión, con el objeto de ser empleado en challenge tests de productos cárnicos 

procesados por altas presiones. El cóctel propuesto demostró ser resistente frente a 

altas presiones hidrostáticas en la mayoría de las matrices cárnicas evaluadas, con la 

excepción de los cárnicos curados-fermentados, probablemente debido a la sensibilidad 

a la acidez de una o más de las cepas incluidas. 

Una cepa de Listeria innocua aislada de carne fue incluida a lo largo del estudio con fines 

comparativos. La cepa denominada L. innocua UBU mostró una resistencia a la alta 

presión comparable con la correspondiente a las cepas de L. monocytogenes más 

tolerantes, tanto en buffer como en jamón cocido y curado. Los niveles de inactivación 

de L. innocua UBU fueron similares o menores que los del cóctel propuesto, en 

productos cárnicos crudos, cocidos, curados y curados-fermentados. Estos resultados 

sugieren que la cepa de L. innocua estudiada puede ser usada como surrogate de Listeria 

monocytogenes en diversos productos cárnicos procesados por altas presiones. 

En conclusión, la respuesta de Listeria monocytogenes frente a altas presiones difiere 

entre cepas. Dicha variabilidad se ve afectada por las características de la matriz 

alimentaria y las condiciones de procesamiento, presión y tiempo. El conocimiento 

relativo a la variabilidad cepa a cepa permite el diseño apropiado de cócteles y la 

selección de surrogates adecuados para ser empleados en estudios de validación de 

productos cárnicos procesados por altas presiones.   
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Literature review 

The importance of L. monocytogenes in the food industry 

 

Overview of L. monocytogenes and listeriosis 

Hülpers, in 1911, identified a Gram-positive bacteria from rabbit liver necrosis and was 

named Bacillus hepatica. Fifteen years later, Murray, Webb and Swann isolated a 

bacterium from dead laboratory rabbits, which caused monocytosis in leukocytes. They 

called Bacterium monocytogenes to the pathogen. One year later, an isolate from wild 

gerbils induced the same liver infections in experimentally infected animals, and 

denominated Listerella hepatolytica to honor Lord Joseph Lister. Since 1940, the 

bacterium name Listeria monocytogenes was established for taxonomical reasons (Pirie, 

1940).  

L. monocytogenes is a Gram-positive, facultative anaerobic, catalase positive rod shaped 

bacterium. The microorganism belongs to Listeria genus, which is composed of other 

nine species: L. innocua, L. seeligeri, L. rocourtiae, L. marthii, L. welshimeri, L. 

fleischmannii, L. weihenstephanensis, L. grayi and L. ivanovii (Bourdichon, 2014). 

Generally, the only species considered pathogenic to humans is L. monocytogenes. 

However, some reports stated that L. grayi and L. ivanovii can cause disease in humans 

(Guillet et al., 2010; Todeschini et al., 1998).  

In 1929, Nyfelt reported the first confirmed isolation from humans. However, Listeria 

monocytogenes is considered to be a major foodborne pathogen since the coleslaw 

outbreak in 1981 (Bourdichon, 2014). Prior to the 1980’s, listeriosis, the disease in 

humans caused by this pathogen was a rarity, as it was considered an animal pathogen 

with a few of human cases  (Abu Mraheil, 2013; Warriner and Namvar, 2009). The 

pathogen causes serious localized and generalized infections depending on the group. 

For healthy adults, listeriosis is mainly manifested as diarrhea and fever. The disease is 

severe for pregnant women and newborns. For the former, symptoms include fever, 
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diarrhea, abortion, or stillbirth; and septicemia, pneumonia, or meningitis are 

manifested in newborns (Todd and Notermans, 2011). Persons with a predisposing 

condition having an immunocompromised status are especially susceptible to the 

disease. People with transplant, cancer or AIDS are hundreds times more susceptible to 

acquire listeriosis than healthy individuals. Even, the risk of the disease is higher in 

people with diabetes (30 times), alcoholism (18 times) and over 65 years old (7.5 times) 

than healthy population according to French epidemiological data (FAO, 2004).  

After the consumption of contaminated foods, infection involves, first, the survival 

through the gastric passage, followed by the survival and colonization in the intestinal 

tract, and the invasion of intestinal epithelial cells. The infection steps are modulated by 

several regulatory mechanisms controlled by virulence genes that contribute to its 

ability to withstand  with changing environmental conditions (Chaturongakul et al., 

2008).  The same biological mechanisms allow it to be worldwide distributed with a high 

prevalence in distinct world regions (Chenal-Francisque et al., 2011) and ubiquitously 

distributed throughout the environment including soil, water, sewage, vegetation, and 

wild animal feces as well as on the farm and in food-processing facilities (Sauders et al., 

2012). 

The meta-analysis done by de Noordhout et al. (2014) estimated that the pathogen 

caused 23,150 illness and 5,463 deaths worldwide in 2010. The highest estimated 

listeriosis incidence was Latin America region (0.469 cases per 100,000 population) and 

the lowest incidence in East Europe zone (0.042 cases per 100,000 population). Most 

cases are reported in high-income countries, but it is not clear whether the differences 

reflect true geographical differences, food habits and handling or differences in 

diagnosis and reporting practices (FAO, 2004). In those regions, incidence is quite low 

but fatality rate is high. For instance, 1,763 confirmed human cases (0.44 cases per 

100,000 population) were reported in Europe during 2013, which represented an 8.6 % 

increase compared with 2012. The EU-hospitalization rate (99.1 %) and the case-fatality 

rate (15.6 %) associated to L. monocytogenes was the highest among all zoonosis 

reported (EFSA, 2015). In United States, the epidemiological data reported similar values 

to European for the same period. Although incidence of listeriosis was low (0.24 cases 
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per 100,000 population), the hospitalization rate (91 %) and case-fatality rate (19.5 %) 

were the highest among foodborne diseases (Crim et al., 2014). 

 

Food as a primary route of transmission of the pathogen 

The most of infections (99%) caused by L. monocytogenes are thought to be foodborne 

(Swaminathan and Gerner-Smidt, 2007). The pathogen tolerates harsh conditions, 

growing at wide range of temperature (-1.5 °C to 45 °C), pH (4.3 to 9.1) and even high 

salt concentrations, which allows being found in different types of foods (Bourdichon, 

2014). Besides, L. monocytogenes  has the ability to adhere on diverse surfaces found in 

food-processing plants including stainless steel, rubber, glass, and polypropylene 

resulting in biofilm formation (Lunden et al., 2000). Its high tolerance and capacity to 

survive and grow in different food products and environments makes the food products 

the primary route of human transmission. Foods with high levels of contamination 

associated with the vast majority of cases of listeriosis, increasing the risk of disease 

from 100- to 1000-fold on a per serving basis (FAO, 2004). 

According to the International Life Sciences Institute Risk Science Institute Expert Panel, 

high-risk foods for causing listeriosis are characterized by: having the potential for 

contamination with L. monocytogenes, supporting the growth to high numbers, being 

ready-to-eat (RTE) food, requiring refrigeration; and being stored for an extended period 

of time (ILSI, 2005). The latter led to establish a microbiological criteria for L. 

monocytogenes in RTE food products, which vary around the world. In the Codex 

member states and European Union, RTE foods in which growth will not occur, rejection 

level is set at 100 colony-forming units (CFU) per gram, whereas those products in which 

growth can occur, absence in 25 g is required. In addition, Commission Regulation (EC) 

No 2073/2005 sets a complementary introduction of criterion (absence in 25 g) for 

infant products and RTE foods for special medical purposes (Luber, 2011; The 

Commission of the European Communities, 2005). The policy on L. monocytogenes in 

RTE foods in Canada is aligned on the European approach (Health Canada, 2011), 
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whereas The United States Department for Agriculture maintains a policy of ‘zero-

tolerance’ for L. monocytogenes in RTE foods (USDA-FSIS, 2015).  

In regard of meat products, L. monocytogenes is found in raw materials, processing lines 

and in final meat products (Baer et al., 2013), as in small and medium-sized as well as 

large-sized establishments (Pérez-Rodríguez et al., 2010). The role of the processing 

machines in meat processing contamination and in contaminating meat products 

appeared to be important because the final product of several processing lines was 

contaminated with the same strains of L. monocytogenes that found in the processing 

machines (Lundén et al., 2003). According to RASFF, the European Rapid Alert System 

for Food and Feed, since 2010, a mean of 14 alerts about the presence of Listeria 

monocytogenes in RTE meat products are annually notified (RASFF, 2015). The pathogen 

were detected in less than 4 % of poultry, bovine and porcine meat products samples, 

in Europe during 2013 (EFSA, 2015). However, the levels above 100 CFU/g were 

enumerated in less than 1 % of the tested units. During the same year, 12 Listeria 

outbreaks were reported by the EU State members. Only one of them were related to 

the consumption of contaminated RTE meat products. Since 1992, meat products such 

as deli meats, sliced cook meats, sausages have been associated to several Listeria 

monocytogenes outbreaks in Europe, North America and Oceania (NSW food authority, 

2013).  

 

Economic impact of L. monocytogenes 

Since the severity of listeriosis, its high hospitalization and cost-fatality rate, the disease 

entails high health-associated costs. Taking into account direct healthcare, direct non-

healthcare and indirect non-healthcare costs, the cost-of-illness of L. monocytogenes 

was the highest among the 18 foodborne pathogens reported in the Netherlands in 2011 

(Mangen et al., 2015). The health-associated cost reached € 106,922 per case, being 

around 23, 141 and 168 times higher than the cost of illness associated to Shiga-toxin 

Escherichia coli, Campylobacter spp. and Salmonella spp., respectively. Listeria 

monocytogenes ranked third among 15 pathogens in terms of total economic burden in 
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USA, estimated in USD 2.8 billion in economic burden in a typical year (Hoffmann et al., 

2015). However, the low number of cases made this foodborne pathogen the second 

costly disease, reaching USD 1.8 million per case. 

Although there is no human disease, food contamination with the pathogen can lead to 

high cost due to product recall. The annual cost of food product recalls due to L. 

monocytogenes  are estimated to be between USD 1.2 and 2.4 billion in the USA (Ivanek 

et al., 2004). In the recent Listeria outbreak linked to Blue Bell ice cream, the analysts 

estimated the shutdown of the production lines has cost more than USD 200 million 

(Moore, 2015). Besides product recalls, market access can be limited by the presence of 

the microorganism. On dry-cured meats, typical European highly appreciated foods by 

consumers, the pathogen is not able to grow on them. However, the presence of the 

pathogen constitutes an impediment of export to those countries with a zero-tolerance 

policy such as USA and Japan (Bover-Cid et al., 2011). For instance, dry-cured hams from 

Spain and Italy failed eight times during 2010 – 2012 at the Australian border due to the 

presence of the microorganism, not being allowed their entrance to the country (NSW 

food authority, 2013). Spanish dry-cured ham market for exportation represents € 237.5 

million (Cruz, 2013). Thus, public health concerns and the access to markets are the main 

drive for controlling L. monocytogenes in meat industry. 

 

Controlling L. monocytogenes in meat industry 

 

Technologies for controlling the pathogen in RTE meat products 

The most effective strategies to control L. monocytogenes in high-risk foods include 

good manufacturing practices, sanitation procedures, hazard analysis critical control 

point programs, intensive environmental sampling program, for minimizing 

environmental contamination and to prevent cross-contamination (ILSI, 2005). In 

addition, The ILSI Expert Panel proposed time and temperature controls throughout the 

entire distribution and storage period, the reformulation to prevent or delay the growth 
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of the microorganism and using postpackaging treatments to destroy the pathogen on 

products. Preservation methods such as thermal treatments, non-thermal technologies, 

antimicrobials and biopreservation have been proposed to control L. monocytogenes in 

RTE food products (Baer et al., 2013; Jiang and Xiong, 2014; Zhu et al., 2005). 

Although L. monocytogenes is more thermo-tolerant than other pathogens, it is 

inactivated when heated above 70 °C, making to thermal treatment the most common 

intervention strategy against the pathogen (Thévenot et al., 2006). As postpackage 

pasteurization, RTE meats are commonly submerged in hot water or steam pasteurized. 

Treatments at temperatures above 90 °C for few minutes inactivated up to 4 log cycles 

of L. monocytogenes in deli meats (Muriana et al., 2002). By using steam was possible 

to achieve 2 log-inactivation in seconds in sausages, without affecting sensory quality of 

the meat product (Murphy et al., 2005). Despite the considerable listericidal effect, the 

roughness of the product surface and package size influenced its efficacy (Muriana et 

al., 2002). 

The use of antimicrobials as additives to control pathogens in RTE meats is considered a 

novel approach to food safety, which can be applied either by direct incorporation as 

product formulation ingredients or by spray on the product surface before packaging 

(Jiang and Xiong, 2014). These compounds have the ability to affect cellular metabolism 

and/or membrane through varied biochemical mechanisms, leading to a bacteriostatic 

or bactericidal effect depending on the dose and the chemical nature of the 

antimicrobial (Baer et al., 2013). Organic acids and their salts, plant extracts, lactoferrins 

and other compounds have demonstrated to be efficient to control the pathogen in RTE 

meats as Jiang and Xiong (2014) summarized. Their effect on sensory quality and the 

demands of consumer on “clean-labelled” RTE meat products limit the application of 

the technology. 

As an alternative to chemical preservatives, biopreservation has been suggested to 

control L. monocytogenes. Some strains of lactic acid bacteria control successfully the 

presence of the pathogen, mainly due to the production of bacteriocins, polypeptides 

with a wide bacteriostatic and bactericidal activity (Jacobsen et al., 2003). Bacteriocins 

such as nisin, reuterin, sakacin and enterocin have demonstrated antilisterial activity. 
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However, the regulation is hampering the application in purified form, only allowing the 

addition of nisin (Hugas, 2003).  

Among non-thermal physical technologies, irradiation has demonstrated effectiveness 

against meat-borne pathogens in RTE meats, including L. monocytogenes (Hoz et al., 

2008; Uesugi and Moraru, 2009). Ionizing radiation (γ-ray, X-ray, and electron beam) and 

UV light mainly target the molecular bonds in the microbial DNA thereby affecting the 

synthesis of the nucleic acid (Ahn and Lee, 2012). Despite the demonstrated 

effectiveness against Listeria in RTE meats, irradiation has not been approved for 

commercial applications on this particular food group. 

 

High pressure processing. An overview 

FDA (2000) describes High Pressure Processing (HPP) as a food preservation technology, 

which subjects liquid and solid foods, with or without packaging, to pressures between 

100 and 800 MPa, during millisecond pulse to a treatment time of over 1200 s. However, 

at industrial level, pressure ranges between 400 and 600 MPa for holding times between 

few seconds and 600 s.  

High-pressure technology is mostly related to material science. However, in 1889, Hite 

successfully pressurized certain beverages and found that spoilage was delayed due to 

bacterial inactivation. Later, food scientists made preliminary trials to inactivate 

microorganisms in other food products in the early 1900s but research was limited due 

to lack of adequate equipment. It was not until the early 1990s that research of this 

technology was a viable tool for food preservation (Bermúdez-Aguirre and Barbosa-

Cánovas, 2011). Jams, jellies and sauces, in Japan, and guacamole, in USA, were the first 

high pressure-processed products marketed to consumers in the early 1990s. 

Nowadays, there are about 350 HPP industrial machines running in vegetable, meat, 

dairy, seafood and juice food industries, with a global production estimated in 600 

million kg per year.  
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The technology is governed by two principles, the isostatic and Le Chatelier’s principles 

(Campus, 2010). Water is commonly used as pressurization fluid in industrial HPP 

machines, which transmits pressure isostatically to the food product almost 

instantaneously and uniformly. Therefore, the efficacy of the process does not depend 

on the product size and geometry because the isostatic pressure transmission is not 

mass-/time dependent. The latter facilitates the scale up from laboratory findings to 

commercial applications (Németh et al., 2015). According to Le Chatelier’s principle, the 

application of pressure shifts an equilibrium to the state that occupies the smallest 

volume. Covalent bonds are not affected by high hydrostatic pressure, due to their low 

compressibility and do not break within the ranges of pressures normally used in food. 

Therefore, vitamins, amino acids, flavor molecules, antioxidants and other low-

molecular-weight compounds are minimally affected, in consequence, the nutritional 

and sensory quality of foods are slightly altered (Farkas and Hoover, 2000). While 

hydrogen bond formation is stabilized by pressure, ionic bonds and hydrophobic 

interactions are disrupted (Considine et al., 2008). Since the electrostatic and 

hydrophobic interactions maintain the tertiary structure of proteins, the changes 

induced by high hydrostatic pressure on these macromolecules determine the effect of 

pressure on organisms at cellular level (Campus, 2010). 

Different cellular systems and structures, dependent or composed by proteins, are 

susceptible to be affected by high pressure, even at pressures around 10 MPa (Table 1, 

Abe, 2007). As the pressure increases, more systems and structures can be altered, 

causing damages which can lead to cell death.  

The scientific evidence suggests that pressure-induced cell death is a consequence of 

multiple damages, which can be attributed to four factors: (i) denaturation of proteins 

and enzymes, (ii) phase transition and change in fluidity of cell membranes, (iii) breaking 

down of ribosomes in subunits, and (iv) changes in intracellular pH caused by enzyme 

denaturation and membrane damage (Georget et al., 2015; Huang et al., 2014). 

However, it remains unclear whether these targets are simultaneously of sequentially 

affected during high pressure processing (Gänzle and Liu, 2015).  
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Table 1. Cellular processes and structures affected by high hydrostatic pressure (Abe, 2007)  

Cellular process / structure Inhibitory pressure (MPa < ) 

Motility 10 

Cell division 20 

Nutrient uptake 15 - 20 

Ethanol fermentation 25 - 50 

Membrane protein function 25 – 50 

Replication 50 

Transcription 50 – 100 

Protein synthesis 50 

Protein oligomerization 50 – 100 

Soluble protein function 100 

Viability 100 – 200 

Protein structure (monomer) 200 

DNA structure (double helix) 1,000 

 

Physiological, morphological and genetic effects of high pressure on 

Listeria monocytogenes 

In general, cell membrane is considered the first organelle to be damaged by pressure. 

When this structure is damaged, nutrients intake and waste elimination is hindered, and 

normal metabolic pathways are altered (Torres and Velazquez, 2005). The 

determinations of membrane integrity by flow cytometry demonstrated that membrane 

potential of L. monocytogenes cells decreased after 400 MPa for 10 min  (Ritz et al., 

2002). This alteration indicates that cell ability to maintain homeostasis is affected, 

explaining the changes in intracellular pH, potassium and ATP (Tholozan et al., 2000), 

probably due to the denaturation of the proteins that mediate proton flow and synthesis 

of ATP (Huang et al., 2014). Although the cell membrane is damaged by high hydrostatic 

pressure, L. monocytogenes cell volume was not significantly affected (Ritz et al., 2006, 

2002; Tholozan et al., 2000). However, pressure can inflict the visible damage on cell 

membrane, leading to the appearance of pimples, swellings, wrinkles on cell surface of 
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microorganisms (Wang et al., 2013; Yang et al., 2012) and buds on Listeria cell surface 

(Ritz et al., 2001). 

The consequences in cell depend not only on the pressure level, but also on the holding 

time of the pressure and environmental factors such as temperature, pH, oxygen 

availability, and the chemical composition of food (or culture media). Therefore high 

hydrostatic pressure can induce to cell death but also to cell injury (Abe, 2007). If the 

accumulate damage exceeds the ability of repairing of the cell, death occurs (Rendueles 

et al., 2011). In the injury state, cells are alive but they develop sensitivity to physical 

and chemical environments to which the normal cells were resistant (Jasson et al., 

2007). If the process does not have the sufficient intensity to inactivate completely the 

microorganisms, high pressure processing can inflict a sublethal injury in bacteria, 

including in L. monocytogenes (Jofré et al., 2010; Muñoz-Cuevas et al., 2013; Ritz et al., 

2006; Yuste et al., 2004). From microbiological hazard analysis standpoint, the presence 

of sublethal injury is risky because (i) their lack of ability to growth in selective media, 

named viable-but-not culturable (VBNC) state, leading to overestimation of lethal effect 

and (ii) their capacity to recover and grow, if the environmental conditions are 

appropriate (Abe, 2007; Bozoglu et al., 2004; Jasson et al., 2007). Even though, 

resuscitation of L. monocytogenes was detected in an apparent totally inactivated 

population after high pressure processing during 25 days of storage at 4 and 20 °C (Ritz 

et al., 2006).  

