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de também lidarem com o ocasional mau feitio, me terem apoiado, incentivado e

aconselhado.

Por fim (são famı́lia também) e o que vocês aturaram não se deseja a ninguém.
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Resumo

Os processos de parametrização e inicialização de redes neuronais requerem con-

hecimento espećıfico dos utilizadores e consistem, normalmente, em testar diversas

possibilidades. Assim sendo, podem exigir elevado poder computacional e tempo de

computação, bem como tempo dispendido pelo utilizador.

Propomos a utilização de metalearning e transfer learning para reduzir o tempo e o

esforço necessários a estes processos. Metalearning e transfer learning são áreas de

machine learning que pretendem reduzir tanto os recursos computacionais como o

esforço necessário, por parte do utilizador, no processo de aprendizagem. Para isso,

ambas tiram partido de conhecimento obtido em experiências anteriores. Por um lado,

o metalearning utiliza informação sobre tarefas anteriores com vista à seleção de um

modelo preditivo para uma nova tarefa. Por outro lado, o transfer learning consiste

na transferência de conhecimento a partir de uma tarefa anterior com o objetivo de

ajudar no processo de aprendizagem de uma nova tarefa. A avaliação emṕırica da

nossa abordagem é feita utilizando datasets de regressão.

No nosso trabalho, numa primeira fase, o metalearning é utilizado para selecionar

uma parametrização capaz de alto desempenho. Para isso, propomos um conjunto de

landmarkers espećıficos para redes neuronais que, juntamente com metafeatures tradi-

cionais, podem ser utilizados para construir um meta-modelo de seleção de parâmetros

para redes neuronais. Os resultados obtidos sugerem que o metalearning é uma

boa abordagem ao problema, dado que o nosso meta-modelo é capaz de selecionar

parametrizações que tendem a obter melhores resultados do que utilizar os parâmetros

que mais frequentemente dão origem a bons resultados.

De seguida, o transfer learning é utilizado para inicializar as redes neuronais. Em

vez de valores aleatórios, inicializamos as redes com pesos obtidos de redes treinadas

anteriormente. Para isso, propomos métodos simples de mapeamento de variáveis,

para que a transferência de pesos seja efetuada entre as variáveis mais apropriadas.
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Os resultados obtidos sugerem que o transfer learning pode ser utlizado para inicializar

redes neuronais de forma a acelerar o processo de treino, desde que haja uma boa rede

neuronal de origem a partir da qual se selecionem os pesos.

Por fim, o metalearning é utilizado para selecionar a rede a partir da qual os pesos

serão transferidos. Para isso, propomos um conjunto de landmarkers espećıficos para

transferência que, juntamente com metafeatures tradicionais, podem ser utilizados

para construir um meta-modelo para seleção da origem dos pesos. Os resultados

obtidos sugerem que o metalearning é uma boa abordagem ao problema, dado que

o processo de treino das redes neuronais resultantes é mais rápido, sem prejudicar o

desempenho.

Os nossos meta-modelos facilitam a configuração (incluindo parametrização e inicial-

ização) de redes neuronais, reduzindo o tempo e poder computacional necessários

tanto à configuração como ao treino das redes que, mesmo assim, atingem bom

desempenho. A metodologia encontra-se dispońıvel através da aplicação R NN con-

figurer e a biblioteca R nnetConf. Ambos estão dispońıveis online e permitem a

configuração automática de redes neuronais, incluindo os processos de parametrização

e de inicialização.
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Abstract

In neural networks, parameterisation and initialisation processes require user expertise

and usually consist in experimenting with several different settings. Therefore, the

processes may need high computational resources and computational time, as well as

time spent by the user.

We propose the use of metalearning and transfer learning to reduce the time and effort

needed on these processes. Metalearning and transfer learning are subfields of machine

learning that aim at reducing both computational effort and user involvement on the

learning process. For that, both take advantage of knowledge obtained on previous

experiments. On the one hand, metalearning uses information about previous tasks to

help in the process of selecting a predictive model for a new task. On the other hand,

transfer learning consists in transferring knowledge from a previous learning task to

help in the learning process of a new task. We empirically evaluate the proposed

approach on benchmark regression datasets.

In our work, we start by using metalearning to select a high-performance parameteri-

sation. For that, we propose neural network specific landmarkers that, together with

traditional metafeatures, can be used to build a metamodel for parameter selection

in neural networks. Results suggest that metalearning is a good approach to this

problem, since our metamodel is able to select parameterisations that usually yield

higher performance than the one obtained by considering the parameter values that

more frequently lead to high performance.

Then, transfer learning is used to initialise the neural networks. Instead of random

values, we initialise them with weights obtained from previously trained networks.

For that, we propose simple feature mapping methods, so that the transfer of weights

is performed between the most appropriate features. Results suggest that transfer

learning can be used to initialise the networks in order to have faster training processes,

provided that there is a source network from where the weights can be selected.
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Finally, metalearning is used to select the source network from which the weights

will be transferred. For that, we propose transfer specific landmarkers that, together

with traditional metafeatures, can be used to build a metamodel for source network

selection. Results suggest that metalearning is a good approach for the problem,

since the resulting neural networks’ training process is faster, without harming their

predictive performance.

Our metamodels make the configuration (including parameterisation and initialisa-

tion) of neural networks easier, while reducing the time and computational power

required for the configuration and training of neural networks, still reaching high pre-

dictive performance. This methodology is available as the the R Shiny application NN

configurer, and the R library nnetConf. Both are available online and allow automatic

configuration of neural networks, including the parameterisation and initialisation

processes.
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Chapter 1

Introduction

Applying machine learning (ML) to a task typically implies collecting training data,

obtaining a model (training), and applying the model to new data (testing). This is

done even when the new task is related to one or more previously solved tasks.

In some situations, the new task may be related to one or more previously approached

tasks. For example, let us assume we need to analyse data on 1000 industrial machines.

We have one dataset for each machine and we plan to learn each model with the best

performing algorithm from the set of algorithms A1, A2 and A3. First, let us consider

a simplified scenario: after processing 800 datasets we discovered that algorithm A1

clearly obtained the best results for all the datasets processed. Given the experience

obtained on the previous learning processes, it would be expected that algorithm

A1 would also obtain the best results for the remaining 200 datasets. Thus, we could

ignore algorithms A2 and A3 and only apply A1 to the rest of the datasets, significantly

reducing the time needed for the ML process.

Now, let us consider a more complex scenario: after processing 800 datasets, we

discovered that algorithm A1 obtains the best results for datasets with less than 500

examples, while for larger datasets A2 is the best performing algorithm. In this

case, there is a dataset characteristic (number of examples) that helps determining

the algorithm expected to obtain better results. Now, for each of the remaining 200

datasets, we count the number of examples and, with this, determine the expected

best algorithm. Therefore, instead of applying all the algorithms to each dataset, we

only apply the selected one. This reduces the computational effort needed for the ML

process.

1
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Metalearning (MtL) can be used in situations as the one referred above (Brazdil et al.,

2008). Typically, MtL uses information (called metafeatures) about previous tasks to

help in the process of selecting a predictive model for a new task, reducing both

computational effort and user involvement. Further information about this topic is

presented in Section 2.3.

Another example of the ML process applied to related tasks is the following: let

us imagine we are dealing with data obtained from a set of sensors installed in

an industrial machine M1. First, we collect the training data (outputs from the

sensors), obtain a model, and finally apply it to new data gathered from machine

M1. Later, we need to analyse data obtained from a set of the same sensors installed

in a different machine M2, similar to machine M1. We will restart the ML process

from the beginning: collect the sensor data, obtain the model and apply it to new data

from machine M2. However, because of the similarities between the machines, and

since the sensors installed in machines M1 and M2 are the same, the data obtained

from both machines will probably be related. Reusing the model obtained for machine

M1 and applying it to the data gathered in machine M2 would reduce the time needed

for the ML process.

Transferring knowledge from a previous learning task (source) to help in a new one

(target) is called Transfer Learning (TL). By taking advantage of the knowledge ob-

tained in previous tasks it enables the use of different tasks or data distributions for the

training and testing parts of the process to improve the target task’s performance (Pan

and Yang, 2010). The use of TL implies addressing three issues. First, we need to

select the knowledge to be transferred (what to transfer). Then, we need to define

the methods used for the transfer process (how to transfer). Finally, we need to

ensure that the transfer will only be performed when it in fact improves the target

task’s performance (when to transfer). More information on this subject can be

found in Section 2.4.

Both MtL and TL use information about a previously learned domain to efficiently

and effectively learn in a new, unseen domain. As more and more ML tasks are dealt

with, we can store the information on the processes used to address them and exploit

it when approaching new learning tasks. On the one hand, MtL uses past experience

selectively, given the characteristics of the new task (Brazdil et al., 2008). On the other

hand, TL values previous experience for learning new concepts better (Pan and Yang,

2010). However, not all the previous tasks are expected to contain useful knowledge.

This suggests that TL and MtL may be used together. For example, MtL could be

used to decide whether the transfer should or should not be performed.
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Neural Networks (NNs) are a classical ML model inspired in the principles of the work

of our own brains. They have been recently growing in popularity due to the wide

range of possible configurations and manageable convergence properties. According

to Bishop (1994), the human brain can roughly be described as a set of neurons and

the connections among them. When information is being processed, it passes from

a neuron to the next one through the connections. Depending on the information

to process, the connections have different strengths. In the same way, an artificial

NN is composed by several connected processing units. Also, the connections have

associated weights that need to be defined in the beginning of the training process.

NNs are highly parameterisable models that can achieve high performance, provided

that the parameter values are well chosen (Ripley, 2007). The parameters can control,

for example, the NN architecture or the training process stopping criteria, among

others. The process of choosing the parameter values (parameterisation) for NNs

requires user expertise (Venables and Ripley, 2002; Ripley, 2007). Besides, usually

the data scientist starts by experimenting with several different parameterisations.

This requires high computational resources, time, and user effort.

Furthermore, when configuring a NN, the data scientist also needs to define a set of

values to be used as the initial set of weights. The process of defining the initial set of

weights (initialisation) of a NN influences its behaviour. Thus, the initial weights need

to be carefully chosen. Besides user expertise, due to the need of performing several

tests with different sets of initial weights, this process also requires high computational

resources, time, and user effort.

