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Abstract 

In this work, a systematic study of the structural, optical and electrical properties of aluminum 
doped hydrogenated amorphous silicon carbide (Al-doped a-SiC:H) thin films grown by radio frequency 
magnetron sputtering is presented. The samples were grown using a high purity Al and SiC targets in a 
hydrogen-rich atmosphere and then were subjected to a rapid thermal annealing processes with 
temperatures of up to 600 °C. The film thickness ranged from 321 nm to 266 nm. The amorphous nature of 
the thin films was confirmed by X-ray diffraction measurements before and after the annealing treatments. 
Fourier transform infrared spectroscopy analysis revealed the different heteronuclear bonds present in the 
samples, whilst Raman spectroscopy showed the different homonuclear bonds present in the material. The 
evolution of the latter bonds with annealing temperature was assessed, showing a change in the structure of 
the thin film. Energy-dispersive X-Rays Spectroscopy confirmed the incorporation of aluminum in the 
amorphous silicon carbide matrix. UV-VIS Transmittance spectra revealed optical parameters such as Tauc 
energy bandgap, Iso-absorption energy bandgap and refractive index. Furthermore, the bandgap is also 
determined by means of a recently developed band-fluctuation model. In addition, electrical resistivity is 
determined by means of a four-probe Van Der Pauw method. Only the samples annealed at 600 °C exhibited 
contacts with an Ohmic behavior. The annealed films exhibited lower resistivities than the as-deposited 
ones, probably due to a thermal-induced reordering of the atoms.  This reordering is shown in the variation 
of the Urbach energy which is related to an increase in the Si-C bond density, due to the dissociation of the 
hydrogen-related bonds. 

Resumen 

En este trabajo de tesis se presenta el estudio las propiedades estructurales y optoelectrónicas de carburo de 
silicio amorfo hidrogenado dopado con aluminio fabricado mediante pulverización catódica de radio 
frecuencia. Las muestras se fabricaron usando target de SiC y Al de alta pureza en atmosfera de hidrogeno. 
Luego las películas fueron calentadas hasta la temperatura de 600°C en un horno de rápido procesamiento 
térmico. La difracción de rayos X confirma la naturaleza amorfa de las películas. Los espectros de absorción 
infrarroja muestran los diferentes enlaces hetero-nucleares mientras que la espectroscopia Raman nos 
muestra los diferentes enlaces hononucleares presentes en la muestra. Se evaluó la evolución de los últimos 
enlaces con el tratamiento térmico, mostrando un cambio en la estructura del material. Espectroscopía de 
dispersión de energía de rayos X nos muestra la incorporación de aluminio en la matriz de carburo de silicio 
amorfo. Los espectros de transmitancia UV-VIS revelan parámetros ópticos tales como energía de Tauc, 
energía de Iso- absorción, energía de Tauc e índice de refracción. Además, el modelo de fluctuación de 
bandas desarrollado recientemente nos permite determinar los bordes de movilidad y energía de Urbach. 
Adicionalmente, el método de Van Der Pauw nos permite determinar el valor de la resistividad eléctrica de 
la muestra, solo a 600°C, donde se obtuvo un comportamiento óhmico mostrando baja resistividad eléctrica, 
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probablemente debido a un reordenamiento de los átomos inducidos térmicamente. Este reordenamiento 
estructural se muestra en la variación de la energía de Urbach que está asociada con el aumento de la 
densidad de enlaces Si-C, debido a la disociación de los enlaces relacionados con el hidrogeno.
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Introduction 

 Silicon carbide (SiC) is a wide band gap semiconductor (WBG) material with interesting 

physical, chemical and mechanical properties [1]. Due to these properties, SiC has been applied 

in solar cells, microelectronics, light emitting diodes, medical and photoelectrochemical 

applications. This material is of great interest due to the earth abundant composition, their simple 

and scalable thin film deposition technique, and their high stability in a corrosive 

environment [2][3]. One reason for this wide employment is that its band gap can be easily tuned 

from 1.8 eV to 3.1 eV by changing its stoichiometry, doping, incorporation of hydrogen and 

annealing treatment [4][5][6][7][8]. These tuning changes the light absorption property 

modifying other properties of a-SiC: H. 

In the last decade, hydrogenated amorphous silicon carbide thin films (a-SiC: H) have 

been used as a photocathode material for water reduction in photoelectrochemical cells (PEC). 

Recently, an efficiency Solar-to-Hydrogen of 7.5% was reported [9]. These properties make 

SiC a promising material to be used as a photocathode in photoelectrochemical devices. 

Unfortunately, little is known about the aluminum doping and annealing treatment and its 

effect on the optical and electrical properties of (a-SiC: H). To know the properties of a-SiC: 

H(Al) film is important in order to asses’ different applications, especially in photoelectroch

emical devices, where the light absorption and electrical properties play a major role in the 

overall device efficiency and performance.  

          

The goal of the current research is to obtain a-SiC: H(Al) thin films varying deposition 

conditions. One of the main aspects to produce high-quality a-SiC:H(Al) was the 

incorporation of heaters in the deposition chamber in order to reduce the humidity within in 

the chamber. Once low oxygen content films are obtained, the effect of an annealing treatment 

in a rapid thermal process furnace and doping on the structural, electrical and optical 

properties is of major importance and systematically studied in this thesis. 
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Fundamental theory 

2.1 Wide-bandgap semiconductors  

Wide bandgap (WBG) semiconductors materials which have a relatively large band gap 

compared to typical semiconductor materials. Those materials are employed in optoelectronic 

and alternative energy devices such as light emitting diodes, white light illumination, high-

frequency /high-power diodes and fuel cell devices [10]. The three main types of wide bandgap 

semiconductors are group III nitrides, group II oxides, group II chalcogenides, IV-IV compounds 

and diamond. The bandgap versus lattice constant of the principal WBG semiconductors at room 

temperature is shown in Figure 2.1. 

 

Figure 2.1 Relationship between forbidden energy gap and lattice constant of WBG [10]. 
 

2.2 Silicon carbide   

Silicon carbide (SiC) is a binary WBG semiconductor, which can occur in more than 250 
crystalline forms called polytypes. The most common ones are 3C, 4H, 6H and 15R. SiC 
polytypes consist of silicon atoms bonded with four carbon atoms in a tetrahedral arrangement as 
shown in Figure 2.2.1. In addition, they are differentiated by the stacking sequence of each 
tetrahedrally bonded Si-C bilayer and thus by the band gap energy and electronic properties as 
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well [11]. The advantages of silicon carbide over the other WBG semiconductors are physical, 
chemical and mechanical properties such as high thermal conductivity, mechanical hardness, 
high melting point, chemical resistance, high refractive index and wide (tunable) band gap [1]. 
Finally, in Table 2.2.1 shows some properties of mean polytypes of silicon carbide compared to 
silicon. 

The main motivations for using hydrogenated amorphous silicon carbide (a-SiC:H) films 
compared to other semiconductors such as silicon are is its high chemical stability, tunable wide 
band gap energy between 1.8 eV to 3.1 eV [1][6][12]. a-SiC:H has been prepared by various 
methods, such as the chemical vapor deposition (CVD) [13], high-energy ion irradiation [14], 
physical vapor deposition (PVD) [15] and R.F sputtering [6][16][17]. The structural and 
optoelectronic properties of these films depend on the deposition methods and preparation 
conditions. These conditions can be the type of the sputtering gases, the chamber pressure, 
deposition time and substrate temperature.  

 
Figure 2.2.1 Schematic diagram of tetrahedral bond of silicon carbide [10]. 

 

Table 2.2.1 Physical properties of polytypes of silicon carbide as well as silicon for comparison at 300 K [18][19] 

 

 6H SiC 4H SiC 3C SiC 
 

Si 
 

Energy gap (eV) 3.02 3.26 2.40 1.12 

Thermal conductivity (W/cm) 4.9 3.7 3.2 1.5 

Dielectric constant  10.3 9.7 9.7 11.8 

Refractive index  2.65 2.55 2.69 2.4 

Transition indirect indirect indirect indirect 
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a-SiC: H has the potential to be used in a number of applications such as optoelectronic, 
renewable energy, biomedical among others. For  instance, a-SiC:H films can be used as an 
absorber layer in a semi-transparent solar cell for its flexibility in controlling its optical 
parameters [20], a biomedical microdevice for its potential as a structural and packing 
material [21], a potential semiconductor for quantum computing [22], a hermetic encapsulate 
device for the integrated silicon-based neural interface devices [23] and in particular, a-SiC:H 
has received a growing interest as photo-electrode material for photoelectrochemical (PEC) 
water splitting which is becoming a feasible and important method for solar energy conversion in 
the form of hydrogen fuels [3].  

Thus, a-SiC:H is used as photo-electrode due to the easy production method and its 
relatively high resistance to corrosion when in contact with the electrolyte, which is important in 
order to prolong the lifetime of the device. Moreover, it has a tunable band gap energy as is 
shown in Figure 2.2.2(b), which allows the integration of multi-junction photovoltaic (PV) with 
smaller band gaps (i.e, 1.12 eV - 1.80 eV) to form tandem light absorbers for maximum spectral 
utilization, which allows obtaining a high solar to hydrogen (STH) efficiency. In this context, 
recently an efficiency of 7.9 % has been reported [9]. Further, p-type a-SiC:H layers has been 
reported an enhanced conversion efficiency [8][24].    
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Figure 2.2.2 Schematic illustration of a PEC configuration. Scheme taken from [9] (a). Maximum current and 

STH efficiency available as a function of bandgap of materials enabled to be used as photo-electrode. The grey 

box is indicated the values of energy that can be take a-SiC:H (b). Solar spectral irradiance against wavenumber 

in order to show the absorption spectral to different bandgap as silicon (1.12 eV) and silicon carbide (2.5 eV) (c). 

 

2.3 Optical properties of amorphous semiconductors    

Prior to discuss the absorption coefficient and its implication on the bandgap. It is 
appropriate to understand the differences between crystalline and amorphous semiconductors 
materials and their electronic density of states.  

Atomic structure and electronic state density 

The amorphous semiconductor is different from the crystalline material mainly due to the 
disorder of the atomic structure. A crystalline material presents a periodic array of atoms 
throughout the solid, thus shows a long-range order (see Figure 2.3.1). Whereas, the amorphous 
counterparts presents only a short-range order and long-range disorder in which each atom has a 
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specific number of bonds (coordination defect), different bonds angles, different bond length to 
its immediate neighbors [25]. 

  
 Figure 2.3.1 An illustration contrasting the crystalline and amorphous structure in two 

dimensions. 

 

The origin of the energy band gap in amorphous semiconductors does not result from the 
material’s structural order but from the chemistry of their bonds. The band structure is formed 
due to the covalent bonding of atoms, which is can be described by the linear combination 
atomic orbital (LCAO) method. The obtained result of this bond of an isolated atom is divided 
into two energy levels when two atoms are brought close together and interact. The lowest 
energy state is known as bonding orbital and its lower than the energy of the state of isolated 
individual atoms. The higher energy is called anti-bonding orbital, as is shown in Figure 2.3.2. 
This energy separation of the bonding and anti-bonding states depends on the distance R between 
atoms. The energy band gap reduced when the distance increases [26]. This behavior can be 
extended for the interaction of many atoms, which allows the formation of quasi-continuum 
states as demonstrated by Weaire and Thorpe (1971) through the tight binding approach, where 
they showed that a discontinuity in the electronic density of states is founded separating the 
valence and conduction bands and hence leading to the formation of a bandgap [26]. These 
quasi-continuum states are called as valence and conduction extended states in amorphous 
material case.  

 

Crystalline structure Amorphous structure 
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 Figure 2.3.2 Illustration of the bonding and anti-bonding of two atoms. When the bond is made two 

energy levels are formed (a). Representation of quasi-continuum states of the interaction of many 

atoms for forming of a bandgap (Eg) (b). 

 

Thus, the formation of energy bands is a result of bonding and antibonding orbitals states. 
The density of states 𝑔𝑔(𝐸𝐸) for valence and conduction band in crystalline semiconductor is 
described by the quasifree electron approximation (see equation 2.3.1). Here, ℏ is Planck 
constant,  𝑚𝑚𝑒𝑒

ℎ�
∗  is the electron and hole effective mass, 𝐸𝐸𝑐𝑐(0) and 𝐸𝐸𝑣𝑣(0)  are arbitrary constants. 

The formation of the density of states can be seen Figure 2.3.3.  

𝑔𝑔𝑐𝑐(𝐸𝐸𝑐𝑐) = √2
 𝑚𝑚𝑒𝑒

∗3/2

𝜋𝜋2ℏ3
�𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑐𝑐(0)�1/2

 

𝑔𝑔𝑣𝑣(𝐸𝐸𝑣𝑣) = √2
 𝑚𝑚ℎ

∗ 3/2

𝜋𝜋2ℏ3
(𝐸𝐸𝑣𝑣(0) − 𝐸𝐸𝑣𝑣)1/2 

(2.3.1) 

 

Where bandgap is the difference between bottom of conduction band and top of valence 
band. Amorphous semiconductors present extended states due to the influence of the short-range 
order, equal like crystalline material. In addition, Figure 2.3.3 can see important changes in 
bandgap. The presence of deviations of the bond length and angles arising from long range 
structural disorder in amorphous material is resulting in localized tail states that can overlap the 
extended states. Additionally, other localized states are present near the middle of gap called 
dangling bonds. These states arise from defects in an ideal network, such as coordination defects, 
which have three possible charge states: neutral, positive and negative charge. Energies denoted 
by Ev and Ec are borders between extended and localized states and corresponding to the 
mobility edges. The distance between both mobility edges is known as mobility gap, which is 
similar to the band gap for crystalline material [25][26]. 
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 Figure 2.3.3 Schematic density of states distribution for an amorphous semiconductor showing the 

bands, the band tails, and the defects states in the band gap. The dashed curves are the equivalent 

density of states in a crystal. 

 

Fundamental absorption in amorphous semiconductors  

The absorption coefficient 𝛼𝛼 gives information about electronic states and this later 
contains information of the bandgap energy, tail states and the degree of disorder. Figure 2.3.4 
shows the representative shape of the absorption coefficient in the UV-VIS-NIR spectral region 
for an amorphous material. Three principal zones can be identified: strong absorption edge arises 
to the fundamental absorption or Tauc region and corresponding to the band-to-band electronic 
transitions, the medium absorption region shows an exponential behaviour, which is known as 
Urbach region due to tail states corresponding to band to tail transitions and finally, a low 
absorption region corresponding to transitions involving defect states deep within the forbidden 
gap.  
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 Figure 2.3.4 Schematic plot of the representative shape of the absorption coefficient in logarithmic 

scale of amorphous semiconductors in the UV-VIS -NIR spectral region. 

 

All these electronic transitions are associated to the interaction of material with 
electromagnetic radiation (UV-VIS-NIR frequency), where the absorption process is studied 
using perturbation theory. In this sense, the power per unit volume absorbed by a material 𝑊𝑊𝑀𝑀 is 
connected to the electronic transition rate probability per unit volume 𝑅𝑅𝑐𝑐𝑣𝑣 by 𝑊𝑊𝑀𝑀 = 𝑅𝑅𝑐𝑐𝑣𝑣ℏ𝜔𝜔 .This 
is equal the energy density rate per unit volume delivered by the electromagnetic wave 𝑊𝑊𝑅𝑅 =
−𝑑𝑑〈𝑈𝑈〉/𝑑𝑑𝑑𝑑, which is related to the absorption coefficient. Thus, the absorption coefficient 𝛼𝛼 is 
related to the electronic transition rate per unit volume due to optical excitation energy between 
the extended valence states and conduction states by equation 2.3.2 where n is the index of 
refraction, c is the speed of light, 𝜖𝜖0 the electric permittivity constant in vacuum and |𝐄𝐄| the 
electric field amplitude [27]. 