The technology, at industrial levels, is not able to cause lesions directly in DNA of L. 

monocytogenes (Mohamed et al., 2012), but it can affect DNA replication and 

transcription of the microorganism through an inhibitory action on their enzymes 

(Huang et al., 2014). The structure of DNA-enzyme complexes, as the DNA can be 

degraded due to the action of endonucleases not normally in contact with the nucleic 

acid (Alpas et al., 2003; Dubins et al., 2001). Translation is one of the most cell processes 

affected by pressure. Ribosomes are pressure sensitive, especially at pressures above 

100 MPa, being dissociated, affecting cell viability (Niven et al., 1999). However, the 

proteomic response to pressure is species dependent (Jofré et al., 2007). The authors 

reported that protein expression of pressured-treated L. monocytogenes was quite 
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reactive, identifying 23 upregulated proteins related to protein synthesis energy 

metabolism, DNA replication, repair factors and synthesis of stress proteins. On the 

other hand, gene expression of L. monocytogenes is affected by high hydrostatic 

pressure (Bowman et al., 2008). After pressurization, a generalized repair response is 

induced, upregulating genes related to repair cell membrane, septal rings, DNA and 

ribosomes. The same authors found high pressure suppresses genes associated with 

energy metabolism and virulence.  

One of the identified genetic responses that allow for increasing survival of Listeria 

monocytogenes upon HPP treatment results from induction of the general stress 

response mediated by sigma B (σB) factor (Wells-Bennik et al., 2008). This factor 

contributes to L. monocytogenes (and to other Gram-positive bacteria) response and 

survival under non-host-associated environmental stress conditions, including acid, 

osmotic, oxidative, cold and starvation stress (Chaturongakul et al., 2008). Wemekamp-

Kamphuis et al. (2004) demonstrated the importance of σB factor on response to high 

hydrostatic pressure of L. monocytogenes. The induction of the factor in mutants 

showed an increase of pressure-resistance compared to the wild-type strain, whereas 

its deletion made the mutants more susceptible to pressure.  

 

Controlling L. monocytogenes in meat products by high hydrostatic 

pressure   

HPP is commercially used mainly as a non-thermal preservation technology for 

processed foods and RTE meat products with high consumer acceptance, in comparison 

to other non-thermal decontamination technologies such as ionizing radiation. Since 

1998, there are available meat products processed by using this technology (Bajovic et 

al., 2012; Tonello, 2010). Nowadays, 25 % of the global HPP equipment is currently used 

to process meat products (raw minced meats, sliced cooked and dry-cured hams, ready 

meals, poultry cuts and sausages). Among novel food technologies, high hydrostatic 

pressure has the most potential to continue being used in meat industry according to 
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food professionals from industry, academia and government around the world (Jermann 

et al., 2015). 

The technology ensures post-packaging inactivation of spoilage microorganisms, 

extending the shelf-life of RTE meat products (Han et al., 2011). Regarding the control 

of pathogenic bacteria, the use of high pressure processing for inactivating Listeria 

monocytogenes in RTE meat products is particularly interesting because its high 

listericidal efficacy without detrimental effects on product’s quality (Bover-Cid et al., 

2015). The latter led to food safety authorities  to enable to the application of the 

technology for controlling the pathogen specifically in RTE meat products as post-

lethality treatment (AESAN, 2005; FSAI, 2005; Health Canada, 2006, n.d.; USDA-FSIS, 

2014). The food authorities demand that each product is validated using a challenge test 

approach or other kind of science-based documentation for guarantee enough 

inactivation levels. ILSI (2005) stated that 2 log-inactivation could provide a significant 

margin of safety in products that are infrequently recontaminated with Listeria 

monocytogenes.  The need to validate each product is due to the impact of food matrix 

on the efficacy of the technology.  

The mechanisms of pressure-induced inactivation of bacteria in presence of solutes are 

complex (Georget et al., 2015).  Pressure resistance of microorganisms is intimately 

linked to osmoregulation, as the uptake of compatible solutes such as glycine betaine 

and L-carnitine generally increase bacterial resistance to pressure (Abe, 2007; Gänzle 

and Liu, 2015). Although water activity seemed to have a baroprotective effect at low 

values (aw < 0.90), the nature of the solute is relevant, as well. Koseki and Yamamoto 

(2007) determined that the baroprotective effect on L. monocytogenes differed 

depending on the chemical nature of solute even at the same water activity. The authors 

stated saturation of solution would be an accurate parameter of inhibition in terms of 

HPP-induced inactivation of bacteria. The impact of solutes on high pressure inactivation 

of microorganisms has to be considered at two levels (Georget et al., 2015). First, low 

water activity levels partly explains the baroprotection conferred by solutes in complex 

matrices. However, it is clear that a decrease in water activity contributes to protein 

stabilization. Secondly, the authors stated that the individual properties of the solute 
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and its properties in solution might provide an additional protection against pressure 

induced inactivation of microorganisms. 

 

Strain variability and the control of L. monocytogenes 

 

Natural variability of Listeria monocytogenes 

It was often assumed that the determination and characterization of the strain variation 

of microorganisms was considered as not necessary because it was equal to or smaller 

than experimental variability (Whiting and Golden, 2002). However, L. monocytogenes 

exhibit a varied behavior in different biological aspects. The virulence of the pathogen 

varies significantly among serotypes and strains (Roberts et al., 2005; Roche et al., 2001). 

L. monocytogenes consists of four evolutionary lineages (I, II, III, IV). Each lineage 

represents distinct ecologic, genetic and phenotypic characteristics, which appear to 

affect their ability to  cause human listeriosis and to be transmitted through foods (Orsi 

et al., 2011). Lineage I strains are associated to the most human listeriosis outbreaks, 

while lineage II are common in foods, soil and other environments, and associated to 

animal listeriosis cases.  On the other hand, lineage III and IV strains are rare and 

predominantly isolated from animal sources. From serological standpoint, the pathogen 

is classified into 13 serotypes on the basis of somatic and flagellar antigens (Nadon et 

al., 2001). The vast majority of human listeriosis cases are caused by serotypes 1/2a, 

1/2b, and 4b (EFSA and ECDC, 2015). In addition, the survival to gastrointestinal tract 

and the in vitro capacity of cellular invasion, virulence-associated characteristics, were 

strain-dependent, as well (Barmpalia-Davis et al., 2008; Werbrouck et al., 2009).    

Besides virulence and pathogenicity, the growth of the pathogen at different conditions 

of pH, water activity and temperature demonstrated to be strain-dependent. Begot et 

al. (1997) found differences in lag time ranged from 4 h to 4 days, when the 

microorganism grew at 10 °C, pH 7 and water activity 0.96, grouping the strains in five 

clusters. The authors found no correlation between serotype and growth capacity. 
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However, lineage seems to be related to how fast L. monocytogenes strains can grow in 

salt stress. Lineage I and III strains grew significantly faster than lineage II at 37 °C, 

probably due to their adaptation to grow at human body temperature (Bergholz et al., 

2010). At cold temperature, strains exhibited different growth rates, but cold tolerance 

did not seem to be related to lineage, serotype or origin (Arguedas-Villa et al., 2010). 

Aryani et al. (2015a) determined strain variability explained around one third of total 

variability of the growth of L. monocytogenes. Despite this contribution was similar to 

biological variability, the integration of strain variability into mathematical models 

resulted in a more realistic prediction of the growth in food products.  

Although the most of L. monocytogenes strains are able to form biofilm, this ability 

varies strain to strain, according to Kadam et al. (2013). The variation is minimized when 

the strains grow in nutrient-rich media, where biofilm production levels were similar 

between strains (Nilsson et al., 2011). Both studies demonstrated a strong correlation 

between serotype and biofilm formation, being serotypes 1/2a and 1/2b the most 

biofilm producers. The higher ability and serotype relationship could partly explain why 

some serotypes are more persistent in food processing surfaces as it happens on meat 

processing surfaces (Martín et al., 2014).   

 

Impact of strain variability on resistance to preservation technologies 

L. monocytogenes strains exhibited marked differences in resistance to several 

preservation technologies. Depending on the strain, the recommended quantities of 

hypochlorite and sodium carbonate showed not have sufficient efficiency to clean and 

disinfect L. monocytogenes contaminated processing surfaces in dairy industry (Adrião 

et al., 2008). The latter made necessary to readjust the concentration of each chemical 

based on the worst case scenario, a high resistant strain. Other compounds used as 

antimicrobials in food showed similar results. The sensitivity to lactic acid varied 

considerably among strains and between its isomers (Gravesen et al., 2004). The strain 

variation in sensitivity to L-lactic acid was larger than to D-lactic acid. The differences 

between strains in acid stress tolerance seemed to be related to the presence of 
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ribosomal protein S21 which is not produced by all the strains (Metselaar et al., 2015). 

Similarly, some strains demonstrated to be resistant to different bacteriocins. Twenty 

out of 381 L. monocytogenes strains were able to grow in media rich in pediocin and 

bavaricin (Rasch and Knøchel, 1998), and sakacin P (Tessema et al., 2009). 

Thermal processing is one of the most used preservation technology to control Listeria 

monocytogenes in food products. Heat resistance of the pathogen is influenced by age 

of culture, growth conditions, presence of food components and strain evaluated (Doyle 

et al., 2001). However, strain variability on thermal resistance of L. monocytogenes was 

four and ten times higher than the biological and experimental variability, respectively. 

The strain variability was higher in treatments at lower temperature (Aryani et al., 

2015b).  

Regarding non-thermal technologies, the resistance of L. monocytogenes exhibited a 

high strain dependence. The studies done by Lado and Yousef (2003) and Saldaña et al. 

(2009) showed the lethal effect of pulsed electric fields varies widely among strains, 

ranging around 3 log CFU/mL of difference between the most resistant and sensitive 

strains.  

The resistance to high hydrostatic pressure has demonstrated to be species-dependent 

(Alpas et al., 2000; Santillana-Farakos and Zwietering, 2011). In general, Gram-negative 

bacteria and cells from exponential growth phase are more pressure-sensitive than 

Gram-positive bacteria and stationary phase cells. Pressure resistance varied within a 

species, as well. Some strains of Staphylococcus aureus (Rodríguez-Calleja et al., 2006), 

Escherichia coli (Benito et al., 1999; Garcia-Hernandez et al., 2015; Liu et al., 2015; 

Reineke et al., 2014; Robey et al., 2001; Sheen et al., 2015), Clostridium botulinum 

(Ramaswamy et al., 2013), Campylobacter spp. (Martínez-Rodriguez and Mackey, 2005) 

and Salmonella spp. (Alpas et al., 1999) have demonstrated to have higher tolerance 

than others. The first observations about the differences in pressure resistance of 

Listeria monocytogenes were done by Simpson and Gilmour (1997a and 1997b), 

comparing three strains. The authors noticed that strain variability was affected by 

processing conditions, pressure and time, and the constituents of the media. Tay et al. 

(2003) found a widespread range of inactivation between nine strains, which varied 
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between pressure conditions. Inactivation levels ranged from 1.4 to 4.3 log CFU/mL at 

400 MPa, whereas the increase of pressure up to 500 MPa, led to a lethal effect from 

3.9 to above 8 log-inactivation. Even at higher pressures, the differences between 

pressure resistant and sensitive L. monocytogenes strains were evident, reaching 5-log 

difference at 600 MPa for 60 s (Youart et al., 2010). 

 

Process validation and strain variability 

Since resistance of L. monocytogenes to high hydrostatic pressure and other 

preservation technologies varies among strains, the selection of them is a relevant 

decision when designing and conducting challenge test studies (Lianou and 

Koutsoumanis, 2013). The aim of challenge test studies is to assess the behavior of 

pathogens in food products or in systems simulating food-related environments. A 

cocktail of L. monocytogenes, minimum three strains, is suggested for use in validation 

or challenge studies according to the European Commission 2014 Technical Guidance 

document (Álvarez-Ordóñez et al., 2015). However, five strains are recommended in 

challenge testing of high pressure processed products (Balasubramaniam et al., 2004). 

The strains to be included in that cocktails should demonstrate to be pressure-resistant, 

but not exhibit an unrealistic value (NACMCF, 2010). Other information about the strains 

such as their origin and their pathogenicity is useful. It is recommended to include strains 

isolated from the same product or similar to be tested and strains associated with public 

health concerns (Lianou and Koutsoumanis, 2013). Therefore, a complete 

characterization of a variety of strains with regards to pressure-resistance and 

complementary details such as origin and pathogenicity, will provide valuable 

information for decision making of strain selection.   

The knowledge in strain variation of pathogenic bacteria can provide another tool for 

conducting tests aimed to assess the performance of high hydrostatic pressure: the use 

of surrogates. A surrogate is defined as an organism or substance used to study the fate 

of a pathogen in a specific environment (Sinclair et al., 2012). According to the National 

Advisory Committee on Microbiological Criteria for Foods (NACMCF), the ideal surrogate 
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should: be non-pathogenic, have similar inactivation kinetics and susceptibility to injury 

to the pathogen, reproducible preparation of high-density populations, easily 

enumerated and differentiated, with similar attachment capabilities and genetically 

stable (NACMCF, 2010). Surrogates are often released into the environment to assess 

decontamination or disinfection in water treatment and food processing (Sinclair et al., 

2012), in those cases for testing equipment and processes in-plant, when the 

introduction of the pathogen poses a risk (NACMCF, 2010).  

The ultimate goal of selecting a sufficiently representative surrogate is to improve public 

health through a health-based risk assessment framework (Sinclair et al., 2012). Then, 

the inclusion of non-pathogenic bacteria in the strain set to verify if their inactivation 

kinetics and susceptibility is closed to that exhibited by the strains of the pathogen of 

concern could be useful to find potential and appropriate surrogates. Following this 

approach, Garcia-Hernandez et al. (2015) designed and validated a cocktail of non-

pathogenic Escherichia coli to evaluate lethal effect of high hydrostatic pressure on 

verotoxigenic E. coli (VTEC). The proposed cocktail comprised of five non-pathogenic 

Escherichia coli strains had a comparable inactivation and sublethal injury to a five VTEC 

strains cocktail when both were challenged at 600 MPa for 30 min at 20 °C in ground 

beef. Similar works have been performed in Escherichia coli recently (Liu et al., 2015; 

Reineke et al., 2014). 

In the case of Listeria monocytogenes, Listeria innocua has been proposed to be used as 

its surrogate in several food processing technologies (Friedly et al., 2008; Ma et al., 2007; 

Uesugi and Moraru, 2009). From phylogenetic standpoint, Listeria innocua and L. 

monocytogenes are close species, evolving L. innocua from the ancestor to the L. 

monocytogenes serogroup 4 (Den Bakker et al., 2010; Doumith et al., 2004). 

Traditionally, the ecological cohabitation, genomic synteny, and physiological similarity 

of the two species have supported the use of L. innocua for predicting the behavior of 

Listeria monocytogenes in farm and food processing environments (Milillo et al., 2012).  

Despite the closeness from genetic standpoint between both species (Glaser et al., 

2001), the response of Listeria monocytogenes and Listeria innocua to different 

environmental stresses could be distinct. Transcriptomic studies demonstrated that salt 
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stress induces 168 σB -dependent genes were positively regulated in L. monocytogenes, 

whereas in L. innocua, only 65 genes are induced (Raengpradub et al., 2008). The same 

authors found that both species differ in σB –dependent acid stress resistance and have 

species-specific σB –dependent, as well. This different gene expression at stressful 

conditions could lead to a variable response depending on the type and intensity of the 

adverse condition.  

Some strains of L. innocua have demonstrated to be a suitable surrogate of Listeria 

monocytogenes in thermal processing of meat products (Friedly et al., 2008; Kamat and 

Nair, 1996; Mackey et al., 1990; O’Bryan et al., 2006). Its suitability as surrogate in 

preservation of meat products by pulsed light technology has been validated, as well 

(Lasagabaster and de Marañón, 2012; Uesugi and Moraru, 2009). However, the use of 

L. innocua as surrogate in studies about decontamination by radiation has been no 

conclusive.  While the studies of Kamat and Nair (1996) and Hoz et al. (2008) showed 

the behavior of the non-pathogenic species was similar to L. monocytogenes after 

radiation, other studies found significant differences between the inactivation levels 

caused by radiation between both Listeria genus species, suggesting to use other non-

pathogenic microorganisms as surrogates (Niemira, 2010; Rodriguez et al., 2006). The 

resistance of L. innocua to citral, an antimicrobial terpenoid, was similar to that 

exhibited by the pathogenic bacteria. Both species grew and were injured at comparable 

levels (Silva-Angulo et al., 2015). However, when both microorganisms were exposed to 

carvacrol, L. monocytogenes grew faster in presence of this antimicrobial compound 

than the non-pathogenic bacterium, compromised its use as surrogate in these 

conditions (Silva-Angulo et al., 2014).  

Although L. innocua has been used as surrogate in studies about the control of L. 

monocytogenes by high hydrostatic pressure in meat products (Carlez et al., 1993; Escriu 

and Mor-Mur, 2009; Merialdi et al., 2015; Vercammen et al., 2011), the studies that 

compare the resistance to pressure of both microorganisms are not conclusive. Tay et 

al. (2003) compared the inactivation levels of L. innocua to nine strains of L. 

monocytogenes at different pressures, and stated that the nonpathogenic species 

presented an intermediate pressure-resistance.  Similar results were obtained by Waite-
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Cusic et al. (2011), who suggested the use of a strain Lactobacillus plantarum as 

surrogate for high pressure processing and pulsed electric field of whey instead of L. 

innocua. However, L. innocua exhibited a similar inactivation levels to L. monocytogenes 

in high pressure-processed yogurt (Evrendilek and Balasubramaniam, 2011). Santillana-

Farakos and Zwietering (2011) found no significant differences in log DP – values, from 

published data, between both Listeria genus species, regardless the strain, substrate or 

stage of growth of the cells. Although Listeria innocua seems to be a suitable surrogate 

of L. monocytogenes, the scientific evidence suggests that this statement should be 

validated case-to-case, because the preservation technology (and its intensity), strains 

and food matrix can influence on the comparison between both species. 

 

High pressure processing has demonstrated to be an efficient preservation technology 

for controlling spoilage and pathogenic microorganisms, such as Listeria 

monocytogenes in ready-to-eat meat products. However, the genetic and phenotypic 

diversity of this bacterium allow it to resist to adverse environmental conditions. 

Understanding the influence of strain variability on the resistance to high hydrostatic 

pressure will be essential to design safer high pressure-processed meat products.  
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Hypothesis and objectives   
 
The general hypothesis of the study is: 

Listeria monocytogenes is a foodborne pathogen, which can be found in widespread 

types of food and food processing surfaces.  This bacterium has complex mechanisms at 

genetic and phenotypic level, which allow it to survive to, adapt to and grow in diverse 

environmental conditions. The response to stress of Listeria monocytogenes could vary 

strain to strain, although this variability depends on the type of the stress and its 

intensity. Hence, 

“The response of Listeria monocytogenes to high pressure processing, a food 

preservation technology, depends on the strain. Moreover, this variability among 

strains could be influenced by both the food matrix and the processing conditions”. 

This hypothesis has led to the following objectives: 

1. To evaluate the strain variability of the resistance of Listeria monocytogenes to 

high hydrostatic pressure in a buffer system and to determine correlations 

between pressure-resistance and the characteristics of strains. 

 

2. To study the strain variability of the resistance of Listeria monocytogenes to high 

hydrostatic pressure in meat matrices and to determine correlations between 

pressure-resistance and the characteristics of strains. 

 

3. To evaluate the suitability of (i) a cocktail of pressure-resistance Listeria 

monocytogenes strains to be used in challenge tests, and (ii) a pressure-tolerant 

L. innocua strain to be used as a surrogate of L. monocytogenes in RTE high 

pressure-processed meat products.  
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Hipótesis y objetivos   
 
La hipótesis general del presente trabajo es: 

Listeria monocytogenes es un patógeno, que puede ser encontrado en una amplia 

variedad de alimentos y superficies de procesamiento alimentarias. Esta bacteria tiene 

complejos mecanismos a nivel genético y fenotípico, lo que le permite sobrevivir, 

adaptarse y crecer en diversas condiciones ambientales. La respuesta al estrés de 

Listeria monocytogenes podría variar cepa a cepa, aunque dicha variabilidad depende 

del tipo de estrés y de la intensidad del mismo. Por tanto, 

“La respuesta de Listeria monocytogenes frente al procesamiento por altas presiones, 

una tecnología de conservación alimentaria, depende de la cepa. Además, dicha 

variabilidad entre cepas podría verse afectada por la matriz alimentaria y las 

condiciones de procesamiento”. 

Esta hipótesis ha desencadenado los siguientes objetivos: 

1. Evaluar la variabilidad entre cepas de la resistencia de Listeria monocytogenes 

frente a altas presiones en un buffer y determinar las correlaciones entre la 

resistencia a la presión y las características de tales cepas. 

 

2. Evaluar la variabilidad entre cepas de la resistencia de Listeria monocytogenes 

frente a altas presiones en matrices cárnicas y determinar las correlaciones entre 

la resistencia a la presión y las características de las cepas. 