1.1 Motivation and Objectives

As referred, NN parameterisation and initialisation are difficult and time-consuming

tasks that require user expertise. We aim at reducing the time and effort the data

scientists need to spend on these processes, by using MtL together with TL, as depicted

in Figure 1.1.

By taking advantage of experience acquired previously (on previously trained NNs),

we intend to use MtL to select a high-performance parameterisation. Furthermore,

we aim at using TL to initialise the NNs. The TL process consists in transferring

weights (what to transfer? ), between the most adequate connections of the source and

target datasets (how to transfer? ). TL will take the new data into account and select



4 CHAPTER 1. INTRODUCTION

Previous
NNs

Sets of
weights

MtL

TL

New
data

New
NN

Initial weightsParameters

Figure 1.1: Use of MtL together with TL.

a set of weights from each source network. However, not every transfer will lead to

a high-performance NN. Thus, we intend to use MtL to predict if transferring from

a certain source NN will lead the target NN to perform better than when randomly

initialised (when to transfer? ), preventing negative transfer (Rosenstein et al., 2005).

One of the main challenges of MtL is the design of suitable data metafeatures (Brazdil

et al., 2008) (Subsection 2.3.2). Useful metafeatures contain information about the

data that describe the behaviour of the learning algorithm(s). We aim at finding

metafeatures that can characterise the NNs (for the parameterisation task) and the

transfer process (for the source selection task).

Given the above, our work aims at answering the following questions:

RQ1 How do different parameter values impact the performance of NNs?

RQ2 Can MtL be used to support the parameterisation of NNs?

RQ3 What is the impact of TL (weights transfer) on NNs?

RQ4 Can MtL be used to support TL in NNs?
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Our ultimate goal is to be able to provide the data scientists with a method for full

automatic configuration (both parameterisation and initialisation) of NNs. Given a

new dataset, we extract its characteristics and use them to suggest the parameterisa-

tion as well as an initial set of weights to be used. This enables the development of a

competitive NN for the dataset at hand, with almost no need of user intervention in

the process.

1.2 Contributions

This project encompasses four phases, depicted in Figure 1.2, and described next.
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Figure 1.2: MtL for multiple domain TL experimental process.
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1. Empirical study of the performance of NNs (Chapter 3)

To answer Research Question RQ1, we studied the impact of different param-

eterisations in NN performance. For this, as depicted in Figure 1.2 [1 ], we

analysed several NNs following a grid search of 120 possible parameter value

combinations. Results suggest that, as expected, there is no parameter combi-

nation with generally high performance for all the datasets. Instead, the best

performing parameterisation depends on the dataset.

Contributions:

• Empirical results on the impact of different parameter values on NNs;

• A group of parameterisations that can be used for NNs to generally achieve

average high performance. By using these, the data scientist can achieve

relatively fast and accurate NNs that do not require user experience or time

spent on parameter tuning;

• A group of partial parameterisations that can be used to reduce the grid for

the parameter selection. With this, the user experience and time required

for parameter tuning significantly decrease.

2. MtL for Parameter Selection in NNs (Chapter 4)

As expected, the results obtained in the previous phase suggest that NN param-

eterisation depends on the data itself. Additionally, as NNs may require high

computational resources for training, running several networks only to choose

the best performing configuration may be computationally expensive. Bearing

this in mind, and to address Research Question RQ2, we studied the use of MtL

for the parameter selection problem in NNs (Figure 1.2 [2 ]). We characterise

the NNs obtaining their metafeatures. Then, we build the metamodel by using

the metafeatures together with the parameterisations’ performance obtained in

the previous phase. Results suggest that MtL can be used to select accurate

parameterisations for NNs.

Contributions:

• Two different sets of NN landmarkers that, together with the remaining

metafeatures, capture the NNs characteristics, allowing the MtL process to

select high performance parameterisations;
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• Empirical results on the use of MtL for parameter selection in NNs compar-

ing classification and regression approaches with different sets of metafea-

tures.

3. Weights Transfer in Heterogeneous Domain NNs (Chapter 5)

The results presented in Chapter 3 suggest that the starting point of a NN

(i.e., the initial weights) significantly influences its performance. As depicted in

Figure 1.2 [3 ], we study the impact of TL, namely the transfer of weights, in

NNs (Research Question RQ3). We test several TL settings for each dataset

considered. Results suggest that TL can be used to successfully initialise NNs,

provided that the source network (the one from which the weights will be

transferred) is well chosen.

Contributions:

• A mapping process for features in different domain datasets;

• A weights transfer method for NNs;

• Empirical results on the use of TL (through mapped weights transfer) in

NNs comparing the performance of NNs initialised with transferred weights

with the performance of randomly initialised NNs.

4. MtL to support TL (Chapter 6)

The results of phase 3 suggest that higher performance networks can be obtained

by transferring weights from a previously learned NN, provided that the source

of the weights is well chosen. In order to reach our main objective, reflected in

Research Question RQ4, we study the use of MtL to choose what NN to use

as source of the weights to be transferred for a specific target NN (Figure 1.2

[4 ]). We characterise the transfers and use this information, together with the

results obtained on the previous phase, to build the metamodel. With this, we

wish to provide the data scientists with a method to accurately initialise a NN,

by providing them with a set of initial weights. Results suggest that the use of

MtL for this task allows faster training NNs, without harming their predictive

performance.

Contributions:

• A set of metafeatures capable of describing the differences between the

source and target datasets;
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• A set of landmarkers for TL in NNs that, together with the remaining

metafeatures, characterise the transfers, thus allowing the MtL process to

accurately predict the impact of a specific transfer on the NN’s performance;

• Empirical results on the use of MtL for selecting the network to use as

source of weights to transfer to a target NN comparing the use of three

regression approaches with different sets of metafeatures for creating the

metamodel.

5. Available Resources

We implemented two resources that can be used by the data scientist to fully

configure neural networks for the R’s nnet implementation. These resources were

built according to this research, and are described in Section 6.4:

• NN configurer: an R Shiny application, publicly available at (https:

//catarinafelix.shinyapps.io/nn_shiny/) and also available for down-

load at (https://gitlab.com/catarinafelix/nn_shiny);

• nnetConf: an R library, available for download at (https://gitlab.com/

catarinafelix/nnetconf).

1.2.1 Summary of Contributions

Given that NN configuration (parameterisation and initialisation) is difficult and

time consuming (Chapter 3), and transfer improvement in NNs depend on correctly

selecting the source network (Chapter 5), we propose an approach that configures

competitive NN for new datasets. Our approach is able to use metalearning to make

more efficient the selection of parameter settings (Chapter 4) and network to use as

source of weights to initialise the NN (Chapter 6).

1.3 Publications

During the course of the research, we have published the three following papers:

1. Metalearning for Multiple-Domain Transfer Learning (Félix et al., 2015),

a preliminary study concerning the improvements TL can achieve in NNs’ perfor-

mance (phase 3). In it we describe two experiments: 1) compare random transfer

https://catarinafelix.shinyapps.io/nn_shiny/
https://catarinafelix.shinyapps.io/nn_shiny/
https://gitlab.com/catarinafelix/nn_shiny
https://gitlab.com/catarinafelix/nnetconf
https://gitlab.com/catarinafelix/nnetconf
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(made between randomly chosen variables) with direct transfer (performed be-

tween correspondent variables, in related datasets); 2) study the behaviour of

the weights transfer between similar variables, compared to the random transfer.

Results suggest that transfer between similar datasets is advantageous, and the

advantages increase when the transfer is performed between similar variables.

This way, finding similarities between source and target datasets and between

their variables may help in the TL process.

2. Can metalearning be applied to transfer on heterogeneous datasets?

(Félix et al., 2016), another study on the improvements achieved by TL in NNs

(phase 3). In this case, only the mapped transfers are studied, however with

a more extensive experimental setup. Results suggest that, when the source

network is well chosen, transferring weights can accelerate the learning of the

target network. Furthermore, it indicates that MtL can be used to support TL

by selecting the network to act as source of the weights for the transfer.

3. Using MtL for Parameter Tuning in NNs (Félix et al., 2017), a preliminary

study on the MtL’s ability to select a high-performance parameterisation for NNs

(phase 2). We describe a classification approach to use MtL to select a high-

performance parameterisation for NNs. Results suggest that MtL can be used

for parameterising NNs to obtain NNs that perform almost as well as the ones

selected with grid search.

Our follow up publication plan includes the four following journal papers:

1. Empirical study on neural networks performance with different pa-

rameter settings, in preparation;

2. Metalearning approach for automatic parameter tuning in neural net-

works, in preparation;

3. Transfer of weights to improve neural networks performance, to be

prepared;

4. Metalearning to prevent negative transfer in neural networks, to be

prepared.
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1.4 Outline of the document

The rest of the document is organised as follows. First, in Chapter 2 we present some

concepts related to our work. After that, we present the four parts that encompass

our research (referred to in Section 1.2): Empirical study of the performance of Neu-

ral networks (Chapter 3), Metalearning for Parameter Selection in Neural Networks

(Chapter 4), Weights Transfer in Heterogeneous Domain Neural Networks (Chapter 5),

and Metalearning to support Transfer learning (Chapter 6). Finally, in Chapter 7, we

present the conclusions and future work of our research.



Chapter 2

State of the Art

Data mining (DM) is the process of discovering patterns in data (Witten et al., 2016).

There are some restrictions to this: 1) the process must be automatic or, at least, semi-

automatic; 2) the patterns found must be useful (i.e., must lead to some advantage),

and; 3) large quantities of data must be present.

Machine learning (ML) techniques aim at analysing the data to find meaningful

patterns. The data used in ML is commonly represented in tabular form (datasets).

ML problems can be divided into two categories: unsupervised and supervised learning

problems. In unsupervised learning problems there is no dependent variable, while in

supervised learning problems, at least one dependent variable is present on the dataset.

There are specific tasks to unsupervised learning problems (e.g.: clustering, associa-

tion) each with its own performance metrics. Our research focuses on supervised

learning problems, where the value of the dependent variable is present on the data

and can be considered for building the prediction model, and it can also be used for

evaluating the models’ performance. Common types of ML tasks are classification and

regression, which will be described later in Section 2.1.