𝛼𝛼 
 𝑛𝑛𝑛𝑛 𝜖𝜖0

2
|𝐄𝐄|2 = 𝑅𝑅𝑐𝑐𝑣𝑣ℏ𝜔𝜔 (2.3.2) 

 

Now, the transition probability rate 𝑅𝑅𝑐𝑐𝑣𝑣 can be written using the Fermi’s Golden Rule, 
which indicates the transition probability from the valence and conduction band by photon 
absorption per unit time per unit volume due to perturbation of the photon energy incident on the 
material 𝐻𝐻𝑒𝑒𝑅𝑅 = 𝑒𝑒 𝒑𝒑 ∙ 𝑨𝑨/𝑚𝑚𝑒𝑒 , is present in the equation 2.3.3. Here, 𝐸𝐸𝑐𝑐/𝑣𝑣 and 𝒌𝒌𝒄𝒄/𝒗𝒗 are the electron 
energy and the electron wave vector at the conduction and valence states respectively. |𝑀𝑀𝑐𝑐𝑣𝑣| is 
the transition matrix element in the dipole approximation given by |𝑀𝑀𝑐𝑐𝑣𝑣|𝑒𝑒/𝑚𝑚𝑒𝑒 = 〈𝑛𝑛|𝐻𝐻𝑒𝑒𝑅𝑅|𝑣𝑣〉 [27]. 
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𝑅𝑅𝑐𝑐𝑣𝑣 =
2𝜋𝜋
ℏ
�
𝐄𝐄 𝑒𝑒

2𝑚𝑚𝑒𝑒𝜔𝜔
�
2
� |𝑀𝑀𝑐𝑐𝑣𝑣|2𝛿𝛿(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑣𝑣 − ℏ𝜔𝜔)𝛿𝛿𝑘𝑘𝑐𝑐 ,𝑘𝑘𝑣𝑣
𝑘𝑘𝑐𝑐 ,𝑘𝑘𝑣𝑣

 (2.3.3) 

 

Then, from the equation 2.3.2 and 2.3.3, the absorption coefficient can be expressed by 
equation 2.3.4. Where 𝛿𝛿 is related to the momentum and energy conservation. For the direct 
absorption process 𝒌𝒌𝒄𝒄 = 𝒌𝒌𝒗𝒗 , which obeys conservation of momentum. On the other hand, in 
indirect absorption exist different wave vector 𝒌𝒌𝒄𝒄 = 𝒌𝒌𝒗𝒗 ± 𝒌𝒌𝝓𝝓 as can be seen Figure 2.3.5.     

𝛼𝛼 =
ℏ

4𝜋𝜋𝜖𝜖0𝑛𝑛𝑛𝑛
�

2𝜋𝜋𝑒𝑒
𝑚𝑚𝑒𝑒

�
2 1
ℏ𝜔𝜔

� |𝑀𝑀𝑐𝑐𝑣𝑣|2𝛿𝛿(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑣𝑣 − ℏ𝜔𝜔)𝛿𝛿𝑘𝑘𝑐𝑐 ,𝑘𝑘𝑣𝑣
𝑘𝑘𝑐𝑐 ,𝑘𝑘𝑣𝑣

 (2.3.4) 

 

 

 
 
 Figure 2.3.5 Energy-momentum diagram of direct and indirect transition, the diagram left side shows the 

excitation of an electron from the valence to conduction band after absorber a photon (diagram left side). 

Whilst the other diagram illustrates the absorption of a photon assisted by phonon to reach the excitation. 

 

For direct and indirect transition, the transition matrix elements |𝑀𝑀𝑐𝑐𝑣𝑣|2 is assumed that 
varies slowly with the photon energy. Furthermore, the summation over the vector 𝒌𝒌 can be 
collocated as a summation over the energy due to energy bands dispersion relation. This can be 
calculated by the density of states [26] as is shown in equation 2.3.5. Then, from equation 2.3.5 
in equation 2.3.4, the absorption coefficient direct and indirect for amorphous material is 

expressed in the equation 2.3.6. Here 𝛼𝛼0 = ℏ
4𝜋𝜋𝜖𝜖0𝑛𝑛𝑐𝑐
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�
𝑘𝑘𝑣𝑣

� →
𝑘𝑘𝑐𝑐

�𝑔𝑔(𝐸𝐸)𝑑𝑑𝐸𝐸 (2.3.5) 

 

𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑 =
𝛼𝛼0
ℏ𝜔𝜔

� 𝑔𝑔𝑐𝑐𝑣𝑣(𝐸𝐸𝑐𝑐𝑣𝑣)𝛿𝛿(𝐸𝐸𝑐𝑐𝑣𝑣 − ℏ𝜔𝜔)𝑑𝑑𝐸𝐸𝑐𝑐𝑣𝑣
ℏ𝜔𝜔

𝐸𝐸𝑐𝑐𝑣𝑣(0)
 

𝛼𝛼𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑 =
𝛼𝛼0
ℏ𝜔𝜔

� � 𝑔𝑔𝑐𝑐(𝐸𝐸𝑐𝑐)𝑔𝑔𝑣𝑣(𝐸𝐸𝑣𝑣)𝛿𝛿�𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑣𝑣 − ℏ𝜔𝜔 ± 𝐸𝐸𝜙𝜙�𝑑𝑑𝐸𝐸𝑣𝑣𝑑𝑑𝐸𝐸𝑐𝑐 

(2.3.6) 

 

Tauc model   

Using, the Tauc model it is possible to extract the optical bandgap energy, as this model 
has been widely applied to amorphous materials for various authors [6][28][29][30]. Tauc model 
proposes to take the form of free electron approximation seen in equation 2.3.1. Solving the 
integral in equation 2.3.6 together with the equation 2.3.1. The absorption coefficient can be 
written as follows [30]: 

𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐
(ℏ𝜔𝜔 − 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐)2

ℏ𝜔𝜔  (2.3.7) 

 

Here, 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 includes all constants, ℏ𝜔𝜔 is the energy of incident photons. To extract the 
value of optical bandgap (𝛼𝛼ℎ𝜈𝜈)1/2 versus (ℎ𝜈𝜈) should be plotted and a linear fit on the fundamental 
absorption region should be performed. The intercept of the linear fit with the energy axis is the 
value of the Tauc-energy bandgap, as shown in Figure 2.3.7 On the other hand, as it was mentioned 
before in the prior section, the band tails play a crucial role on the optical property and in fact they 
show a strong influence in the optical bandgap. Therefore, the Tauc-gap is used as a representative 
value of the “correct” gap. 
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 Figure 2.3.7 Tauc-plot graphic showing a linear fit the high energy region. 

  

Isoabsorption E04 Energy   

The value of E04 is another possibility used by some authors[29][31] in order to compare 
bandgap energy values. The E04 value is determined by plotting the absorption in the logarithmic 
scale against photon energy plot. The isoabsorption energy value is assigned where is the 
absorption coefficient has a value of 104 cm-1, see Figure 2.3.8. 

 
 Figure 2.3.8 Absorption coefficient in logarithmic scale versus photon energy graphic. 
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Urbach energy 

As mentioned in the previous section, the origin of band-tail states in amorphous 
semiconductors is mainly due to structural disorder, defects and even temperature effects. 

Below the fundamental region, Urbach region, typically the band-tails observed in the 
absorption coefficient can be given by an exponential behavior. Here, the transitions of tail-states 
to extended band structures is evidenced (See equation 2.3.5.1) [6][28]. 

𝛼𝛼(𝐸𝐸) = 𝛼𝛼𝐹𝐹exp �
𝐸𝐸 − 𝐸𝐸𝐹𝐹
𝐸𝐸𝑇𝑇

� (2.3.8) 

As can be seen in Figure 2.3.2.1, in logarithm scale, the equation 2.3.5 will be written by 
written as shown in equation 2.3.9. 

log (𝛼𝛼(𝐸𝐸)) = 𝑙𝑙𝑙𝑙𝑔𝑔(𝛼𝛼𝐹𝐹) + �
𝐸𝐸 − 𝐸𝐸𝐹𝐹
𝐸𝐸𝑇𝑇

� (2.3.9) 

Here, 𝛼𝛼𝐹𝐹 and 𝐸𝐸𝐹𝐹 are constants and 𝐸𝐸𝑇𝑇 is Urbach energy, which can be extracted of the 
inverse of the slope of a linear fit in Urbach zone. This value ranges regularly from ~10 meV to 
~200 meV. Thus, the Urbach energy is an indirect measure of the degree of disorder and thermal 
vibration in the amorphous material [32]. Another possibility to measure the degree of disorder is 
to determine the average bond distance and angle variation, which can be calculated from the width 
at half maximum of vibration spectral using infrared absorption spectrum or Raman spectrum.  

Band-fluctuation model  

This model is developed to describe the sub-bandgap exponential band tail and the 
fundamental absorption observed in the optical absorption of amorphous semiconductors. 
According to Guerra et al. [33], considering that the topologic disorder and thermal vibration in 
amorphous material have the same behaviour, provides the chance to model both effects by only 
thermal vibration, due to that at high temperature the amorphous material can be considered as 
ordered, in which the molecules are frozen in time. This is known as frozen phonon model. 

In order to calculate the absorption coefficient in amorphous material, the frozen phonon 
model is taken account and is necessary determine the average electronic transition rate  𝑅𝑅𝑐𝑐𝑣𝑣 
between the conduction and valence band. Extending the one-electron approximation considering: 
i) the electronic occupation degree in the valence band using 𝑔𝑔𝑐𝑐 → 𝑔𝑔𝑐𝑐(𝐸𝐸𝑐𝑐) × �1 − 𝑓𝑓(𝐸𝐸𝑐𝑐)� ii) the 
available states in the conduction band using 𝐷𝐷𝑣𝑣 → 𝐷𝐷𝑣𝑣(𝐸𝐸𝑣𝑣) × 𝑓𝑓(𝐸𝐸𝑣𝑣) and iii) the stimulated 
relaxation process in the Fermi’s Golden rule absorption coefficient can be achieved as shown 
equation 2.3.10. The equation 2.3.10 is known as the Kubo-Greenwood formula, which is used to 
describe the temperature dependence of the electrical properties of a semiconductor [28][33]. 
Moseley et al. [34] following the approach of Kubo-Greenwood defined the average electronic 
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transition rate versus temperature as is shown in equation 2.3.11. Here 𝑓𝑓(𝐸𝐸) is the Fermi 
distribution. 

𝑅𝑅𝑐𝑐𝑣𝑣(ℏ𝜔𝜔) =
2𝜋𝜋
ℏ
�

𝐸𝐸�𝑒𝑒
2𝑚𝑚𝑒𝑒𝜔𝜔

�
2

� |𝑀𝑀𝑐𝑐𝑣𝑣|2
𝑘𝑘𝑐𝑐,𝑘𝑘𝑣𝑣

{𝑓𝑓(𝐸𝐸𝑣𝑣) − 𝑓𝑓(𝐸𝐸𝑐𝑐)}𝛿𝛿(𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑣𝑣 − ℏ𝜔𝜔) (2.3.10) 

 

〈𝑅𝑅𝑐𝑐𝑣𝑣〉(𝑇𝑇) = �𝑅𝑅𝑐𝑐𝑣𝑣(𝐸𝐸)|𝑇𝑇=0 �
−𝑑𝑑(𝑓𝑓(𝐸𝐸))

𝑑𝑑𝐸𝐸
�𝑑𝑑𝐸𝐸 (2.3.11) 

 

Furthermore, O’Leary proposed treating the JDOS (joint density of states) as a local JDOS 
over the distribution of conduction and valence bands with a Gaussian distribution to take into 
account the thermal fluctuations [35].  

〈𝐽𝐽𝑐𝑐𝑣𝑣〉(𝐸𝐸𝑐𝑐𝑣𝑣) = � 𝑊𝑊� (𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑣𝑣)𝑔𝑔𝑐𝑐𝑣𝑣(𝜖𝜖)𝑑𝑑𝜖𝜖
∞

−∞
 (2.3.12) 

 

Here 𝑊𝑊�  is the weight function, that should produce the tail states below the fundamental 
absorption, 𝐸𝐸𝑐𝑐𝑣𝑣 = 𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑣𝑣 , where 𝐸𝐸𝑣𝑣  and 𝐸𝐸𝑐𝑐representing the valence and conduction band energy, 
respectively and  𝐽𝐽𝑐𝑐𝑣𝑣 is joint density of states. 

Now, starting from the equation 2.3.11, Guerra et al used – 𝑓𝑓′(ℏ𝜔𝜔) as weighting function 
which is similar to a Gaussian type distribution and lim

𝑇𝑇→0
−𝑓𝑓′(ℏ𝜔𝜔,𝑇𝑇) = 𝛿𝛿(ℏ𝜔𝜔), called Dirac Delta 

function of  the traditional Tauc calculation. Thus, the average of the Join Density of States was 
proposed as shown in equation 2.3.13.  

〈𝐽𝐽𝑐𝑐𝑣𝑣〉(𝐸𝐸𝑐𝑐𝑣𝑣) = � −𝑓𝑓′(𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑣𝑣)𝑔𝑔𝑐𝑐𝑣𝑣(𝜖𝜖)𝑑𝑑𝜖𝜖
∞

−∞
 (2.3.13) 

 

Then, introducing the average JDOS into the Fermi’s Golden Rule (see equation 2.3.3) and 
considering the relaxation of the momentum conservation the average electron transition rate can 
be written as shown in the equation 2.3.14. This equation is equal to the electronic transition rate 
at zero Kelvin for direct transition except the Dirac Delta function term, which is changed by a 
Fermi distribution derivate. 

〈𝑅𝑅𝑐𝑐𝑣𝑣〉(ℏ𝜔𝜔,𝑇𝑇) =
2𝜋𝜋
ℏ �

𝐸𝐸�𝑒𝑒
2𝑚𝑚𝑒𝑒𝜔𝜔

�
2

� |𝑀𝑀𝑐𝑐𝑣𝑣|2𝐷𝐷𝑐𝑐𝑣𝑣(𝐸𝐸𝑐𝑐𝑣𝑣){ −𝑓𝑓′(𝐸𝐸𝑐𝑐𝑣𝑣 − ℏ𝜔𝜔)}𝑑𝑑𝐸𝐸𝑐𝑐𝑣𝑣 (2.3.14) 
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Finally, by integrating equation 2.3.14, it can be written in the form more compact from 
using Li2(𝑥𝑥), which is the Dilogarithm function of 𝑥𝑥 . 

𝛼𝛼(ℏ𝜔𝜔) = −
𝜋𝜋
4

𝛼𝛼0
𝛽𝛽2ℏ𝜔𝜔 Li2�−𝑒𝑒𝛽𝛽(ℏ𝜔𝜔−𝐸𝐸0)� (2.3.15) 

  

Here 𝛽𝛽 = 1/(𝑘𝑘𝐵𝐵𝑇𝑇) is the definition of the Urbach slope and 𝐸𝐸0 is defined as the energy 
difference between the mobility edges. This model includes the distributions of band-to-band and 
tail states transitions. The asymptotic analysis of equation 2.3.15 leads to identical Urbach and 
Tauc equations. Theses equation are called extended Tauc and Urbach by Guerra [33]. 

𝛼𝛼(ℏ𝜔𝜔) =
𝜋𝜋
8
𝛼𝛼0
ℏ𝜔𝜔

⎩
⎨

⎧
2
𝛽𝛽2 𝑒𝑒

𝛽𝛽(ℏ𝜔𝜔−𝐸𝐸0) , ℏ𝜔𝜔 ≪ 𝐸𝐸0

(ℏ𝜔𝜔 − 𝐸𝐸0)2 +
𝜋𝜋
𝛽𝛽2 , ℏ𝜔𝜔 ≫  𝐸𝐸0

 (2.3.16) 

 

Fluctuation bands approach models allows to calculate both the fundamental absorption 
region and the Urbach tail region of the optical absorption. 

 

2.4 Electrical properties of amorphous semiconductors    

Prior to discuss about the electrical conductivity of amorphous semiconductors, it is 
convenient to understand the basic foundations of the metal-semiconductors junction and the 
technique used to determine the electrical conductivity of amorphous thin films semiconductors.   