 

3. Evaluar la adecuación de (i) un cóctel de cepas de Listeria monocytogenes 

resistentes a la presión para ser empleado en estudios tipo challenge tests y de 

(ii) L. innocua para ser usada como surrogate de L. monocytogenes en productos 

cárnicos listos para consumir procesados por altas presiones.  
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pressure. A case study in a buffer system 
 

 

Introduction 

Listeria monocytogenes is a food-borne pathogenic bacteria which is ubiquitously 

distributed throughout the environment thanks to their ability to survive or grow in 

different environmental conditions, from soil and farm to food processing facilities. This 

allows to the pathogen to be worldwide distributed with a high prevalence (Augustin et 

al., 2011; Chenal-Francisque et al., 2011). Its high prevalence, morbidity and mortality 

compared to other foodborne illness make the control of L. monocytogenes a priority 

for health authorities. In 2013, the incidence of listeriosis was 0.44 and 0.26 cases per 

100,000 population in European Union and United States, respectively. Among 

bacterial-foodborne diseases, listeriosis has the highest hospitalization rate (99 % in EU 

and 91% in US) and the highest case-fatality rate (15% in EU and 19% in US), according 

to European and American health authorities (Crim et al., 2014; EFSA and ECDC, 2015).  

High pressure processing (HPP) is one of the available technologies for controlling 

effectively this pathogen in ready-to-eat products (Zhu et al., 2005). It is being 

commercially used by a high number of food processors in North America, Europe, Asia 

and Oceania.  Several food safety authorities, organizations and institutions around the 

world recommend  and accept the use of this technology for the inactivation of Listeria 

monocytogenes in different food products (FDA, 2000; FSAI, 2005; Health Canada, n.d.; 

USDA-FSIS, 2014). 



Diversity of Listeria monocytogenes strains response to high hydrostatic pressure. 
A case study in a buffer system 

42 
 

High hydrostatic pressure can induce cell death and/or injury in vegetative 

microorganisms in a multitarget way, affecting cell membrane protein and fluidity, 

ribosome disintegration, protein and enzyme denaturation and intracellular pH shifts 

(Georget et al., 2015). In the specific case of L. monocytogenes, high hydrostatic pressure 

affects its morphology and physiology. Pressurized cells showed aggregated cytoplasm, 

occurrence of buds on cell surface and loss of membrane integrity (Mohamed et al., 

2012; Ritz et al., 2001).  Pressure can induce physical damage, altering the capacity of 

the pathogen to maintain homeostasis. The lack of control of intracellular pH, the 

decrease of content in intracellular potassium and ATP take place in pressurized Listeria 

monocytogenes cells (Ritz et al., 2002; Tholozan et al., 2000).  

Depending on the intensity and time of high pressure treatment, these events can lead 

to cell death and/or injury. Although the main target of any preservation technology is 

to exert a lethal effect on microorganisms, the presence of injured bacteria carries on a 

hazard in food production (Bozoglu et al., 2004). The presence of injured bacteria is risky 

for two reasons. Firstly, their sensitivity to agents to which would otherwise show 

resistance hinders its growth in conventional selective media, increasing the risk of false-

negative results. Secondly, the injured microorganisms are able to recover if the 

environmental conditions are favorable (Abe, 2007; Jasson et al., 2007). The 

physicochemical characteristics of food, its composition and storage conditions will 

determine if the injured microorganisms will be able to recover and grow, or otherwise 

die during storage.  Thus, the quantification of this state for any preservation 

technology, including HPP, is relevant to microbial risk assessment approach. 

Although the high hydrostatic pressure technology has demonstrated to be effective to 

control pathogenic and spoilage microorganisms, their response to pressure can vary at 

species level. In general, protozoans, molds and yeasts are more sensitive to high 

pressure than bacteria and viruses (Abe, 2007). Among bacteria, Gram-positive, 

stationary phase and spore state seemed to be more pressure-tolerant than Gram-

negative, exponential growth phase and vegetative cells. Even, differences strain-to-

strain within a same species have been reported (Alpas et al., 2000).  
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Food microbiologists often assume that strain variability of microbial behavior is equal 

to or smaller than the experimental variation. However, strain selection is a critical 

decision when designing and conducting challenge tests (Lianou and Koutsoumanis, 

2013). Strains with above average, but not with unrealistic extreme resistance, or those 

associate with public health concerns are preferred to be included in challenge testing 

(Balasubramaniam et al., 2004), because their approximation of the results to a real case 

scenario.  

L. monocytogenes showed a strain-dependent resistance to different preservation 

technologies such as bacteriocins (Rasch and Knøchel 1998); pulsed electric fields (Lado 

and Yousef, 2003) and thermal treatment (Aryani et al., 2015; Doyle et al., 2001). 

Although some studies determined the variability of pressure-resistance of the 

pathogen (Alpas et al., 1999; Simpson and Gilmour, 1997a; Tay et al., 2003), the results 

are limited due to the low number of strains evaluated, usually less than ten, which is 

insufficient to cover the wide diversity within this species.  

The diverse geno- and phenotypic characteristics of L. monocytogenes give to the 

subtypes of the species the ability to withstand with different stress conditions, exerting 

varied responses to grow and express virulence (Arguedas-Villa et al., 2010; Barmpalia-

Davis et al., 2008). Subtypes can be classified in different ways, being lineage, 

serogrouping, and virulence-related factors the most commonly used. The species 

diversity can be represented in four lineages based on differences in listerial genome, 

apparently caused by recombination events. These lineages represent diverse ecologic, 

genetic and phenotypic characteristics related to the ability to be transmitted through 

foods and to cause human disease (Orsi et al., 2011). For instance, lineage I, the lowest 

diverse among lineages, contains the most of strains related to listeriosis-outbreak 

cases. In contrast, isolates from food, food processing and natural environments are 

overrepresented in lineage II, the most diverse. Lineages III and IV are comprised by 

strains isolated from animals, mainly ruminants (Abu Mraheil, 2013; Orsi et al., 2011). 

According to their reactivity against specific antibodies, L. monocytogenes is classified in 

13 serotypes. Its importance is related to its correlation with pathogenicity (Bourdichon, 

2014; Nadon et al., 2001), being serotypes 1/2a and 4b the most common isolates in 
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human cases (> 90 %) in Europe (EFSA and ECDC, 2015). Routine analysis of Listeria 

monocytogenes by serotyping with traditional agglutination methods is limited by cost, 

availability, and the need for technical expertise to perform the assay. Thus, a method 

for PCR-based serogrouping is proposed as an alternative for cheap, fast and reliable 

results (Doumith et al., 2004). The method classifies strains in four serogroups and it is 

currently used by some European countries. The reports showed that the most common 

isolates from clinical cases belonged to serogroup 2 and 4 (EFSA and ECDC, 2015). 

Genetic diversity has been shown among human isolates characterized by unique 

virulence or host specificity patterns. However, more research is needed to differentiate 

the highly virulent from the less virulent strains of L. monocytogenes (Luber et al., 2011). 

On this regard, Liu et al. (2007b) developed a multiple PCR-based method to detect the 

presence of three internalin genes (inlA, inlC and inlJ), which are highly correlated to in 

vitro virulence. Internalins are surface proteins used by the pathogen for entering into 

eukaryotic cells during invasion step. Those strains in which internalins genes were 

absent, were significantly less pathogenic (Liu et al., 2007a), therefore they have been 

proposed as virulence factor markers.  

Some strains of L. monocytogenes have exhibited the presence of high pressure-

resistant subpopulations, which have been characterized geno- and phenotypically 

(Karatzas et al., 2007; Liu et al., 2011; Van Boeijen et al., 2010). Those studies have 

helped to understand the stress response mechanisms at genetic level, elucidating 

partly how the pathogen is able to withstand hydrostatic pressure. Despite the previous 

information about pressure-resistance strain variability, the low number of wild-type 

strains and the behavior of those mutants is not sufficient for covering the natural 

diversity of this pathogenic species.   

The objective of this study was to evaluate the variability of the response (inactivation 

and sublethal injury) to high hydrostatic pressure of strains from three L. 

monocytogenes collections from USA and Spain. The strains were characterized geno- 

and phenotypically, in those cases which there were no previous details. Information 

about lineage, serogroup, origin, virulence factors and listeriosis-case history was 
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reported in order to determine correlations between those characteristics and pressure-

resistance.  

 

Materials and methods 

Strain selection 

One-hundred and twenty L. monocytogenes strains were characterized in this study. 

They came from three collections: Forty four, 55 and 21 strains from International Life 

Science Institute – North America (ILSI, USA), Technical Agriculture Institute of Castilla y 

León (ITACyL, Spain) and University of Burgos (UBU, Spain) were included, respectively. 

As a preliminary step, PCR serogrouping, internalins presence and a biochemical 

characterization was done according to the methodology described below. A L. innocua 

strain from UBU collection was included in this study, as well. 

Culture preparation  

The stock cultures were kept frozen at −80 °C in 70 % brain heart infusion (BHI) broth 

(Oxoid, UK) and 30 % glycerol (v/v) (Sigma Aldrich, Spain). From the stock culture, a 

streak of each strain was made onto a tryptone soy agar and 0.6 % yeast extract (TSAYE, 

Oxoid, UK) plate and incubated for 24 h at 37 °C. A single colony was inoculated in a test 

tube pre-filled with 5 mL of BHI broth and incubated until the stationary phase for 18 h 

at 37 °C. Serial dilutions were done until reaching 107 colony-forming units (CFU)/mL by 

9 mL-test tubes pre-filled with phosphate buffer solution (PBS, Oxoid, UK). Four 

milliliters of each inoculum were transferred aseptically to a sterile plastic Pasteur 

pipette, then were heat-sealed, vacuum-packaged in plastic bags and immediately 

stored at 4 °C before HPP treatments (< 2 h).   

DNA extraction 

The DNA used for PCR assays was extracted from 2 mL of cell culture using the 

GenEluteTM Kit (Bacterial Genomic DNA Kit, Sigma, USA) according to the manufacturer's 

recommendations for Gram-positive bacteria. DNA obtained was resuspended in 100 µL 
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of the recommended buffer. The extracted DNA was quantified using an Epoch Bioteck 

spectrophotometer and the GEN 5 v2.00 software (Biotek, Vermont, USA). 

PCR serogrouping and presence of internalins genes 

Serogrouping of the L. monocytogenes strains were done following the protocol of 

Doumith et al. (2004) with some variations. A multiplex PCR amplifications were 

performed in a final sample volume of 25 µL containing 1× PCR reaction buffer without 

MgCl2 (Sigma), 200 µM of each dNTP (dATP, dCTP, dGTP, dUTP) (Promega, Madison, 

WI), 1 µM of lmo0737, ORF2110 and ORF2819; 1.5 µM of lmo1118 and 0.2 µM of prs 

primer (Sigma), 2 mM of MgCl2 (Sigma), 0.5 U of Taq DNA Polymerase (Sigma) and 100 

ng of template DNA. 

Internalins genes, inlA, inlC and inlJ, were detected in each strain according to the 

method designed by Liu et al. (2007b). The multiplex PCR was conducted in a volume of 

25 μL containing 0.8 U Taq DNA polymerase 1× PCR buffer, 200 μM dNTPs and 10 ng 

each Listeria monocytogenes DNA, together with 40 pmol each inlA, 30 pmol each inlC 

and 20 pmol each inlJ primers. All material was provided by Sigma Aldrich (Spain). 

All PCR reactions were performed using a Mastercycler gradient thermal cycler 

(Eppendorf, Spain). The PCR products were separated by electrophoresis on a 2.0 % 

Electran agarose gel (VWR, UK) and stained with ethidium bromide (Amresco, USA).  

Biochemical characterization  

Strains were further subjected to haemolysis on Christie, Atkins, Munch Petersen 

(CAMP) test on Columbia blood agar (Oxoid, UK) and detection of phosphatidylinositol-

specific phospholipase C (PI-PLC) activity on agar Listeria according to Ottaviani and 

Agosti (ALOA) medium (Oxoid, UK). 

High pressure processing conditions 

Five conditions of pressure and holding time were tested: 400 MPa, 3 s; 400 MPa, 360 

s; 500 MPa, 180 s; 600 MPa, 3 s and 600 MPa, 360 s at room temperature (20 °C) in a 

135-L high pressure unit (Hiperbaric 135 from Hiperbaric S. A., Burgos, Spain), using 

water as pressurization liquid. The pressure build-up time was 130, 150 and 170 s for 
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400, 500 and 600 MPa, respectively. Depressurization time was less than 3 s. The range 

of pressure and holding time was selected to cover usual industrial conditions. 

Determination of inactivation and sublethal injury 

Differential plate counting was performed before and after high pressure processing in 

TSAYE for enumeration of viable cells, and in TSAYE with NaCl (40 g/L) for enumeration 

of no-injured cells only, according the recommendations of Jasson et al. (2007) and Jofré 

et al. (2010).  The number of inactivated cells was estimated by the difference between 

counts in TSAYE of control and pressure-treated sample, whereas the quantification of 

sublethally injured was done by the difference of counts between TSAYE and TSAYE with 

NaCl. The results were expressed in log10 CFU/mL. 

Data analysis 

All strains were analyzed in triplicate for each HPP treatment. Cluster analysis on the 

complete dataset was performed by a euclidic distance analysis using the Ward method 

on the non-scaled data (OriginPro 9.0, Originlab, USA). Statistically significant 

differences between clusters according to the characteristics of the strains (lineage, 

serogroup, virulence, pathogenicity or the source of isolation) were identified by 

analysis of variance (Statgraphics Centurion XVI, StatPoint Technologies, Inc., USA). All 

statistical procedures were done on inactivation and sublethal injury data expressed in 

log10 CFU/mL. 

 

Results and Discussion 

Strain selection 

The 120 L. monocytogenes strains presented a wide diversity according their geno- and 

phenotypical characterization (Figure 1). Strains from the four serogroups were 

determined. Around one third of strains belonged to serogroup 4 (serotypes 4b, 4d and 

4e), followed by serogroup 1 (serovars 1/2a and 3a) with 25 % of strains.  Serogroup 2 

(serovars 1/2c and 3c) and serogroup 3 (1/2b, 3b and 7) represented the 26 % of the 

strain collection. The remaining 21 % of strains had a serogroup profile not covered, thus 
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they were classify as “Listeria spp.” group, according to the original method by Doumith 

et al. (2004). Lineage of those strains with no previous details were determined using 

the correlations with serotype given by Nadon et al. (2001). Lineage I (49 %) were the 

largest phylogenetic group, followed by lineage II, representing together around 87 % of 

the strains. The remaining 13 % consisted in strains from lineages III and IV.  The strain 

collection covered the four evolutionary lineage of the pathogen. 

 

 

Figure 1. Characterization of the 120 L. monocytogenes strains according their source of lineage (A), PCR 
serogrouping (B), virulence factors (C), listeriosis-case history (D) and isolation (E) 
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All the L. monocytogenes strains exhibited PI-PLC activity, whereas the half exhibited a 

clear haemolytic activity according to the CAMP test. Ninety-two strains had the three 

internalin genes (inlA, inlC and inlJ) present. According to our results, more than a half 

of strains can be classified as potentially virulent. In addition, the 16 % have been 

associated to listeriosis outbreak, 25 % to sporadic human listeriosis cases, and 11% 

associated to listeriosis in animals. Less than a half of the strains had unknown listeriosis-

cases associated history. Fifty-five strains were isolated from food products (44 %), 

coming from meat (n = 40; 33 %), dairy (n = 7; 6 %) and vegetable products (n = 5; 4%). 

Strains from human clinical cases represented the 31%, 12 % from animal clinical cases 

and 2 % from environmental samples. Fifteen strains (12 %) were isolated from unknown 

origin.  

Based on this information and previous details given by the collection owners, we 

selected 30 strains for high pressure treatment trials (Table 1). These strains were 

selected from the initial 120, seeking to cover a wide range of lineage, serogroup, the 

source of isolation, virulence factors and known pathogenicity, eliminating those strains 

with a similar profile.  

Regarding the selected set of strains, lineage I (n = 15) was the most represented, 

followed by Lineage II (n = 10). Four strains from Lineage III and IV and two strains with 

no lineage information were included, as well. The selection of most of the strains from 

Lineage I and II is reasonable because their direct relationship with human clinical cases 

and their persistence in food and food processing environments, respectively (Orsi et 

al., 2011). Nevertheless, strains from all serogroups were included. Seven strains from 

serogroup 1, four from serogroup 2, five from serogroup 3 and nine from serogroup 4 

(4b, 4d and 4e) were included. Six strains classified as “Listeria spp.” serogroup were 

included, as well. Five of them were identified as L. monocytogenes. The sixth strain 

corresponded to L. innocua UBU. 

Regarding the virulence-associated factors, around half of the strains showed significant 

haemolytic activity. Five out of the 30 strains were positive of the three internalins genes 

(inlA, inlC and inlJ), potential virulence markers (Liu et al., 2007b). The selected set 

comprised epidemic- (n = 9) and sporadic-related strains (n = 14). The rest of strains (n 
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= 8) have not been related to clinical cases. Animal (n = 4) and human (n= 12) isolates 

were included. The selected set comprised twelve isolates from food products (five from 

dairy, four from meat and three from vegetable products). Three strains from unknown 

origin were included, as well.  

 

High hydrostatic pressure induces diverse inactivation levels depending 

on the strain 

The distributions of inactivation levels caused by high hydrostatic pressure on Listeria 

monocytogenes strains depended on the applied pressure and holding time (Figure 2). 

At the lowest (400 MPa, 3 s) and the highest (600 MPa, 360 s) conditions, the inactivation 

variability was lower than the rest of tested conditions. Low inactivation was achieved 

for the most of the strains (< 1 log CFU/mL) at 400 MPa for 3 s. Processing at 600 MPa 

for 360 min achieved above 5 log-inactivation in all strains. For intermediate treatments, 

the inactivation range were wider. At 400 MPa for 360 s, most of the strains presented 

an inactivation value below 2 log-cycles. However, a group of more sensitive strains 

were inactivated in a range from 2 to 4 log CFU/mL. Similarly, at 500 MPa for 180 s, there 

were two groups of strains. 

Most of the strains exhibited a low tolerance at these conditions, achieving from 3.0 to 

6.5 log-inactivation. Few strains, the most resistant, were inactivated less than 2 log 

cycles. Six-hundred megapascals during few seconds exerted a widespread inactivation 

in the L. monocytogenes strains, from no-inactivation up to 5.5 log CFU/mL. These broad 

ranges of inactivation are in agreement with previous works about variability of pressure 

tolerance of different strains of this foodborne pathogen, however, it has not been 

described at different HPP conditions in a same set of strains (Alpas et al., 1999; Chen et 

al., 2009; Simpson and Gilmour, 1997b; Tay et al., 2003; Youart et al., 2010). Chen et al. 

(2009) found reductions between 1.9 to 7.1 log CFU/mL at 400 MPa for 2 min at 21 °C 

of 30 strains in tryptic soy broth, while Youart et al. (2010)  found a 5-log difference 

between pressure-sensitive and resistant strains at 600 MPa for 60 s. 
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Figure 2. Distribution of inactivation (log CFU/mL) of the 30 Listeria monocytogenes strains in PBS buffer by 
high hydrostatic pressure at 600 MPa, 360 s; 600 MPa, 3 s; 500 MPa, 180 s; 400 MPa, 360 s; and 400 MPa, 3 
s. 
 

The variable response at strain level to high hydrostatic pressure has been observed in 

different microorganisms other than L. monocytogenes such as E. coli, Campylobacter 

spp., S. aureus, and Hepatitis A virus (Alpas et al., 1999; Benito et al., 1999; Gänzle and 

Liu, 2015; Garcia-Hernandez et al., 2015; Shimasaki et al., 2009). Besides pressure, 

Listeria monocytogenes exhibits strain-dependent response to other preservation 

technologies such as thermal treatment (Aryani et al., 2015; Doyle et al., 2001), 



Diversity of Listeria monocytogenes strains response to high hydrostatic pressure. 
A case study in a buffer system 

52 
 

bacteriocins (Rasch and Knøchel, 1998), and pulsed electric fields (Lado and Yousef, 

2003). 

 

Sublethal injury caused by high pressure varies strain to strain 

High pressure processing caused different sublethal injury levels on L. monocytogenes, 

depending on the strain, pressure and holding time (Figure 3). Analogous to inactivation, 

at the lowest and highest intense conditions (400 MPa, 3s and 600 MPa, 360 s), the 

injured values were below 1 log CFU/mL for most of the strains. Although both 

treatments exerted similar results, the causes were different. The counts of dead and 

injured L. monocytogenes cells were low at 400 MPa for 3 s, whereas at 600 MPa for 360 

s,  processing led to values close to total inactivation, explaining the low counts of 

survivors, including the injured ones. 