A typical supervised ML modelling process consists of three phases: 1) retrieving the

data; 2) building a model – or several models – fitting the data (training phase),

and; 3) applying each model to the data and evaluating its performance (testing

phase). Before deploying a model on new data, it is developed using the following

approach (or a similar one): the dataset is split into training and testing sets, to be

used in the second and third phases, respectively. This happens because we want to

avoid overfitting, i.e., that the model fits too much to the training data that, besides

patterns, it also captures noise.

11
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There are many models that can be used for each ML task. A ML model that has

been receiving increased attention is neural networks (NNs). A NN is composed by a

set of processing units, organised in layers. The first layer is where the inputs to the

NN are provided. These values are processed on the internal layers and the result is

computed on the output layer. NNs are inspired on the human brain’s behaviour and

will be detailed in Section 2.2.

Furthermore, each algorithm may have a set of parameters that must be defined in

order to achieve maximum performance for a specific dataset. Choosing a fast high-

performance algorithm (and parameter configuration) is not an easy task. Metalearn-

ing (MtL) is a sub-field of ML that aims at helping the data scientist with this issue.

By using knowledge extracted using ML approaches from past experiments (data,

algorithms, algorithm parameterisation and algorithm performance on the data), it

aims at choosing a high-performance algorithm for the data at hand. For this, MtL

tries to predict the algorithms’ performance on a new, unseen task. This subject will

be more thoroughly explained in Section 2.3.

However, there may be a limited supply of training data, or the models’ training

process can be computationally expensive. An approach to overcome these issues is

transfer learning (TL). TL aims at improving a model’s performance by transferring

knowledge obtained on previously trained models. TL is another sub-field of machine

learning and will be described in Section 2.4.

In the following sections we explain and exemplify some machine learning tasks, neural

networks, metalearning and transfer learning. For simplification, in the examples,

we are going to consider a generic dataset containing E instances of I independent

variables x1, . . . , xI and one dependent variable y. Thus, xei represents the value of the

ith independent variable in the eth instance of the dataset, ŷ represents the predictions

for the dependent variable and ŷe represents the eth value of the predictions.

2.1 Machine learning tasks

Here we describe the machine learning tasks used for metalearning in this work:

classification and regression (including ordinal regression and multi-output regression).

We will consider a single target problem for all the techniques, except for multi-output

regression (Subsection 2.1.2.2), where we consider that the dataset has J dependent

variables y1, . . . , yJ .
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2.1.1 Classification

Classification consists in creating a model m that tries to fit the function f such that

ŷ = f(x1, . . . , xI) (2.1)

that best approximates the true output of y. In classification problems, each instance

of the dependent variable belongs to exactly one of a finite set of candidate classes:

{c1, . . . , cK} where K is the number of classes y can take.

There are many algorithms for classification (Friedman et al., 2001; Han et al., 2011),

including those used in this work: linear discriminant analysis (LDA), top down

induction of decision trees (which, for simplification, will be referred to as decision

trees – DT) and random forest (RF). The implementations used were lda (Venables

and Ripley, 2002), rpart (Therneau et al., 2015), and randomForest (Liaw et al.,

2002), respectively.

The evaluation of the predictive performance of classification methods can be measured

with several metrics. For the purpose of this work, since this is a generic study, we use

the prediction accuracy (ACC), because it is a commonly used performance metric

for classification.

ACC =
|e ∈ {1, . . . , E} : ŷe = ye|

E
(2.2)

2.1.2 Regression

Classification and regression are very similar, except for the target variable. Regression

consists in creating a model m that tries to fit the function f such that

ŷ = f(x1, . . . , xI) (2.3)

that best approximates the true output of y. In regression problems, the dependent

variable is continuous (ye ∈ R).

As in classification, many algorithms are available for regression (Friedman et al., 2001;

Han et al., 2011). In these experiments we used standard machine learning algorithms,

namely: linear model (LM), top down induction of decision trees (DT) and random

forest (RF). The implementations used were lm (Team et al., 2013), rpart (Therneau

et al., 2015), and randomForest (Liaw et al., 2002), respectively.

Likewise, many metrics can be used for evaluation. In our experiments we used two

different performance metrics. A common evaluation metric for regression tasks is the
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Mean Squared Error (MSE):

MSE =
1

E

E∑
e=1

(ye − ŷe)2, (2.4)

One disadvantage of using MSE in empirical studies involving many datasets is that

the interpretation of the values depends on the scale of the target variable. Another

evaluation metric is the Relative Root Mean Squared Error (RRMSE):

RRMSE =

√∑E
e=1(y

e − ŷe)2∑E
e=1(y

e − ȳ)2
(2.5)

In spite of this, MSE is still the most popular evaluation measure in regression.

2.1.2.1 Ordinal Regression

Ordinal Regression (OR) is a machine learning task where the labels are ordered

categorical values (e.g., low, average, high) (Gutiérrez et al., 2016). The task consists

in creating a model m that tries to fit the function f such that

ŷ = f(x1, . . . , xI) (2.6)

that best approximates the true output of y. In ordinal regression problems, each

instance of the dependent variable belongs to exactly one among a finite set of candi-

date classes: {c1, . . . , cK} where y can take K classes with order o(c1) < o(c2) < . . . <

o(cK).

Although standard classification methods can be used, there are some specific algo-

rithms for ordinal regression, as is the case of the ones used here: top down induction

of decision trees (DT), implemented in ctree (Hothorn et al., 2006) and random forest

(RF), implemented in cforest (Hothorn et al., 2005; Strobl et al., 2007, 2008).

Several measures can be used to evaluate ordinal regression approaches (Baccianella

et al., 2009). We use Mean Zero-One Error (MZOE), because it is not affected by

the results’ scales, and is related to the accuracy:

MZOE =
|e ∈ {1, . . . E} : ŷe 6= ye|

E
(2.7)

2.1.2.2 Multi-output Regression

Multi-output Regression (MOR) is a ML task that consists in simultaneously pre-

dicting several target regression variables in the same dataset. The main assumption
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behind these approaches is that the values of the target variables are not independent.

The baseline approach for this problem is single target (ST) prediction: independently

generating J different models for the J different target variables and predicting each

of them separately:

mj : ŷj = f(x1, . . . , xI) (2.8)

The dependence between target variables is ignored by the single target approaches.

However, there are specific approaches for multi-output regression (Spyromitros-Xioufis

et al., 2012):

• Multi-target regressor stacking (MTRS): this technique encompasses two

phases. First, ST method is used to generate J models, and the J targets of the

testset are predicted:

m′j : ŷ′j = f(x1, . . . , xI) (2.9)

In the second phase, those intermediate predictions (ŷ′1, . . . , ŷ
′
J) are used as

attributes to compute the final J models that will obtain the final predictions

of the target variables:

mj : ŷj = f(x1, . . . , xI , ŷ
′
1, . . . , ŷ

′
J) (2.10)

• Regressor Chains (RC): first, a random chain (permutation) of target vari-

ables is selected. Then, the original attributes are used to predict the first target

on the chain (m1 : ŷ1 = f(x1, . . . , xI)). The prediction is added to the attributes

and the second target on the chain is predicted (m2 : ŷ2 = f(x1, . . . , xI , ŷ1)).

The process is repeated until all the targets have been predicted:

mj : ŷj = f(x1, . . . , xI , ŷ1, . . . , ŷJ−1) (2.11)

These approaches learn multiple models using traditional regression algorithms, such

as the ones used in this work: linear model (LM), top down induction of decision

trees (DT), and random forest (RF). The implementations considered were lm (Team

et al., 2013), rpart (Therneau et al., 2015), and randomForest (Liaw et al., 2002),

respectively.

Multiple evaluation measures exist for this task (Borchani et al., 2015). We use the

average relative root mean squared error (aRRMSE), with RRMSE as defined earlier

(Equation 2.5):

aRRMSE =
1

J

J∑
j=1

RRMSEj (2.12)
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2.2 Neural Networks

A ML model that has been receiving increased attention is Neural Networks (NNs),

which are inspired on the human brain’s behaviour. Although the NNs’ training time

can be long, once the model is fully trained, it can efficiently predict the outputs of

new examples.

Next, we provide an overview of NNs according to Bishop (1994), including their

biological context (Subsection 2.2.1), a comparison of shallow and deep NNs (Sub-

section 2.2.2, where we explain our choice to use shallow NNs), the one hidden layer

architecture (Subsection 2.2.3) and, finally, the NN training process (Subsection 2.2.4).

For further details on NNs, also refer to Bishop et al. (1995) and Bishop (2006).

2.2.1 Biological Context

First, let us introduce the biological NN structure according to Bishop (1994). The

human brain contains neurons that are composed by several dendrites (providing

inputs to the neuron) and an axon (working as the neuron’s output). The neurons

are connected and the connections, called synapses, allow the communication between

neurons. When neurons “fire”, they send an electrical impulse that propagates through

the cell body, to the axon and then the synapse. From here, the electrical impulse

acts as an input for the subsequent neuron. Each synapse has an associated strength

and the combination of all the inputs received, when compared to a certain threshold,

will define if the neuron will “fire” an electrical impulse to the subsequent neuron.

The behaviour of the artificial NNs is analogous to the biological ones. We focus on

the multi-layer perceptron which contains units (neurons) organised in layers: the

input layer, at least one hidden layer, and the output layer. The units on one layer are

connected to the units in the subsequent layer. The output of each unit passes through

the connections (synapses) to the units in the next layer. This simulates the input and

output through dendrites and axon, respectively. The connections between units have

associated weights (synapse strength) that influence the impact of the information

passed to the next unit.

Each layer has an associated activation function. The input values from the previous

layer’s units are fed to the activation function, which aggregates them into a single

value that is passed onto the following layer’s units. The middle layers are said to be

hidden because their activation values are not directly accessible from the outside.
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2.2.2 Shallow vs. Deep Networks

The number of hidden layers in NNs determines if they are shallow or deep. Shallow

networks contain few hidden layers and include one-hidden-layer NNs. Deep networks,

on the other hand, are composed by multiple hidden layers (Pasupa and Sunhem,

2016).

Deep learning (DL) methods have achieved high performance in many domains such

as image, video and document classification (Zheng et al., 2016). DL learns data

representation by using multiple processing layers, discovering the complex structure

of high dimensional data with multiple levels of abstraction (Zheng et al., 2016).

For example, for image recognition, layers in different depths represent different in-

formation (Liu and Zaidi, 2016). In this case, the first layers represent the pixels.