Metal-semiconductor contacts 

The study of the semiconductor-metal junction is of great relevance as most devices 
based on semiconductor materials have a metal-semiconductor junction. 

Furthermore, in particular for applications in photoelectrochemical devices, there are two 
possible situations, depending on the material properties, that can occur at the junction:  

a) Ohmic contact, which has a low contact resistance junction providing conduction in both 
directions between metal and semiconductor. Ideally, the current through this type of 
contact is a linear function of an applied voltage. 

b) Schottky contact, which presents a rectifying behavior, in one way, similar to p-n- 
semiconductor junction [36]. 
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In the following, the main characteristics and properties of this semiconductor-metal 
junction are presented. In order to study the behavior of the semiconductor-metal junction, first, 
three parameters should be defined. 

a) The work function of the metal Φ𝑀𝑀 indicates the energy necessary to remove an electron 
from Fermi level of material to vacuum level. 

b) The work function of semiconductor Φ𝑆𝑆𝑆𝑆 depends on the doping concentration as the 
Fermi level depends on doping type and concentration. 

c) Electron affinity 𝜒𝜒𝑆𝑆𝑆𝑆 is the difference between the conduction band of the semiconductor 
and the vacuum level. 

Schottky contacts 

To obtain an ideal Schottky or rectifying contact, the following must be fulfilled in the case 

of a metal and n-type-semiconductor (Φ𝑀𝑀 > Φ𝑆𝑆𝑆𝑆), and for the opposite case (Φ𝑆𝑆𝑆𝑆 > Φ𝑀𝑀). 

Without any contact, the Fermi level of the semiconductor is above the metal fermi level. 

For the Fermi level to become constant throughout the system (thermal equilibrium), the electrons 

from the semiconductor flow into the lower energy states in the metal. The positively charged 

donor atoms remain in the semiconductor, creating a space charge region that it is known as 

depletion zone. On the other hands, in order to maintain the neutrality of the junction, a negative 

charge appears at surface of the metal. This causes an electrical field from the semiconductor to 

the metal. This electrical field produces a potential variation in the semiconductor that results in 

the bending of the energy bands. 

Figure 2.4.1 shows an ideal energy-band diagram in contact between metal and n-type-

semiconductor. The parameter Φ𝐵𝐵𝑛𝑛 is the ideal barrier height of the semiconductor contact, the 

electrons in the metal feel the potential barrier and try to move into the semiconductor. This barrier 

is known as the Schottky barrier and is given by equation 2.4.1. Where the Schottky barrier is the 

difference between Fermi level and the conduction band in the interface.    

Φ𝐵𝐵𝑛𝑛 = (Φ𝑚𝑚 − 𝜒𝜒𝑆𝑆𝑆𝑆) (2.4.1) 
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Furthermore, V𝑏𝑏𝑑𝑑 is the built-in potential barrier. The electrons feel this barrier in the 

conduction band trying to move into the metal. The built-in potential barrier is given by 

equation 2.4.2. Which makes that V𝑏𝑏𝑑𝑑 depends on semiconductor doping. 

𝑉𝑉𝑏𝑏𝑑𝑑 = (Φ𝐵𝐵𝐵𝐵 − 𝑞𝑞𝑉𝑉𝑛𝑛) (2.4.2) 

 

On the other hand, if the boundary conditions are considered in the Poisson equation, a 

charge density volume and a uniform doping is possible to obtain the space charge region width 

𝑊𝑊 as shown equation 2.4.3. Here 𝑁𝑁𝐷𝐷 is doping concentrations of semiconductor, 𝐾𝐾 is Boltzmann 

constant, 𝑇𝑇 is the temperature in Kelvin and ∈𝑠𝑠 is the dielectric permittivity of 

semiconductor [36][37][38]. 

𝑊𝑊 = �
2 ∈𝑠𝑠 (𝑉𝑉𝑏𝑏𝑑𝑑 − 𝐾𝐾𝑇𝑇/𝑞𝑞)

𝑞𝑞𝑁𝑁𝐷𝐷
 (2.4.3) 

 

 

 
 

 

 Figure 2.4.1. Ideal energy-band diagram of a metal in contact with a n-type semiconductor moderately doped 
(Φ𝑀𝑀 > Φ𝑆𝑆𝑆𝑆) and p-type (Φ𝑆𝑆𝑆𝑆 > Φ𝑀𝑀). Here E𝑉𝑉 is valence band energy level,  E𝑐𝑐 is conduction band energy level 
and E𝐹𝐹𝑆𝑆 is Fermi level. 

 

-  

𝑞𝑞Φ𝑀𝑀  
𝑞𝑞Φ𝐵𝐵𝑛𝑛  𝑞𝑞V𝑏𝑏𝑑𝑑  

𝑞𝑞V𝑛𝑛  
𝑤𝑤 

E𝑉𝑉  

E𝐹𝐹𝑠𝑠  
E𝑆𝑆  
E0  

E𝐹𝐹𝑀𝑀  

Metal n-type Semiconductor 

+  
-  

+  +  

-  
-  

𝑞𝑞 𝜒𝜒𝑆𝑆𝑆𝑆 

-  
+  

𝑞𝑞Φ𝑀𝑀  

𝑞𝑞Φ𝐵𝐵𝑝𝑝  
𝑞𝑞V𝑏𝑏𝑑𝑑  

𝑞𝑞V𝑝𝑝  

𝑤𝑤 

E𝑉𝑉  

E𝐹𝐹𝑠𝑠  

E𝑆𝑆  

E0  

E𝐹𝐹𝑀𝑀  

Metal p-type Semiconductor 

+  -  -  
-  

+  +  

𝑞𝑞 𝜒𝜒𝑆𝑆𝑆𝑆 

+  +  



 
 

25 
 

In this situation, the net current through this contact is nonlinear, as the current flow 

preferably in one way (from semiconductor to metal) but not at the opposite way. It is known as 

rectifying the contact.  

Finally, for case metal and p-type semiconductor junction the previous considerations are 

valid, except that the majority charge carrier are holes.  

Ohmic contacts 

For obtaining an ideal Ohmic contact, the following must be fulfilled in case of metal and 

n-type-semiconductor Φ𝑀𝑀 < Φ𝑆𝑆𝑆𝑆, and for the opposite case Φ𝑀𝑀 > Φ𝑆𝑆𝑆𝑆. An ohmic contact is 

independent the doped semiconductor properties. The Schottky barrier value is smaller than qV𝑛𝑛 

or even zero.  Figure 2.4.2 shows an ideal energy-band diagram after contact between metal and 

n-type semiconductor. The Fermi level become constant throughout the system (thermal 

equilibrium) when the electrons from the semiconductor flow into the lower energy states in the 

metal. To reach thermal equilibrium between the metal and the n-type semiconductor, the electrons 

flow from metal into the semiconductor creating an electric field within the semiconductor as a 

consequence of accumulative charge in the interface which produces energy band bending. For the 

case of metal - p-type semiconductor junction occurs at the inverse situation. 

 

 

 

 Figure 2.4.2. Ideal energy-band diagram after contact for a metal-n-type semiconductor junction for  Φ𝑀𝑀 < Φ𝑆𝑆𝑆𝑆 , 
the right-side metal p-type semiconductor junction for Φ𝑀𝑀 > Φ𝑆𝑆𝑆𝑆 . 
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The ohmic contact quality is evaluated by its contact resistance 𝑅𝑅𝑐𝑐, that is defined by 

equation 2.4.4 for small concentration values of 𝑁𝑁𝐷𝐷. The thermionic emission process is dominant 

in this case. 

𝑅𝑅𝑐𝑐 =
𝐾𝐾𝑇𝑇

𝑞𝑞𝐴𝐴∗𝑇𝑇2 𝑒𝑒
𝑞𝑞Φ𝐵𝐵𝑛𝑛
𝐾𝐾𝑇𝑇  (2.4.4) 

 

For high doping concentration values of 𝑁𝑁𝐷𝐷, the width of the potential barrier is very small. 

Here the tunneling process is dominant. Thus, the specific resistance is founded by equation 

2.4.5 [36]. 

𝑅𝑅𝑐𝑐~𝑒𝑒
+2�𝑚𝑚∗∈𝑠𝑠

ℏ (Φ𝐵𝐵𝑛𝑛
�𝑁𝑁𝐷𝐷

)
 

(2.4.5) 

 

Schottky barrier under bias  

The Schottky barrier formation under bias is analyzed. For the ideal case, metal the effect 

caused by interface states that exist in the interface metal-semiconductor and the distortion of the 

potential barrier due to the electric field image-force are not considered. Information about these 

effects can be found in the following references [36][39]. 

This junction can be undergone under reverse and forward bias. Both biases change the 

potential barrier and the space charge region width as is shown in Figure 2.4.3 for metal-n-type 

semiconductor junction case. 

If a positive voltage V𝐹𝐹  is applied to the metal with respect to the semiconductor (forward 

bias), the semiconductor-to-metal barrier height (qV𝑏𝑏𝑑𝑑) and depletion zone are reduced while that   

qϕ𝑛𝑛 remains constant in this idealized case. In this sense, electrons can flow easier from the 

semiconductor into the metal as shown in Figure 2.4.1.3 (a). If we apply positive voltage V𝑅𝑅 to the 

semiconductor with respect to the metal (Reserve bias), the semiconductor-to-metal barrier height 

and depletion zone are increased and the flow of electrons from semiconductor to metal is reduced. 
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 Figure 2.4.3. Ideal energy-band diagram for a metal-n-type semiconductor contact. (a) meta-semiconductor under 
Forward bias V𝐹𝐹 (b) metal-semiconductor under Reserve bias V𝑅𝑅. 𝐼𝐼𝑆𝑆𝑀𝑀 is the flow of electrons from semiconductor 
to metal and 𝐼𝐼𝑀𝑀𝑆𝑆 is the flow of the electrons from metal into the semiconductor. 

 

Conduction mechanism of Schottky contact 

The basic concepts of the metal-semiconductor junction have been presented. It has been 

shown the different transport mechanisms in the Schottky contact. The current transport in a metal-

semiconductor junction is due mainly to the majority carrier. The main transport mechanisms are: 

a) TE: Thermionic emission  

b) TFE: Thermionic field emission or tunneling effect  

c) FE: Field emission  

 

a) Thermionic emission current  

In forward bias, a metal on a lightly doped semiconductor, this transport 

mechanism is dominant where the electrons must overcome the potential barrier. The 

current is controlled by the number of electrons with excess energy higher than the barrier 

to go towards the metal surface. This is expressed by equation 2.4.6. Here, A is the 

transversal section area from the metal-semiconductor interface,  𝐴𝐴∗ is the Richardson 

constant and Δ𝜙𝜙 is the effective to bias through to the interface and T is the temperature. 

𝐼𝐼~𝐴𝐴𝐴𝐴∗𝑇𝑇2𝑒𝑒−
𝑞𝑞Φ𝐵𝐵𝑛𝑛
𝐾𝐾𝑇𝑇 (𝑒𝑒−

𝑞𝑞Δ𝜙𝜙
𝐾𝐾𝑇𝑇 − 1) (2.4.6) 
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b) Thermionic field emission and field emission current  

Tunneling is a quantum-mechanical phenomenon. In this context an electron can 

be represented by a wavefunction. The wavefunction does not terminate abruptly on the 

potential barrier and it can penetrate into the barrier. So, the quantum probability that this 

phenomenon occurs is not zero. For high doping semiconductor, this transport mechanism 

is dominant. The tunneling current can be represented by equation 2.4.7, where  𝐼𝐼𝑑𝑑𝑛𝑛𝐵𝐵 is the 

saturation current by tunneling and 𝐸𝐸00 is a parameter related to the properties of the 

semiconductor material. 

𝐼𝐼~𝐼𝐼𝑑𝑑𝑛𝑛𝐵𝐵(𝑒𝑒
𝑞𝑞𝐵𝐵𝑛𝑛
𝐸𝐸00 − 1) 

(2.4.7) 
𝐸𝐸00 =

𝑞𝑞ℏ
2 �

𝑁𝑁𝐷𝐷
𝑚𝑚∗ ∈𝑠𝑠

 

 

Furthermore, field emission (FE) current by tunneling increases exponentially with 

high doping concentration, where the depletion zone is reduced. The thermionic field 

emission (FTE) is a transport mechanism due to both medium doping concentrations and 

thermally induced current. The contribution of these transport mechanisms can cause an 

increase of current density in metal-semiconductor junction (see Figure 2.4.4). 

Hence, a metal-semiconductor junction can form an ohmic contact when exists 

conduction in both direction with very little voltage drop. This is achieved when the 

potential barrier and depletion zone are reduced. 
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 Figure 2.4.4 Different types of conduction mechanism that can exist in a metal-n-type-semiconductor 

junction. 

 

2.4.2 Van der Pauw method 

One of the methods used to measure the resistivity on materials (conductor and 

semiconductors) is the Van der Pauw method [40]. This method uses four tips, which are in contact 

with the surface of the sample. The tips are locating at the boundary of the sample, injecting current 

by two adjacent tips and measures the voltage with the other pair of tips (see Figure 2.4.5). The 

van der Pauw allows to measure samples of arbitrary shape with high precision when the following 

conditions are satisfied [40]: 

a) The sample quality has to be homogenous and its thickness must be constant. 
b) The contacts must be placed at the edges of the sample. 
c) The sample must not have isolated holes. 
d) The area of contact between the tips and the sample should be sufficiently small. 

 
 

 
 Figure 2.4.5 Electrical configuration for Van der Pauw method. Left side represents the configuration to obtain 
the 𝑅𝑅𝑇𝑇𝑏𝑏,𝑐𝑐𝑑𝑑  and right side represents the configuration to obtain the resistance 𝑅𝑅𝑏𝑏𝑐𝑐,𝑑𝑑𝑇𝑇. 
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Van der Pauw established a general relationship, shown in equation 2.4.8. Here 𝑅𝑅𝑇𝑇𝑏𝑏,𝑐𝑐𝑑𝑑 is 
the characteristic resistance that is equal to the potential differences between contact a and b 
divided by the current passing through contacts c and d, 𝑅𝑅𝑏𝑏𝑐𝑐,𝑑𝑑𝑇𝑇 is the characteristic resistance 
that is equal to the potential differences between contact b and c divided by the current passing 
through contacts d and a, 𝑑𝑑 is the thickness of thin film and 𝜌𝜌 is the electrical resistivity of the 
sample [41]. 

𝑒𝑒
𝑑𝑑 .𝑅𝑅𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐

𝜌𝜌 + 𝑒𝑒
𝑑𝑑 .𝑅𝑅𝑎𝑎𝑐𝑐,𝑐𝑐𝑎𝑎

𝜌𝜌 = 1 (2.4.8) 

  

2.5 Structural properties of amorphous semiconductors    

Both electrons and molecules in a solid can absorb light, for the case of infrared 

spectroscopy at energies between 0.001-1.7 eV, the molecules only absorb energy at a certain 

frequency which coincides with their natural vibrational frequency that allowed transitions 

between pairs of energy levels. In addition, this absorption happens due to the dipole moments 

changes, which can be subdivided into two classes, depending on whether the bond length and 

angle is changing: stretching (symmetric and asymmetric) and bending (rocking, wagging, 

scissoring and twisting) of an asymmetrical nature as is see in Figure 2.5.1 [42][43]. The 

symmetrical bonds cannot be detected by infrared spectroscopy, as they do not possess a net 

change in dipole moment. The symmetrical vibrations are usually active in a Raman spectrum. In 

addition, a “shift” of vibration frequency can occur due to the effects of the nearest neighboring 

atoms [44][45].  
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           Stretching mode                 Bending mode 

  
 Figure 2.5.1 Stretching and bending modes of molecular vibrations. 