The higher variability was found at intermediate pressure-time conditions (400 MPa for 

360 s, 500 MPa for 180 s and 600 MPa, 3 s). Most of the strains presented between 4 to 

6 log-injury at 400 MPa for 360 s, indicating that at these conditions it was possible to 

provoke sublethal injury in the survivors of pressure-treated L. monocytogenes. Most of 

strains were injured less than 3 log CFU/mL at 500 MPa for 180 s. Similarly to 

inactivation, pressure-treated L. monocytogenes exhibited a widespread sublethal injury 

levels after 600 MPa during 3 s. Although this holding time is below industrial conditions, 

the latter result pointed out the relevance of holding time as processing parameter. At 

the maximum pressure at industrial level, longer holding times permitted to reach more 

than 5-log inactivation of the pathogen with a low quantity of injured cells, whereas a 

extremely short times, the lethal and sublethal effect will be highly dependent of the 

strain. The variability in high hydrostatic pressure resistance of the different species, 

strains and even cells within a population makes the proper design of HPP treatments 

that would allow adequate reductions of bacteria a challenging task (Wells-Bennik et al., 

2008). 

Few studies have been done about the assessment of strain variability in pressure-

injured bacteria. Alpas et al. (2000) found differences in the percentage of injury in two 
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strains of L. monocytogenes and S. aureus at pressures up to 345 MPa for 5 and 10 min 

at different temperatures. L. monocytogenes and Salmonella enterica did not show 

significant strain-specific differences in cell injury after high pressure treatment at 400, 

600 and 900 MPa, while higher variability were detected in S. aureus strains (Jofré et al., 

2010). 

  

 
Figure 3. Distribution of sublethal injury (log CFU/mL) of the 30 Listeria monocytogenes strains in PBS buffer 
by high hydrostatic pressure at 600 MPa, 360 s; 600 MPa, 3 s; 500 MPa, 180 s; 400 MPa, 360 s; and 400 MPa, 
3 s. 
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L. monocytogenes strains group in different clusters according their 

pressure-resistance 

Since the lethal and sublethal effect of high hydrostatic pressure on strains depended 

on pressure and time, a cluster analysis was done for grouping those strains which 

behave similarly. This type of multivariate analysis has been previously done for 

classifying strains according their ability to handle environmental conditions, but never 

for high hydrostatic pressure (Begot et al., 1997; Van Boeijen et al., 2010; Van Der Veen 

et al., 2008). The results of this cluster analysis, for inactivation and sublethal injury data, 

are reflected in the dendrograms (Figure 4 and Figure 6, respectively). 

According to their ability to resist to high hydrostatic pressure, the thirty strains of L. 

monocytogenes and the strain of L. innocua were grouped in three clusters for 

inactivation data (Figure 4). The three groups (A, B, C) had an heteregeneous number of 

strains, being cluster A (n = 18) the largest group, followed by B (n = 9) and C (n= 4). 

Cluster C was the most resistant group with a mean of less than 1 log-inactivation for all 

HPP conditions except at 600 MPa for 360 s (6.3 ± 0.5 log-inactivation). Cluster A 

presented a similar pattern of inactivation to cluster B (p > 0.05), around 5 and 3 log-

inactivation at 500 MPa for 180 s and 600 MPa for 3 s, respectively. However, at 400 

MPa for 360 s, cluster A (1.1 ± 0.5 log CFU/mL) exhibited a higher pressure-tolerance 

than cluster B (3.1 ± 0.4 log CFU/mL). 

Pressure and holding time affected in different way each cluster (Figure 5). Each 

processing parameter affected significantly (p < 0.001) the inactivation levels of all the 

clusters. The interaction of these parameters affected significantly (p < 0.001) the 

inactivation levels in clusters A and C. However, pressure and holding time affected 

inactivation of Cluster B in a additive way (pinteraction > 0.05). Our results suggested the 

pressure-resistance of clusters was C > A > B. 
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Figure 4. Cluster dendrogram of the inactivation of 30 Listeria monocytogenes strains and one L. innocua by 
high hydrostatic pressure. The strains were clustered by using euclidic distance and Ward grouping method.  
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Strains were classified in three major groups (X, Y and Z) according the injury levels 

caused by high hydrostatic pressure (Figure 6). The three clusters had a similar number 

of members (10, 12 and 9 for cluster X, Y and Z, respectively) and there was no 

correspondence between the resulting clusters from inactivation and sublethal injury 

data. Such as the distributions showed (Figure 3), treatments at 400 MPa for 3s and 600 

MPa for 360 s exerted low injured values (< 1 log CFU/mL). Hence, the variability of the 

clusters X, Y and Z lied on the intermediate conditions. Strains contained in cluster Z 

were the most susceptible to be injured by high hydrostatic pressure (p < 0.05) at the 

three intermediate conditions, whereas cluster Y presented the lowest values of 

sublethal injury (up to 2.6 log CFU/mL). Cluster X had a similar injury pattern to cluster 

Y, however, processing  at 400 MPa for 360 s caused higher injury in cluter X than cluster 

Y (4.5 ± 1.2 log CFU/mL and 2.6 ± 1.1 log CFU/mL, respectively). 

Similarly to inactivation, pressure and holding time caused cell injury to each cluster in 

a different levels. Analysis of variance showed pressure-time interaction affected 

significantly (p < 0.001) the sublethal injury of all clusters. Interaction between 

processing parameters is evident in the contour plots (Figure 7). At 400 MPa, strains 

were more susceptible to be injured at longer holding times. On the contrary, higher 

injured levels were caused at 600 MPa during 3 s. According to our results, cluster Z was 

the most susceptible to be pressure-injured, followed by X and Y.   
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Figure 5. Contour plots of inactivation levels of Listeria monocytogenes clusters 
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Figure 6. Cluster dendrogram of the sublethal injury of 30 Listeria monocytogenes strains and one L. innocua 
by high hydrostatic pressure. The strains were clustered by using euclidic distance and Ward grouping 
method.  
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Figure 7. Contour plots of sublethal injury levels of Listeria monocytogenes clusters 
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Potential reference strains for using in high hydrostatic pressure challenge 

studies 

Members of cluster C (ILSI 10, ITA 83 and ITA 366) were the most pressure-resistant 

(Table 1) and they can be potential strains for using in studies about the control of L. 

monocytogenes  by high hydrostatic pressure. None of these strains has been associated 

to outbreaks cases, however, ILSI 10 has pathogenic behavior, being isolated from a 

sporadic human clinical case and ITA 83 and ITA 366 presented the virulence-associated 

factors evaluated in this work. Besides, the three strains belong to a different serogroup, 

faciliting tracing them by using the PCR serogrouping method. These three strains could 

be included in a five-strains cocktail for use in validation or challenge studies as it is 

recommended (Balasubramaniam et al., 2004; NACMCF, 2005). 

Among L. monocytogenes strains, Scott A, a milk-borne isolate with clinical importance, 

is often used as a reference strain, also in studies about high hydrostatic pressure 

(Simpson and Gilmour, 1997b; Tay et al., 2003; Van Boeijen et al., 2008; Waite-Cusic et 

al., 2011). We tested the pressure-resistance of this strain (coded as ILSI 01). The strain 

was grouped in cluster A and cluster X, showing an intermediate-low resistance to high 

hydrostatic pressure, in agreement with other authors (Simpson and Gilmour, 1997b; 

Tay et al., 2003; Van Boeijen et al., 2008), questioning its suitability as reference strain 

for HPP validation studies. Based on the results from this study, we propose the use of 

other strains for processing validation purposes and research such as ILSI 10, ITA 83 and 

ITA 366 which demonstrated higher resistance to high hydrostatic pressure than Scott A 

strain.  

The strain of Listeria innocua belonged to clusters C and Y. The members of these 

clusters exhibited a high resistance to pressure-induced death and injury. This species 

of Listeria genus is usually used as surrogate of L. monocytogenes in challenge testing of 

different preservation technologies due to its similar behavior, easy-handling and its lack 

of pathogenicity. In the case of high hydrostatic pressure, Santillana-Farakos and 

Zwietering (2011) found no significant differences in log Dp values between both species 

of Listeria genus. However, other authors stated its pressure-resistance is intermediate 
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compared to other L. monocytogenes strains and other potential surrogates (Tay et al., 

2003; Waite-Cusic et al., 2011). Our results suggested L. innocua UBU strain is a potential 

surrogate for validation of high pressure processes, due to its high tolerance and similar 

susceptibility to be pressure-injured compared to 30 L. monocytogenes strains, its lack 

of pathogenicity, reproducible growth, easily enumerated, characteristics 

reccommended for surrogate organisms (NACMCF, 2010). Further studies should be 

done to validate the use of this microorganism as surrogate in real food products. 

Correlation between pressure-resistance and the characteristics of the 

strains  

The characteristics of the evaluated strains and their cluster membership are 

summarized in Table 1. Based on these results, there was no a clear correlation between 

clusters and lineage, serogroup, haemolysis activity, internalins gene presence and 

listeriosis history (p > 0.05). Most of lineage I strains (10 out of 15), which are related 

with most of cases of human clinical isolates (Orsi et al., 2011), were found in Cluster A. 

Despite the fact that cluster A appearently contained the most of human cases isolates, 

there was no a correlation between cluster and lineage (p > 0.05). Serogroup 4, which 

contains serotype 4b (the most related to listeriosis cases) was present in cluster A as 

well as in cluster B. The same two clusters contained the most of epidemic- and sporadic-

related strains. Liu et al. (2015) found no correlation between pressure resistance and 

phylogenetic group or serotype of a representative set of E. coli strains. In the case of 

Listeria monocytogenes, the correlation between resistance and phylogenetic or 

serotype depends on the stress which is been subjected. Salt-stress (Bergholz et al., 

2010; Van Der Veen et al., 2008), biofilm formation (Kadam et al., 2013) and survival to 

simulated gastrointestinal tract model (Barmpalia-Davis et al., 2008) were strongly 

correlated to serotype and phylogenetic characteristics. By contrast, the tolerance to 

cold stress (Arguedas-Villa et al., 2010), bacteriocins (Rasch and Knøchel, 1998), pulsed 

electric fields (Lado and Yousef, 2003) and thermal treatment (Francis and O’Beirne, 

2005) were not related to phylogenetic or serotype differences among the strains 

tested.  
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The latter reflects the complexity of resistance mechanisms in a microorganism such as 

L. monocytogenes. Although the pressure-resistance phenomena is not completely 

elucidated, some studies have demonstrated the role of genetic factors such as sigma 

factor σB-dependent genes (Wemekamp-Kamphuis et al., 2004). Sigma factor σB plays a 

central role in redirecting gene expression under stress conditions, and its activation 

confers protection to a wide range of stress in L. monocytogenes and other Gram-

positive bacteria (Chaturongakul et al., 2008; Wells-Bennik et al., 2008). Besides  Sigma 

factor σB, the genetic variation of pressure-resistant subpopulations have helped to 

elucidate a pressure- protective role of heat shock proteins by the expression of heat 

inducible genes hrcA and ctsR named class I and III stress gene repressor in L. 

monocytogenes (Karatzas et al., 2003, 2005; Liu et al., 2012, 2011; Van Boeijen et al., 

2010). From proteomic standpoint, pressure-treated L. monocytogenes is quite reactive, 

upregulating 23 proteins, some of them are related to withstand stress conditions and 

to mechanisms for cell repairing (Jofré et al., 2007). The variable gene expression 

response at strain level, could be the responsible of the difference between L. 

monocytogenes strains to resist to high hydrostatic pressure.  

We found no correlation in pressure resistance and some geno- and phenotypical 

virulence characteristics of L. monocytogenes. Although the relationship between 

virulence and high hydrostatic pressure has not been previously studied in L. 

monocytogenes, there are several works comparing the pressure-resistance of 

pathogenic and non-pathogenic Escherichia coli strains (Garcia-Hernandez et al., 2015; 

Liu et al., 2015; Reineke et al., 2014; Sheen et al., 2015). In general, the presence of 

virulence factors is not related to ability of E. coli to withstand high hydrostatic pressure, 

allowing the selection of non-pathogenic strains as surrogates for validation studies. The 

origin of the strains was not related to their pressure-tolerance (p > 0.05) either. Food-, 

animal-, and human-isolated strains presented different resistance to high pressure. The 

origin did not seem to be a good indicator of pressure-resistance. Other authors found 

no correlation between the origin of the Listeria monocytogenes strains and their cold 

and heat tolerance (Arguedas-Villa et al., 2010; Aryani et al., 2015). 
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Conclusions 

The pressure resistance of L. monocytogenes in PBS buffer varied between strains 

depending on the high pressure processing conditions. According to the levels of 

inactivation and sublethal injury, strains were grouped in clusters, differently affected 

by pressure and holding time.  

Twenty-seven out of thirty strains exhibited a low-intermediate resistance. Three strains 

were particullary tolerant to high pressure, being candidates to be included in cocktails 

for use in validation and challenge studies. The strain of L. innocua UBU seemed to be a 

potential candidate as surrogate microorganism in HPP studies. The latter results should 

be tested and validated.  

In the light of this study, HPP processing at 600 MPa for 360 s is able to control the 

pathogen above 5-log inactivation levels. However, the efficacy should be verified and 

validated in real food matrices.  

The different levels of pressure tolerance of this wide set of strains were not correlated 

with factors such as lineage, serogroup, virulence factors, pathogenicity or origin. Other 

genetic and phenotypic characteristics than those covered in this work could be 

evaluated in further studies for understanding which factors are implicated in the strain 

variability of pressure-resistance of for designing efficient HPP treatments in order to 

control successfully the presence of L. monocytogenes.  
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Introduction 

Prior to the 1980s, listeriosis was a rarity, only associated to an animal disease. Since 

then, the number of cases on the association of Listeria monocytogenes isolates with 

human disease increased, and the microorganism started to be considered one of the 

major foodborne pathogens because its high morbidity and mortality regardless its 

moderate prevalence in foods (Bourdichon, 2014). The annual estimation of illnesses 

worldwide caused by L. monocytogenes is 23,150 cases, which led to 5463 deaths 

globally (de Noordhout et al., 2014). In Europe during 2013, it was reported 1,763 

confirmed cases of listeriosis in people across the continent, indicating 0.44 cases per 

100,000 population. A total of 191 deaths were reported during the same period, 

reaching a case-fatality rate of 15.6%, being the highest rate among all zoonosis 

surveyed in Europe (EFSA and ECDC, 2015). 

After major outbreaks in North America and Europe during the 1980s, the significance 

of foods as the primary route of transmission of the bacteria was recognized. The vast 

majority of cases of human listeriosis has been associated to the consumption of foods 

that do not meet the microbiological criteria for L. monocytogenes in foods, whether 

that standard is zero-tolerance or 100 CFU/g (FAO, 2004). According to the International 

Life Science Institute Risk Science Institute Expert Panel, the high-risk foods for carrying 

the pathogen: support its growth to high numbers, are ready-to-eat (RTE) foods, require 

refrigeration, and are stored for an extended period of time (ILSI, 2005). Among meat 
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products, RTE deli meats and non-reheated frankfurters are considered high risk 

listeriosis-associated foods, while fermented sausages and meat products which 

required a post-heating procedure were classified as moderate risk products. Dry meat 

products such as salami and dry-cured ham were not considered the greatest risk 

because their composition does not support the growth of the pathogen, however, they 

can harbor the bacteria (Baer et al., 2013).  

During 1992-2012 period, RTE sliced cooked meat products have been associated to 11 

listeriosis outbreaks in Europe, North America and Oceania (NSW food authority, 2013). 

In The Netherlands during 2009, the cost-of-illness in meat-borne listeriosis was 

estimated in € 0.5 million, a 25 % of the total listeriosis-associated cost (Haagsma et al., 

2009). The presence of L. monocytogenes in cooked meat products is most likely to be 

the result of recontamination following processing, which may occur during additional 

handling such as peeling, slicing, and repackaging (Lianou and Sofos, 2007). Dry-cured 

meat products shows a low water activity (aw) usually lower than 0.92 and high salt 

concentration (higher than 4 %), which hardly support the growth of L. monocytogenes. 

In fact, dry-cured or dry-fermented meat products have never been involved in listeriosis 

outbreak. However, the presence of the pathogen constitutes an impediment of export 

to those countries with a zero-tolerance policy such as USA, Japan and Australia (Bover-

Cid et al., 2011). In Australia, dry-cured ham from Spain and Italy failed eight times 

during 2010 – 2012 at the border due to the presence of the microorganism (NSW food 

authority, 2013). Therefore, the presence of L. monocytogenes must be controlled using 

a postlethality treatment to avoid human disease in RTE cooked meat products and food 

recalls in case of cured meats. 

Technologies such as surface pasteurization, E-beam radiation, UV-light, addition of 

chemical preservatives, and biopreservation by using protective cultures and 

bacteriocins have been demonstrated a good performance to control de pathogen in 

RTE meat products (Baer et al., 2013; Jiang and Xiong, 2014; Zhu et al., 2005).  High 

pressure processing (HPP) stands out among other preservation technologies because it 

has the potential to inactivate pathogenic and spoilage microorganisms, and to meet 

the consumer demands in relation to high quality foods (Bover-Cid et al., 2011; Campus, 
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2010; Garriga et al., 2004). HPP technology is efficient to control L. monocytogenes in 

RTE meat products such as cooked ham (Hereu et al., 2012; Jofré et al., 2009; Koseki et 

al., 2007) and dry-cured meat meat (Bover-Cid et al., 2015; Hereu et al., 2012; Stollewerk 

et al., 2012).  

Any post-lethality technology must be a part of the establishments’ HACCP plan and its 

effectiveness incorporated into their HACCP plan must be technically-validated and 

supported by science-based approach. Challenge tests are one of the major types of 

scientific and technical support documents used to satisfy the design element of HACCP 

System validation (USDA-FSIS, 2015). These tests involve the inoculation of a product 

with relevant microorganism(s) and storing under a range of controlled environmental 

conditions in order to assess the risk of food poisoning or to establish product stability 

(Betts, 2010). Besides the considerations about processing (e.g. pressure, holding time, 

come-up time, depressurization time, temperature), the characteristics of the strains 

used are relevant to obtain reliable information from challenge tests about high 

pressure technology (Balasubramaniam et al., 2004; NACMCF, 2010).  

An assumption frequently made by food microbiologists is that strain-to-strain variation 

of microbial behavior is equal to or smaller than the experimental variation, and, it is 

not necessary to be determined and characterized (Whiting and Golden, 2002). 

However, some authors demonstrated large strain-to-strain variations making the 

selection of the strains critical in challenge testing (Lianou and Koutsoumanis, 2013). In 

this case, strains with above average (but no unrealistic) resistance to lethal treatments 

or those associated with outbreaks are preferred to be included in challenge testing and 

validation studies  (Balasubramaniam et al., 2004).  

Aryani et al. (2015) demonstrated that the strain variability in the thermal resistance of 

L. monocytogenes was ten times higher than the experimental variability (the variability 

between parallel experimental replicates) and four times higher than the biological 

variability (variability between biologically independent reproductions). Although strain 

variability in tolerance to high hydrostatic pressure has not been quantified, some 

studies have reported wide pressure resistance among strains in a same species in lab 

media (Alpas et al., 1999; Benito et al., 1999; Garcia-Hernandez et al., 2015; Liu et al., 
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2015). Regarding L. monocytogenes, some strains have shown a higher tolerance than 

others in buffer and food models (Alpas et al., 1999; Chen et al., 2009; Simpson and 

Gilmour, 1997a; Tay et al., 2003).  

In the previous chapter, we found that the strains of the pathogen exhibited a varied 

resistance to high hydrostatic pressure in PBS buffer, identifying some pressure-

resistant strains. However, the efficacy of the HPP technology concerning microbial 

inactivation is also dependent on the food matrix, which can exert a synergetic or 

protective effect with high pressure  (Georget et al., 2015; Rendueles et al., 2011). 

Therefore, in this study, we evaluated individually, the variability in pressure-resistance 

of fifteen L. monocytogenes strains, using cooked and cured ham as model meat 

matrices. The meat matrices were chosen based on their association to Listeria-positive 

cases  according to RASFF (2015) or their economic impact in Spanish meat industry 

(Cruz, 2013). 

 

Materials and methods 

Strains included in this study 
Fifteen L. monocytogenes strains from three collections, International Life Science 

Institute – North America (ILSI, USA), Technical Agriculture Institute of Castilla y León 

(ITACyL, Spain) and University of Burgos (UBU, Spain) were evaluated. These strains 

were selected according to the pressure resistance exhibited in the previous study 

and/or their link with meat products associated to human listeriosis. A L. innocua strain 

from UBU collection was included in this study, due to high pressure tolerance exhibited 

in PBS buffer. As a preliminary step, PCR serogrouping, internalins presence and a 

biochemical characterization were done according to the methodology described below.  