Then, the middle layers represent the edges composed by the pixels identified on the

first layers. Finally, the higher layers represent the concepts composed by the edges

identified on the middle layers.

DL networks take into account higher order interactions among the features, which

is advantageous when facing large amounts of data (Liu and Zaidi, 2016). However,

for deep learning to achieve high performance, large datasets are required (Pasupa

and Sunhem, 2016; Zheng et al., 2016; Liu and Zaidi, 2016). Besides, they also

need high computational power (Pasupa and Sunhem, 2016) and require long training

time (Zheng et al., 2016).

Studies have shown that, for smaller datasets, shallow learning achieves better results

than deep learning, yielding lower-biased models and superior convergence (Liu and

Zaidi, 2016), achieving higher performance than deep artificial neural networks (Pa-

supa and Sunhem, 2016; Liu and Zaidi, 2016).

We wish to analyse the relationship between the data and the learning process. The

more complex the learning process, the harder this task is. Besides, we use traditional

datasets, in tabular form, which could be less suitable for deep learning. This way,

we consider the simplest version of NNs: multi-layer perceptron with one-hidden layer

(instead of deep networks).
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2.2.3 One hidden layer architecture

We now provide an example of a neural network with an architecture similar to the

one adopted in our work. We assume a dataset with the same structure as the one

referred to in the beginning of this section: E instances of I independent variables

x1, . . . , xI and one dependent variable y (J = 1). Also, let us consider a NN with a

single hidden layer, as depicted in Figure 2.1.

x1

xI

h1 y

b’’

hN

b’

.

.

.

.

.

.

Figure 2.1: Neural network with I input units, one hidden layer with N units, and

one output unit.

This NN is composed of three layers. The input layer contains I units corresponding

to the independent variables of the dataset. Besides those, there is also a bias unit

(b′) whose value is set to +1. The hidden layer has N units (h1, . . . , hN). This value

is one of the NN’s parameters. This layer also has a bias unit (b′′). The output layer

contains one unit which corresponds to the dependent variable.

Both the input and the hidden layers are fully connected to the following layers,

respectively the hidden and output layers. This means that all the input units are

connected to all the hidden units, and these are connected to the output unit. This

way, the number of weights of a fully connected NN can be obtained by:

W = (I + 1)×N + (N + 1)× J (2.13)

Each connection has a corresponding weight: wni is the weight of the connection

between the ith input unit and the nth hidden unit; w̃jn is the weight of the connection

from the nth hidden unit to the jth output unit.
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2.2.4 Training process

NNs compute the predictions of each of its output units, yj, as:

yj = g̃

(
N∑

n=0

w̃jng

(
I∑

i=0

wnixi

))
(2.14)

where g and g̃ are the activation functions applied to the inputs of the hidden and the

output layers, respectively; wn0 and w̃j0 are the weights of the bias units in the input

and hidden layers, respectively.

The typical training process of NN models consists in iteratively adjusting the weights

seeking the minimisation of a certain error function ε in a process called error back-

propagation. Backpropagation evaluates the derivatives of the error function with

respect to the weights, leading to the update of the weights in each iteration. The

error signal at the nth unit in the hidden layer is:

δn =
∂ε

∂
∑I

i=0wjixi
(2.15)

Typically, in each iteration t, the weights of all the connections (between the input and

hidden layers, but also between the hidden and output layers) are updated according

to:

∆w
(t)
ji = −η ∂ε

∂wji

∣∣∣∣
w(t)

+ µ∆w
(t−1)
ji (2.16)

where η is the learning rate (used to determine how much the update will influence

the weights) and µ is the momentum (used to avoid local minima), which are both

parameterisable values.

2.2.4.1 Tuning parameter values

Since the training of a NN is an iterative process it is important to define when the

process should stop. However, because of the non-linearity of the error functions, it is

hard to define a stopping criterion. If we stop to early, the model may be too biased,

if we stop to late the model may overfit.

In Ripley (2007) the authors state that it is very important to choose good starting

and stopping points for iterative models like NNs. For the starting points, they suggest

a random set of weights whose values should not be too large because, otherwise the

units will be in a saturated state (the units always output values near to 0 or 1).

To avoid saturation, the authors consider another factor, called weight decay (λ) that

tries to reduce the magnitude of the weights in each iteration by:

wji = wji − η
∑
e

yei δ
e
j − 2ηλwji (2.17)
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where yei is the output of the ith unit for the eth instance of the dataset, and δej is the

error signal at unit j obtained with the backpropagation algorithm. Weight decay is

also parameterizable and it is not easy to select the best value (Venables and Ripley,

2002).

2.3 Metalearning

As explained earlier, NNs have multiple parameters to be set, with significant impact

on the model obtained and its performance. This is true for other algorithms as well.

Besides, it is also necessary to choose the algorithms that are best suited for the task

at hand.

Metalearning (MtL) aims at helping in the process of selecting a predictive algorithm

to use on a given dataset (Brazdil et al., 2008). MtL is a sub-field of ML where

algorithms are applied to (meta)data on ML experiments. Its objective is to take

advantage of information obtained from previous tasks to improve the performance in

new tasks. A recent survey on this subject can be found in Lemke et al. (2015), where

the authors overview MtL and the most common techniques used.

This technique is mainly used for the algorithm selection problem (Brazdil and Giraud-

Carrier, 2018), and has also been used to address the most common tasks - classifica-

tion (Brazdil et al., 2003; Ali et al., 2018), regression (Gama and Brazdil, 1995), time

series (Prudêncio and Ludermir, 2004) and clustering (Pimentel and de Carvalho,

2018). These approaches were then extended, for instance, to: selecting parameter

settings for a single algorithm (Gomes et al., 2012); the whole data mining process (Ser-

ban et al., 2013); problems from domains other than machine learning, e.g.: different

optimisation problems (Abreu et al., 2009; Smith-Miles, 2009; Pavelski et al., 2018;

Gutierrez-Rodŕıguez et al., 2019; Chu et al., 2019); and also data streams (Gama and

Kosina, 2011). Furthermore, MtL approaches have been used for automatic parameter

tuning (Molina et al., 2012). Also, a preliminary study developed within this research,

and included in Chapter 4, approaches the use of MtL for parameter selection in neural

networks (Félix et al., 2017).

2.3.1 Algorithm Recommendation

The Algorithm Selection Problem, originally formulated by Rice (1976), consists in

determining the best algorithm to use for a certain dataset. MtL can take advantage

of information previously obtained on several datasets with several algorithms to

approach this problem (Brazdil et al., 2008). This knowledge is used to build a
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metamodel that, given a new dataset, gives the system the ability to recommend

the best algorithm(s).

Figure 2.2 illustrates the MtL process for the algorithm recommendation problem.

ab

dnew

Metafeatures

Performancea,d Metadata

a3
a2

aA ...

a1

d1

d2

d3

dD
...

Metamodel

Metafeatures

Apply 
metamodel

Figure 2.2: Metalearning process for the algorithm recommendation problem.

The process starts (in the left part of the figure) with D datasets d1, . . . , dD and A

algorithms a1, . . . , aA (possibly with associated parameter settings). In a preliminary

phase, the algorithms are applied to the datasets, and the performance obtained by

each algorithm on each dataset is saved.

Then the metalearning process is performed (shaded part of the figure). The datasets

are characterised and the resulting characteristics – metafeatures (Subsection 2.3.2) –

are saved. The metadata is composed of the performances obtained on the previous

phase and the metafeatures computed here.

The metadata is used to build a metadataset with the same structure as a general

ML dataset (described at the beginning of this section): E instances of I independent

variables x1, . . . , xI (the metafeatures) and one dependent variable y. The dependent

variable may be, for example, the best algorithm, the performance of a given algorithm,

or the performance rank of a given algorithm.

Then, metalearning computes a (meta)model m′ that tries to fit the function f such

that

ŷ = f(x1, . . . , xI) (2.18)

which best approximates the true output of y. The learning task to apply to the

metadataset will depend on the nature of the dependent variable.

When a new dataset (dnew) is studied (right part of the figure), the first step is to

compute its metafeatures. The metamodel obtained previously is then applied to this

new metadata in order to select the algorithm and/or set the parameter values that

best suits the new dataset.
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2.3.2 Metafeatures

Metafeatures are values that represent characteristics of a ML experiment, of its input,

or of its output, and aim at describing the knowledge obtained in the past. The design

of metafeatures that contain useful information about the performance of algorithms

is one of the main challenges in metalearning (Brazdil et al., 2008).

Metafeatures are typically categorised as Simple, statistical and information-theoretic;

model-based, and; landmarkers (Brazdil et al., 2008). Next, we describe the different

categories, providing some examples. For a list of frequently used metafeatures, please

refer to Vanschoren (2018).

Simple, statistical and information-theoretic metafeatures: represent the char-

acteristics of the dataset and are the most commonly used.

Simple metafeatures include the number of examples (Brazdil et al., 2003; Gama

and Brazdil, 1995; Kalousis et al., 2004), number of attributes (Gama and

Brazdil, 1995), number of nominal attributes (Ali et al., 2018), proportion of

symbolic attributes (Brazdil et al., 2003; Kalousis et al., 2004) and proportion of

missing values (Brazdil et al., 2003; Kalousis et al., 2004). Some other examples

are correlation and dissimilarity (Pimentel and de Carvalho, 2018) for selecting

clustering algorithms, number of jobs and machines (Pavelski et al., 2018) on

a MtL approach for the flowshop problem, or capacity and demand (Gutierrez-

Rodŕıguez et al., 2019) for selecting meta-heuristics for the vehicle routing prob-

lem.

Statistical measures include skewness (Gama and Brazdil, 1995) and kurto-

sis (Gama and Brazdil, 1995), but also mean, median and standard deviation of

attributes (Chu et al., 2019) or default accuracy (Ali et al., 2018).

Information-theoretic measures include entropy of classes (Brazdil et al., 2003;

Gama and Brazdil, 1995; Kalousis et al., 2004; Ali et al., 2018) or attributes (Gama

and Brazdil, 1995; Ali et al., 2018) and mean mutual information of class and

attributes (Brazdil et al., 2003; Gama and Brazdil, 1995).