 

In order to determinate the absorption coefficient in this case, it makes use of Lambert-

Beer’s Law as shown in the equation (2.4.1.1), where 𝛼𝛼(𝜈𝜈) is the absorption coefficient and 𝜈𝜈 is 

the wavenumber, 𝑇𝑇 is the transmittance related to the absorption due to the distinct vibrational 

modes in the material while 𝑇𝑇0 is the zero-absorption transmittance. The number of bonds density 

𝑁𝑁 related to the absorption peaks can be estimated through the equation (2.5.1) knowing the 

corresponding (𝑘𝑘) inverse absorption cross section for each vibrational mode [46]. In this way, it 

is possible to monitor the variation of the number of distinct bonds. 

𝛼𝛼(𝜈𝜈) = log �
𝑇𝑇
𝑇𝑇0
� /𝑑𝑑 

𝑁𝑁 = 𝑘𝑘�
𝛼𝛼(𝜈𝜈)
𝜈𝜈 𝑑𝑑𝜈𝜈 

(2.5.1) 

 

On the other hand, it is possible quantify the hydrogen concentration [𝐻𝐻] through the 

hydrogen-related bond density (see equation 2.5.2). Here 𝜈𝜈𝑑𝑑(𝛼𝛼) is the wavenumber and the sub-

index represents the different types of hydrogen-related bonds [47]. 

 

[𝐻𝐻] = �𝑁𝑁𝑑𝑑
𝑑𝑑

= �𝑘𝑘𝑑𝑑 �
𝛼𝛼𝑑𝑑(𝜈𝜈)
𝜈𝜈𝑑𝑑

𝑑𝑑𝜈𝜈𝑑𝑑
𝐼𝐼

 (2.5.2) 
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Experimental Details 

3.1 Deposition 

The a-SiC:H films were grown on double side polished fused silica (SiO2) and polished 

silicon (Si) substrates by radio frequency magnetron sputtering using a high purity SiC target. The 

pressure before the deposition process was below 2×10-6 mbar. The distance between the target 

and the substrate ranged from 1 cm to 3 cm. The substrates were cooled down with a constant 

water flux at 12 °C to ensure the amorphous structure of the films. Nevertheless, the substrate 

temperature reached up to ~50 °C during the deposition.  Before deposition, the targets were pre-

sputtered for 30 minutes in order to eliminate superficial contamination resulting from exposure 

to air. In the case of the a-SiC:H(Al) films, the deposition was performed in an argon-hydrogen 

atmosphere mixture using a high purity SiC and aluminum target. The typical power used to get a 

suitable amount of Al in the layer is 10 Watts. In the case of the a-SiC: H(Al) grown with different 

Al amounts, a single process was performed with the configuration of magnetrons and sample 

holder (see Figure 4.1.1). The deposition conditions are listed in Table 3.1. 

Table 3.1. Deposition table 

 

Sample- Date Ar-H2 flow 

(sccm) 

Power SiC 

(Watts) 

Power Al 

(Watts) 

Time 

(min) 

Distance Target-

substrate (cm) 

Pressure before deposition 

(mbar) 

Pressure after deposition 

(mbar) 

S1 – 12/03 27-3 140 - 300 3 1.29x10-6 1.12x10-6 

S2 – 19/03 27-3 140 - 600 3 1.13x10-6 7.44x10-7 

S3 – 04/04 27-3 140 8 480 3 1.37x10-6 1.26x10-6 

S4 – 21/04 27-3 140 5 600 2 1.29x10-6 1.12x10-6 

S5 – 28/05 27-3 140 10 300 1 1.44x10-6 7.41x10-7 
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Figure 4.1 Magnetrons arrangement in order to obtain a gradient of aluminum concentration on the 

a-SiC:H films. The image shows SiC and Al target fixed on the surface of the magnetrons. The 

substrate is fixed to a movable substrate holder with active cooling in order to ensure the 

amorphous state of the layer. Argon gas is introduced in the chamber when is in high vacuum and 

afterwards, an electric RF-field with a frequency of 13.56 MHz is applied through the target in 

order to form a plasma that allows removal of atoms from the surface of the targets towards the 

substrate.  

 

3.2 Optical characterization techniques 

UV-VIS transmittance 

Transmission spectroscopy in the visible, infrared and ultraviolet range is used 

because it allows characterize thin and thick films in the range from few hundreds to 

thousands of nm, determining its optical parameters, such as refractive index, absorption 

coefficient and thickness [48]. For this purpose, the substrate must be transparent in the 

UV / VIS / IR range. The samples were grown on fused silica SiO2 substrates were 

characterized via UV / VIS spectrophotometry in the Center for Materials-Characterization 
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(CAM) at the PUCP. The used equipment was a double beam photo-spectrometer model 

Lambda 2-950 UV/VIS/NIR from the company Perkin Elmer. The measurements were 

made in a spectral range from 190 nm to 1500 nm and with a step of 1 nm between each 

measurement.  

 

 

Figure 3.2.1 Schematic of UV-visible spectrophotometer work. The optical transmittance is 

determined by measuring the passing light intensity across the sample and the light intensity 

across air only. 

                  

The sample receives electromagnetic radiation that is absorbed or transmitted 

depending on the wavelength of the radiation wavelength and the optical constants of the 

material. The radiation absorbed is that with the energy necessary to excite the valence 

electrons by changing their energy state, this will depend on the bandgap of the material. 

The spectrophotometer is a dispersive-type optical instrument used to measure 

transmittance; its schematic is shown in Figure 3.2.1. This instrument is composed of two 

light sources with light sources: a tungsten lamp for the ultraviolet and visible range, and 

another deuterium lamp for the near-infrared range. Another part is the monochromator 

that selects the wavelength, works as a scattering element, and an optical system for light 

collimation on the sample. Finally, a sample holder, light detector and a reading system are 

required for the signal detected. The light leaves the source and passes through a 

monochromator that selects a very small range of wavelength (selector). A first 

measurement is made without placing any sample, taking as reference the air and then a 
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second measurement is made with the sample. The recorded signal is the quotient between 

the signal with the sample and the reference. When there is no sample, the transmission 

detected by the spectrophotometer reaches 100 %, so that when the spectrum is taken with 

the sample, the percentage of transmission T (λ) is obtained as the quotient of the detected 

signal with respect to the obtained for the background at each wavelength value (λ) as 

shown in Figure 3.2.2. 

 

Figure 3.2.2. Transmittance spectra of S5-sample at wavelength range from 200 nm to 1500 nm. 

 

3.3 Structural characterization 

 Infrared absorption by Fourier transform spectroscopy (FTIR) 

Infrared transmittance measurements taken on the amorphous films were carried by 

using an infrared spectrometer Tensor 27 from the company Perkin Elmer. An example of 

the measured transmittance is shown in Figure 3.3.1. The measurements were a 

performance with a resolution of 8 cm-1. These spectra were recorded in the spectral region 

from 400 cm-1 to 4000 cm-1 and were corrected for the silicon substrate absorption. All 

these spectra were normalized by an uncoated silicon substrate spectrum and corrected with 

background signal due to interference fringes by the thickness of the layers. 

The basic components of the FTIR spectrometer are shown in Figure 3.3.1. These 

are a source of infrared light, an interferometer and a detector. The IR radiation of the 
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source is directed to a beam splitter, which is divided in into two beams, a part of the light 

is reflected towards a fixed mirror and the other is transmitted to the moving mirror. Then, 

the reflected return beams are superimposed and separated by a beam splitter, one goes 

back towards the source and the other is directed to the sample. The moving mirror 

produces an optical path difference (OPD) between two arms of the interferometer. When 

the distance between the beam splitter and fixed mirror are equal, the OPD is zero, which 

causes constructive interference and maximum intensity. The resulting signal, the light 

intensity I versus mirror position x, has all spectral information that comes from the source. 

Finally, the beam leaving the interferometer passes through the sample and the intensity 

I(x) modified by the sample is measured by the detector. 

     

 
Figure 3.3.1 Schematic diagram of an FTIR spectrometer 

 

Electrons in a solid are not the only ones that can absorb light. The molecules can 

absorb light too. This radiation must be able to excite the bonds present in the solid. The 

IR absorption spectra provide information on the molecular bonds; thus, IR spectra is a 

fingerprint for the material. The FTIR uses a Michelson interferometer, which allows to 

x 
Movable mirror 

Fixed mirror 

Beam splitter 

Source of Infrared light  

Mirror 

Detector 

Sample 

Michelson Interferometer 



 
 

37 
 

transform from time to frequency domain and builds the infrared spectrum. As shown in 

Figure 3.3.2. 

 

 
 Figure 4.3.2. Typical IR transmittance spectra of SiC thin film grown on silicon. The substrate 

absorption is corrected by using an uncoated Silicon substrate as reference.  

 

 

Raman spectroscopy  

 

Raman measurement taken on the amorphous films were carried out by using a 

Renishaw in-Via Reflex Spectrometer. A schematic of the experimental setup is shown in 

Figure 3.3.2 with an Argon laser whose wavelength is 514.5 nm and 488 nm used as a 

source of excitation. These spectra were recorded in the spectral region from 102 cm- 1 to 

3200 cm-1 with a step of 3 cm, a resolution of 4 cm-1 and a slit of 2400 lines.mm-1. 
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Figure 3.3.2 Schematic diagram of the Raman system modified scheme of  [49]. 

 

Figure 3.3.2 shows a schematic diagram of the Raman system. It is made up of an 

Argon ion laser source, the beam passes through a beam expander, filters and mirrors until 

it reaches an objective lens, which concentrates the light on the sample. Then, the light 

scattered by the sample is conducted to a monochromator, which is responsible for 

separating the spectral components and finally, the photons from the monochromator are 

converted into an analogue signal by the detector (CCD: Charge-coupled device), which 

are then digitized and displayed on a computer. 

Raman spectroscopy is a vibrational spectroscopic technique and non-destructive 

that is used to provide molecular information, such as the relative quantity of crystalline at 

the amorphous phase is in thin films bulk materials [50]. 

Raman spectra are obtained when light is irradiated with a laser on a sample and this 

scatters photons in two ways, elastic and inelastic scattering, known as Rayleigh scattering 

and Raman scattering respectively. 

In the elastic scattering the system goes from a basal energy level to an excited one, when 

it relaxes, it returns to the initial basal level and emits a photon with the same frequency as 

the incident. Whereas, inelastic scattering, the system doesn’t return to the original energy 

level (which can be the basal or an already excited state). Here, the energy level reached 

after relaxation can be higher (Stokes scattering) or lower (anti-Stokes scattering) at the 

initial level. From this, in a Stokes scattering, the photon emitted after relaxation has a 
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frequency lower than that of the incident photon, while in an anti-Stokes scattering the 

photon emitted has a higher frequency than the photon incident [51] as shown in 

Figure  3.3.3. 

 

 
Figure 3.3.3 Diagram of electronic processes that give rise to Rayleigh and Raman scattering. 
Modified scheme retrieved from [8]. 
 

          

 

 Energy dispersion of X-Rays Spectroscopy 

Energy dispersion of X-Rays Spectroscopy (EDX or EDS) is a technique that uses 

physical analysis for quantitating characterization of the element composition of a sample. 

Element compositional of the samples were measured using an SEM Model JEOL JSM-

7610F equipped. In Figure 4.3.4 show a schematic diagram of the main component of the 

sample mode by SEM. 

Its source of emission is a hot filament which electrons are accelerated. Usually, 

the filament is tungsten that uses the thermionic emission. At temperatures above 2700 K 

emits a large number of electrons, where they tend to accelerate through a variable potential 

difference between 1- 40 kV. The electron beam produced by two or three stages of 

magnification by condenser lenses tends to accelerate to form a parallel beam. The 
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diameter of the electron beam is 2- 10 nm. An X-ray detector captures this type of signal, 

from which a spectrum of elements is obtained, that is, elemental chemical analysis of the 

sample. The signal is detected by several kinds of detectors, which allow to capture the 

result of the interaction of the electron beam with the sample and transform it into an 

electrical signal. This entire system is connected to a turbo molecular pump to generate the 

vacuum. 

 

Figure 3.3.4 Schematic diagram of EDS main components. 

 

Furthermore, all EDS spectra were measured using the same conditions, such as an 

acceleration voltage of 4 kV. It is important to use an adequate acceleration voltage to do 

not take into account the substrate (silicon) signal. In addition, the working distance was 

10 mm, a magnification of 400 X and quantification time was 500 s.   
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The EDS system detects X-Rays emitted by the sample in response to being hit 

with electrons emitted by an electron beam of a Scanning Electron Microscopy (SEM), 

thus an EDS system is commonly coupled with an SEM system. 

Its characterization capabilities are based on the fundamental principle that each 

element has a unique structure allowing X-rays that are characteristic in an element atomic 

structure to be identified uniquely from each other. 

The X-Rays are caused by the beam of electrons hitting the sample. This interaction may 

excite an electron of an inner shell, ejecting it from the shell while creating a hole where 

the electron was. An electron from outer, high energy shell then fill the hole, and the 

difference between high energy shell and lower energy shell may be released in the form 

of characteristic X-Rays. Furthermore, in this interaction, elastic and inelastic dispersion 

signals are also generated. In the inelastic dispersion, the electrons lose part of its energy, 

but without suffering a significative deviation of its trajectory, thus the ejection of this 

electron is called Secondary electron (SE). In the elastic dispersion, the electron not 

significative loses its energy, but suffers a change in the direction of its trajectory, this 

electron is called backscattering electrons (BSE) [52]. All the phenomena that occur when 

the electrons ejected on a sample are shown in Figure 3.3.3. 

 
Figure 3.3.5 Phenomena that occur in the electron-sample interaction. Scheme taken an modified 

from [52]. 
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X-Rays Diffraction (XRD) 

X-Rays Diffraction is a non – destructive technique used to determine the 

crystalline, structure properties of the material. In addition, it allows the differentiation of 

crystalline, polycrystalline and amorphous structures. Diffractograms were determined 

using a D8 Discovery from the company Bruker whose schematic is shown in Figure 3.3.6 

at a voltage 40 kV and a current of 40 mA, using 𝐶𝐶𝐶𝐶 𝐾𝐾𝛼𝛼 radiation source (𝜆𝜆 = 1.5418 Å). 

Diffraction angles (2𝜃𝜃) were detected in a range of 5 ° to 70 ° using a step of 0.02 ° with 

a total time of 570 s.  

 

 
Figure 3.3.6 Schematic Bragg-Brentano setup used in the D8 Discovery from Bruker. 

 

Mass spectrometry (MS) 

Mass spectrometry is an analysis technique that enables a direct identification of 
molecules based on the mass-to-charge ratios. These spectra of the samples were 
measured using a Prisma Plus Quadrupole Mass Spectrometer [53]. This spectrometer is 
connected directly to Sputtering chamber as shown in Figure 3.3.7. The Quadera software 
is connected to the mass spectrometer to transfer all measured data. These measurements 
were made before and after the sputtering process to verify impurities. 
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Fig.3.3.7. Mass spectrometer diagram connection (lateral view). 

 

A tungsten filament produces high energy electrons in order to ionize molecules 
of the gas inlet of the chamber at a lower pressure below 1 × 10−4 𝑚𝑚𝑏𝑏𝑎𝑎𝑚𝑚  (the ion source). 
These ions are sorted and separated according to their mass and charge by electric and 
magnetic field perturbation (the mass filter analyzer). The separated ions are then 
measured, and the result is displayed on a chart (Faraday-detector). The working 
principle of the device was schematized in Figure 3.3.8. 

 

 

Figure.3.3.8 Schematic diagram of mass spectrometer. 
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3.4 Electrical Characterization 

Van der Pauw technique 

The Van der Pauw is one of the most effective and widely used techniques of the 

four-probe methods for measuring the resistivity of a thin film having an arbitrary 

shape [40]. Four probes methods are probably the most outstanding due to that they are not 

susceptible to the effects of the resistance of the cables and the contacts between the 

electrical contact and sample, thus allowing a more accurate and reliable result [54]. 