Culture preparation  
The stock cultures were kept frozen at −80 °C in 70 % brain heart infusion (BHI) broth 

(Oxoid, UK) and 30 % glycerol (v/v) (Sigma Aldrich). From the stock culture, a streak of 

each strain was made onto a tryptone soy agar and 0.6 % yeast extract (TSAYE, Oxoid, 

UK) plate and incubated for 24 h at 37 °C. A single colony was inoculated in a test tube 
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pre-filled with 5 mL of BHI broth and incubated until the stationary phase at 37 °C during 

18 h. This procedure was done for obtaining cells for molecular biology methodologies 

as well as for meat product inoculation. 

DNA extraction 
The DNA used for PCR assays was extracted from 2 mL of cell culture using the 

GenEluteTM Kit (Bacterial Genomic DNA Kit, Sigma, USA) according to the manufacturer's 

recommendations for Gram-positive bacteria. The DNA obtained was resuspended in 

100 µL of the recommended buffer. The extracted DNA was quantified using an Epoch 

Bioteck spectrophotometer and the GEN 5 v2.00 software (Biotek, Vermont, USA). 

PCR serogrouping and presence of internalins genes 
Serogrouping of the L. monocytogenes strains was done following the protocol by 

Doumith et al. (2004) with some variations. Multiplex PCR amplifications were 

performed in a final sample volume of 25 µL containing 1× PCR reaction buffer without 

MgCl2 (Sigma), 200 µM of each dNTP (dATP, dCTP, dGTP, dUTP) (Promega, Madison, 

WI), 1 µM of lmo0737, ORF2110 and ORF2819; 1.5 µM of lmo1118 and 0.2 µM of prs 

primer, 2 mM of MgCl2, 0.5 U of Taq DNA Polymerase and 100 ng of template DNA. All 

material was provided by Sigma (Spain). 

Internalins genes, inlA, inlC and inlJ, were detected in each strain according to the 

method designed by Liu et al. (2007). PCR was conducted in a volume of 25 μL containing 

0.8 U Taq DNA polymerase 1× PCR buffer, 200 μM dNTPs and 10 ng each Listeria 

monocytogenes DNA, together with 40 pmol each inlA, 30 pmol each inlC and 20 pmol 

each inlJ primers. All material was provided by Sigma (Spain). 

All conventional PCR reactions were performed using a Mastercycler gradient thermal 

cycler (Eppendorf, Spain). The PCR products were separated by electrophoresis on a 2.0 

% Electran agarose gel (VWR, UK) and stained with ethidium bromide (Amresco, USA).  

Biochemical characterization  
All strains were further subjected to haemolysis on Christie, Atkins, Munch Petersen 

(CAMP) test on Columbia blood agar (Oxoid, UK) and detection of phosphatidylinositol-



Diversity of Listeria monocytogenes strains response to high hydrostatic pressure. 
A case study in RTE meat products 
 

80 
 

specific phospholipase C (PI-PLC) activity on agar Listeria according to Ottaviani and 

Agosti (ALOA) medium (Oxoid, UK). 

Meat products 
Each product, cooked and dry-cured ham, was purchased in a local supermarket, 24 h 

before the inoculation step and stored at 4 oC until inoculation. Physicochemical 

parameters, pH and water activity, were analysed using a puncture pH-meter (CRISON, 

Spain) and Aqua-Lab CX2 equipment (Decagon, US), respectively. The characteristics of 

sliced cooked ham were aw = 0.969 ± 0.001 and pH = 5.97 ± 0.03. For dry-cured ham 

were aw = 0.908 ± 0.013 and pH = 5.39 ± 0.03.   

Inoculation 
Two-hundred and fifty microliters of each L. monocytogenes strain inoculum were 

added and streaked on the surface of 25 g ± 0.5 g of each product, obtaining an initial 

population of approximately 107 CFU/g. The sample was packaged in Stomacher bags 

(Interscience, France). Stomacher bags were put into another plastic bag and were 

vacuum packaged and kept under refrigeration overnight at 4 oC until high pressure 

processing. 

High pressure processing conditions 
For each meat product, different holding times were tested. For cooked ham, 

treatments at 600 MPa during 3, 180 and 240 s were done. Dry-cured ham was 

processed at 600 MPa at 180, 240 and 540 s. All trials were done at room temperature 

(20 oC) in a 135-L high pressure unit (Hiperbaric 135 from Hiperbaric S. A., Burgos, Spain), 

using water as pressurization liquid. The pressure build-up time was 170 s and 

depressurization time was less than 3 s. The pressure and the range of holding time was 

selected to cover usual industrial conditions for this type of product. After high pressure 

processing, the samples were stored at 4 oC (less than 2 h) until microbiological analysis.

  

Microbiological analysis  
Ten-fold serial dilutions were made in Ringer’s solution (Oxoid, UK) and depending on 

the expected counts the adequate decimal dilution was spread manually on 
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Chromogenic Listeria Agar (OCLA; Oxoid, UK) and incubated at 37 °C for 48 h.  The results 

were expressed in log10 colony-forming units (CFU)/g. 

Data analysis 
All strains were analyzed in triplicate for each HPP treatment. Cluster analysis on the 

complete dataset was performed by an euclidic distance analysis using the Ward 

method on the non-scaled data. Principal component analysis (PCA) was done on the 

covariance matrix and two components were extracted. Cluster and PCA analyses were 

done by using OriginPro 9.0 (Originlab, USA). 

Statistically significant differences between clusters according to the characteristics of 

the strains (lineage, serogroup, virulence, pathogenicity or the source of isolation) were 

identified by analysis of variance (Statgraphics Centurion XVI, StatPoint Technologies, 

Inc., USA). All statistical procedures were done on inactivation expressed in log10 colony-

forming units (CFU)/mL. 

 

Results and Discussion 

Intra-species differences concerning inactivation by HPP in cooked ham 
and dry-cured ham 
The distributions of the inactivation values of pressure-treated Listeria monocytogenes 

in cooked and dry-cured ham are shown in Figure 1 and Figure 2, respectively. In both 

meat matrices, the range of inactivation depended on the processing conditions applied. 

In cooked ham, the strains of the pathogen were inactivated 1.8 – 3.9 log CFU/g, 3.6 – 

4.9 log CFU/g and 3.7 – 5.3 log CFU/g at 600 MPa during 3, 180 and 360 s, respectively.  

The range of inactivation levels agreed with those reported by Koseki et al. (2007) for 

the cooked ham. The inactivation ranges for dry-cured ham were 1.7 – 3.4 log CFU/g, 

3.2 – 4.6 log CFU/g and 3.2 – 5.8 log CFU/g when it was processed at 600 MPa for 180, 

360 and 540 s, respectively. Our results at 600 MPa, 360 s are in agreement with the 

findings of Bover-Cid et al. (2015) and Hereu et al. (2012), however, at the longest 

holding time (540 s), the L. monocytogenes inactivation levels reached were higher 

(around 3-log inactivation) than those reported by Bover-cid et al. (2011) at the same 
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HPP conditions. The differences between our results and the available previous studies 

seemed to be due to the different physicochemical characteristics of the dry-cured ham 

(Dry-cured ham used in this study aw = 0.908, while Bover-Cid et al. (2011) aw = 0.88). 

This lower inactivation values are related to the baroprotective effect exerts by lower 

values of water activity on the resistance of L. monocytogenes  (Koseki and Yamamoto, 

2007). 

 

Figure 1. Distribution of inactivation (log CFU/g) of the 15 Listeria monocytogenes strains in cooked ham 
(aw = 0.969 ± 0.001, pH = 5.97 ± 0.03) by high hydrostatic pressure at 600 MPa, 3 s, 180 s and 360 s. 
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Figure 2. Distribution of inactivation (log CFU/g) of the 15 Listeria monocytogenes strains in dry cured ham 
(aw = 0.908 ± 0.013, pH = 5.39 ± 0.03) by high hydrostatic pressure at 600 MPa, 180 s, 360 s and 540 s. 

 

Although the impact of food matrix on pressure-resistance of microorganisms has been 

extensively documented (Georget et al., 2015), the studies about how the meat matrix 

affects the pressure-tolerance of L. monocytogenes at strain level are scarce. Simpson 

and Gilmour (1997b) found that the inactivation of the pathogen by high hydrostatic 

pressure was different between the three strains tested, but also the strain-related 
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variation depended on the concentrations of bovine serum albumin, glucose or lipids in 

the model food system. In raw and cooked chicken mince, the same authors found that 

two strains presented around 2 log CFU/g of difference in the tolerance to high pressure 

(345 MPa), whereas their behavior was similar when the tests were done in cooked beef. 

Other microorganisms such as Escherichia coli and the species of Campylobacter genus 

showed different strain-dependent tolerance to high hydrostatic pressure in meat 

matrices (Garcia-Hernandez et al., 2015; Liu et al., 2015; Martínez-Rodriguez and 

Mackey, 2005; Sheen et al., 2015). The differences between pressure-resistant and 

sensitive ranged between 2 and 3 log cycles for the evaluated microorganisms. The 

pressure-resistance variability of L. monocytogenes has been observed in other food 

matrices such as HPP-treated whey (Waite-Cusic et al., 2011). Processing at 500 MPa for 

60 s achieved 3 log inactivation in the most resistant strains, while the most sensitive 

were inactivated 5 log CFU/mL.  

Besides the ability to withstand high hydrostatic pressure, the microorganism exhibits 

strain-to-strain differences in growth rate in meat and turkey slurry (Pal et al., 2008) and 

cooked ham model (Begot et al., 1997). Meat isolated strains have exhibited variable 

growth at cold temperatures (Arguedas-Villa et al., 2010) and in high osmotic conditions 

(Bergholz et al., 2010). The latter could explain the strain diversity of the bacteria found 

in meat products and in processing plants (Martín et al., 2014). The thermal resistance 

of L. monocytogenes showed to be strain-dependent (Aryani et al., 2015) and this 

variability increased with the decrease in temperature. Our results suggested that 

pressure-resistance variability depended on the holding time at 600 MPa as well as on 

the meat matrix. Variance values of inactivation in cooked ham were 0.69, 0.17 and 0.34 

at 600 MPa for 3, 180 and 540 s, respectively, indicating a higher variability at the least 

intense conditions. On the contrary, the variance of inactivation in dry-cured ham was 

slightly higher at the most intense conditions (0.30, 0.18 and 0.39 at 600 MPa during 

180, 360 and 540 s, respectively).  
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Grouping of L. monocytogenes strains according to their different 
pressure-resistance in cooked ham and in cured ham 
Since the strains of the bacterium presented a diverse resistance at the tested 

conditions, we carried out a clustering analysis for grouping those strains according to 

their pressure resistance in both meat matrices, analyzed separately. The fifteen strains 

of L. monocytogenes and the strain of L. innocua were grouped in three groups Cluster 

Ch-A (n = 6), Cluster Ch-B (n = 7) and Cluster Ch-C (n = 3), according to their inactivation 

data in cooked ham (Figure 3).  

 

Figure 3. Cluster dendrogram of the inactivation of 15 Listeria monocytogenes strains and one L. innocua 
by high hydrostatic pressure in cooked ham (aw = 0.969 ± 0.001, pH = 5.97 ± 0.03). The strains were 
clustered by using euclidic distance and Ward grouping method. 



Diversity of Listeria monocytogenes strains response to high hydrostatic pressure. 
A case study in RTE meat products 
 

86 
 

Cluster Ch-A was the most pressure-sensitive group, reaching the highest inactivation 

levels  at all conditions (p < 0.01) and Cluster Ch-B and Ch-C presented similar mean 

values (p > 0.05) of inactivation at 180 s and 360 s (Figure 4). However, cluster Ch-C was 

significantly (p < 0.01) more pressure-resistant (1.3 ± 0.2 log CFU/g) than cluster Ch-B 

(2.3 ± 0.4 log CFU/g) at 600 MPa during 3 s. According to our results, the pressure-

resistance was Ch-C > Ch-B > Ch-A.  

 

Figure 4. Effect of high pressure processing on inactivation of the three L. monocytogenes clusters in cooked 
ham (Ch; aw = 0.969 ± 0.001, pH = 5.97 ± 0.03) after pressurization at 600 MPa. Data are represented as 
mean ± SD. Different letters (a, b , c) at the same pressure and holding time indicate significant differences 
(p < 0.05) based on LSD test of significance. 

 

In dry-cured ham, the multivariate analysis classified the strains in three clusters, as well 

(Figure 5). Cluster Dh-A (n = 6) was more pressure-resistant at the three tested holding 

times (p < 0.01) than cluster Dh-B (n = 7) and Dh-C (n = 3). At 600 MPa for 180 s, there 

was no statistical differences between the inactivation levels of clusters Dh-B and Dh-C 

(p > 0.05), but when holding time increased, cluster Dh-B exhibited a slight (less than 1 

log cycle) but significant (p < 0.01) higher tolerance that Dh-C (Figure 6). The tolerance 

to high hydrostatic pressure was Dh-A > Dh-B > Dh-C. 
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Figure 5. Cluster dendrogram of the inactivation of 15 Listeria monocytogenes strains and one L. innocua 
by high hydrostatic pressure in dry-cured ham (aw = 0.908 ± 0.013, pH = 5.39 ± 0.03). The strains were 
clustered by using euclidic distance and Ward grouping method. 

 

The increase of holding time led to an increment in the lethal effect of high hydrostatic 

pressure in all clusters and both meat products (Figure 4 and Figure 6). Interestingly, the 

more pressure resistant the cluster was, the higher inactivation induced an extension of 

holding time. In cooked ham, 2.3, 1.5 and 1.1 log-inactivation of difference in cluster Ch-

C, Ch-B and Ch-A was achieved, respectively, between 3 and 180 s. A similar result was 

obtained in dry-cured ham, where a longer holding time, from 180 to 360 s, led to an 
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increase of 1.3, 0.9 and 1.1 log-inactivation for cluster Dh-A, Dh-B and Dh-C, respectively. 

However, the increment of inactivation levels from 180 to 360 s in cooked ham, and 

from 360 to 540 s in dry-cured ham was lower (less than 0.7 log CFU/g) for all clusters.  

This phenomenon has already been described and is known as tailing, where exposure 

during longer periods at high pressure does not result in a proportional inactivation (Tay 

et al., 2003). The presence of pressure-resistant subpopulation of cells explains this 

effect seen in pure cultures of L. monocytogenes subjected to high pressure, where the 

survivors have exhibited higher tolerance than the wild-type strain (Karatzas et al., 2007; 

Van Boeijen et al., 2010).  

 

Figure 6. Effect of high pressure processing on inactivation of the three L. monocytogenes clusters in dry-
cured ham (Dh; aw = 0.908 ± 0.013, pH = 5.39 ± 0.03) after pressurization at 600 MPa. Data are represented 
as mean ± SD. Different letters (a, b, c) at the same pressure and holding time indicate significant 
differences (p < 0.05) based on LSD test of significance. 

 

Several food safety authorities have recognized the use of high hydrostatic pressure 

technology for controlling the presence of L. monocytogenes in RTE meat products (FSAI, 

2005; FSIS, 2014; Health Canada, 2006). However, those institutions demand validation 

studies for demonstrating the suitability of the technology in any particular RTE meat 

product before being commercialized. In USA, any post-lethality treatment expects to 
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achieve 2-log-inactivation or greater, whereas in Canada, the goal is 3 log-inactivation 

(FSIS, 2014; Health Canada, 2010). Based on the results of inactivation of the most 

resistant cluster, we determined that 600 MPa for 180 s and 360 s would be required to 

reach 3 log-inactivation of L. monocytogenes in cooked and dry-cured ham, respectively.  

  

Correlation between pressure-resistance and the characteristics of the 
strains  
The geno- and phenotypical characterization of the fifteen strains of L. monocytogenes 

and the strain of L. innocua, and the cluster membership in both meat matrices is shown 

in Table 1. Our results suggested no correlation between pressure resistance and 

lineage, serogroup, some virulence factors, previous listeriosis-case history or the origin 

in cooked ham as well as in cured ham (p > 0.05).  

Lineage I strains, which are often isolated from human clinical cases (Orsi et al., 2011) 

presented a wide range in resistance, being found the three clusters of both meat 

products. Similarly, serogroup 4 strains, which contains serotype 4b the most listeriosis-

associated serotype, exhibited a variable tolerance. There are no previous studies that 

relates geno- or serotype and pressure resistance in L. monocytogenes. In other 

foodborne pathogens such as E. coli, there is no correlation between inactivation by high 

hydrostatic pressure and genotype or serotype (Liu et al., 2015).  Geno- and serotyping 

have demonstrated to be poor predictors of L. monocytogenes growth, including similar 

conditions to those found in meat products (Arguedas-Villa et al., 2010; Begot et al., 

1997; Pal et al., 2008). In contrast, the tolerance to salt stress seems to be related to 

lineage and serotype (Bergholz et al., 2010; Van Der Veen et al., 2008). Although the 

origin did not show a strong correlation with pressure-resistance (p > 0.05), human-

isolated strains seemed to be more sensitive than meat-isolated ones, since most of 

them were classified in cluster Ch-A. In contrast, all strains in cluster Ch-C, the most 

resistant were isolated from meat or meat products. In dry-cured meat, strains from 

both origins were homogeneously distributed in the three clusters. Aryani et al. (2015) 

found no correlation between heat resistance and origin of L. monocytogenes strains. 

Regarding the virulence of the strains, our findings suggested no relationship between 
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virulence factors or listeriosis-case history and their pressure resistance. In the case of 

E. coli, the studies of Garcia-Hernandez et al. (2015) and Sheen et al. (2015) suggest a 

similar inactivation patterns of virulent and non-virulent strains.  

It is remarkable that the number and the membership of strains in the different clusters 

in cooked and dry-cured ham were different (Table 1). For instance, the most resistant 

clusters, cluster Ch-C consisted in two strains of L. monocytogenes (ILSI 29 and ITA 83) 

and the strain of L. innocua, whereas its analogous in dry-cured ham, cluster Dh-A was 

constituted by five L. monocytogenes strains (including ILSI 29) and L. innocua strain.  

Our results suggested that pressure-resistance variation at strain level depended on the 

food matrix, as well. Loading plot (Figure 7A) from principal component analysis allowed 

the visualization of this fact. The orthogonality between inactivation data in cooked ham 

(CH) from the three HPP conditions and the data from dry-cured ham implied linear 

independency, which means the inactivation level of each strain in cooked ham did not 

depend on the levels reached in dry-cured ham and viceversa. The difference in aw 

between both meat products could explain this outcome. Low water activity contributes 

to stabilizing proteins against pressure-induced-denaturation (Georget et al., 2015). 

Besides protein stabilization, the exposure to moderate salt stress induces physiological 

and genetic changes, resulting in the adaptation to subsequent unrelated stresses in 

Listeria monocytogenes (Hill et al., 2002). This stress demonstrated to have a marked 

strain variability in the pathogen (Adrião et al., 2008). One of the genetic changes 

induced by salt stress is the expression of sigma factor σB. The activation of σB  confers 

protection to a wide range of stress in L. monocytogenes by the redirection of expression 

of dependent genes associated to mechanisms for withstanding adverse conditions 

(Chaturongakul et al., 2008), including high hydrostatic pressure (Wemekamp-Kamphuis 

et al., 2004). 
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Figure 7. Principal component analysis loading (A) and score (B) plot of high hydrostatic pressure 
inactivation of L. monocytogenes strains (n = 15) and a strain of L. innocua in cooked (CH) and dry-cured 
ham (DH) based on covariance matrix.   

 

Sigma factor σB regulates positively 168 genes of L. monocytogenes under salt stress 

(Raengpradub et al., 2008), thus it is possible that part of these regulated σB-dependent 

genes contributes to pressure resistance, as well. Strain variability could be related to a 

diverse stress-related gene expression within the same species, which could explain the 

different strain-to-strain resistance in the two tested meat matrices.  

A 

B 
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Proposal of Listeria monocytogenes cocktail for challenge tests of high 
pressure-processed meat products 
Strain selection is an important decision when designing and conducting challenge tests 

for processing validation or optimization (Lianou and Sofos, 2007), including in challenge 

testing and validation of high pressure-processed food products (Balasubramaniam et 

al., 2004). Our results showed the existence of strains with higher pressure-resistance 

than average in both meat matrices (Table 1). We proposed five strain-cocktail for each 

meat product and a cocktail valid for both matrices (Table 2).  