Model-based metafeatures: based on the model applied to the data. Examples

of this type of metafeatures are: error correlation of pairs of algorithms among

different datasets (Kalousis et al., 2004), flowshop objective (Pavelski et al.,

2018), fitness distance correlation (Chu et al., 2019) and number of trees (Ali

et al., 2018).
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Landmarkers: a quick estimate of the predictive power of an algorithm on the

data. They can be obtained in one of two ways: running a simplified version

of the algorithm on the data, or running the algorithm on a smaller portion

of the dataset. Example landmarkers are: the decision node (Bensusan and

Giraud-Carrier, 2000), one hidden layer NN performance (Félix et al., 2017) or

information on feasible solutions (Gutierrez-Rodŕıguez et al., 2019).

The design of metafeatures that contain useful information about the performance of

algorithms is one of the main challenges in metalearning (Brazdil et al., 2008). For

example, in Félix et al. (2017) (and also included in Chapter 4) a set of metafeatures

with neural network specific landmarkers was proposed. The specific neural network

landmarkers improve the metamodel’s performance.

2.4 Transfer Learning

Traditional ML and DM methods work under the assumption that the training and

testing data are drawn from the same distribution. When the distribution changes, ML

models need to be rebuilt from scratch in order to match the new data distribution.

This process can be computationally expensive or even impossible if we have large

datasets, slow learning processes or if there is no possibility of saving the training

data.

There is a need for high-performance learners trained on old data that can be applied

to the new data. This can be achieved by transfer learning (TL). TL is inspired in

the human ability of reusing learned information (Pan and Yang, 2010). For example,

it is easier to recognise pears after learning how to recognise apples. Also, it is easier

to learn to play a musical instrument (say, the piano) if one has previous musical

knowledge (for example, by knowing how to play the guitar) compared to a person

with no musical knowledge at all. Transfer learning aims at producing a model for

a target problem with limited training data (or none at all), by exploring knowledge

obtained on a different source problem.

2.4.1 Definition and notation

TL can be characterised by the presence or absence of labelled instances in the source

and target domains. In the literature, there is no consensus in the names given to

each transfer scenario, when concerning this issue. The same setup is given different

names by different authors, as shown on Table 2.1.
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Table 2.1: Classification of TL mechanisms according to the existence of source and

target labelled data.

Source

Present Absent

T
ar

ge
t P

re
se

n
t

Supervised

(Chattopadhyay et al., 2012; Daumé III, 2009)

Semi-supervised

(Blitzer et al., 2006; Gong et al., 2012; Liu et al., 2017)

Inductive

(Pan and Yang, 2010)

Supervised informed (Cook et al., 2013; Feuz and Cook, 2015)

Unsupervised

(Pan and Yang, 2010)

Unsupervised informed

(Cook et al., 2013; Feuz and Cook, 2015)

A
b
se

n
t

Semi-supervised

(Chattopadhyay et al., 2012; Daumé III, 2009)

Unsupervised

(Blitzer et al., 2006; Gong et al., 2012; Liu et al., 2017)

Transductive

(Pan and Yang, 2010)

Supervised uninformed

(Cook et al., 2013; Feuz and Cook, 2015)

Unsupervised

(Pan and Yang, 2010)

Unsupervised uninformed

(Cook et al., 2013; Feuz and Cook, 2015)

In the case we have abundant labelled source data, different names are given to the

problem and these are mostly related with the amount of labelled target data: if it is

present but limited, some authors name it supervised transfer learning (Chattopadhyay

et al., 2012; Daumé III, 2009) and others name it semi-supervised transfer learn-

ing (Blitzer et al., 2006; Gong et al., 2012; Liu et al., 2017); if there is no labelled target

data some authors name it semi-supervised transfer learning (Chattopadhyay et al.,

2012; Daumé III, 2009) and others name it unsupervised transfer learning (Blitzer

et al., 2006; Gong et al., 2012; Liu et al., 2017).

A different nomenclature is adopted in Pan and Yang (2010), where the authors sepa-

rate the problems by the existence of labelled source data. If there is none, the problem

is called unsupervised transfer learning. If labelled source data is present together with

some labelled target data, they call it inductive transfer learning. Otherwise, if labelled

source data is present, but there is no labelled target data, they call it transductive

transfer learning.

A final example is the nomenclature used by Cook et al. (2013) and Feuz and Cook

(2015). In this case, the presence or absence of labelled source data determines

the problem to be supervised or unsupervised, respectively. On the other hand, the

presence or absence of labelled target data determines if the problem is informed or

uninformed, respectively. In the remainder of this chapter, we refer to the presence

or absence of labelled data on the source and domains instead of using any of the

classifications referred above.
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To formally define transfer learning, first we will introduce some notation. For consis-

tency, the notation and definition match the ones used in two recent transfer learning

surveys (Pan and Yang, 2010; Weiss et al., 2016). For illustration we will continue using

the dataset introduced in the beginning of this chapter: a generic dataset containing

E instances of I independent variables x1, . . . , xI and one dependent variable y. Thus,

xei is the value of the ith independent variable in the eth instance of the dataset.

Notation: A domain D is defined by two parts: a feature space X and a marginal

probability distribution P (X), where X =
{
x1, . . . , xE

}
∈ X . Considering the generic

dataset, xe is the eth feature vector (instance), E is the number of feature vectors in

X, X is the space of all possible feature vectors, and X is a particular learning sample.

For a given domainD, a task T is defined by two parts: a label space Y and a predictive

function f(.), which is learned by the feature vector and label pairs {xe, ye}, where

xe ∈ X and ye ∈ Y . Considering the generic dataset, Y is the set of possible values

for the dependent variable, and f(x) is the learner that predicts the label value for

the instance x.

From the definitions above, we have a domainD = {X , P (X)} and task T = {Y , f(.))}.
Now, DS is defined as the source domain data where DS =

{
(x1S, y

1
S), . . . , (xES , y

E
S )
}

,

where xeS ∈ X is the eth data instance of DS and yeS ∈ Y is the corresponding

label for xeS. In the same way, DT is defined as the target domain data where

DT =
{

(x1T , y
1
T ), . . . , (xET , y

E
T )
}

, where xeT ∈ X is the eth data instance of DT and

yeT ∈ Y is the corresponding label for xeT .

Furthermore, the source task is denoted as TS, the target task as TT , the source

predictive function as fS(.), and the target predictive function as fT (.).

Definition: Given a source domain DS and a learning task TS, a target domain DT

and a learning task TT , transfer learning aims to help improve the learning of the target

predictive function fT (.) in DT using the knowledge in DS and TS, where DS 6= DT ,

or TS 6= TT .

Given the notation and definition we will now discuss the situations in which transfer

learning can occur. A domain can be defined as D = {X , P (X)} and a task can be

defined as T = {Y , f(.))}, which is the same as T = {Y , P (Y |X)}. Therefore, we have

that DS = {XS, P (XS)} and TS = {YS, P (YS|XS)} for the source problem. The same

happens for the target problem: DT = {XT , P (XT )} and TT = {YT , P (YT |XT )}. This

way, transfer learning can occur when we have at least one of the following situations:
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• XS 6= XT : the domains’ feature spaces are different. This is claaed heterogeneous

transfer learning (Day and Khoshgoftaar, 2017) and its most common approach

consists in aligning the feature spaces. Similarly, when the feature spaces are

the same (XS = XT ) it is called homogeneous transfer learning. It usually aims

at reducing distribution differences.

• P (XS) 6= P (XT ): this happens when the domains have the same features, but

their marginal distributions are different (e.g., different frequencies in domain-

specific features). A common approach in this case is domain adaptation, which

consists in altering a source domain trying to make its distribution closer to the

target’s.

• YS 6= YT : there is a mismatch in the class space (e.g. different number of classes

in the source and target problems).

• P (YS|XS) 6= P (YT |XT ): the conditional probability distribution of the source

and target domains are different. This happens, for example, when the same

feature value has two different meanings on the source and target domains.

There are three issues to take into account in transfer learning: what, how and when

to transfer (Pan and Yang, 2010). The first question, what to transfer?, concerns the

type of information transferred between the problems. The question how to transfer?

concerns the algorithms used for the transfer of information between problems. The

last question, when to transfer?, means to know in which situations the transfer should

be performed.

2.4.2 What and how to transfer?

The first two questions (what to transfer? and how to transfer? ) are closely related.

Next, we will categorise the TL mechanisms in terms of the type of information

transferred between problems (what to transfer? ) while, at the same time, we will

present algorithms used for the transfer of information between problems (how to

transfer? ). At the end of this subsection (Table 2.2), we present a summary of this

TL categorisation. The transferred information belongs to one of four categories –

instances, parameters, relational knowledge or features:

1. Instance transfer occurs when instances from the source domain are used for

training the model for the target domain. This type of transfer occurs mostly

on homogeneous TL scenarios. For example, the algorithm TrAdaBoost (Dai

et al., 2007b) uses parts of the labelled train data (source) that have the same
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distribution as the test data (target) to help constructing the target classi-

fication model. Also, the algorithm kernel mean matching (KMM) (Huang

et al., 2007) tries to match distributions in source and target feature spaces.

Another example is the algorithm Kullback-Leibler Importance Estimation Proce-

dure (KLIEP) (Sugiyama et al., 2008) that uses the Kullback-Leibler divergence

to find important instances to be transferred from the source to the target

problem. In Liu et al. (2018) an ensemble framework (TrResampling) is proposed

to transfer instances for classification tasks.

2. Parameter transfer occurs when the source and target learners share pa-

rameters or when ensemble learners are created by combining multiple source

learners to form an improved target learner. Approaches to this type of transfer

include weighting several source models according to target characteristics (Gao

et al., 2008), from within a group of classifiers finding the source classifier that

minimizes the error on the target (that happens in Yao and Doretto (2010) in

algorithms MultiSource TrAdaBoost – that handles the conditional distribution

differences between domains – and TaskTrAdaBoost), weighted training with

source data to predict target pseudo-labels and with all this information then

predict the target final labels. This is the case of algorithms Conditional Proba-

bility based Multi-source Domain Adaptation (CP-MDA) (Chattopadhyay et al.,

2012) and Domain Selection Machine (DSM) (Duan et al., 2012b). These al-

gorithms handle both marginal and conditional distribution differences between

the domains. Finally, another approach is to directly transfer the parameters

between problems. This is the case in algorithm Multi Model Knowledge Transfer

(MMKT) (Tommasi et al., 2010), that handles the conditional distribution

differences between domains.