 Before measurement the resistivity of the samples, we need to deposited metallic 

contacts on the corners of the perimeter of the sample. Aluminium contacts were deposited 

in order to guarantee the contacts between the tip and sample which allow the flux of 

current across the film and Titanium contacts were deposited on Aluminium in favour of 

high wear resistance. The contacts were deposited by radio frequency magnetron sputtering 

using two targets of Aluminum and Titanium respectively using pre-designed masks. These 

depositions took place in the Center for Micro-and Nanotechnologies (ZMN) of the TU-

Ilmenau. The deposition parameters are listed in Table 3.4. 

 

             Table 3.4. Deposition table of metallic contacts 

Sample- Date Power Al and Ti (Watts) Thickness Al (nm) Thickness Ti(nm) Al-Ti time deposition Pressure(mbar) 

S5 – 28/05 100 20 200 23 s – 474 s 5.7x10-7 
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Figure 3.4 Interconnection diagram for van der Pawn measurement (a) Setup of the tips on sample (b).   

 

The electrical resistivity was measured by using a Keithley 2400 Source Meter, 

Keithley 2000Multimeter, Keithley 2001Multimeter, Keithley 7001 Switch/control 

system, all connected through the GPIB and a camera. LabVIEW interface interacts with 

the devices previously mentioned. The I-V diagram is plotted on the interface. It offers the 

possibility to obtain the resistance of the sample. The interconnection between the Keithley 

devices and the channel selector is shown in Figure 3.4 (a). Whereas the setup of the tips 

on samples is shown in Figure 3.4 (b). 

3.5 Annealing treatments (Rapid thermal Annealing) 

The Rapid thermal annealing is considered a more positive annealing method than 

furnace annealing due to it can be improving the microstructure and electrical properties 

[55]. It was performed on Jipelec Jetstar 100 RTP furnace, located at the Center for Micro-

and Nanotechnologies (ZMN) at the TU-Ilmenau. The schematic diagram of the RTP 

system is shown in Figure 3.5.1. The system consists of a halogen lamp arranged on the 

top serving as heat sources.  The sample was annealed in an argon atmosphere. The 

sample was placed on a wafer holder and its temperature read through a pyrometer placed 

below the wafer. The chamber is cooled by enclosed circulating water and thus referred 
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to as a cold wall chamber. After the operating system temperature was reached, the 

samples were moved rapidly inside the oven for 600 seconds to then it leaves cooling at 

room temperature. This procedure was carried out for the same film by varying the 

temperature from 200 °C to 600 °C. The heating rate for the temperature of 200 °C, 

300 °C, 400 °C and 600 °C were 8.7 °C/s, 14.0 °C/s, 18.9 °C/s and 28.9 °C/s 

respectively. The reason for all these different annealing treatments is to study how they 

affect their structure, their electrical and optical properties. The temperature-time profile 

used for treating the samples is shown in Figure 3.5.2.  
 

Figure 3.5.1 Schematic diagram of the rapid thermal processing system. 
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Figure 3.5.2 The temperature -time profiles of RTP from 200 °C to 600 °C used in this work of SiC-like 

(Al). 
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4. Result and discussion 

4.1 Chamber conditioning 

In order to find the appropriate parameters to produce Aluminum doped hydrogenated 

amorphous silicon carbide (Al doped-a-SiC:H) thin films and to achieve a high reproducibility, 

depositions of five samples were made. In addition, a reduction of the humidity within the 

chamber was obtained. For this purpose, some heaters were installed externally to the chamber. 

The chamber was heated previously the deposition process.  

Prior to analyzing the FTIR spectra of the produced SiC thin films, the elemental 

composition of each sample was determinate by SEM-EDS. All measurements were performed 

applying the electrons beam at the center of samples. As it was expected, each sample reveals 

elements as silicon, carbon, along with other elements such as oxygen and aluminum. The 

elemental atomic concentration of the samples is listed in Table 4.1.1. 

Table 4.1.1. Elemental atomic concentration of samples produced before and after sequentially heating the chamber. 

Here N.D means not detected.  

Sample- date Matrix Chemical formula Al (at. %) Si (at. %) C (at. %) O (at. %) 
S1-12/03 SiO2-like a-SiCO:H - - - - 
S2-19/03 Si-C-O a-SiC0.97O0.25:H - 44.99 43.79 11.22 
S3-04/04 Si-C-O(Al) a-SiC1.12O0.28:H(Al) N. D 40.95 46.06 11.79 
S4-21/04 SiO2-like (Al) a-SiC0.23O1.47:H(Al) N. D 37.02 8.47 54.51 
S5-28/05 SiC-like (Al) a-SiC0.95O0.13:H(Al) 0.31 47.9 45.36 6.43 

 

  

The effect of implementing the heaters on the quality of the SiC thin films composition can 

be seen in the FTIR measurements shown in Figure 4.1.1. As mentioned in the third chapter, FTIR 

spectroscopy allows the identification of different types of bonds through the peaks in the 

characteristic frequency of vibrations modes. The presence of oxygen-related bonds for different 

depositions after implementing the heaters in the chamber assessed. 

In this section, we evaluate the evolution of the oxygen-related peaks position from the 

FTIR spectra and the bond density of silicon-oxygen as well. The spectra exhibit two regions. The 

first located between 400 cm-1 and 1300 cm-1, in which the Si-C (760 cm-1 – 816 cm-1), Si-CH 
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(980 cm-1 -1000 cm-1) and Si-Ox (1040 cm-1 -1220 cm-1) vibrational modes can be found. The 

second zone between 1500 cm-1 and 3300 cm-1, in which the Si-H (2000 cm-1 – 2200 cm-1) and 

CHx (2800 cm- 1– 3200 cm-1) vibrational modes are observed (See Table 4.1.2). 

The samples were growing with different periods in order to analyze the evolution of the 

Si-O bond number density. Using 2.5.1 equation to baseline subtraction and thickness 

normalization of infrared absorption spectra of all thin films. These spectra are shown in 

Figure 4.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1.2 Summary types vibration modes and their corresponding frequency (cm-1) 

Vibrating mode  SiC-like Si-C-O SiO2-like 
Si-O-Si  rocking [13] … 450 440 

Si-C stretching [56] 780 800-815 … 

Si-O bending [42] … … 820 

Si-CHx  wagging [57] 998 994 … 

Si-O transverse optical [42] 1107 1062 1020 

Si-O longitudinal  optical [58] … … 1144 

Si-Hx  stretching [59] 2000-2200 2000-2100 2000-2100 

C-Hn stretching [59] 2800-3000 2800 -3000 … 
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Figure 4.1.1 IR absorption spectrum over 400 cm-1 – 3500 cm-1 of samples at different time deposition. The 

spectra are vertically displaced and normalized for the sake of clarity only. 

 

FTIR measurements reveal the formation of not only about Si-C bonds but also Si-O bonds. 

The main vibration modes occur in the first zone located between 400 cm-1 and 1300 cm-1. The 

spectra of the first two samples without aluminum doping are evaluated. In Figure 4.1.1 the peaks 

around 1040 cm-1 and 1220 cm-1 corresponding to Si-O vibrational modes are in the samples [58], 

which implies the presence of oxygen on the samples. The samples without aluminum doping 

show a decrease of intensity around the 1040 cm-1 and the 1220 cm-1. This decrease is 

accompanied by an existing decrease in peak intensity around 460 cm-1, that is related to Si-O 

rocking vibration mode. In addition, there is a peak around 816 cm-1in the IR absorption spectrum 

of the sample labelled Si-O2-like which corresponds to the Si-O vibrational mode accordance with 

Gallis et al [56]. While Si-C-O sample shows a peak around 993 cm-1, that corresponding to C-Hx 

group attached to Si atom vibrational mode. There is a decrease in the peak around 1220 cm-1, this 

peak is very weak to compare to that at 1040 cm-1, as well [7][58]. 
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Figure 4.1.2 Multi-peak fit of the infrared absorption band from 400-1300 cm-1 a) SiO2-like, b) Si-C-O, c) Si-C-

O(Al), d) SiC-like (Al) samples. Green curve gaussians are associated with Si-O bond, blue curve is associated 

with Si-(C-H) x bond and red curve is associated with Si-C bond. Theoretical envelopes (sum of deconvoluted 

bands) are given by grey dash. The experimental curve is given by thick black line. 

 

The spectra of samples with aluminum doping are evaluated as well. In the IR absorption 

spectra of Si-C-O(Al) and SiO2-like (Al) samples, Si-O bonds are also observed. The incorporation 

of higher Oxygen concentration into the films results in a shift the Si-C stretching mode toward 

higher wave numbers. This shift is accompanied by a rise in the intensity of the Si-O stretching 

mode. The latter suggests the presence of a suboxide phase. In Figure 4.1.2 the SiC-like(Al) sample 

presents a shift to a lower wavenumber of a peak that corresponds to Si-C bond in comparison to 

the other samples and the shoulder appearing around 1000 cm-1 is attributed to the rocking and 

wagging vibration mode of the C-Hx group attached to the silicon [60]. In order to better observe 

the displacements of each vibration mode and to obtain the evolution of the bond density of Si-O 
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bonds, a deconvolution was made with Gaussian curves on the vibration modes. These curves were 

used due to the amorphous nature of the samples. 

The employed inverse absorption cross-section at the Si-O bonds [Table 4.1.3] in the 3.3.2 

equation is shown in Figure 4.1.2 and Figure 4.1.3. 

 
Figure 4.1.3 Calculated Si-O bond density for absorption peak obtained from FTIR spectral versus samples 

deposited through of time. 

 

 

 As another observation, the samples with lower Si-O density bond had a pressure after 

deposition around 10-7 mbar (Table 3.1). Therefore, we achieved to diminish the oxygen 

concentration in the samples by reducing the humidity attached to the walls within the chamber 

after using the external heaters.  

 

          Table.4.1.3 The values of inversion absorption cross-section   

   Si-C (cm-2)     Si-O(cm-2)          Si-H(cm-2)            C-H(cm-2) References 
𝟐𝟐.𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 1.50 × 1019 (1.4 ± 0.1) × 1020 (1.35 ± 0.35) × 1021 [57][61] 
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The effect of diminishing the oxygen seen in FTIR measurement was also seen in the mass 

spectrometer (Figure 4.1.4). The bar graph shows the different ion currents from the chamber 

gases. Among the gases evaluated are water, oxygen, nitrogen and hydrogen gases. A decrease in 

the current intensity of water and oxygen gases is observed through pressure reduction. This 

current intensity is proportional to gases quantities detected. 

The inset shows the relative percent of oxygen. These values have been normalized with 

respect to neon gas due to its stability. Its behavior is similar to the Si-O bond density seen in FTIR 

measurement (Figure 4.1.3).       

 
Figure 4.1.4 Bar graph portrayal of the ion current detected by mass spectrometer. Argon and Neon gases present 

in the air are presented in the chamber prior to deposition (a). Relative percent of oxygen versus samples deposited 

through of time (b). 

 

After the installation of heaters external to the chamber, samples with low oxygen content 

were obtained as confirmed by FTIR spectrometry and mass spectrometry.  

After having obtained the SiC-like sample with low content oxygen. The sample is 

characterized by structural, optical and electrical measurements. The results of the as-grown film 

will be presented first, followed by the results of the rapid thermal annealed sample. 
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4.2 Infrared spectroscopy analysis  

The position, full width half maximum (FWHM) and area of the absorption band give 

important information about bonding characteristics and chemical structure of the film. Changes 

in the bonding density and peaks position enable us to study the effects of annealing. In this section, 

we develop the IR absorption spectroscopy analysis of the Al-doped hydrogenated SiC thin films 

named “a-SiC:H(Al)” versus the annealing treatments. In particular, the evolution of the distinct 

hydrogen-related bonds is assessed versus the annealing temperature and the variation of the 

FWHM of the Si-C bonds related to the absorption band is probed versus the annealing temperature 

in Rapid Thermal Annealing processes (RTP). 

The infrared spectrum of the SiC-like (Al) sample is shown in Figure 4.2.1 This spectrum 

shows the characteristic modes of vibration a-SiC:H(Al), i.e. the Si-C stretching mode at 780 cm- 1, 

C-Hn wagging mode at 998 cm-1, Si-O stretching mode 1100 cm-1, at Si-Hn stretching mode at 

2122  cm-1 and C-H stretching mode at about 2873 cm-1. A decrease of Si- O stretching mode was 

observed as it was mentioned in the prior section. The most dominant mode of vibration is the Si-

C stretching. This indicates the dominant role of this bond in the structure of the film. The 

absorption band is indicative of the amorphous nature of the silicon carbide films. The C-H 

vibrational modes are too small to be easily identified but it does not imply that there are few C-H 

bonds. This is due to its weak oscillator strength, which is further weakened by three-quarters of 

Si-C bonds [15]. This is consistent with the fact that the electronegativity difference is larger for 

Si-H bond than the Si- H bond length [62].  
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Figure 4.2.1 IR absorption spectrum over 400 cm-1 – 3300 cm-1 of a-SiC:H(Al) before any thermal treatments. 

Different are identified and labeled here. It is important to recall that this sample was the one that presented the 

lowest oxygen amount. This is in an almost no observable shoulder around ~1100 cm-1.  

 

The SiC-like (Al) sample was subjected to rapid thermal annealing (RTA). The RTA was 

carried out at 200 °C, 300 °C, 400 °C, 600 °C for 600 seconds. Changes on the film were observed 

after annealing treatment.  

The IR absorption spectra after annealing at distinct temperatures is shown in Figure 4.2.2. 

For comparison, the spectrum of the as-grown (AG) film is also shown.  All spectra exhibit three 

main bands. These spectra show mainly the presence of a broad absorption band in the region 500-

1300 cm-1 and two less-intense bands located in the 2000-2200 cm-1 and 2800-3100 cm-1. The 

peaks are identified as follows: 

a) The different modes of vibration are respectively centered at 440 cm-1 for Si-O-C 

rocking, at 520 cm-1 for Si-Si stretching mode, at 615 cm-1 associated with a bonding 

between Al and either Si or C. Finally a weak band around 530 cm-1 resulting from 

C- H bond [16][63]. 
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b) The band centered at 780 cm-1 is attributed to the Si-C stretching vibration mode. The 

band width is broadened due to the angular distortion of Si-C bonds in the amorphous 

structure of the thin film [56]. 

c) The shoulder around 1000 cm-1 is assigned to the wagging vibration of CH2 or CH3 

groups attached to silicon atoms. These bonds may result from the higher bonding 

preference of carbon for hydrogen [61]. Furthermore, sub-stoichiometric SiOx (x<2) 

structural fragments are known to present a broad absorption band at around 

1100 cm- 1 [44].This band is actually composed of four bands from which only an 

average resulting in two peaks at 1065 cm-1 and 1190 cm-1 are resolved [58]. 

d) The absorption band between 2000 cm-1 and 2200 cm-1 correspond to the stretching 

vibration of Si-Hn bonds. For solely a-Si:H, the mode of vibration is 2000 cm-1. This 

mode shifts to a higher wavenumber due to a network bonding configuration in the case 

of a-SiC:H [45]. 

e) The band peak from 2800 cm-1 to 3000 cm-1 is associated to the C-Hx stretching mode. 

The peak 2890 cm-1 and 2960 cm-1 correspond to stretching mode C-H2 and C-H3, 

respectively. Its signal is weak due to a reduced oscillator strength [4]. 

An increase in the intensity can be seen in the absorption band attributed to Si-C stretching 

mode with annealing temperature at 600 °C along with a slight shift of to lower wavenumber. 

Also, the intensities of the absorption bands around 2100 cm-1 and 2800 cm- 1 are reduced with 

annealing after 400 °C. 