 

Table 2. L. monocytogenes strains included in the proposal cocktails and used as reference strains 

Proposed cocktails  Other references 

Cooked 
ham 

cocktail 
  Cured ham 

cocktail   Meat product 
cocktail   

ILSI Human 
disease 

cocktail* 
  Reference strains / 

Surrogate 

ILSI 29  ILSI 01  ILSI 13  ILSI 07  ILSI 01** 
ILSI 33  ILSI 13  ILSI 29  ILSI 11  L. innocua UBU 

ILSI 36  ILSI 20  ILSI 36  ILSI 29   
ILSI 42  ILSI 29  ILSI 38  ILSI 35   

ITA 83   ILSI 38   ITA 83   ILSI 36     
* (Fugett et al., 2006) 

** Other denomination: Strain Listeria monocytogenes Scott A 
 

Strain selection in each meat matrix was based on the recommendations from several 

authors (Balasubramaniam et al., 2004; Lianou and Koutsoumanis, 2013; NACMCF, 

2010).  In dry-cured ham, we selected those L. monocytogenes strains which exhibited 

higher pressure-tolerance (cluster Dh-A). This cocktail comprised strains from lineage I, 

II and III, isolated from human clinical cases and meat and the some strains have been 

related to listeriosis outbreaks. Strains in cooked ham cocktail came from cluster Ch-C 

(ILSI 29 and ITA 83), the most resistant group, whereas the other three (ILSI 33, ILSI 36 

and ILSI 42) were selected because their intermediate resistance and other 

characteristics. ILSI 33 is serotype 1/2a, which was the most commonly human isolate in 

Europe during 2013 (EFSA, 2015), and ILSI 36 and ILSI 42 because these strains were 
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isolated from RTE meat products associated to listeriosis outbreaks. In addition, we 

proposed a third cocktail taking into account the inactivation data from both meat 

products. According to the principal component analysis (Figure 7), the strains ILSI 29 

and ILSI 38 showed a higher pressure resistance in both matrices than the rest of 

evaluated strains, therefore they were included. ITA 83 and ILSI 13 presented a high 

pressure tolerance in cooked and cured ham, respectively. ILSI 36 exhibited an 

intermediate resistance in both matrices and their origin (RTE meat) made it a good 

candidate to be included. Using molecular methods, it is possible to trace each strain in 

a cocktail. While the strains ILSI 13 (serogroup Listeria spp.) and ITA 83 (serogroup 2) 

could be easily differentiated by PCR serogrouping, the rest of serogroup 4 strains could 

be identified by their pulsed field gel electrophoresis (PFGE)-type (PFGE-type 20, 8 and 

35 for ILSI 29, ILSI 38 and ILSI 36, respectively) according to the data provided by Fugett 

et al. (2006).   

For comparison purpose, the mean value of inactivation data from each strain included 

in the proposed cocktails (Table 2) was compared to other reference microorganisms 

and cocktails (Figure 8). L. monocytogenes Scott A (ILSI 01) was included in the 

comparison because its extended use as reference strain, including in studies about high 

pressure-processed meat products (Chung et al., 2005; Lucore et al., 2000; Morales et 

al., 2006). The “human disease cocktail” developed by ILSI NA was included, as well. This 

cocktail was designed to cover the genetic diversity of human disease-associated L. 

monocytogenes, including one representative from the epidemic clones and the main 

PFGE-types, ribotypes and serotypes associated with listeriosis (Fugett et al., 2006). 

Finally, L. innocua UBU was included in the comparison due to the consideration of the 

species as a surrogate of L. monocytogenes (Merialdi et al., 2015; Porto-Fett et al., 2010). 

The cocktails and reference microorganisms presented a particular behavior at the 

different high pressure conditions in the two meat matrices (p < 0.05; Figure 8). The 

inactivation of meat product cocktail was statistically similar to the proposed cooked 

ham cocktail (Figure 8A) and cured ham cocktail (Figure 8B). This result was relevant 

because it would allow the evaluation of listericidal effect of high hydrostatic pressure 
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in different meat matrices with one cocktail. However, these results should be verified 

in further studies in meat products other than cooked and cured ham.   

 

Figure 8. Effect of high pressure processing on inactivation of L. monocytogenes cocktails and reference 
strains in cooked ham (A) and dry-cured ham (B) after pressurization at 600 MPa. Data are represented as 
mean ± SD of the members of each cocktail or single strain. Different letters (a, b, c) at the same pressure 
and holding time indicate significant differences (p < 0.05) based on LSD test of significance. 
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According to our results, ILSI Human disease cocktail would be an adequate cocktail for 

using in challenge test of high pressure-processed-cooked ham, because it presented 

similar inactivation levels to cooked ham cocktail. However, its use would not be 

recommended in the assessment of cured ham due to its higher pressure-sensitive 

compared to the other L. monocytogenes cocktails proposed (p < 0.05).  

The pressure-resistance of the Scott A (ILSI 01) strain was matrix-dependent. In dry-

cured meat, the strain exhibited a high tolerance, whereas it was more sensitive to 

pressure in cooked ham, as we observed in cluster analysis (Table 1). Compared to the 

proposed cocktails, the strain exhibited lower pressure-resistance, being inactivated up 

to 1 log CFU/g more than meat product cocktail (Figure 8A). Our results were in 

agreement with the studies by Chung et al. (2005) and Morales et al. (2006), observing 

a high and low pressure tolerance in pressure-treated Serrano ham and sausages, 

respectively. This matrix dependency could discourage the use of Scott A as reference 

strain in all challenge tests and its suitability should be evaluated case-to-case.   

Besides ILSI 29 strain, L. innocua UBU exhibited a higher pressure-resistance than the 

most of L. monocytogenes strains, regardless the meat matrix, being classified in cluster 

Ch-C and Dh-A (Table 1). The microorganism showed a higher tolerance among the 

proposed cocktails in cooked and cured ham, especially at short holding times (p < 0.01). 

The results obtained in this study suggested L. innocua UBU is a potential surrogate 

microorganism for L. monocytogenes in cooked and cured meat products, due to its 

nonpathogenic nature, reproducible growth, easy preparation, enumeration and 

stability (NACMCF, 2010).  

 

Conclusions 

L. monocytogenes showed differences in its pressure-tolerance at strain level. The strain 

variability depended on the processing conditions and the meat matrix. The strains were 

clustered in three groups for cooked ham and the same number for dry-cured ham 
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according to their inactivation levels. Holding time at 600 MPa affected in different way 

each cluster.  

The number of pressure-resistant strains depended on the meat product. While two out 

of fifteen strains showed higher resistance than the average in cooked ham, five 

pressure-tolerant strains were detected in dry-cured meat. It could be due to a cross-

protection phenomenon between salt stress and high hydrostatic pressure at 

physiological and genetic level. Pressure resistance showed no correlation with lineage, 

serogroup, virulence factors, pathogenicity or origin of the strains.  

According to our results, current industrial conditions are adequate to control the 

presence of the pathogen in meat products. Processing cooked ham at 600 MPa for 180 

s seems to be adequate conditions for reaching 3-log inactivation of the most resistant 

L. monocytogenes strains. Dry-cured ham would require 600 MPa during 360 s to 

achieve the same listericidal effect.  

Although the meat matrix plays a relevant role in the strain variability of pressure-

resistance, our study suggests that is possible to select five L. monocytogenes strains to 

constitute a cocktail for validation studies and challenge tests in diverse meat products. 

The L. innocua UBU strain exhibited a high pressure tolerance similar to the most of 

resistant strains of the pathogen in cooked and cured ham, suggesting to be a potential 

surrogate organism. These findings need further studies to be confirmed. 
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Chapter 3 

Validation of L. innocua as a surrogate of 
L. monocytogenes in high pressure-
processed meat products 
 

Introduction 

Among bacterial-foodborne diseases, listeriosis has the highest hospitalization rate in 

European Union and in United States, reaching rates above 90 %. In addition, the disease 

causes by L. monocytogenes has had the highest case-fatality rate in both regions  (15 % 

in EU and 19 % in US), according to food safety authorities (Crim et al., 2014; EFSA and 

ECDC, 2015). The health-associated cost per case is considerably higher than other 

diseases caused by foodborne pathogens such as Shiga-toxin Escherichia coli, 

Campylobacter spp. and Salmonella spp. In The Netherlands, the cost-of-illness has 

reached € 106,922 per case (Mangen et al., 2015), while in United States, it has been 

estimated in USD 1.8 million per case (Hoffmann et al., 2015). 

Besides the health-associated costs, the L. monocytogenes food contamination impacts 

on the economy of food industry. The cost of recalls caused by the presence of the 

pathogen is estimated between USD 1,200 and 2,400 million annually in USA (Ivanek et 

al., 2004). Foreign market access is limited by the presence of the pathogen, especially 

to these countries with a “zero-tolerance” policy about the presence of this 

microorganism in ready-to-eat (RTE) food products. Products such as dry-cured meats, 

highly appreciated RTE products are known ‘vehicles’ of L. monocytogenes (Doménech 

et al., 2015; Food Standards Australia- New Zealand, 2014; RASFF, 2015). Although they 

do not support the growth of the pathogen and have not been associated to listeriosis, 

its detection results problematic, limiting the exportation which has been estimated in 

€ 237.5 million in Spain in 2012 (Cruz, 2013). 



Validation of L. innocua as a surrogate of L. monocytogenes in high pressure-processed 
meat products 

106 
 

In order to achieve adequate levels of L. monocytogenes in the final product and meet 

the different regulations, hygiene rules should be followed strictly in food industries. In 

addition, post-lethally treatments or an antimicrobial agents or both that limit the 

growth of the pathogen can be used (USDA-FSIS, 2014). Different technologies can be 

used for controlling Listeria monocytogenes in RTE meat products such in-pack and 

surface pasteurization, irradiation, protective culture, addition of natural antimicrobials, 

and high pressure processing  (Baer et al., 2013; Zhu et al., 2005).    

According to FDA, high pressure processing (HPP) is a preservation technique that 

subjects previously packaged foods to pressures between 100 and 800 MPa and 

treatment times between 2 and 20 min (FDA, 2000). However, in current industrial HPP 

processing, the food products are processed from 400 to 600 MPa and holding times up 

to 10 min.  This technology is currently used on an industrial scale in a wide range of 

products, including juices, dairy products, ready meals, fish and seafood or meat 

products. There is an increasing interest on the application of the technology on meat 

industry because it provides a high-added value and microbiological stability to these 

products (Bajovic et al., 2012).  

Although the HPP technology can be used to guarantee the pathogen inactivation up to 

secure levels (Baer et al., 2013), some health authorities demand a science-based 

validation of the processing in any particular case (Health Canada, 2010; USDA-FSIS, 

2014). The risk associated to use the pathogenic bacteria in in-plant testing, the need of 

trained people and specialized infrastructure for handling the pathogenic 

microorganism make interesting the use of surrogates for validation and challenge test 

studies. A surrogate can be defined as an organism or substance used to study the fate 

of a pathogen in a specific environment (Sinclair et al., 2012). The ideal surrogate is: 

nonpathogenic, similar inactivation kinetics to the target microorganism, stable growth 

characteristics, easily prepared to yield high-density populations, constant population 

until utilized, easily determined during analyses, susceptibility to injury similar to that of 

target microorganism and genetically stable (NACMCF, 2010). However, the search of 

surrogates must take into account the strain variability of the pathogen of concern, the 

food matrix and processing technology and its conditions. Recent studies have 
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demonstrated the existence of several non-pathogenic strains of Escherichia coli for use 

as surrogate of the pathogenic O157:H7, Verotoxigenic, and Shiga-toxin strains in high 

pressure processing studies in meat products (Garcia-Hernandez et al., 2015; Liu et al., 

2015; Reineke et al., 2014). 

Regarding surrogates for studies about L. monocytogenes, L. innocua is the most 

reasonable choice, because both microorganisms belong to the same taxonomic genus. 

Between the ten species within Listeria genus, L. innocua is genetically the closest 

species to L. monocytogenes (Den Bakker et al., 2010), and the two were not recognized 

as separate species until 1981 (Seeliger, 1981). Although the two species differ in 

pathogenicity, they share similar ecological niches in the environment, including meat 

products and meat processing surfaces (Guerra et al., 2001). 

Despite the genetic similarity between species, comparative genomic studies have led 

to the discovery of 270 L. monocytogenes and 149 L. innocua species-specific genes 

(Glaser et al., 2001). Some of these genes are related to the ability of the both 

microorganisms to withstand stress conditions (Raengpradub et al., 2008), indicating the 

possibility of diverse response to environments and preservation technologies. 

According to the evidence, Milillo et al. (2012) concluded in their review that L. innocua 

is closely related to L. monocytogenes, significant genomic differences exist, though. The 

two species may have adapted to fit different environmental niches and do not always 

respond to stress the same way. Prior to field studies using L. innocua as a Listeria 

monocytogenes surrogate, appropriate preliminary studies confirming similar behavior 

of both species are necessary. 

Both Listeria genus species have showed similar inactivation kinetics in other 

preservation technologies used in RTE meat products such as E-beam radiation and 

pulsed light (Hoz et al., 2008; Lasagabaster and de Marañón, 2012; Uesugi and Moraru, 

2009). The use of L. innocua strains as surrogate in thermal processing of meat products 

has been demonstrated in several studies  (Friedly et al., 2008; Kamat and Nair, 1996; 

Ma et al., 2007; Martínez-Rodriguez and Mackey, 2005; O’Bryan et al., 2006). In the case 

of HPP technology, there are no available data about the suitability of L. Innocua as 

surrogate in processing of meat products, though the microorganism has been used in 
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some studies (Carlez et al., 1993; Escriu and Mor-Mur, 2009; Merialdi et al., 2015; 

Vercammen et al., 2011). In dairy products, the results are inconclusive. Waite-Cusic et 

al. (2011) concluded that Lactobacillus plantarum ATCC 8014 is a more suitable 

surrogate microorganism of L. monocytogenes than L. innocua in pressure-treated sweet 

and acidified whey. However, both species presented a similar inactivation pattern in 

high pressure-processed yogurt drink (Evrendilek and Balasubramaniam, 2011).  The 

latter stated the importance of the validation of the surrogate in each food matrix of 

interest. 

Our previous studies showed that the strain L. innocua UBU presents a high tolerance to 

high hydrostatic pressure comparable to other pressure-resistant L. monocytogenes 

strains in a buffer system as well as in cooked and cured ham. Therefore, the main 

objective of this study was to evaluate this strain of Listeria innocua as a surrogate of 

Listeria monocytogenes, using a five pressure-resistant strain-cocktail, in high pressure 

processing of different meat matrices in conditions similar to those used at industrial 

level.  

 

Materials and methods 

Microorganisms 

In the present study the strain Listeria innocua UBU was evaluated against a cocktail 

made of five strains of Listeria monocytogenes. The latter were selected due to 

demonstrated resistance to high pressure processing as previously stated in this PhD 

thesis. Their characterization is included in Table 1. Listeria monocytogenes strains were 

supplied by The International Life Science Institute – North America (ILSI, USA) and The 

Technical Agriculture Institute of Castilla y León (ITACyL, Spain). The strain of L. innocua 

belongs to University of Burgos strain collection (UBU). 

Meat matrices 

Meat matrices were chosen according to their expected physicochemical characteristics, 

and their association to Listeria-positive cases according to RASFF (2015) or their 
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economic impact for covering a wide range among meat products: Raw (minced beef), 

cooked (cooked chicken breast, cooked ham and fatty duck liver), cured (dry-cured ham 

and cured loin) and three types of fermented sausages (chorizo, salami and salchichón) 

were selected. Each product was purchased in a local supermarket, 24 h before the 

inoculation step and stored at 4 °C. Physicochemical analysis, pH and water activity (aw), 

were done using a puncture pH-meter (CRISON, Spain) and water activity with Aqua-Lab 

(Decagon, US), respectively. 

 

Table 1. Strains of L. innocua and L. monocytogenes used in this study and its genetic classification (lineage 
and serotype), origin and associated listeriosis cases. 

Strain (Other name)a Lineageb Serogroupc Source of 
isolationd 

Listeriosis-case 
historyd 

L. innocua UBU N/A Listeria spp. Meat 
product Non-associated 

L. monocytogenes strains   

ITA 083 (UdG 1010) II* 1 Meat 
product Non-associated 

ILSI 13 (FSL M1-004) II Listeria spp. Human Sporadic case 

ILSI 29 (FSL N3-013) I 4 Pâté Epidemic  
(UK, 1998-1990) 

ILSI 36 (FSL N1-227) I 4 RTE meat 
product 

Epidemic  
(USA, 1998-1999) 

ILSI 38 (FSL R2-501) I 4 Human Epidemic  
(USA, 2000) 

a International Life Science Institute, ILSI; Technical Agriculture Institute of Castilla y León, ITA; University 
of Burgos, UBU.  
b Information provided by the collection owners. * Classified according to its serogroup (Nadon et al., 2001) 
c According to the method by Doumith et al. (2004) 
d Information provided by the collection owners 
 

Inoculum preparation 

The stock cultures were kept frozen at −80 °C in 70 % brain heart infusion (BHI) broth 

(Oxoid, UK) and 30 % glycerol (v/v) (Sigma Aldrich, Spain). From the stock culture, a 

streak of each strain was made onto a tryptone soy agar and 0.6 % yeast extract (TSAYE, 

Oxoid, UK) plate and incubated for 24 h at 37 °C. A single colony was inoculated in a test 

tube pre-filled with 5 mL of BHI broth and incubated until the stationary phase for 18 h 

at 37 °C. Then, tubes were incubated at 37 °C during 24 h to obtain an initial population 
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of 109 CFU/mL. L. monocytogenes cocktail was prepared mixing 4 mL of each strain on a 

falcon tube to obtain a final mixture of 20 mL.  

Inoculation 

One-hundred microliters of L. innocua or L. monocytogenes cocktail inoculum were 

added and streaked on the surface of 10 g ± 0.5 g of each product, obtaining an initial 

population of approximately 107 CFU/g in the products and packaged in Stomacher bags 

(Interscience, France). Stomacher bags were put into another plastic bag and were 

vacuum packaged and kept under refrigeration overnight at 4 oC until high pressure 

treatment. 

High pressure processing conditions 

For all meat products, three holding times at 600 MPa were tested: 180, 360 and 540 s 

at room temperature (20 °C) in a 135-L high pressure unit (Hiperbaric 135 from 

Hiperbaric S. A., Burgos, Spain), using water as pressurization liquid. The pressure build-

up time was 170 s for 600 MPa and the depressurization time was less than 3 s. The 

range of pressure and holding time was selected to cover usual industrial conditions. 

After high pressure treatment, the samples were stored at 4 °C until microbiological 

analysis ( < 2 h).  

Microbiological analysis  

Ten-fold serial dilutions were made in Ringer’s solution (Oxoid, UK) and depending on 

the expected counts the adequate decimal dilution was spread manually on 

Chromogenic Listeria Agar (OCLA; Oxoid, UK) and incubated at 37 °C for 48 h.  The results 

were expressed in log10 colony-forming units (CFU)/g. 

Data analysis 

All inactivation results are given as the average ± standard deviation of triplicate samples 

and the two repetitions in non-consecutive days performed for each product (n = 6). 

Inactivation data was analyzed by means of variance analysis (one-way ANOVA) with the 

aim to establish statistical significance between data from two Listeria species in each 

meat product and HPP conditions. The statistical confidence level chosen was 95 %. 
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Finally, the suitability of L. innocua as surrogate of L. monocytogenes was assessed by 

means of linear regression, correlating inactivation values of both microorganisms. 

ANOVA and linear regression analyses were done using Statgraphics Centurion XVI 

(StatPoint Technologies, Inc., USA). All statistical procedures were done on inactivation 

data expressed in log10 colony-forming units (CFU)/g. 

 

Results and discussion 

Physicochemical characterization of meat matrices 

The selected products covered a wide range of pH and aw (Figure 1) from products with 

a low aw such as cured and fermented sausages, to raw meat and cooked products with 

aw above 0.95.  

 

Figure 1. Physicochemical characterization (pH and aw) of the nine meat matrices evaluated. Mean (point) 
and standard deviation (bars), n = 6. 

 

Regarding the pH, meat products such as salami, chorizo and salchichón, which during 

their production have a fermentation step, presented the lower values of pH compared 

to cured, raw and cooked products.  The range of these parameters for the different 

groups of meat products agreed with those reported by Toldrá (2007). Water activity 
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and pH are important variables in HPP processes since they are directly related with the 

degree of inactivation of microorganisms in food matrices (Alpas et al., 2000; Oxen and 

Knorr, 1993). In general, the lethal effect of high hydrostatic pressure on 

microorganisms is larger in food matrices at higher levels of aw  and lower pH values 

(Georget et al., 2015). 

 

Raw meat (minced beef) 

High hydrostatic pressure (600 MPa during 180 s) was able to achieve above 4.5-log 

inactivation of both species of Listeria genus in minced beef (Figure 2). Increasing 

holding times at 600 MPa, from 180 s to 540 s, led to higher levels of inactivation up to 

6 log cycles, approximately.  