3. Relational knowledge transfer occurs when the transferred knowledge is

based on some relationship between the source and target domains. This is the

least used approach in TL. There are some examples of this type of transfer in

the literature. Algorithm Deep Transfer via Markov logic (DTM) (Davis and

Domingos, 2009) discovers structural regularities in the source and instantiates

them with predicates from the target problem. Another example is the algorithm

Relational Adaptive bootstraPping (RAP) (Li et al., 2012), which uses sentiment

words as a link between source and target domains and iteratively builds a

target classifier from the two domains by scoring sentence structure patterns,

while trying to avoid the marginal distribution differences between the domains.

In Xiong et al. (2018), models are transferred to improve anomaly detection.
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In another approach (Saeedi et al., 2016) the authors transfer data mapping

between sensors.

4. Feature transfer occurs when features are transferred across domains. This

type of transfer is the most used when dealing with heterogeneous TL settings.

Feature transfer can be defined as symmetric or asymmetric (Weiss et al., 2016):

(a) In symmetric feature transfer, a common latent feature space between the

domains is discovered.

i. For homogeneous TL problems, usually the aim is to overcome the

marginal distribution differences among the domains. This can be

achieved by discovering a set of latent features between the source

and target problems, as in the algorithms Domain Adaptation of Sen-

timent classifiers (DAS) (Glorot et al., 2011) and Transfer Component

Analysis (TCA) (Pan et al., 2011). Other approaches include finding

correspondences between features (Wang and Mahadevan, 2008), learn

feature representations by modelling co-occurrence between domain-

independent and domain-specific features (as in algorithm Spectral Fea-

ture Alignment (SFA) (Pan et al., 2010)), or finding domain-independent

features (as in algorithm geodesic flow kernel (GFK) (Gong et al.,

2012)).

ii. For heterogeneous TL problems the most usual approaches are dis-

covering common features, clustering and feature augmentation. In the

first technique, the algorithms find common sets of (present or latent)

features between the domains. The target model is trained with the

source data and applied to the target problem. This happens, for exam-

ple, in Blitzer et al. (2007), Blitzer et al. (2008), Pan et al. (2008), and

Raina et al. (2007) and also in the algorithms Structural Correspon-

dence Learning (SCL) (Blitzer et al., 2006), Topic-bridged probabilistic

semantic analysis (TPLSA) (Xue et al., 2008), Heterogeneous Spectral

Mapping (HeMap) (Shi et al., 2010), Translator of Text to Images

(TTI) (Qi et al., 2011), Domain Adaptation using Manifold Alignment

(DAMA) (Wang and Mahadevan, 2011) and Heterogeneous Transfer

Learning for Text Classification (HTLIC) (Zhu et al., 2011). The

clustering technique consists in clustering source and target data simul-

taneously to infer common structures between the domains. This is the

case in the algorithms Co-clustering based classification (CoCC) (Dai

et al., 2007a), Self-taught clustering (STC) (Dai et al., 2008) and Trans-
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fer Discriminative Analysis (TDA) (Wang et al., 2008) The feature

augmentation technique consists in adding target and common features

to the source feature set. This technique is implemented in algo-

rithms Heterogeneous feature adaptation (HFA) (Duan et al., 2012c)

and Semi-supervised HFA (SHFA) (Li et al., 2014). Other approaches

include modelling the relevance of features by using metafeatures (Lee

et al., 2007) and use manually paired sets of features to be trans-

ferred. This last approach is used for example in the algorithm Cross-

Language Text Classification using Structural Correspondence Learning

(CL-SCL) (Prettenhofer and Stein, 2010) by translating words from

English to other languages to be able to use the models created for

texts written in English to classify texts in other languages.

(b) In asymmetric feature transfer, the source features are re-weighted to

resemble the target features.

i. For homogeneous TL problems, the most common approach is to first

learn target pseudo-labels by using the source problem for training and

then using the pseudo-labels to learn the final target labels. This tech-

nique can be used to approximate the domains marginal (as happens in

the Domain Transfer Multiple Kernell Learner (DTMKL) (Duan et al.,

2012a)) or conditional distribution (as in the Feature Augmentation

Method (FAM) (Daumé III, 2009)), and even both (as is the case of

the algorithm Joint Distribution Adaptation (JDA) (Long et al., 2013)).

ii. For heterogeneous TL problems, usually a transformation from the

source to the target is found. This happens in Multiple Outlook MAP-

ping (MOMAP) (Harel and Mannor, 2010), Asymmetric Regularized

cross-domain transformation (ARC-t) (Kulis et al., 2011), Sparse Het-

erogeneous Feature Representation (SHFR) (Zhou et al., 2014b) and

Hybrid Heterogeneous Transfer learning (HHTL) (Zhou et al., 2014a).

Another approach consists in training the target model on a set of

similar source features. This is the case of the algorithm Heterogeneous

Feature Prediction (HFP) (Nam et al., 2017), where the similarity of

features is obtained by a Kolmogorov-Smirnov test.

Table 2.2 contains a summary of the referred TL algorithms, considering what and

how to transfer. Since the problems considered on the algorithms described do not

match our problems, instead of reusing one of the referred algorithms, we create a

weight transfer algorithm described later on Subsection 5.2.1.
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Table 2.2: Summary of transfer learning algorithms.

Instance Transfer Parameter Transfer Rel. Knw. Transfer

KMM (Huang et al., 2007) CP-MDA (Chattopadhyay et al., 2012) DTM (Davis and Domingos, 2009)

KLIEP (Sugiyama et al., 2008) DSM (Duan et al., 2012b) RAP (Li et al., 2012)

MMKT (Tommasi et al., 2010)

Feature Transfer

Homogeneous Heterogeneous

S
y
m

m
et

ri
c

DAS (Glorot et al., 2011) SCL (Blitzer et al., 2006) CoCC (Dai et al., 2007a)

TCA (Pan et al., 2011) TPLSA (Xue et al., 2008) STC (Dai et al., 2008)

SFA (Pan et al., 2010) HeMap (Shi et al., 2010) TDA (Wang et al., 2008)

GFK (Gong et al., 2012) TTI (Qi et al., 2011) HFA (Duan et al., 2012c)

DAMA (Wang and Mahadevan, 2011) SHFA (Li et al., 2014)

HTLIC (Zhu et al., 2011) CL-SCL (Prettenhofer and Stein, 2010)

A
sy

m
m

. DTMKL (Duan et al., 2012a) MOMAP (Harel and Mannor, 2010) HHTL (Zhou et al., 2014a)

FAM (Daumé III, 2009) ARC-t (Kulis et al., 2011) HFP (Nam et al., 2017)

JDA (Long et al., 2013) SHFR (Zhou et al., 2014b)

2.4.3 When to transfer?

The ultimate objective of knowing when to transfer is to avoid negative transfer : when

the transfer can harm the learning process in the target task. This issue is referred

in Rosenstein et al. (2005), where the authors wish to identify when transfer learning

will hurt the performance of the algorithm instead of improving it.

In the literature, there are several approaches used to try to avoid negative transfer,

for example:

• Measuring data relatedness, group (or cluster) the several tasks at hand, and

then only transfer between tasks that belong to the same group (Bakker and

Heskes, 2003; Ben-David and Schuller, 2003; Argyriou et al., 2008; Ge et al.,

2014);

• Selecting a limited amount of target data to be labelled (Liao et al., 2005);

• Removing misleading source instances (Jiang and Zhai, 2007; Ngiam et al., 2018);

• Accounting for measures that illustrate the gain in transferring, like trade-off of

transferring (Blitzer et al., 2008), transferability (Eaton et al., 2008) or PDM:

Predictive Distribution Matching (Seah et al., 2013);

• Choosing only some of the source data to be transferred (Mahmud and Ray,

2008) or just proper subsets of common features (Wang et al., 2008);
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• Weight the transferred information, such that the most related sources have

higher weights (Tommasi et al., 2010), which can be extended by also weighting

the instances to be transferred (Yao and Doretto, 2010);

• Selecting only the most relevant domains (Duan et al., 2012b), which can be

done by using specific metrics, as is the example of ROD: Rank of Domain (Gong

et al., 2012) to evaluate which source domain to choose for transfer.

In our work, we aim to use MtL to help preventing negative transfer. This way, instead

of reusing the referred metrics, we generate metafeatures that will be used on the MtL

process to try to predict when the transfer will have a positive impact.

2.4.4 Metalearning and Transfer Learning

Some work has been done recently in using metalearning together with transfer learn-

ing. Metafeatures are used in Biondi and Prati (2015) for calculating similarities

between the datasets. The algorithm used for this task is the k-nearest neighbours.

In Aiolli (2012) and Do and Ng (2006) there is no use of metafeatures, since the

transfers are made without choosing the best source dataset to use with a certain

target dataset. In Aiolli (2012), metalearning is used to find matrix transformations

capable of producing good kernel matrices for the source tasks. The matrices will

then be transferred for the target tasks. The results are evaluated by performance

measures as accuracy (Do and Ng, 2006) or area under the ROC curve (Biondi and

Prati, 2015; Aiolli, 2012).

The transferred objects found on the studied literature are SVM parameter settings

in Biondi and Prati (2015), the kernel matrices in Aiolli (2012) and the parameter

function (responsible for mapping statistics to parameters in “bag-of-words” text

classification problems) in Do and Ng (2006).

In Baghoussi and Mendes-Moreira (2018), several base learners are used for several

datasets. Then, the metaknowledge obtained in the first step is transferred to the

data.

Finally, our previous publications Félix et al. (2015) and Félix et al. (2016) (included in

Chapter 5) are preliminary studies on the impact of transfer learning on homogeneous

neural networks. The results obtained in both works suggest that transfer learning,

by transferring weights, can be used to improve the neural networks performance.
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2.5 Summary

As referred in Chapter 1, our research aims at providing data scientists with methods

to overcome the difficulties in tuning NNs. As described in Section 2.2, as the NN

training is an iterative process, it is important to correctly define its starting point and

stopping criterion. Nonetheless, it is also important to define the architecture to be

used and avoid unit saturation on the training process. For this, we need to correctly

parameterise and initialise a NN.