In order to find how the bond density, change after annealing, a deconvolution of the band 

in the spectral region 500-3300 cm- 1 were made with Gaussians curves. The deconvolution of the 

band in the spectral region 500-1100 cm-1 is shown in Figure 4.2.3, whereas that band in the region 

1500-3300 cm-1 is shown in the inset. These were performed after each annealing treatment. 
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Figure 4.2.2 IR absorption spectra over 400 cm-1 – 3300 cm-1 of sample the a-SiC:H(Al) at after different 

annealing temperature. AG stands for as grown. Different bonds are identified and labeled. 
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Figure 4.2.3 Deconvolutions of the IR spectra of sample at different annealing temperature in the region 

400-1300 cm-1. Inset is the deconvolution in the region 1500-3300 cm-1. Theoretical envelopes (sum of 

deconvoluted bands) are given by grey dash. The experimental curve is given by thick black line. 
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The bond densities of each vibration mode were calculated using equation 2.5.1. The bonds 

densities of each vibrational mode under annealing temperature are depicted in Figure 4.2.4 (a). 

The latter shows that there is a variation of these bond densities after annealing from 400 °C to 

600 °C. The C- H bond density exhibited a noticeable decrease after annealing in the range of 

300 °C to 600 °C. The behavior of the Si-H bond density below 400 °C was similar to the trend in 

the C-H case. As for the Si-C bond density, it started to increase after annealing at 300 °C and 

exhibit a linear increase with increasing temperatures. After 400 °C, the hydrogen-related bonds 

almost vanished, as a consequence of the out-diffusion of hydrogen from the sample. This 

observed effect is quite similar to that observed in a-SiC:H films deposited by magnetron 

sputtering technique, reported in detail in Refs [6][64]. Furthermore, the decrease in hydrogen 

bonds is related also with a shift to lower wavenumber of the Si-H bond as shown in Figure 

4.2.4 (b). This shift is due to changes in local electronic environments of Si, C, H, likely due to 

thin film densification, which can be due to a possible change of the Si-H bond configuration. 

Back bonding of other atoms to the silicon atom modifies its vibration mode due to changes in 

electronegativity [45]. 

  The fits for the Si-C bonds in the FTIR spectra were Gaussians, reflecting the nature 

random distribution of the bonding configuration of the amorphous state. The variation of the full-

width half maximum (FWHM) of these peaks reflects the variation on this random distribution of 

bonding configuration. Figure 4.2.5 (a) depicts the changes in FWHM versus the annealing 

temperature. The C-Hx bond attached to silicon atoms is still present after annealing.  

The formation of new Si-C bonds is a consequent of the breaking of Si-Hn and C-H bonds. 

The present of Si-CHx bond is likely due to the breaking of  C-H3 bonds to form new C-H2 bonds 

due to the interaction of hydrogen with carbon dangling bonds and/or unsaturated C=C bonds [64]. 

Hydrogen content was calculated from FTIR following the previously published 

reports [42][44][79]. The amount of hydrogen can be calculated directly the number density of 

hydrogen-related bonds as the sum of Si-H and C-H bonds. This is plotted in Figure 4.2.5 (b). The 

slight increase of hydrogen content in the lower temperature range corresponds likely due to a 

reduction of voids in the sample [65]. At a temperature higher than 400 °C, the hydrogen content 

decreases, suggesting the out-diffusion of all hydrogen-related molecules. As hydrogen effuses, a 

transformation of the structure takes place. 
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Figure 4.2.4 Bond density of Si-C, Si-CH, Si-H and C-H bonds as a function of annealing temperature for the 

a- SiC: H(Al) (a). Peak position of Si-H stretching mode as a function of annealing temperature (b). 

  

Figure 4.2.5 Full Width Half Maximum of the Gaussian fit on Si-C bands versus annealing temperature (a). 

Evolution of the Hydrogen content versus annealing temperature (b). Dashed lines are a guide to the eye. 
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4.3 XRD patterns 

XRD measurements were carried out to investigate the thin film structure prior to and after 

annealing.  

Fig 4.3 shows the XRD patterns (without background correction) of a-SiC:H(Al) films as-

grown and after annealing at 600 °C. Both samples show a broad diffraction peak at around 

 2𝜃𝜃 =  14 °, which correspond to the amorphous structure of the sample holder that it was not 

eliminated in the data collection. A similar report can be found in Ref [66]. In addition, a broad 

diffraction peak around   2𝜃𝜃 = 28°, reveals that the deposited films are a dominantly amorphous 

state [67]. 

In particular, the inset of Figure 4.3 shows the magnified XRD pattern (As grown) in 

order to see the formed phase of aluminosilicate, which is the superposition of alunite and quartz. 

Green sharp diffraction peak (2𝜃𝜃 = 20 ° and 26 °) are related to quartz while that purple sharp 

diffraction peak (2𝜃𝜃 = 25 ° ) is related to alunite [68]. It shows the presence of aluminum in our 

sample, as expected.  On the other hands, the absence of these diffraction peaks on the XRD 

pattern after 600 °C suggests that aluminum atoms have new bonded on the SiC matrix of the 

sample. 

The presence of aluminum atoms was observed, this is also seen in the SEM-EDS 

measurement. The amorphous structure was verified prior to and after rapid thermal annealing. 
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Figure 4.3 XRD patterns (without background correction) of an as-grown sample of a-SiC:H(Al) and after 

annealing at 600°C. The spectra are vertically displaced for the sake of clarity.  The inset show magnified 

XRD pattern in the range of  2𝜃𝜃 between 19 ° - 27 °. 

 

4.4 Raman spectroscopy analysis 

The IR spectra of a-SiC:H(Al) provide information on the asymmetrical bonds such as 

Si- H, C- H, Si-C, etc. The absorption bands due to Si-Si and C-C bonds cannot be detected by IR 

measurements as they are infrared inactive. 

Raman scattering spectra in the range of 100 -1800 cm-1 for the a-SiC:H(Al) thin film in 

as-grown and at 600 °C is shown in Figure 4.4.1. The spectra exhibit three regions, which are 

assigned to Si-Si (100-600 cm-1), Si-C (650-1050 cm-1) and C-C (1250-1650 cm-1) vibrational 

modes. This result is in good agreement with the previously reported by Melinon et al [1]. The 

main vibration modes are given by: 

a) It can be observed that the sample of the as-grown and after 600 °C annealing 

exhibit a typical signature of c-Si with Raman shark peak position at around 

521  cm- 1 [69]. This is a contribution of the c-Si substrate due to a large 

penetration depth of the Argon laser source that operating at 514.5 nm. Typical 
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penetration depth is about 500 nm, which exceed the thickness of the film as is 

reported by Compagnini et al [70]. 

b) The broad peaks centered at 170 cm-1 and a shoulder on the low wavenumber side 

of c-Si the 473 cm-1 are assigned to the Si-Si transverse acoustic (TO) and 

transverse optical (TA) vibration mode in amorphous configuration 

respectively [15][71]. 

c) The absorption band at 660, 760, 780, 950 and 960 cm-1 is attributed to Si-H 

(wagging/bending), amorphous Si-C, transverse optical (TO) and Longitudinal 

optical (LO) modes of 3C-SiC and second order of  transverse optical (TO) mode 

of  Si-Si vibrations, respectively [72][73]. 

d) The band centered at around 1450 cm-1 is composed of two bands at 1360 cm-1 

and 1575 cm-1, corresponding to graphite (sp2) and diamond (sp3), 

respectively [74]. 

It can see that the Raman spectra of the as-grown (AG) and annealed at 600 °C show the 

above-mentioned peaks and that is related to the amorphous nature of the material. In order to 

obtain the position of the main vibration’s modes and full-width half maximum a deconvolution 

was made on the spectra as it is shown in Figure 4.4.2. 

 
Figure 4.4.1 Raman spectra of an as-grown sample of a-SiC:H(Al) and after annealing at 600 °C. 

Different bonds are identified and labeled here. Excitation source was changed to reduce the 
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exposition of the substrate to the incoming radiation (Raman measurement). The spectra are 

vertically displaced for the sake of clarity. 

 

For the 100-600 cm-1 spectral region of the as-grown sample, the best 

deconvolution of the band shows the presence of a peak centered respectively at 167 cm-1 

and a broad peak centered at 468 cm-1 characteristics of a predominant amorphous 

structure. Whilst at 600 °C there is a phase change by the absence of the peaks due to 

amorphous Si- Si, only show a peak around at 520 cm-1. It is due to that the band centered 

around 468 cm-1 that shifts to 520 cm-1 and become much narrow suggesting the formation 

of microcrystalline silicon as is reported by Neto et al [59]. Even if this could be evidence 

of silicon crystallization, X-ray diffraction analysis after annealing at 600 °C as is 

mentioned in the prior section, it did not reveal any indication of silicon crystals in the 

films. Thus, the observed behavior could be in fact due to a reduction of thickness as a 

consequence of hydrogen release and band gap increase, it is due to the exposition of the 

substrate to the incoming radiation during Raman measurement. For the latter, reason the 

measurement of the annealed sample was performed under 488 nm excitation in order to 

reduce the mentioned effect.  

For the 600-1200 cm-1 spectra region to as-grown, the deconvolution of the bands 

shows the presence of the absorption band at 640 cm-1 is attributed to Si-H. Furthermore, 

this spectrum reveals the peak centered at 786 cm-1 that correspond to amorphous Si-C. 

The absorption band at 973 cm-1 is attributed to transverse optical mode vibration of Si-

C [71]. After 600 °C annealing the absorption band at 640 cm-1 not appears and the 

absorption band at 973 cm-1 remains. This could be attributed to Si clusters with a small 

quantity of SiC particles [75].  

For the 1200 -1600 cm-1 spectra region at as-grown, the deconvolution of the bands 

shows the presence of the peak centered at 1450 cm-1 is related to two peaks that correspond 

to graphite and diamond. Upon annealing up to 600 °C a displacement of this peak to a 

lower wavenumber is indicative of a graphitization process forming large sp2 carbon 

islands. The graphitization and hydrogen evolution are closely related to each other [59]. 
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This is also been shown in the FTIR analysis with the increase of Si-CH2 and Si-C bond 

density due to depletion of C-H3 (sp3 carbon).  

  

  

Figure 4.4.2 Deconvoluted of the Raman spectra of as grown and annealed at 600 °C in the region 

100-1800 cm-1. Theoretical envelopes (sum of deconvoluted bands) are given by grey dash. The 

experimental curve is given by thick black line. AG stands for as grown.  

 

4.5 Optical characterization and analysis   

UV/VIS/NIR spectral transmittance measurement was performed in order to determinate 

the optical properties and optical energy band gap of the a-SiC:H(Al) samples. A variation of the 

Swanepoel method was used [28][31]to determine the refractive index, thickness and absorption 

coefficient are obtained the films. From the absorption coefficient, it is possible to calculate the 

optical energy band gap values and asses its dependence with thermal annealing treatments.  

Figure 4.5.1(a) shows the transmittance spectrum of the a-SiC:H(Al) film deposited of as-

grown and after treatments at high temperatures. These spectra can be divided into three regions. 
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Transparent, medium-weak and strong absorption. Transmittance spectrum depends on the 

refractive index, extinction coefficient, absorption coefficient, thickness and wavelength. The 

transmittances presented here exhibited similar oscillations from a sample without annealing and 

annealed up to 400 °C due to a similar thickness. While after 600 °C, it shows a shift to lower 

wavelength due to a change in thickness and refractive index.  

It is observed that to low annealing temperatures the thickness remains constant. Whilst at 

annealing temperatures higher than 400 °C, the thickness shows a remarkable decrease, so-called 

densification, due to crystallization. Thickness decreases from 321 nm to 266 nm.  The origin of 

this change is likely due to local changes associated with structural relaxation. Furthermore, its 

reduction is related to an increase of mass density, approaching to the mass density of c-SiC [56]. 

For comparison with other investigations [14][76], relative volume was a plot against annealing 

temperature as shown in Figure 4.5.1 (b). 

The refractive index is another optical parameter that is related to local changes and 

densification of the film upon annealing temperature. The effect of rapid thermal annealing (RTP) 

is shown in Figure 4.5.2. It shows that the refractive index (n) increases with annealing 

temperature. For instance, at a wavelength of 800 nm, an increase from 2.11 to 2.16 nm our sample 

is observed. For comparison, the refractive index of SiO2-like, SiCO-like, SiC-like matrix is 

shown. The refractive index of our samples is in the range between SiCO and SiC. We attribute 

the increase of the refractive index to densification processes related to the hydrogen evolution 

from the film. Friessnegg et al. reported also an increase of the refractive index of a-SiC:H sample 

due to densification for above about 500 °C by RTP [19]. 
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Figure 4.5.1 Transmittance spectrum over 190 cm-1 – 1500 cm-1 of sample a-SiC:H(Al) grown on fused silica at 

different annealing temperature (a). Volume relative change of annealed to as-grown one.  Green, blue and red square 

represent the relative volume from [14][76] and this work. The line is drawn to provide guidance to the eye (b). 

 

Figure 4.5.2. Refractive index at 800 nm wavelength of a-SiC:H(Al) from As-grown to 600 °C. Data obtained in this 

work is plotted alongside the refractive index of SiO2, SiCO, SiC:H, SiC from the indicated references. 
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Then, from the absorption coefficient and different models is possible to extract the optical 

energy band-gap. Currently, there are a different approach to estimate the band gap of an 

amorphous material. In this work was used Tauc energy, isoabsorption energy E04 and band 

fluctuations model from which the Urbach energy is obtained also.  

 

  

Figure 4.5.3. Absorption coefficient in logarithm scale along with the E04 energy value (a). Tauc-plot showing a good linear 

behaviour the high energy region (b). 
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To determine the energy bandgap values by isoabsorption energy, The E04 value is defined 

as the energy at which the absorption coefficient is equal to 104 cm-1, see Figure 4.5.4 (a). While 

to determine by model Tauc, we plotted (𝛼𝛼ℎ𝜈𝜈)1/2 versus (ℎ𝜈𝜈) where 𝛼𝛼 is the absorption coefficient 

and ℎ𝜈𝜈 is the photon energy and performing a linear fit of the fundamental absorption region, as 

shown in Figure 4.3.3 (b). The intercept of the linear fit with the energy axis is the Tauc-

gap [6][31]. Notice the good linear relationship of the absorption coefficient in the Tauc-plot 

representation. Furthermore, to retrieved the values of energy band gap by band-fluctuations 

model, also we plotted (𝛼𝛼ℎ𝜈𝜈)1/2 versus (ℎ𝜈𝜈). Where performing a fit that merges of Urbach and 

absorption edge regions in a single equation as depicted in Figure 4.5.3 (c). 

Figure 4.5.4 (a) shows the band-gap presents a similar dependency with annealing 

temperature independently of the model used for its calculation. Furthermore, it shows that the E04 

iso-absorption gap values are greater than Tauc gap values. This finding is consistent with the 

result observed for another structural disorder system such as a-C:H  [29]. This behaviour can be 

attributed to that the Tauc gap is associated with optical transitions between extended states close 

to the band edge, while the E04 gap corresponds to transitions of those extended states well beyond 

the band edge [29]. The decreases of the band-gap with increased annealing temperature seem to 

correlate well with the loss of hydrogen in the film. Since Hydrogen plays an important role in the 

electronic structure and optical properties of the hydrogenated amorphous semiconductor, this 

effusion of hydrogen upon annealing would likely lead to a population of dangling bonds and 

defect state, which in turn result in an enhanced density of highly localized sates below the mobility 

edge, thereby decreasing the optical gap. Whilst, values of optical bang gap determinate by band-

fluctuation model have a different behaviour against annealing temperature. It is observed that the 

band-gap increases with the annealing temperature. This behaviour is expected due to that with the 

annealing the film suffers a shrinking of thickness, at annealing which is consistent with the 

previous result in Figure 4.5.1(b), thus entailing a reduction of the mean lattice constant and 

independently of thermal-induced hydrogen out-diffusion or even for non-hydrogen samples [6]. 
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Figure 4.5.4 Energy values ( 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 and 𝐸𝐸04 ) of a-SiC:H(Al) after annealing temperature (a). Inset (a) shows change 

of the Urbach-slope with the annealing treatment. Energy values using band-fluctuations model of a-SiC:H(Al) 

after annealing temperature (b). Inset (b) shows change Urbach energy with annealing treatment using band-

fluctuations model. 