 

Figure 2. Inactivation of L. innocua UBU (white bars) and the five strains cocktail of L. monocytogenes (black 
bars) in minced beef by high pressure processing at 600 MPa for 180, 360 and 540 s. NS: p > 0.05; (*) p < 
0.05; (**) p < 0.01; (***) p < 0.001 

 

L. monocytogenes can be relatively easy-controlled by cooking procedures at 70 °C for a 

minimum of two minutes (Bourdichon, 2014). However, the tracking systems are still 

detecting the presence of the bacteria in these products. During 2014, RASFF system 

alerted about eight positive (below 100 CFU/g) L. monocytogenes cases in raw meat 
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(RASFF, 2015). Although the contamination level was low, the physicochemical 

characteristics of the meat product make it prone to support the growth of the 

pathogen. In agreement with our results, other studies demonstrated that the risk 

associated to the presence of the pathogen can be mitigated by high pressure processing 

in spite of the change in appearance induced by high hydrostatic pressure in raw meat 

products (Carlez et al., 1993; Castillo A. et al., 2004; Escriu and Mor-Mur, 2009; Jofré et 

al., 2009b; Kruk et al., 2011). 

Comparing the inactivation levels between each species, we found no significant 

differences between them at all tested conditions (p > 0.05). According to our results, L. 

innocua UBU could be used as a surrogate organism for L. monocytogenes in this meat 

matrix. In similar meat matrices, both species had similar thermal inactivation patterns, 

suggesting the use of some strains of L. innocua as surrogate (Friedly et al., 2008; 

O’Bryan et al., 2006).  

 

Cooked products (cooked ham, cooked chicken and fatty duck liver) 

Inactivation levels for both species ranged from 3.5 to 5.8-log cycles at 600 MPa and up 

to 540 s in the evaluated cooked meat products: chicken, ham and fatty duck liver 

(Figure 3). The extension of holding time incremented the inactivation of both species. 

However, tripling the holding time increased less of 1 log-inactivation, regardless the 

bacteria or product processed.  

The lethal effect varied between food matrices. At all holding times, the inactivation of 

both species was lower in cooked ham compared to the other cooked products (less 

than 1-log cycle). The slight differences in water activity between products (Figure 1) 

and the presence of other antimicrobials could partly explain the inactivation 

differences. It is known low aw values exerts a baroprotective effect on bacterial 

inactivation (Koseki and Yamamoto, 2007). Preservatives such as sodium nitrate (E-250) 

are added in commercial formulations, included in these we tested. This salt exhibits a 

synergic effect with high hydrostatic pressure on inactivation of L. monocytogenes (De 

Alba et al., 2013).  
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Figure 3. Inactivation of L. innocua UBU (white bars) and the five strains cocktail of L. monocytogenes (black 
bars) in three cooked meat products by high pressure processing at 600 MPa for 180, 360 and 540 s. NS: p 
> 0.05; (*) p < 0.05; (**) p < 0.01; (***) p < 0.001 

 

In general, the inactivation pattern of L. innocua was similar to the cocktail of Listeria 

monocytogenes in pressure-treated cooked meat products. L. innocua was more 

pressure-resistant than the pathogenic bacteria (p < 0.05) in cooked chicken and ham at 

holding times below 360 s. Despite the statistical significance, the differences between 

both species were below 1 log CFU/g.  

The inactivation levels of both species at 600 MPa were statistically equal (p > 0.05) in 

fatty duck liver at all holding times. Although high hydrostatic pressure is commercially 

used and has demonstrated to be effective for extending shelf-life of this meat product 

(Cruz et al., 2003), the information about the efficacy of HPP technology for controlling 

L. monocytogenes in this product is scarce. Belletti et al. (2011) achieved complete 

inactivation of L. monocytogenes on inoculated fatty duck liver with 100 CFU/g at 600 

MPa. 

L. monocytogenes was inactivated in a comparable range to other studies about the 

control of the pathogen in cooked poultry and ham (Garriga et al., 2004; Hereu et al., 
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2012; Jofré et al., 2009b; Patterson et al., 2011).  Our results were in agreement with 

those obtained by Jofré et al. (2009a). The authors reached a complete inactivation of 

the pathogen after processing cooked ham at 600 MPa during 360 s, starting an initial 

level of 3.5 log CFU/g of L. monocytogenes. 

Ready-to-eat cooked meat products are well known vehicles of L. monocytogenes, and 

because of their physicochemical characteristics (pH > 6.0 , aw > 0.95), the pathogen can 

grow causing the most important listeriosis outbreaks in Europe, North America and 

Oceania, with high hospitalization rate and deaths related to meat products 

(Bourdichon, 2014; NSW food authority, 2013). Since 2000, these products have been 

responsible of more than 100 of food alerts, 22 of them fatty duck liver and pâté-like 

cooked products have be involved in, and the same number for cooked ham (RASFF, 

2015). According to our results, HPP technology is able to control both species of Listeria 

genus in cooked meat products, reaching levels from 3.5 up to 5.0 log-inactivation.   

Inactivation levels obtained were high enough to validate HPP technology on RTE 

cooked meat products in countries such as United States or Canada, where levels of 

more than 2.0 log-inactivation or 3.0 log CFU/g of L. monocytogenes are required for 

process validation by food safety authorities (Health Canada, 2010; USDA-FSIS, 2014).  

 

Cured products (Dry-cured ham and cured pork loin) 

The lethal effect of HPP technology at 600 MPa on cured meat products ranged from 0.8 

to 4.5 log CFU/g, depending on the food matrix and holding time (Figure 4). In dry-cured 

ham, the extension of holding time increased the inactivation levels in the cocktail of L. 

monocytogenes as well as L. innocua UBU, reaching up to 4 log-inactivation at 600 MPa 

for 540 s. In contrast, at the same conditions, both species were inactivated slightly 

above 2 log CFU/g in cured loin. The differences in aw (0.905 ± 0.004 for cured ham and 

0.876 ± 0.012 for cured loin) could explain the variation of lethal effect between cured 

meats. Bover-Cid et al. (2015) found 4 log-cycles of difference in inactivation of Listeria 

monocytogenes between dry-cured hams with aw values of 0.860 and 0.960.  
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Despite the differences in the lethal effect between the cured products, the inactivation 

pattern at 600 MPa of L. monocytogenes was similar to the non-pathogenic species at 

all evaluated holding times. The latter suggests a potential use of L. innocua as surrogate 

in pressure-treated cured meats. Although there is no available comparative studies 

between both species in cured meat products, Merialdi et al. (2015) used successfully a 

five strains-cocktail of L. innocua to evaluate the efficacy of HPP on Italian dry-cured 

products. Similarly to cooked meat products, both species of Listeria genus have a 

comparable heat and radiation resistance in cured products (Hoz et al., 2008; Mackey et 

al., 1990).  

 

Figure 4. Inactivation of L. innocua UBU (white bars) and the five strains cocktail of L. monocytogenes (black 
bars) in two cured meat products by high pressure processing at 600 MPa for 180, 360 and 540 s. NS: p > 
0.05; (*) p < 0.05; (**) p < 0.01; (***) p < 0.001 

 

Although the curing and drying steps during manufacturing make this type of meat 

products microbiologically stable, L. monocytogenes has been isolated in cured meat 

products (Doménech et al., 2015). These products have not been associated to listeriosis 

cases, however, the presence of the pathogen limits the access to those market 

demanding absence of the bacteria. RASFF have alerted eight times the presence of L. 

monocytogenes in cured meats (RASFF, 2015). During the period 2010 – 2012, Australian 

authorities blocked the entry of cured meat products from Italy and Spain around eight 
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times (NSW food authority, 2013). Thus, the need to control the pathogen in all RTE 

meat products to be exported.  

Our results suggest the suitability of the technology for controlling L. monocytogenes in 

cured ham at 600 MPa for 540 s, achieving the inactivation levels demanded by food 

safety authorities (Health Canada, 2010; USDA-FSIS, 2014), in agreement with the 

reported results by Bover-Cid et al. (2015) and Jofré et al. (2009b). With regards to cured 

loin, it would be necessary the application of 600 MPa during 540 s for achieving 2-log 

inactivation of both microorganisms. The results agreed with those found by Corcuera 

et al. (2008), in which complete inactivation of L. monocytogenes was achieved after 

high pressure processing (600 MPa, 10 min) of samples of cured loin inoculated with the 

bacteria up to 3.4 log CFU/g.  

Fermented products (Fermented sausages: chorizo, salami and 

salchichón) 

Both, L. innocua and L. monocytogenes followed similar patterns in fermented meat 

products since L. innocua showed itself more resistant to HPP inactivation than the 

pathogen in all products and treatments evaluated (Figure 5).  

 

Figure 5. Inactivation of L. innocua UBU (white bars) and the five strains cocktail of L. monocytogenes (black 
bars) in three fermented meat products by high pressure processing at 600 MPa for 180, 360 and 540 s. 
NS: p > 0.05; (*) p < 0.05; (**) p < 0.01; (***) p < 0.001 
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In contrast with the observed in the other categories of meat products, inactivation 

levels achieved for both, L. innocua and L. monocytogenes were statistically different at 

the most of conditions (p < 0.05). L. innocua was around 1 log cycle more resistant than 

the cocktail of L. monocytogenes at all processing conditions in the three fermented 

products. Non-processed samples at 24 h after inoculation exhibited significant 

differences (p < 0.05) in salami (7.3 ± 0.2 log CFU/g and 6.6 ± 0.3 log CFU/g for L. innocua 

and L. monocytogenes, respectively). However, the counts in chorizo and salchichón 

were statistically equal (p > 0.05) around 7.0 log CFU/g for both microorganisms. 

Therefore, counts before HPP treatments explained partially the differences between 

species after high pressure processing caused by a lack of acid adaptation of one or more 

of the strains in the L. monocytogenes cocktail. Despite the genetic relatedness of both 

species, the genetic mechanisms involved in acid stress resistance differ between them 

(Raengpradub et al., 2008), explaining the variable adaptation to salami matrix. Several 

studies have demonstrated a higher inactivation of pressure-treated L. monocytogenes 

at lower pH than neutral (Alpas et al., 2000; Ritz et al., 2000). Different acid tolerance 

between species, in conjunction with a high pressure-low pH synergy could contribute 

to the disparity in inactivation levels of Listeria genus species. However, it was 

remarkable that L. innocua was more resistant than L. monocytogenes, hence, its use as 

surrogate is still suitable. 

Similarly to cured products, there is no association between listeriosis cases and 

fermented meats, however, since 2000, 22 alerts have been notify for Listeria 

monocytogenes-positive cases (EFSA and ECDC, 2015; RASFF, 2015). Taking into account 

the data from L. innocua inactivation as the worst-case-scenario, HPP technology 

achieves the log-inactivation reductions required by food safety authorities (USDA-FSIS, 

2014). However, 600 MPa during 540 s is necessary. At lower pressures and/or holding 

times, lethal effect would drop drastically, even below 1 log CFU/g (Jofré et al., 2009a). 

Inactivation level achieved for L. monocytogenes in salami agreed with these described 

by Porto-Fett et al. (2010), who obtained up to 5 log-inactivation of a five-strains cocktail 

in Genoa salami applying 600 MPa during 1 to 12 min. 
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Overall comparison between L. innocua and L. monocytogenes in diverse 

meat matrices 

The evaluation of each type of meat products independently, showed a similar pattern 

of inactivation between L. innocua UBU and the cocktail of L. monocytogenes. On this 

basis, we decided to make an overall comparison between the pathogen and its 

potential surrogate. Inactivation was dependent on processing conditions and the 

characteristics of each meat product as it has been discussed in the previous sections. 

Figure 6 shows the inactivation achieved for both microorganisms at the different 

treatments applied in each meat matrix, as a function of pH and aw of each product. 

Inactivation levels are represented in bubbles, and their size is directly proportional to 

the inactivation level, showing the relevance of the characteristics of food matrix on the 

efficacy of microbial inactivation by high hydrostatic pressure. The overall evaluation 

allowed to visualize: (i) the high influence exerted by aw on the lethal efficacy of HPP 

and (ii) the effect of pH was noticeable at shorter holding times. 

For the global validation of the strain L. innocua UBU as a surrogate of L. monocytogenes 

in high pressure-processed meat products, inactivation values obtained for L. innocua 

(X-axis) were graphically represented against those obtained for the pathogen (Y-axis) 

and finally adjusted to a linear regression model (Figure 7). Inactivation values of all 

replicates performed (n = 6) for each product and treatment applied were included. 

Statistical analysis of linear regression evidenced a significant linear relationship 

between inactivation of both species (p < 0.05). The purpose of the linear model was 

not to predict the inactivation on L. monocytogenes based on the results from L. innocua 

but getting information about the suitability of the non-pathogenic microorganism as 

surrogate in the different meat matrices and at variable conditions at 600 MPa. In linear 

model, the slope shows the proportion between inactivation levels of both species. A 

value of 1.0 is considered to be the ideal situation, indicating a perfect fit of lethal effect 

of HPP on both microorganisms. It would mean that 1 log-inactivation in the surrogate 

would correspond to 1 log-inactivation in the pathogen. At slope > 1.0, surrogate would 

have higher resistance than the pathogen. Although this is not the ideal situation, the 
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potential surrogate would be suitable for using in validation and challenge testing based 

on worst-case-scenario approach. 

Figure 6. Inactivation levels of L. innocua (A, C, E) and the cocktail of five L. monocytogenes strains by high 
hydrostatic pressure at 600 MPa for 180 s (A, B), 360 s (C, D) and 540 s (E, F) according to the pH and water 
activity of the nine meat products selected.   
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Figure 7. Dispersion plot of inactivation levels of the five-strain cocktail of L. monocytogenes against L. 
innocua for the nine meat products and high pressure processing conditions. Straight Line represents linear 
regression model y = 0.95x + 0.65 (R2 = 0.826) 

 

On the contrary, a slope below 1.0 would indicate the surrogate is more pressure-

sensitive than the pathogen. In the latter case, the use of this surrogate would not be 

appropriate. Analogously to slope, Y-intercept is another parameter that shows how 

good the surrogate inactivation fits to the pathogen’s one, especially at low inactivation 

values. 

The equation obtained was y = 0.95x + 0.65 (R2 = 0.826), which indicates that 82 % of 

variability is explained with the linear model selected for the adjustment of the data.  

The slope (0.953; p < 0.05) evidenced that the response of the strain L. innocua UBU to 

high hydrostatic pressure in meat products was similar to that of the cocktail of L. 

monocytogenes used in this study. With regards to the Y-intercept, it can be observed 

that it took a value of 0.65 (p < 0.05). The ideal situation would have been considered 

that in which the line was placed over the origin, taking the intercept a value of 0.0. The 

fact that the value of this parameter is greater than 0 indicates that at no inactivation of 

L. innocua, there is a slight inactivation of L. monocytogenes around 0.6 log CFU/g. This 

could be due to the differences in counts of both species in not-processed salami.  
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Linear regression model represented in Figure 7 was elaborated including all inactivation 

values for both bacteria and for each product evaluated. Table 2 includes the slope and 

Y-intercept values for the different types of meat products. Considering separately the 

slopes for each group of meat matrices, raw and cooked products had slope values close 

to one, which evidences that L. innocua and L. monocytogenes followed a similar 

inactivation pattern. With regards to cured products, the model parameters indicated a 

good fitting between both species, similar to those obtained in raw and cooked 

products. However, cured loin provided the lowest slope value of all products evaluated 

in this study. The slope calculated from inactivation data in fermented products are the 

highest. However, the use of L. innocua UBU strain as surrogate in validation and 

challenge testing is still advisable due to it higher pressure-tolerance to acidic 

conditions. On the other hand, the proposed cocktail should be modified for using in this 

kind of meat products. 

Table 2. Linear regression model parameters (slope, Y-intercept and coefficient of determination) of 
inactivation data of L. innocua UBU and a five-strain cocktail of L. monocytogenes for each meat product 
evaluated  

Category Product 
Slope 

�
log CFU L. monocytogenes

log CFU L. innocua
� 

Y-intercept 

(log CFU/g) 

R2 

 

Raw Minced meat 0.98 0.39 0.914 

Cooked 

Cooked chicken 0.94 0.87 0.826 

Cooked ham 1.05 0.13 0.965 

Fatty duck liver 0.99 0.05 0.948 

 Group mean 0.98 0.39 0.897 

Cured 
Cured loin 0.77 0.29 0.746 

Cured ham 0.97 0.62 0.823 

 Group mean 0.95 0.35 0.791 

Fermented 

Chorizo 1.62 0.50 0.797 

Salchichón 1.32 0.85 0.593 

Salami 1.53 0.11 0.830 

 Group mean 1.42 0.57 0.712 

Overall meat products 0.95 0.65 0.826 
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Our results demonstrated similar patterns of inactivation of L. innocua compared to a 

cocktail of L. monocytogenes which exhibited high pressure-tolerance in diverse types 

of meat products at industrial conditions of HPP processes. Although L. innocua has been 

used as surrogate of L. monocytogenes in studies about high pressure-processed meat 

products (Carlez et al., 1993; Escriu and Mor-Mur, 2009; Merialdi et al., 2015; 

Vercammen et al., 2011), this is the first study that demonstrated its applicability as 

surrogate in a wide range of meat products and processing conditions. Other authors 

stated the suitability of L. innocua as surrogate in pressure-treated foods other than 

meat products, when they found no significant differences in kinetic inactivation of both 

Listeria genus species (Evrendilek and Balasubramaniam, 2011; Santillana-Farakos and 

Zwietering, 2011). In contrast, Tay et al. (2003) and Waite-Cusic et al. (2011) showed 

Listeria innocua ATCC 33090 has an intermediate pressure-resistance compared to 

Listeria monocytogenes and other potential surrogates evaluated.  

L. innocua has traditionally been used as surrogate of L. monocytogenes in the 

development and validation of thermal processes in meat industry (Friedly et al., 2008; 

Kamat and Nair, 1996; Mackey et al., 1990; O’Bryan et al., 2006). However, it is not clear 

that the behavior of this microorganism is similar to that of the pathogen in all situations.  

Preservation technology and food matrix play important roles for validation of L. innocua 

as surrogate. The control of L. monocytogenes by E-beam radiation was similar to the 

non-pathogenic Listeria species in dry-cured ham according to Hoz et al. (2008). 

However, the studies of Niemira (2010) and Rodriguez et al. (2006) found significant 

differences between both species in other matrices. Regarding natural antimicrobials, 

the suitability of Listeria innocua as surrogate depended on the evaluated compound. 

Under the exposure to carvacrol, both species presented different growth kinetics, 

whereas their growth was similar in media containing citral (Silva-Angulo et al., 2014, 

2015).  

Phylogenetic studies in Listeria genus suggest that L. innocua and L. monocytogenes 

(lineage IV) belong to sister groups because an ancient recombination event in sigB gene 

(Den Bakker et al., 2010). This gene plays a central role since it redirects gene expression, 

conferring protection to a wide range of stress in L. monocytogenes and other Gram-
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positive bacteria (Chaturongakul et al., 2008; Wells-Bennik et al., 2008). Despite of the 

closeness between species, the differences in species-specific σB dependent genes are 

remarkable (Raengpradub et al., 2008). In L. monocytogenes, 168 genes were positively 

regulated by σB, while in L. innocua, 64 genes were positively regulated. The authors 

also found a common set of at least 49 genes that are σB-dependent in both species, 

which can contribute to explain the similarities and differences in resistance to several 

stresses, from a genomic standpoint.  

 

Conclusions 

The results obtained in the present study suggest Listeria innocua UBU is a valid 

surrogate of Listeria monocytogenes in meat matrices processed with high hydrostatic 

pressure. The strain follows a similar inactivation pattern to Listeria monocytogenes in 

raw, cooked and cured meat products processed at high pressure at 600 MPa for up to 

540 s. Although both species exhibited different resistance in pressure-processed 

fermented meat products, the higher tolerance of L. innocua is still useful for validation 

and challenge studies based on the worst-case-scenario approach. Additionally, the 

latter suggests the need of improvement the proposed cocktail of pressure-resistant L. 

monocytogenes strains for using in future studies about these acidic products.  

Although this work demonstrates the suitability of L. innocua as surrogate in high 

pressure-processed meat products, due to its not pathogenic behavior, similar 

inactivation characteristics, easily-laboratory handling and enumeration,  the results 

cannot be extrapolated to other L. innocua strains and should be verified. Further 

research should be performed to find other adequate species or strains.  

Water activity and pH play a relevant role in the inactivation of L. monocytogenes by 

high pressure technology and should be considered in the designing and optimization of 

processes for controlling the presence of the pathogen in meat industry. 

Finally, it can be concluded that high pressure processing is a technology able to control 

the presence of L. monocytogenes in a variety of meat products. In addition, the strain 
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L. innocua UBU can be used in the validation and optimization of HPP processes in order 

to produce safer meat products when the absence of the pathogen must be guaranteed. 
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General discussion 
 

 

In the first part of this PhD thesis, we presented scientific evidence reported in the 

literature, showing that the differences at strain level have effect on how Listeria 

monocytogenes responds under the influence of diverse stresses. This work has focused 

on the study of high hydrostatic pressure, because of the current industrial use of this 

food preservation technology to control the pathogen in food products. Listeria 

monocytogenes strains seem to have a varied behavior under high pressure. However, 

the impact of strain variation on pressure-resistance of the pathogen, given the 

widespread diversity of the microorganism, remained unclear. Based on the state-of-

the-art, we hypothesize that the resistance of Listeria monocytogenes to high pressure 

processing depends on each strain and the variation will be conditioned by the food 

matrix. 