As referred, parameterisation is a difficult and time-consuming process that requires

user expertise. It is expected to be difficult to find a single combination of parameter

values that generally leads to high performance. This way, we aim at using MtL to

help in the parameterisation process, by taking advantage of experience acquired on

previously learned NNs. For this, as explained in Section 2.3, we will need to design a

set of informative metafeatures capable of describing the NNs’ behaviour when faced

with different combinations of parameter values. MtL will approach the parameter

selection problem with the ML tasks referred in Section 2.1.

It was also referred in Section 2.2 that it is very important to choose a good starting

point for a NN, i.e., its initial weights. The most common approach for this problem is

starting the NNs with a random set of weights. However, training in NNs is an iterative

process that consists in iteratively adjusting the connections’ weights to minimise the

NNs’ prediction error. If the initial weights are too far from the optimal values, the

training process will take too much time. Bearing this in mind, we wish to provide

data scientists with a method to initialise the NNs, by transferring weights (relational

knowledge transfer) from NNs trained previously for datasets with domains different

from the one at hand (heterogeneous TL).

However, we need to make sure that the transfer will not harm the NNs’ performance

instead of improving it. We aim at using MtL to predict the transfer’s impact and with

this prevent negative transfer. For this, MtL will take advantage of previous transfer

experiments to predict if transferring between specific source and target datasets will

have positive or negative impact on the NN’s performance. This will depend on source

and target data characteristics, and also characteristics related to the transfers itself.

This way, we will need to design informative metafeatures capable of describing the

source and target data, but also the transfer behaviour. MtL will approach the source

network selection problem with the ML tasks referred in Section 2.1.



Chapter 3

Empirical Study of the

Performance of Neural Networks

Machine Learning algorithms typically have parameters that potentially enable their

adaptation to new tasks. These added degrees of freedom are also a source of human

and computational time consumption since finding a good combination of parameters

is rarely a trivial task. Specifically, in Neural Network (NN) learning there are no

generally accepted rules for parameter selection given a new learning problem. The

commonly accepted solution is to perform a more or less intense and blind search in

a promising region of the parameters’ space for each new dataset in hand.

In this chapter we aim at answering RQ1(Chapter 1): How do different parameter

values impact the performance of NNs? To answer this question, we start by studying

the impact of running neural networks with several different parameter value combi-

nations (parameterisations). We study the parameterisations’ average performance,

but also the impact on performance of each parameter value separately. However, as

an average good parameterisation may not be good for every dataset, we also study

the robustness of the results of each parameterisation.

Next, we identify the datasets used for our study and the neural network implemen-

tation considered (Section 3.1). Then we define the experimental setup (Section 3.2)

considered for the study described in this chapter, followed by the results obtained

(Section 3.3). Just before the Summary (Section 3.5), this chapter also includes a

“cheat-sheet” (Section 3.4) that can be used to select subsets of parameters that lead

to average high performance. With this, the data scientist can significantly reduce the

grid search needed.

33
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3.1 Datasets and neural network implementation

We use the same datasets for all the four phases of our research. These are described

next, followed by the neural network implementation considered throughout the study.

3.1.1 Datasets

Throughout our research we use a group of benchmark regression datasets composed

of numerical variables collected from UCI (Lichman, 2013), shown on Table 3.1.

Table 3.1: UCI Datasets used and number of datasets generated from them.

id name nr. nr. nr.

examples attributes datasets

1 Airfoil Self-Noise 1503 5 1

2 * CBMNPP1 11934 15 2

3 Combined Cycle Power Plant 9568 4 1

4 Communities and Crime 1993 101 1

s 5 * Communities and Crime Unnormalized 1901 119 18

6 Concrete Compressive Strength 1030 8 1

7 Computer Hardware 208 9 1

8, 9 Challenger USA Space Shuttle O-Ring 23 2 2

10 Online News Popularity 39644 58 1

11 * Parkinsons Telemonitoring 5875 21 2

12 * Concrete Slump Test 103 9 3

13 Buzz in social media 28179 96 1

14, 15 Wine Quality 1599/4898 11 2

16 Yacht Hydrodynamics 308 6 1

Some of these datasets (marked with *) have more than one dependent variable. In

that case, several datasets are created by splitting the original dataset by dependent

variable. The result is the group of datasets shown on Table A.1 in Appendix A.

With this, we can also evaluate and compare the behaviour of the neural networks for

similar and different datasets.

1Condition Based Maintenance of Naval Propulsion Plants
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3.1.2 Neural network implementation

We study shallow neural networks for regression on the datasets referred previously.

The implementation considered for empirical validation is R’s nnet (Venables and

Ripley, 2002), which implements backpropagation for feed-forward NNs with only one

hidden layer. This implementation allows several parameters to be set. In our study,

we focus on the following:

• size: the number of units in the hidden layer;

• Wts : initial weights of the network;

• decay : value for the decay parameter (to be considered in the weight update in

each iteration as referred in Equation 2.17);

• abstol : stop iterating if the fitting criterion falls below this value, indicating a

perfect fit.

Besides, we set the parameter linout (use linear instead of logistic output units) to

true, because we are looking at regression problems, and maxit (maximum number

of iterations) to 100000, a number high enough so that the neural network does not

stop before convergence is reached. Moreover, we set formula = target ~ . so that

the neural network considers all the datasets’ features for constructing the model.

3.2 Experimental Setup

With this experimental approach we aim at studying the neural networks performance

according to their size (number of units in the hidden layer), the initial weights to

use (Wts), weight penalty (decay) and the fitting criterion (abstol).

These experiments enable us to determine whether it is possible to find a good set of

parameters and how dependent it is of the dataset. We will also collect data that will

be fundamental for the metalearning study.

Figure 3.1 shows the schema of the phases considered in our research, first presented in

Chapter 1 (Figure 1.2). The shaded area of the figure represents the study described

in this chapter.

We performed a grid search over several neural network parameters, measuring the

final predictive and computational performance. The study of the behaviour of neural

networks with different parameterisations is conducted by using all the 37 datasets

referred in Table A.1 in Appendix A, marked in the column “ES”. The grid search
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Figure 3.1: Metalearning for multiple domain Transfer learning experimental process.

The shaded area corresponds to the experimental setup considered for this study.

follows the experiment performed in Félix et al. (2017). For each dataset, we test

every possible combination of:

• distribution (pD): the distribution from which the neural network initial set

of weights is generated: pD ∈ {u, b}, where

– u = U [0, 1]: the weights are randomly generated following a uniform

distribution of values between 0 and 1;

– b = N
(

0,
√

1/I
)

, the distribution recommended in Bishop et al. (1995):

the weights are randomly generated following a normal distribution with

mean 0 and standard deviation 1/I, where I is the number of independent

variables of the dataset.

• size (pn): number of units in the hidden layer: pn ∈ {3, 5, 10, 20}

• decay (pd): parameter for weight decay: pd = 1× 10−i, i ∈ [0, 4]

• abstol (pa): stopping criterion: pa = 1× 10−j, j ∈ [3, 5]
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In this experiment we are, then, considering 2 × 4 × 5 × 3 = 120 different parameter

combinations. From this point forward, we refer to a combination of the above-

mentioned parameter values as a parameterisation: p = (pD, pn, pd, pa). Table D.1

in Appendix D contains the 120 parameterisations considered.

For simplification, in this chapter, we will refer to a specific parameterisation by its

id, also presented on the table. For example, p1 refers to the parameterisation with

id = 1: p1 = (b, 3, 0.0001, 0.00001).

Since the initial weights are generated randomly, for each neural network parameteri-

sation, we generate 20 different sets of weights. With this, we have 20 × 120 = 2400

different neural network parameterisations that are applied to each of the datasets

considered.

3.2.1 Performance evaluation

The neural networks’ performance is estimated with 10-fold cross-validation: we gen-

erate ten random disjoint samples that fully cover the dataset and repeat the machine

learning process ten times. Each iteration (fold), a different sample is considered as

testset and the remaining data is used as trainset, where the network learns until

convergence.

For each fold, we evaluate the following:

• MSE0: the predictive performance in terms of MSE (Equation 2.4) on the

testset before training. This allows us to evaluate the network’s starting point;

• duration: the time needed for convergence;

• MSE: the predictive performance in terms of MSE (Equation 2.4) on the testset

after training.

At the end of the process, the neural network’s performance is the set of averages for

each of the metrics obtained for the folds. These values are saved (in the figure, in

PR), together with the parameterisation and the initial and average final weights.
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3.3 Results

Next, we evaluate the parameterisations, identifying the average best (Subsection 3.3.1)

and worst (Subsection 3.3.2) performing ones and their rankings (Subsection 3.3.3).

We study the impact of individual parameter values on the performance (Subsec-

tion 3.3.4), followed by a robustness analysis of the results (Subsection 3.3.5).

After that, we study the behaviour of neural networks for four datasets in which we

obtained particularly low performance (Subsection 3.3.6). Finally, we evaluate neural

networks for similar datasets (Subsection 3.3.7).

3.3.1 Best parameterisations

First, we want to assess if there is a parameterisation that generally originates high

performance. This way, for each dataset, we determined the ones that originate the

lower MSE (best parameterisations, pgrid). For completion, the results are presented

on Table D.3a in Appendix D.

The histograms in Figure 3.2 show the frequency of each parameter value in the best

parameterisations.
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Figure 3.2: Histogram of parameters for best parameterisation found.

As we can see in the histograms, we cannot generalise the best value for any of the

parameters. However, if we consider the best performing parameter value for the

majority of the datasets, a good parameterisation to start with would be:

• pBEST.MAJ = (u, 20, 0.0001, 0.0001) = p107.
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Besides that, some of the best pgrid parameterisations repeat for more than one dataset,

as presented on Table 3.2.

Table 3.2: Repeated best parameterisations.

ID pD pn pd pa datasets

62 u 3 0.0001 0.0001 5 4, 5 12, 5 18

3 b 3 0.0001 0.001 5 17, 7

47 b 20 0.0001 0.0001 2 2, 16

51 b 20 0.001 0.001 11, 11 2

66 u 3 0.001 0.001 5 2, 5 14

3.3.2 Worst parameterisation

The worst parameterisations for each dataset are presented on Table D.3b in Ap-

pendix D. The histogram in Figure 3.3 shows the distribution of the parameter values

in the worst parameterisations.
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Figure 3.3: Histogram of parameters for worst parameterisation found.

With this, we could say that parameterisation pWORST = (u, 3, 0.0001, 0.00001) = p64

is a bad choice. Table 3.3 shows the parameterisations pWORST that appear for more

than one dataset.
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Table 3.3: Repeated worst parameterisations.