 

The Urbach energies values are determinate through of Urbach rule and band-fluctuation 

model. By Urbach rule, energies were obtained by performing a fit in logarithm scale of the 

absorption coefficient. It draws a linear equation in a linear region, where 𝛽𝛽 is the Urbach slope, 

the inverse of Urbach energy 𝐸𝐸𝑈𝑈 = 1/𝛽𝛽. The band fluctuation model, the single equation below 

fundamental region, an asymptotic analysis leads to an exponential behavior equivalent to the 

Urbach rule. As it is well known, this parameter is attributed to structural disorder [25]. The inset 

of Figure 4.3.4 (a) and 4.3.4 (b) exhibit the same behaviour. It shows that the Urbach energy is 

decreasing at annealing temperatures up to 400 °C. However, upon to 400 °C annealing 

temperature, it increases again. The reduction could be related to structural relaxation (reduction 

of a topological disorder) this implies a reduction of tails states in the band edges. At more than 

400 °C annealing temperature, the Urbach energy increases likely due to the effusion of hydrogen, 

this leads to an increase of structural disorder because of stress or shrinking of film, so that 

structure rearrangements occur. This result is similar to that obtained in [77][14]. Nevertheless, 

Guerra et al reported that the variation of Urbach energy is independently on the hydrogen amount 

after annealing treatment. This behaviour was observed also in the non-hydrogenated sample of 

amorphous silicon carbide [6]. 
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The disorder of the a-SiC:H(Al) sample studied here is reduced with the annealing 

treatments (RTP) until a critical temperature, then an increase is shown. This effect has been 

measured by the Urbach energy and the average FWHM of the absorption peaks observed in the 

IR absorbance spectra as was seen in Figure 4.2.5 (a). Figure 4.5.5 shows that both measurements 

present the same behavior.  

On the other hand, it is observed that the values energy band-gap determined by the mean 

of the band-fluctuations model is greater than the obtained by Tauc model and E04 isoabsorption. 

This is due to the fact that Tauc-energy and the E04 iso-absorption gap are subjected to the spectral 

region overlapped by the Urbach tails. This can be seen in the inverted behaviour of the Urbach 

energy and energy optical bandgap shown in Figure 4.5.4. 

The main advantage of the latter model is that no discrimination must be done between the 

Urbach and absorption edge region, that is, the mixing region is also part of the adjustment input. 

Consequently, the band-gap obtained by the band-fluctuations model is not correlated to the 

Urbach energy. Note that Figure 4.3.5 has a contrary behaviour to the Tauc-gap 

(Figure  4.3.4) [33].  

Finally, the bandgap energy values used in this work are extracted by the band-fluctuations 

models, due to the fact that accurately describes both the Urbach tail and absorption edge regions 

in a single equation with only three fitting parameters. Whilst Tauc-energy and E04 iso-absorption 

take into account the superposition of the Urbach region. In particular, in amorphous 

semiconductors, this overlap is large due to the broadness of Urbach tails on the fundamental 

region.  
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Figure 4.5.5 Full Width Half Maximum of curve gaussian fitted on Si-C mode vibrational as a function annealing 

temperature. The line is drawn to provide guidance to the eye (a). Urbach energy against annealing temperature 

by Band-fluctuations model (b) and by Urbach rule (inset b). 

                 

4.6 Electrical properties   

Characterization of the a-SiC:H(Al) would not be complete without an evaluation of its 

electrical properties. In this section, the current-voltage (I-V) curves will be presented first. Then 

the electrical characterization was performed by the Van Der Pauw method in order to determinate 

conductivity values. 

  Contact characterization after annealing 

In order to characterize contacts, I-V measurements were performed varying the current 

from -0.1 mA to 0.1 mA following the sequence of the contacts near the ends of the sample as 

shown in Figure 3.4 (b) and measuring the voltage response. Figure 4.3.6 shows four I-V curves 

of a-SiC:H(Al) film deposited from as-grown to 600 °C. In addition, it shows the configuration 

used for each permutation. For instance, I13-V24 indicates a current that enters by the contact 1 

and is collected by the contact 3 while the voltage response is measured through contacts 2 and 4. 
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Figure 4.6.1 I-V curves over -0.1 mA to 0.1 mA of a-SiC:H(Al) before and after thermal treatments. Schottky 

behaviour is shows in the sample not heated (a). Ohmic contact is shows at 600 °C annealed (b). It is important to 

recall that the sample annealed at different temperature were performed I-V measurement, but the other curves not 

shown here as that presented Schottky behavior like at AG.  

 

I-V curves for “As grown”, 200 °C, 300 °C and 400 °C shows Schottky behaviour. 

Whereas at 600 °C is observed Ohmic contacts, due to its linear tendency. The resistance for each 

contact is obtained with the slope of the I-V curve. It observed that after temperature annealing, 

the contacts resistance is reduced. This tells us that the aluminium penetrates the film surface and 

facilitates a certain amount of beneficial Al / a-SiC:H(Al) interdiffusion due to the decrease of 

potential barrier that exist between aluminum and film, which depends critically on the 

temperature above 350 °C [78] and likely a doping near the interface p+ produces a deflection zone 

very thin. The mechanism of conduction that dominates is tunnelization. 

In order to determine the conductivity value by means of the Van Der Pauw method, certain 

conditions mentioned in chapter 2 should be met. Ohmic contact values were obtained at 600 °C 

and the resistance values for each permutation are shown in Table 4.6.1. Similar values of the 

resistances indicate the homogeneity of the sample, one of the conditions for using Van Der Pauw 

equation.  
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Finally, the characteristic resistance values (Ra and Rb) and thickness value are parameters 

for to determinate electrical resistivity and conductivity values. These values are shown in 

Table 4.6.2. This value is compared with the values of a-SiC:H(Al) and p-type a-Si:H that were 

deposited by sputtering technique [17][79][80] as it is showed in Figure 4.6.2. The effect of 

hydrogen incorporation on the a-SiC:H(Al) and a-Si:H(B) samples result in a decrease in electrical 

conductivity. This decreases of electrical conductivity in both cases are related to the passivation 

of accept atoms by hydrogen through the creation of Si-H-(B or Al) bonds [79]. The conductivity 

measured at moderately low temperature probably is due to the contribution from both hopping 

conductions between localized states and the hops between nearest sites. This causes a change in 

the slope of log(𝜎𝜎) 𝑣𝑣𝑣𝑣 1000/𝑇𝑇 curves where the extrapolated straight-line fit gives values of 

electrical conductivity at higher temperature [80]. This is due to that the fact the film tends to 

reduce the density of localized states in the neighbourhood of the Fermi level by incorporation of 

hydrogen, which quenches the electrical conductivity by hopping mechanism.  

The value of electrical conductivity measured at room temperature (RT) of a-SiC:H(Al) 

taken to treatment thermal (RTP) is within the range between ~10−4 Ω−1. cm−1 and ~10−9 Ω−1. cm−1. 

This value after annealing treatment (600 °C) is reasonable because the hydrogen content 

decreases with annealing, which causes the decreases of numbers of dangling bonds and the so-

called voids decrease too, see section 4.2. In addition, this leads to changes in the structure itself 

that is related to an increase of mass density, see 4.5.1 (b). All electrical, optical and structural 

properties and the effect of dehydrogenation appear to be broadly consistent with other 

tetrahedrally coordinated amorphous semiconductors. 

 

          Table 4.6.1 The resistance values for each permutation of the sample a-SiC:H(Al) 

   Resistance R13-24(𝟏𝟏𝟏𝟏𝟓𝟓𝛀𝛀) R21-43 (𝟏𝟏𝟏𝟏𝟔𝟔𝛀𝛀) R24-13 (𝟏𝟏𝟏𝟏𝟓𝟓𝛀𝛀) R34-12 (𝟏𝟏𝟏𝟏𝟔𝟔𝛀𝛀) 
a-SiC: H(Al) at 600°C (10.50 ± 1.07) (12.65 ± 2.39) (10.50 ± 1.16) (12.65 ± 2.16) 

 

          Table 4.6.2 The characteristic resistances, resistivity and conductivity values 

    Ra(𝟏𝟏𝟏𝟏𝟓𝟓𝛀𝛀) Rb (𝟏𝟏𝟏𝟏𝟔𝟔𝛀𝛀) Thickness(nm)  𝝆𝝆 (𝟏𝟏𝟏𝟏𝟓𝟓𝛀𝛀. 𝐜𝐜𝐜𝐜) 𝝈𝝈 (𝟏𝟏𝟏𝟏−𝟔𝟔𝛀𝛀−𝟏𝟏. 𝐜𝐜𝐜𝐜−𝟏𝟏  
a-SiC:H (Al) at 

600 °C 
(10.50 ± 1.07) (12.65 ± 2.39) (266 ± 1.3) (1.4 ± 0.2) (7.3 ± 0.2) 
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Figure 4.6.2 Plot of  log (𝜎𝜎) versus (10
3

𝑇𝑇
). Electrical conductivity value of a-SiC:H(Al) sample at 600 °C annealing 

treatment (ex-situ measurement). Data obtained in this work is plotted along-side the a-SiC (Al) and a- Si(B+), 

hydrogenated and hydrogenated from the indicated references. Here RT means room temperature.  

 

Ellipsometry measured was performed in order to the determinate thickness of the film. It 

was found that the existence of an oxide layer between film and substrate with the thickness of 

63 nm, as shown in Figure 4.6.2. This oxide layer was formed due to the presence of residual 

oxygen in the chamber prior to the start of the deposition process. It allows ensuring that the 

measurement of electrical conductivity is only of the film a-SiC:H(Al) and no from the Si 

substrate. 

 

Figure 4.6.2 Structure of contact Ti-Al / a-SiC:H(Al) / a-SiCO / Silicon obtain by ellipsometry prior annealing 

treatment. 
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Conclusions 

In this work, p-type a-SiC:H layers were grown by radiofrequency magnetron sputtering 
using high purity SiC and Al targets. The structural, optical and electrical properties of this 
amorphous wide bandgap semiconductor material with lower oxygen content have been 
investigated. The characterized material was also incorporated in the manufacture of a 
photoelectrochemical device. From this research work, the following remarks concerning the 
impact of rapid thermal annealing treatments are driven. 

1. Structural properties 
 
a) SEM-EDS analysis allows the identification of the elemental composition of the 

film such as Silicon, Carbon, Oxygen and Aluminium. There is no detectable 
change in the elemental compositional of the sample prior to and after the annealing 
treatment. Note that the thermally induced hydrogen out-diffusion cannot be 
detected by EDS measurements. 
 

b) XRD patterns of the as-grown films revealed an amorphous state. The amorphous 
sample was heated at temperatures of 200 °C, 300 °C, 400 °C and 600 °C. The 
sample annealed at 600 °C still remained in an amorphous state. 
 

c) Raman scattering spectra provide information on homonuclear bonds such as Si-Si 
and C-C vibrational modes of the films prior to and after annealing treatments. 
After annealing at 600 °C changes in the C-C bonds take place. Likely, the 
formation of large sp2 carbon islands indicate a graphitization process. 

 
d) FTIR spectra allowed the identification of heteronuclear bonds of a-SiC:H(Al). Si-

C, Si-H, Si-O, C-H, Si-CH vibrational modes were found for samples grown using 
SiC and Al targets. After annealing treatments at temperatures higher than 400 °C, 
the hydrogen bond concentration decreased dramatically, suggesting the out-
diffusion of hydrogen molecules. This desorption is related to changes in the 
structure [45][64][65]. 
 

2. Optical properties 
 
a) Optical constants of a-SiC:H(Al) were determined by transmittance 

measurements. A variation of the Swanepoel’s method was used to determine 
thickness, refractive index and absorption coefficient. The latter coefficient was 
used to calculated the optical bandgap. After thermal treatments at a temperature 
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of 600 °C, an increase of the refractive index and a decrease of thickness are 
observed. This indicates the occurrence of densification processes related to the 
hydrogen evolution from the film, which is in accordance with FTIR results 
presented in this work and the literature [14][19].  
 

b) The traditional Tauc and E04 iso-absorption model were used to determine the 
optical bandgap energy from the absorption coefficient. Both energy values 
presented the same behavior with the annealing treatment of the RTP. 
Additionally, a band-fluctuations model was used, taking into account the effects 
of the Urbach tails on the fundamental absorption region in a single mathematical 
expression. Thus, having the advantage to fit both regions simultaneously. This is 
in contrast to the traditional models, which require a separation of the optical 
absorption in these two regions.  

 
The optical band gap energy values extracted by the band-fluctuations 

model increased from 2.55 eV to 2.76 eV after annealing treatments. A Possible 
explanation for the latter could be related to desorption of hydrogen, which results 
in the formation of new Si-C and C- C(sp2) bonds. In addition, an out-effusion of 
hydrogen is related to the shrinking of film, which causes the reordering of the 
amorphous network. A shrinking of the bond length can be translated into an 
increase of the optical band gap [6][33]. 

 
c) The Urbach energies were calculated through the Urbach rule and the band-

fluctuations model. Both models exhibit the same behaviour of the Urbach energy 
with the annealing temperature: a decrease of the Urbach energy is observed for 
temperatures of up to 400°C, followed by a subsequent increase for higher 
annealing temperatures [6]. This indicates that there is a thermally induced 
reordering of the amorphous matrix and shrinking of the mean bond length. 
Furthermore, the same behaviour was observed on the FWHM of the Si-C related 
absorption band obtained by FTIR means supporting this result. 

 
3. Electrical properties 

 
The electrical conductivity of Al doped-a-SiC:H is obtained through I-V curves 
by means of the Van Der Pauw method. The determination of the conductivity 
could only be achieved after thermal treatments at 600 °C. This due to the 
formation of an ohmic contact between the a-SiC:H(Al) and the contact material. 
Thermal treatments induced the diffusion of the aluminum contacts on the film, 
which is reflected in an Ohmic behavior of the electrical contacts. 
 



 
 

78 
 

The electrical conductivity of the film measured by Van der Pauw 
technique was (7.3 ± 0.2) 10−6 Ω−1. cm−1and is within the range of  ~10−4 Ω−1. cm−1 
and ~10−9 Ω−1. cm−1 ,thus in accordance to values previously reported by Banerjee 
et.al [17]. 
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	3.2 Optical characterization techniques
	UV-VIS transmittance

	3.3 Structural characterization
	Infrared absorption by Fourier transform spectroscopy (FTIR)
	Raman spectroscopy
	Raman measurement taken on the amorphous films were carried out by using a Renishaw in-Via Reflex Spectrometer. A schematic of the experimental setup is shown in Figure 3.3.2 with an Argon laser whose wavelength is 514.5 nm and 488 nm used as a source...
	Figure 3.3.2 shows a schematic diagram of the Raman system. It is made up of an Argon ion laser source, the beam passes through a beam expander, filters and mirrors until it reaches an objective lens, which concentrates the light on the sample. Then, ...
	Raman spectroscopy is a vibrational spectroscopic technique and non-destructive that is used to provide molecular information, such as the relative quantity of crystalline at the amorphous phase is in thin films bulk materials [50].
	Raman spectra are obtained when light is irradiated with a laser on a sample and this scatters photons in two ways, elastic and inelastic scattering, known as Rayleigh scattering and Raman scattering respectively.
	In the elastic scattering the system goes from a basal energy level to an excited one, when it relaxes, it returns to the initial basal level and emits a photon with the same frequency as the incident. Whereas, inelastic scattering, the system doesn’t...

	Energy dispersion of X-Rays Spectroscopy
	Energy dispersion of X-Rays Spectroscopy (EDX or EDS) is a technique that uses physical analysis for quantitating characterization of the element composition of a sample. Element compositional of the samples were measured using an SEM Model JEOL JSM-7...
	Its source of emission is a hot filament which electrons are accelerated. Usually, the filament is tungsten that uses the thermionic emission. At temperatures above 2700 K emits a large number of electrons, where they tend to accelerate through a vari...
	Furthermore, all EDS spectra were measured using the same conditions, such as an acceleration voltage of 4 kV. It is important to use an adequate acceleration voltage to do not take into account the substrate (silicon) signal. In addition, the working...
	The EDS system detects X-Rays emitted by the sample in response to being hit with electrons emitted by an electron beam of a Scanning Electron Microscopy (SEM), thus an EDS system is commonly coupled with an SEM system.
	Its characterization capabilities are based on the fundamental principle that each element has a unique structure allowing X-rays that are characteristic in an element atomic structure to be identified uniquely from each other.