In Chapter 1, we evaluated the variation in inactivation and sublethal injury of thirty L. 

monocytogenes strains caused by high hydrostatic pressure in PBS buffer. Since the 

pathogen presents several geno- and phenotypic differences at strain level, the first part 

consisted in the characterization of 120 strains from one international collection, ILSI 

Listeria collection, one national collection, ITACyL collection, and our own strain 

collection (UBU). The purpose of including strains from national and international 

culture collections permits an intra-laboratory comparison and validation of the results 

achieved in our study, and to continue expanding the understanding of the mechanisms 

of L. monocytogenes for withstanding high hydrostatic pressure by using a standardized 

set of strains.  

Following the characterization, we selected a sufficient number of strains for covering 

the natural diversity of the species in matters of evolutionary lineage, virulence and 

pathogenicity, and origin. Based on these criteria, we selected thirty out of the initial 

120 strains for the next experiment about high pressure resistance. 
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Pressure resistance of L. monocytogenes was strain-dependent 
These first results showed that high hydrostatic pressure provokes a lethal and sublethal 

effect in L. monocytogenes in PBS buffer (Chapter 1). The achieved levels of inactivation 

and sublethal injury depended on the strain as well as on the processing conditions. 

Ranges of inactivation and sublethal injury induced by high pressure were broader at 

intermediate conditions (400 MPa for 360 s, 500 MPa for 180 s and 600 MPa for 3 s). At 

the least and most intense conditions, high hydrostatic pressure exerted a similar lethal 

and sublethal effect regardless the strain.  

According to the clustering analysis on inactivation data, the 30 strains could be 

classified in three major groups. One of the inactivation clusters, comprised of three 

strains, was significantly more pressure-resistant than the rest of strains, indicating that 

the most of L. monocytogenes strains can be classified to an intermediate-low pressure 

resistance. The use of PBS as a model system permitted to assess the lethal and sublethal 

effect on cells caused by high pressure, minimizing any synergetic or baroprotective 

effect of food components. However, the physicochemical characteristics of the solution 

(high water activity and neutral pH) can be found in few food products, limiting the 

scope of application in real food matrices. Therefore, the next step was to evaluate the 

pressure resistance of L. monocytogenes strains in RTE meat products (Chapter 2). 

Cooked and dry-cured ham were selected because their association with human 

listeriosis cases and the economic impact the presence of the pathogen entails on the 

export of these products.  

Inactivation levels varied among the fifteen strains chosen for the study, at the different 

processing conditions in both meat matrices. Comparing the distributions of inactivation 

in cooked and dry-cured ham showed up the significant effect of food matrix in the 

variability of pressure resistance of L. monocytogenes strains. It was clearly observed a 

baroprotective effect exerted by the low aw of dry-cured ham compared to inactivation 

in cooked ham at same pressure and holding time. In addition, inactivation in meat 

matrices was narrower than that achieved in PBS buffer, indicating that the 

synergetic/protective action induced by the food matrix is not global but this effect 

could vary at strain level, as well. 
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Cluster analysis on inactivation data in cooked ham, grouped the strains in three 

clusters, and an identical number of clusters were obtained in dry-cured ham. However, 

the number of members and the member strains were not the same. For instance, the 

number of L. monocytogenes strains in the most pressure-resistant cluster was lower in 

cooked ham (n = 3) than in dry-cured ham (n = 6), sharing only two members. In PBS 

buffer, the cluster C was comprised by three from a set of 30 strains.  

Since the results suggested that food matrix exerted a significant effect on strain 

variability, we compared eight L. monocytogenes strains, which were present in strain 

set of buffer system, cooked ham and dry-cured ham. Strains ILSI 07, ILSI 11, ILSI 35 and 

ILSI 36 presented low/intermediate pressure-resistance in all matrices. Interestingly, 

only two strains, ILSI 29 and ITA 83, were clustered in high-resistant groups in PBS and 

meat products. The other two strains (ILSI 01 and ILSI 13) exhibited a similar tolerance 

to high hydrostatic pressure in PBS buffer and cooked ham, but distinct in dry-cured 

meat. Both strains were pressure-sensitive in buffer and cooked ham and were classified 

as resistant in dry-cured ham. 

Our results showed that strain variability can be influenced by food matrix. Although the 

understanding of the mechanisms related to these phenomena were not covered by this 

work, the current knowledge on the modulation of stress in L. monocytogenes allowed 

us to hypothesize about how food matrix can influence the response to hydrostatic 

pressure at strain level as we expounded in Chapter 2.  

 

Pressure resistance was not related to the evaluated geno- and 
phenotypical characteristics 
Cluster analysis allowed grouping the L. monocytogenes strains according its resistance 

to high hydrostatic pressure in PBS buffer (Chapter 1) and ready-to-eat meat products 

(Chapter 2). Our results showed that there was no correlation between pressure-

resistance and evolutionary lineage, serogroup, some virulence factors, origin or the 

previous listeriosis case history, regardless of the matrix. By contrast, these 

characteristics demonstrated a strong correlation with the L. monocytogenes strain 

variability resistance to other stresses, reported in the literature.  
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The interest in finding one or several characteristics that predict the resistance of L. 

monocytogenes is related to their use as “markers”, in order to facilitate the selection 

of appropriate processing conditions based on the characteristics of the target strain. 

That task could be challenging due to complexity of genetic and protein systems involved 

in the stress resistance of the microorganism. Although the characteristics of the strains 

evaluated our results did not correlate with pressure tolerance, cluster membership is a 

valuable information in other to find geno- or phenotypical differences between 

pressure-resistant and sensitive strains. For the moment, challenge testing seems to be 

the most suitable and reliable approach for process validation.  

 

Strain variability as a tool for designing safer HPP ready-to-eat 
meat products 
It is known that the impact of strain variability on microbial behavior is significant. 

Previous studies in literature have demonstrated that the response of L. monocytogenes 

and other microorganisms to different stresses varies among the strains of a same 

species.  

Our results showed that it was possible to select pressures and holding times, applicable 

to industrial conditions, in order to achieve the inactivation levels in L. monocytogenes 

requested for food safety authorities, regardless the strain. Inactivation levels above 5-

log cycles were reached at 600 MPa during 360 s in PBS buffer (Chapter 1). Regarding 

meat products, processing at 600 MPa for 180 s and 360 s were necessary to inactivate 

the most pressure-resistant strains above 3 log cycles in cooked and dry-cured ham, 

respectively (Chapter 2). The selected conditions are in the range to those currently used 

by several meat companies with access to the HPP technology. 

In academia and industry, some strains are often used, becoming in a reference for 

research or cocktails used in validation studies, however, their use is not always 

validated. L. monocytogenes Scott A, a milk-borne isolate with clinical importance, is one 

of these reference strains commonly used in research, including in studies about high 

hydrostatic pressure. Our findings suggested that the use of this strain (in our work was 
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named ILSI 01) in studies about high pressure technology should be limited. This strain 

exhibited higher resistance than the rest of set of L. monocytogenes only in dry-cured 

meat (Chapter 2). By contrast, its tolerance in PBS buffer (Chapter 1) and cooked ham 

was low. Although its use as reference strain is widespread in academia, the results 

could overestimate the lethality effect of HPP technology, given a false perception of 

safety, when it is used to evaluate the processing performance in high pressure-

processed cooked ham. Therefore, we proposed ILSI 29 (a. k. a. FSL N3-013) to be a 

reference strain for high pressure-processed cooked and cured meat products, based on 

the results from this work. The strain exhibited a significant pressure-resistance in PBS 

as well as in meat products. It shares lineage, serogroup and virulence factors with Scott 

A. In addition, ILSI 29 was isolated from pâté linked to human listeriosis in United 

Kingdom in 1988 - 1989. These reasons make to ILSI 29 a good candidate to be a 

reference strain for testing HPP technology in RTE meat products.  

From microbial risk assessment, the knowledge in strain variability provide a science-

based information for a better selection of those strains to be included in a challenge 

test. The purpose of challenge testing is to validate the range of 

interventions/preservation technologies used to control food-borne pathogens. The 

analysis of strain variability permitted us to suggest five strains to be included in a 

cocktail for challenge testing (Chapter 2). The selected strains (ILSI 13, ILSI 29, ILSI 35, 

ILSI 42 and ITA 83) exhibited a high tolerance to high hydrostatic pressure in, at least, 

one of the two meat products. In addition, those strains were isolated from clinical 

human cases or meat products associated to listeriosis, following the recommendations 

for strain selection. The differences in geno- and phenotypical characteristics among 

them, makes possible tracing each one by using molecular methodologies such as PFGE 

and PCR serotyping in a mix of inoculums.  

When the cocktail was challenged in nine meat products (raw, cooked, cured and 

fermented meats) at conditions used in industry (600 MPa for few minutes), it exhibited 

a good performance compared to a high pressure-tolerant L. innocua strain in raw, 

cooked and cured meat products evaluated (Chapter 3). However, the cocktail seemed 

to be sensitive to high pressure in fermented cured meat products. The latter suggested 
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one or several strains in the cocktail are sensitive to low pH or the combination of low 

pH and low aw values, limiting the application in those products. 

L. innocua is a species closely related to L. monocytogenes from phylogenetic 

standpoint.  Because of that, its use as surrogate of L. monocytogenes has been 

suggested for diverse preservation technologies. However, its suitability has been 

criticized because their genetic variation in stress response compared to L. 

monocytogenes which suggests the need of validation. Currently, the use as surrogate 

has been validated in thermal processing of meat products.  

Regarding high hydrostatic pressure, it is assumed that the behavior of this bacterium is 

similar to the pathogenic relative, but it has not been validated. Originally, the strain of 

L. innocua UBU, isolated from a RTE meat product, was included in the first part of this 

work as negative control in the different analytical tests for strain characterization. 

However, this microorganism exhibited a high pressure-resistance in PBS buffer 

comparable to the most resistant L. monocytogenes strains (Chapter 1). Therefore, the 

strain was included in the subsequent experiments in meat matrices. Again, L. innocua 

UBU was grouped in the most pressure-resistant cluster in cooked ham as well as cured 

ham (Chapter 2). Based on these findings, in Chapter 3, we compared the inactivation 

values of L. innocua UBU to the cocktail of five pressure-resistant L. monocytogenes 

strains. The L. innocua strains presented similar to and lower values of inactivation than 

the L. monocytogenes cocktail in the nine meat matrices evaluated and at all holding 

times at 600 MPa. According to our results Listeria innocua UBU is a suitable surrogate 

microorganism for L. monocytogenes in a wide range of high pressure-processed meat 

products. 

The study about strain variability in the pressure-resistance of L. monocytogenes 

permitted us to suggest a cocktail composed by five pressure resistant strains, which can 

be used in challenge testing of high pressure-processed RTE cooked and cured meat 

products, and the validation of L. innocua UBU as a surrogate for using in in-plant 

validation tests or preliminary studies before challenge testing with pathogenic strains. 

Two approaches, challenge tests and in-plant validation, can be used for the design of 

safer RTE meat products through high pressure processing technology.  
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Conclusions 
 

General conclusion 
The response of Listeria monocytogenes to high pressure processing differs strain-to-

strain. This variability is influenced by the characteristics of the food matrix and the 

processing conditions, pressure and holding time.  

 

 

Specific conclusions 
1. The response, inactivation or sub-lethal injury, of Listeria monocytogenes to high 

hydrostatic pressure in a buffer system differs strain-to-strain.  These differences 

in pressure-resistance are prominent at intermediate processing conditions. 

There is no correlation between the pressure-resistance of the strains and their 

geno- and phenotypical characteristics (lineage, serogroup, virulence-associated 

factors, origin and listeriosis-case history). 

 

2. The lethal effect of high hydrostatic pressure on Listeria monocytogenes varies 

among strains in meat matrices. Holding time at 600 MPa as well as the meat 

matrix affect the strain variability. Pressure-resistance is not correlated with the 

geno- and phenotypical characteristics of the strains (lineage, serogroup, 

virulence-associated factors, origin and listeriosis-case history). 

 

3. Listeria innocua UBU is suitable to be used as a surrogate of Listeria 

monocytogenes in validation studies in high pressure-processed RTE meat 

products.  The proposed five-strain cocktail of Listeria monocytogenes is valid to 

be used in challenge test studies in meat products except dry-fermented meats.   
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Conclusiones 
 

Conclusión general 
La respuesta de Listeria monocytogenes al tratamiento por altas presiones difiere cepa 

a cepa. Dicha variabilidad depende de la matriz alimentaria y de las condiciones de 

procesamiento, presión y tiempo.  

 

 

Conclusiones específicas 
1. La respuesta, inactivación y daño sub-letal, de Listeria monocytogenes a las altas 

presiones difiere cepa a cepa en buffer.  Estas diferencias en la resistencia a la 

alta presión son más notables en las condiciones de procesamiento intermedias. 

No existe correlación entre la resistencia a la presión de las cepas y sus 

características geno- y fenotípicas (linaje, serogrupo, factores de virulencia, 

origen y casos de listeriosis asociados). 

 

2. El efecto letal de la alta presión sobre Listeria monocytogenes varía entre 

cepas en matrices cárnicas. Tanto el tiempo de procesamiento como el tipo de 

matriz cárnica afectan a dicha variabilidad. No existe correlación entre la 

resistencia a la presión de las cepas y sus características geno- y fenotípicas 

(linaje, serogrupo, factores de virulencia, origen y casos de listeriosis asociados). 

 

3. Listeria innocua UBU se muestra adecuada para ser empleada como surrogate 

de Listeria monocytogenes en estudios de validación de productos cárnicos 

procesados por altas presiones. El cóctel de Listeria monocytogenes propuesto 

en este trabajo es válido para ser usado en challenge tests de productos cárnicos 

con la excepción de cárnicos curados-fermentados.  
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Future perspectives 
 

This PhD thesis brought new knowledge about the control of Listeria monocytogenes by 

high pressure processing, resulting in the three conclusions previously stated. In 

addition, this new knowledge has brought new questions and curiosities, which will be 

the starting point of future projects: 

   

1. Could the strain variability of Listeria monocytogenes to high hydrostatic 

pressure be explained from a genetic and transcriptomic standpoint?  Do 

“pressure-resistant markers” exist in Listeria monocytogenes and other 

microorganisms? 

 

2. Could Listeria innocua UBU be used as surrogate of Listeria monocytogenes 

strains in high pressure-processed food matrices other than meat products? Are 

there other pressure-resistant Listeria innocua strains suitable to be used as 

surrogates? 

 

3.  Would it be possible to design a cocktail of Listeria monocytogenes suitable to 

be used in challenge tests of different types of high pressure-processed meat 

products, including dry-fermented meats? 
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Perspectivas de futuro 
 

Junto con las tres conclusiones enumeradas anteriormente, la presente Tesis Doctoral 

ha desencadenado una serie de interrogantes que serán la base de futuros proyectos: 

   

1. ¿Podría explicarse la variabilidad en la respuesta de Listeria monocytogenes al 

tratamiento por altas presiones desde un enfoque genético y transcriptómico?  

¿Existen “marcadores de resistencia a la presión” en Listeria monocytogenes y 

otros microorganismos? 

 

2. ¿Podría utilizarse Listeria innocua UBU como surrogate de Listeria 

monocytogenes en matrices alimentarias procesadas por altas presiones 

distintas a productos cárnicos? ¿Existen otras cepas de Listeria innocua 

resistentes a la presión y adecuadas para ser empleadas como surrogates? 

 

3. ¿Sería posible diseñar un cóctel de Listeria monocytogenes adecuado para ser 

empleado en challenge tests de distintos tipos de productos cárnicos procesados 

por altas presiones, incluidos los cárnicos curados-fermentados? 
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Since 1980s, aŌer the first food‐related outbreaks, the control 
of Listeria monocytogenes has become a priority for food sa‐
fety authoriƟes worldwide because of its consequences on hu‐
man health.  
 
High hydrostaƟc pressure, also known as high pressure proces‐
sing (HPP), has demonstrated to be an efficient technology in 
the control of Listeria monocytogenes. However, its efficacy as 
a preservaƟon method depends on the intra‐species diversity 
of the target pathogen and the food matrix.  
 
The results of this work suggested that the response of Listeria 
monocytogenes to high pressure processing differs strain‐to‐
strain. This variability is influenced by the characterisƟcs of the 
food matrix and the processing condiƟons, pressure and hol‐
ding Ɵme.  
 
The knowledge in strain variability allows the design of appro‐
priate cocktails and the selecƟon of suitable surrogate microor‐
ganisms to use in validaƟon studies with the ulƟmate objecƟve 
of manufacturing safer high pressure‐processed meat products. 
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Departamento de Biotecnología y 
Ciencia de los Alimentos 


	Thesis Cover
	0.1-Portada
	Burgos, 2015

	0.2-Portada
	Memoria presentada por

	0.3-Portada
	0.4-Portada
	CERTIFICA:
	En Burgos, a 3 de noviembre de 2015
	Fdo. Pilar Muñiz Rodríguez

	0.5-Portada
	0.6-Portada
	1-Índice
	Index / Índice

	2-Summary [ENG-ESP]
	Review cover
	3-Literature review
	The importance of L. monocytogenes in the food industry
	Overview of L. monocytogenes and listeriosis
	Food as a primary route of transmission of the pathogen
	Economic impact of L. monocytogenes

	Controlling L. monocytogenes in meat industry
	Technologies for controlling the pathogen in RTE meat products
	High pressure processing. An overview
	Physiological, morphological and genetic effects of high pressure on Listeria monocytogenes
	Controlling L. monocytogenes in meat products by high hydrostatic pressure

	Strain variability and the control of L. monocytogenes
	Natural variability of Listeria monocytogenes
	Impact of strain variability on resistance to preservation technologies
	Process validation and strain variability

	References

	Blank page - copia
	Hypothesis cover
	4-Hypothesis and objectives [ENG-ESP]
	Ch 1 cover
	5-Chapter 1
	Introduction
	Materials and methods
	Strain selection
	Culture preparation
	DNA extraction
	PCR serogrouping and presence of internalins genes
	Biochemical characterization
	High pressure processing conditions
	Determination of inactivation and sublethal injury
	Data analysis

	Results and Discussion
	Strain selection
	High hydrostatic pressure induces diverse inactivation levels depending on the strain
	Sublethal injury caused by high pressure varies strain to strain
	L. monocytogenes strains group in different clusters according their pressure-resistance
	Potential reference strains for using in high hydrostatic pressure challenge studies
	Correlation between pressure-resistance and the characteristics of the strains

	Conclusions
	References

	Blank page
	Ch 2 cover
	6-Chapter 2
	Diversity of Listeria monocytogenes strains response to high hydrostatic pressure. A case study in RTE meat products
	Introduction
	Materials and methods
	Strains included in this study
	Culture preparation
	DNA extraction
	PCR serogrouping and presence of internalins genes
	Biochemical characterization
	Meat products
	Inoculation
	High pressure processing conditions
	Microbiological analysis
	Data analysis

	Results and Discussion
	Intra-species differences concerning inactivation by HPP in cooked ham and dry-cured ham
	Grouping of L. monocytogenes strains according to their different pressure-resistance in cooked ham and in cured ham
	Correlation between pressure-resistance and the characteristics of the strains
	Proposal of Listeria monocytogenes cocktail for challenge tests of high pressure-processed meat products

	Conclusions
	References


	Ch 3 cover
	7-Chapter 3
	Introduction
	Materials and methods
	Microorganisms
	Meat matrices
	Inoculum preparation
	Inoculation
	High pressure processing conditions
	Microbiological analysis
	Data analysis

	Results and discussion
	Physicochemical characterization of meat matrices
	Raw meat (minced beef)
	Cooked products (cooked ham, cooked chicken and fatty duck liver)
	Cured products (Dry-cured ham and cured pork loin)
	Fermented products (Fermented sausages: chorizo, salami and salchichón)
	Overall comparison between L. innocua and L. monocytogenes in diverse meat matrices

	Conclusions
	References

	Discussion cover
	8-General discussion
	Pressure resistance of L. monocytogenes was strain-dependent
	Pressure resistance was not related to the evaluated geno- and phenotypical characteristics
	Strain variability as a tool for designing safer HPP ready-to-eat meat products

	Conclusions cover
	9-Conclusions and future perspectives [ENG-ESP]
	General conclusion
	Specific conclusions
	Conclusión general
	Conclusiones específicas

	10-Perspectives [ENG-ESP]
	Agradecimientos cover
	Agradecimientos
	back cover