	The X-Rays are caused by the beam of electrons hitting the sample. This interaction may excite an electron of an inner shell, ejecting it from the shell while creating a hole where the electron was. An electron from outer, high energy shell then fill ...
	X-Rays Diffraction (XRD)
	X-Rays Diffraction is a non – destructive technique used to determine the crystalline, structure properties of the material. In addition, it allows the differentiation of crystalline, polycrystalline and amorphous structures. Diffractograms were deter...
	Mass spectrometry (MS)
	Mass spectrometry is an analysis technique that enables a direct identification of molecules based on the mass-to-charge ratios. These spectra of the samples were measured using a Prisma Plus Quadrupole Mass Spectrometer [53]. This spectrometer is con...
	A tungsten filament produces high energy electrons in order to ionize molecules of the gas inlet of the chamber at a lower pressure below 1×,10-−4. 𝑚𝑏𝑎𝑟  (the ion source). These ions are sorted and separated according to their mass and charge by e...
	3.4 Electrical Characterization
	Van der Pauw technique

	The Van der Pauw is one of the most effective and widely used techniques of the four-probe methods for measuring the resistivity of a thin film having an arbitrary shape [40]. Four probes methods are probably the most outstanding due to that they are ...
	Before measurement the resistivity of the samples, we need to deposited metallic contacts on the corners of the perimeter of the sample. Aluminium contacts were deposited in order to guarantee the contacts between the tip and sample which allow the f...
	The electrical resistivity was measured by using a Keithley 2400 Source Meter, Keithley 2000Multimeter, Keithley 2001Multimeter, Keithley 7001 Switch/control system, all connected through the GPIB and a camera. LabVIEW interface interacts with the dev...
	3.5 Annealing treatments (Rapid thermal Annealing)

	4. Result and discussion
	4.1 Chamber conditioning
	In order to find the appropriate parameters to produce Aluminum doped hydrogenated amorphous silicon carbide (Al doped-a-SiC:H) thin films and to achieve a high reproducibility, depositions of five samples were made. In addition, a reduction of the hu...
	Prior to analyzing the FTIR spectra of the produced SiC thin films, the elemental composition of each sample was determinate by SEM-EDS. All measurements were performed applying the electrons beam at the center of samples. As it was expected, each sam...
	The effect of implementing the heaters on the quality of the SiC thin films composition can be seen in the FTIR measurements shown in Figure 4.1.1. As mentioned in the third chapter, FTIR spectroscopy allows the identification of different types of bo...
	In this section, we evaluate the evolution of the oxygen-related peaks position from the FTIR spectra and the bond density of silicon-oxygen as well. The spectra exhibit two regions. The first located between 400 cm-1 and 1300 cm-1, in which the Si-C ...
	The samples were growing with different periods in order to analyze the evolution of the Si-O bond number density. Using 2.5.1 equation to baseline subtraction and thickness normalization of infrared absorption spectra of all thin films. These spectra...
	FTIR measurements reveal the formation of not only about Si-C bonds but also Si-O bonds. The main vibration modes occur in the first zone located between 400 cm-1 and 1300 cm-1. The spectra of the first two samples without aluminum doping are evaluate...
	The spectra of samples with aluminum doping are evaluated as well. In the IR absorption spectra of Si-C-O(Al) and SiO2-like (Al) samples, Si-O bonds are also observed. The incorporation of higher Oxygen concentration into the films results in a shift ...
	The employed inverse absorption cross-section at the Si-O bonds [Table 4.1.3] in the 3.3.2 equation is shown in Figure 4.1.2 and Figure 4.1.3.
	As another observation, the samples with lower Si-O density bond had a pressure after deposition around 10-7 mbar (Table 3.1). Therefore, we achieved to diminish the oxygen concentration in the samples by reducing the humidity attached to the walls w...
	The effect of diminishing the oxygen seen in FTIR measurement was also seen in the mass spectrometer (Figure 4.1.4). The bar graph shows the different ion currents from the chamber gases. Among the gases evaluated are water, oxygen, nitrogen and hydro...
	The inset shows the relative percent of oxygen. These values have been normalized with respect to neon gas due to its stability. Its behavior is similar to the Si-O bond density seen in FTIR measurement (Figure 4.1.3).
	After the installation of heaters external to the chamber, samples with low oxygen content were obtained as confirmed by FTIR spectrometry and mass spectrometry.
	After having obtained the SiC-like sample with low content oxygen. The sample is characterized by structural, optical and electrical measurements. The results of the as-grown film will be presented first, followed by the results of the rapid thermal a...
	4.2 Infrared spectroscopy analysis
	The position, full width half maximum (FWHM) and area of the absorption band give important information about bonding characteristics and chemical structure of the film. Changes in the bonding density and peaks position enable us to study the effects ...
	The infrared spectrum of the SiC-like (Al) sample is shown in Figure 4.2.1 This spectrum shows the characteristic modes of vibration a-SiC:H(Al), i.e. the Si-C stretching mode at 780 cm- 1, C-Hn wagging mode at 998 cm-1, Si-O stretching mode 1100 cm-1...
	The SiC-like (Al) sample was subjected to rapid thermal annealing (RTA). The RTA was carried out at 200  C, 300  C, 400  C, 600  C for 600 seconds. Changes on the film were observed after annealing treatment.
	The IR absorption spectra after annealing at distinct temperatures is shown in Figure 4.2.2. For comparison, the spectrum of the as-grown (AG) film is also shown.  All spectra exhibit three main bands. These spectra show mainly the presence of a broad...
	a) The different modes of vibration are respectively centered at 440 cm-1 for Si-O-C rocking, at 520 cm-1 for Si-Si stretching mode, at 615 cm-1 associated with a bonding between Al and either Si or C. Finally a weak band around 530 cm-1 resulting fro...
	b) The band centered at 780 cm-1 is attributed to the Si-C stretching vibration mode. The band width is broadened due to the angular distortion of Si-C bonds in the amorphous structure of the thin film [56].
	c) The shoulder around 1000 cm-1 is assigned to the wagging vibration of CH2 or CH3 groups attached to silicon atoms. These bonds may result from the higher bonding preference of carbon for hydrogen [61]. Furthermore, sub-stoichiometric SiOx (x<2) str...
	d) The absorption band between 2000 cm-1 and 2200 cm-1 correspond to the stretching vibration of Si-Hn bonds. For solely a-Si:H, the mode of vibration is 2000 cm-1. This mode shifts to a higher wavenumber due to a network bonding configuration in the ...
	e) The band peak from 2800 cm-1 to 3000 cm-1 is associated to the C-Hx stretching mode. The peak 2890 cm-1 and 2960 cm-1 correspond to stretching mode C-H2 and C-H3, respectively. Its signal is weak due to a reduced oscillator strength [4].
	An increase in the intensity can be seen in the absorption band attributed to Si-C stretching mode with annealing temperature at 600  C along with a slight shift of to lower wavenumber. Also, the intensities of the absorption bands around 2100 cm-1 an...
	In order to find how the bond density, change after annealing, a deconvolution of the band in the spectral region 500-3300 cm- 1 were made with Gaussians curves. The deconvolution of the band in the spectral region 500-1100 cm-1 is shown in Figure 4.2...
	The bond densities of each vibration mode were calculated using equation 2.5.1. The bonds densities of each vibrational mode under annealing temperature are depicted in Figure 4.2.4 (a). The latter shows that there is a variation of these bond densiti...
	The fits for the Si-C bonds in the FTIR spectra were Gaussians, reflecting the nature random distribution of the bonding configuration of the amorphous state. The variation of the full-width half maximum (FWHM) of these peaks reflects the variation ...
	The formation of new Si-C bonds is a consequent of the breaking of Si-Hn and C-H bonds. The present of Si-CHx bond is likely due to the breaking of  C-H3 bonds to form new C-H2 bonds due to the interaction of hydrogen with carbon dangling bonds and/or...
	Hydrogen content was calculated from FTIR following the previously published reports [42][44][79]. The amount of hydrogen can be calculated directly the number density of hydrogen-related bonds as the sum of Si-H and C-H bonds. This is plotted in Figu...
	4.3 XRD patterns
	XRD measurements were carried out to investigate the thin film structure prior to and after annealing.
	Fig 4.3 shows the XRD patterns (without background correction) of a-SiC:H(Al) films as-grown and after annealing at 600  C. Both samples show a broad diffraction peak at around  2𝜃= 14  , which correspond to the amorphous structure of the sample hold...
	In particular, the inset of Figure 4.3 shows the magnified XRD pattern (As grown) in order to see the formed phase of aluminosilicate, which is the superposition of alunite and quartz. Green sharp diffraction peak (2𝜃=20   and 26  ) are related to qu...
	The presence of aluminum atoms was observed, this is also seen in the SEM-EDS measurement. The amorphous structure was verified prior to and after rapid thermal annealing.
	4.4 Raman spectroscopy analysis
	The IR spectra of a-SiC:H(Al) provide information on the asymmetrical bonds such as Si- H, C- H, Si-C, etc. The absorption bands due to Si-Si and C-C bonds cannot be detected by IR measurements as they are infrared inactive.
	Raman scattering spectra in the range of 100 -1800 cm-1 for the a-SiC:H(Al) thin film in as-grown and at 600  C is shown in Figure 4.4.1. The spectra exhibit three regions, which are assigned to Si-Si (100-600 cm-1), Si-C (650-1050 cm-1) and C-C (1250...
	a) It can be observed that the sample of the as-grown and after 600  C annealing exhibit a typical signature of c-Si with Raman shark peak position at around 521  cm- 1 [69]. This is a contribution of the c-Si substrate due to a large penetration dept...
	b) The broad peaks centered at 170 cm-1 and a shoulder on the low wavenumber side of c-Si the 473 cm-1 are assigned to the Si-Si transverse acoustic (TO) and transverse optical (TA) vibration mode in amorphous configuration respectively [15][71].
	c) The absorption band at 660, 760, 780, 950 and 960 cm-1 is attributed to Si-H (wagging/bending), amorphous Si-C, transverse optical (TO) and Longitudinal optical (LO) modes of 3C-SiC and second order of  transverse optical (TO) mode of  Si-Si vibrat...
	d) The band centered at around 1450 cm-1 is composed of two bands at 1360 cm-1 and 1575 cm-1, corresponding to graphite (sp2) and diamond (sp3), respectively [74].
	It can see that the Raman spectra of the as-grown (AG) and annealed at 600  C show the above-mentioned peaks and that is related to the amorphous nature of the material. In order to obtain the position of the main vibration’s modes and full-width half...
	For the 100-600 cm-1 spectral region of the as-grown sample, the best deconvolution of the band shows the presence of a peak centered respectively at 167 cm-1 and a broad peak centered at 468 cm-1 characteristics of a predominant amorphous structure. ...
	For the 600-1200 cm-1 spectra region to as-grown, the deconvolution of the bands shows the presence of the absorption band at 640 cm-1 is attributed to Si-H. Furthermore, this spectrum reveals the peak centered at 786 cm-1 that correspond to amorphous...
	For the 1200 -1600 cm-1 spectra region at as-grown, the deconvolution of the bands shows the presence of the peak centered at 1450 cm-1 is related to two peaks that correspond to graphite and diamond. Upon annealing up to 600  C a displacement of this...
	4.5 Optical characterization and analysis
	UV/VIS/NIR spectral transmittance measurement was performed in order to determinate the optical properties and optical energy band gap of the a-SiC:H(Al) samples. A variation of the Swanepoel method was used [28][31]to determine the refractive index, ...
	Figure 4.5.1(a) shows the transmittance spectrum of the a-SiC:H(Al) film deposited of as-grown and after treatments at high temperatures. These spectra can be divided into three regions. Transparent, medium-weak and strong absorption. Transmittance sp...
	It is observed that to low annealing temperatures the thickness remains constant. Whilst at annealing temperatures higher than 400  C, the thickness shows a remarkable decrease, so-called densification, due to crystallization. Thickness decreases from...
	The refractive index is another optical parameter that is related to local changes and densification of the film upon annealing temperature. The effect of rapid thermal annealing (RTP) is shown in Figure 4.5.2. It shows that the refractive index (n) i...
	Then, from the absorption coefficient and different models is possible to extract the optical energy band-gap. Currently, there are a different approach to estimate the band gap of an amorphous material. In this work was used Tauc energy, isoabsorptio...
	To determine the energy bandgap values by isoabsorption energy, The E04 value is defined as the energy at which the absorption coefficient is equal to 104 cm-1, see Figure 4.5.4 (a). While to determine by model Tauc, we plotted ,(𝛼ℎ𝜈)-1/2. versus (ℎ...
	Figure 4.5.4 (a) shows the band-gap presents a similar dependency with annealing temperature independently of the model used for its calculation. Furthermore, it shows that the E04 iso-absorption gap values are greater than Tauc gap values. This findi...
	The Urbach energies values are determinate through of Urbach rule and band-fluctuation model. By Urbach rule, energies were obtained by performing a fit in logarithm scale of the absorption coefficient. It draws a linear equation in a linear region, w...
	The disorder of the a-SiC:H(Al) sample studied here is reduced with the annealing treatments (RTP) until a critical temperature, then an increase is shown. This effect has been measured by the Urbach energy and the average FWHM of the absorption peaks...
	On the other hand, it is observed that the values energy band-gap determined by the mean of the band-fluctuations model is greater than the obtained by Tauc model and E04 isoabsorption. This is due to the fact that Tauc-energy and the E04 iso-absorpti...
	The main advantage of the latter model is that no discrimination must be done between the Urbach and absorption edge region, that is, the mixing region is also part of the adjustment input. Consequently, the band-gap obtained by the band-fluctuations ...
	Finally, the bandgap energy values used in this work are extracted by the band-fluctuations models, due to the fact that accurately describes both the Urbach tail and absorption edge regions in a single equation with only three fitting parameters. Whi...
	4.6 Electrical properties
	Characterization of the a-SiC:H(Al) would not be complete without an evaluation of its electrical properties. In this section, the current-voltage (I-V) curves will be presented first. Then the electrical characterization was performed by the Van Der ...
	Contact characterization after annealing
	In order to characterize contacts, I-V measurements were performed varying the current from -0.1 mA to 0.1 mA following the sequence of the contacts near the ends of the sample as shown in Figure 3.4 (b) and measuring the voltage response. Figure 4.3....
	I-V curves for “As grown”, 200  C, 300  C and 400  C shows Schottky behaviour. Whereas at 600  C is observed Ohmic contacts, due to its linear tendency. The resistance for each contact is obtained with the slope of the I-V curve. It observed that afte...
	In order to determine the conductivity value by means of the Van Der Pauw method, certain conditions mentioned in chapter 2 should be met. Ohmic contact values were obtained at 600  C and the resistance values for each permutation are shown in Table 4...
	Finally, the characteristic resistance values (Ra and Rb) and thickness value are parameters for to determinate electrical resistivity and conductivity values. These values are shown in Table 4.6.2. This value is compared with the values of a-SiC:H(Al...
	The value of electrical conductivity measured at room temperature (RT) of a-SiC:H(Al) taken to treatment thermal (RTP) is within the range between ,~10-−4. ,Ω-−1..,cm-−1. and ,~10-−9., Ω-−1..,cm-−1.. This value after annealing treatment (600  C) is re...
	Ellipsometry measured was performed in order to the determinate thickness of the film. It was found that the existence of an oxide layer between film and substrate with the thickness of 63 nm, as shown in Figure 4.6.2. This oxide layer was formed due ...
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