ID pD pn pd pa datasets

13 b 3 1 0.00001 2 1, 3, 5 18, 11 2, 12 3

14 b 3 1 0.001 2 2, 5 10, 5 12, 7

62 u 3 0.0001 0.0001 5 9, 5 11, 5 15, 11

93 u 10 0.0001 0.001 5 8, 5 14, 13

1 b 3 0.0001 0.00001 5 5, 5 13

3 b 3 0.0001 0.001 5 1, 5 7

91 u 10 0.0001 0.00001 5 17, 12 1

92 u 10 0.0001 0.0001 5 6, 12 2

3.3.3 Ranking parameterisations

We were not able to generalise a good or bad parameterisation. However, we can try to

find parameterisations that, in average, correspond to higher performance. We ranked

the parameterisations for each dataset in terms of performance. Table 3.4 shows the

average top- and bottom-5 parameterisations, and their average rankings.

Table 3.4: Ranking: top- and bottom-5 parameterisations (average).

Top-5 Bottom-5

id rank id rank

112 40.14 14 80.95

54 40.16 13 81.11

114 40.73 76 81.65

52 40.95 92 82.81

115 41.00 91 84.62

We must highlight that the parameterisations on the top-5 share some parameter

values:

• p52D = p54D = b or p112D = p114D = p115D = u

• p112n = p54n = p114n = p52n = p115n = 20

• p112d = p54d = p114d = p52d = 0.01

• p112a = p52a = p115a = 0.00001 or p54a = p114a = 0.001
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Thus, a parameterisation containing these parameters can be used for an average high

performance:

pRANK.TOP5.A = (b, 20, 0.01, 0.00001) = p52

pRANK.TOP5.B = (b, 20, 0.001, 0.001) = p54

pRANK.TOP5.C = (u, 20, 0.01, 0.00001) = p112

pRANK.TOP5.D = (u, 20, 0.001, 0.001) = p114

Table D.2 in Appendix D shows the top-5 parameterisations for each dataset. Some

parameterisations appear in the top-5 more than once (Table 3.5). All the parame-

terisations in bold share the parameter pD = b. This suggests that neural networks

should be initialised with weights generated following that distribution.

Table 3.5: Parameterisations that appear on top-5 more than once.

freq 2 3 4 5 6 7

p 11, 14, 15, 16, 17, 40, 46, 51, 54, 61, 3, 13, 47, 49, 55, 1, 42, 50, 52 2 53

18, 27, 48, 63, 73, 65, 66, 74, 100, 102, 101, 107, 108, 111

75, 85, 87, 110, 112, 106, 109, 113, 116

118, 119, 120

3.3.4 Parameters vs Performance

Rankings hide information, since two parameterisations with different rankings may

have similar performance on a specific dataset. This way, we evaluate the impact

of single parameter values on the neural networks’ performance metrics considered:

MSE0, duration and MSE (Figure 3.4).
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Figure 3.4: Neural network performance by pD. The xx axis corresponds to the

datasets on the same order as in Table A.1 in Appendix A. The yy axis refers to the

value of each performance metric.
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The neural networks with pD = b have a better starting point than the networks

with pD = u, as can be seen if Figure 3.4a. This suggests that the first are faster to

converge. This has proven to be true, since networks with pD = b almost always have

lower duration (see Figure 3.4b). Besides that, as we can see in Figure 3.4c, the MSE

of the networks with pD = b is also generally lower, confirming the final hypothesis on

the previous section.

The value used for the parameter pn influences the starting point: networks with more

hidden units have higher MSE0 than smaller networks, as can be seen in Figure 3.5a.

Furthermore, larger networks take longer to converge, as shown in Figure 3.5b.
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Figure 3.5: Neural network performance by pn. The xx axis corresponds to the

datasets on the same order as in Table A.1 in Appendix A. The yy axis refers to

the value of each performance metric.

As for parameter pd (value for parameter decay), smaller values generally imply longer

training processes (Figure 3.6a) and, in most cases, worst performance (Figure 3.6b).
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Figure 3.6: Neural network performance by pd. The xx axis corresponds to the datasets

on the same order as in Table A.1 in Appendix A. The yy axis refers to the value of

each performance metric.
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There does not seem to be a general connection between pn and the performance

achieved. Instead, it seems to depend on the data. Also, the value used for pd does

not influence the networks’ starting point. This is because this value is used for

the weight update during the training process and the MSE0 is measured before.

As for the parameter pa (value used for abstol), there does not seem to be any

general relationship between its value and the neural networks starting point, duration

or performance. For completion, the plots showing these results are presented in

Appendix B: Figures B.1, B.2a, B.2b, B.3a and B.3b, respectively.

3.3.5 Robustness of the performance results

Next, we analyse the parameterisations in terms of average performance over the

datasets. The histogram in Figure 3.7 shows that there is a group of seven parame-
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Figure 3.7: Histogram of average error by parameterisation.

terisations that originate the lower average error. These are presented on Table 3.6.

Table 3.6: Parameterisations that originate the lower average error.

ID pD pn pd pa ID pD pn pd pa ID pD pn pd pa

25 b 5 0.1 0.00001 40 b 10 0.1 0.00001 101 u 10 0.1 0.0001

26 b 5 0.1 0.0001 41 b 10 0.1 0.0001

27 b 5 0.1 0.001 42 b 10 0.1 0.001

We need to highlight that all these parameterisations have in common pd = 0.1 and

all except one pD = b. Also, 1/3 of the parameterisations originate errors between 0.22
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and 0.26. Besides that, there is a set of fifteen parameterisations (Table 3.7) that

originate worst performance.

Table 3.7: Parameterisations that originate worst performance.

ID pD pn pd pa ID pD pn pd pa ID pD pn pd pa

1 b 3 0.0001 0.00001 61 u 3 0.0001 0.00001 91 u 10 0.0001 0.00001

2 b 3 0.0001 0.0001 62 u 3 0.0001 0.0001 92 u 10 0.0001 0.0001

3 b 3 0.0001 0.001 63 u 3 0.0001 0.001 93 u 10 0.0001 0.001

16 b 5 0.0001 0.00001 76 u 5 0.0001 0.00001

17 b 5 0.0001 0.0001 77 u 5 0.0001 0.0001

18 b 5 0.0001 0.001 78 u 5 0.0001 0.001

Here we need to highlight the only parameter value common to all these parame-

terisations: pd = 0.0001. However, besides the average, we also need to consider

the variance in the neural networks (Figure 3.8). We can see that most of the
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Figure 3.8: Histogram of variance in error by parameterisation.

parameterisations have low variance, suggesting robust results. There is nonetheless

a set of four parameterisations with very high variance (Table 3.8).

Table 3.8: Parameterisations with high variance.

ID pD pn pd pa

1 b 3 0.0001 0.00001

16 b 5 0.0001 0.00001

61 u 3 0.0001 0.00001

62 u 3 0.0001 0.0001
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Note that these also belong to the set of parameterisations that originate worst

performance. Figure 3.9 shows the comparison of the average and variance of the

MSE.
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Figure 3.9: Average and variance in error by parameterisation. The columns refer to

different pa values and the rows to different pd values.

In the figure, different shapes represent pD and the colours represent (pn). Each

column represents a different pa value and each row a different pd value. Both variance

and average seem to decrease with increasing pd. Figure 3.10 contains the same

information, but only for pd ∈ {0.1, 1}.
We see that pd = 0.1 gives us lower error with higher variance, while with pd = 1

we obtain a slightly higher average error, but lower variance. In both cases the pd

parameter value that originates better results is pd = b. As for pn, the average best

results are obtained with the value 10. The parameter pa seems to influence the

variance (pa = 0.00001 originates smaller variance on the results) but not the average

error. This way, if parameterisation pROBUST.AV G is used, an average lower MSE will

be achieved but the values will have higher variance. On the other hand, if we do

not mind having slightly higher average MSE, but lower variance, parameterisation

pROBUST.V AR can be used:

• pROBUST.AV G = (b, 10, 0.1, 0.00001)

• pROBUST.V AR = (b, 10, 1, 0.00001)
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Figure 3.10: Average and variance in error by parameterisation: higher decay. The

columns refer to different pa values and the rows to different pd values.

3.3.6 Difficult datasets

With our experiments we were able to detect that not every parameterisation is good

for learning a certain dataset. In fact, we discovered that some parameterisations are

“bad” for a given dataset.

Here we consider that a good parameterisation is one with which: 1) the network

learning process makes the neural network learn (MSE < MSE0); 2) the network

learning process is useful: the neural network performance is better than a benchmark

method – here the one that predicts the average of the trainset for each example in

the testset (MSE < MSE MEAN).

A bad parameterisation is one with which the neural network does not learn and/or

is not useful. We have identified some cases (we call them problems) where this occurs:

P1: MSE > MSE0

P2: MSE > MSE MEAN

Problem P1 occurs in 1.63% of the NNs executed, P2 in 5.18% and in 1.60% of the

networks both problems occur simultaneously, as shown on Table 3.9.
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Table 3.9: Total distribution of problems (percentage).

P1 (%) P2 (%) Both (%)

1.63 5.18 1.60

However, this behaviour is not uniform among the datasets, as shown on Table 3.10.

Table 3.10: Distribution of problems over datasets (percentage).

Dataset P1 (%) P2 (%) Both (%) Dataset P1 (%) P2 (%) Both (%)

4 11.71 25.21 11.42 5 1 2.13 6.29 2.13

8 8.54 37.75 8.21 5 3 4.04 10.04 4.04

9 13.38 59.79 12.96 5 5 2.00 5.75 2.00

12 1 0.00 0.04 0.00 5 7 4.21 9.96 4.21

12 2 0.04 0.04 0.04 5 9 2.67 6.67 2.67

14 0.00 1.63 0.00 5 11 3.21 7.04 3.21

5 13 2.33 6.33 2.33

5 15 4.50 10.04 4.50

5 16 0.00 0.04 0.00

This table only contains information on the datasets in which the problems occur (15

out of the total 37). Dataset 10 has a particular behaviour and will be referred to

later in separate. As for the remaining, some of the datasets show this behaviour more

often: 4, 8 and 9. Datasets 8 and 9 are too small (2 attributes, 1 target, 23 examples)

so maybe the networks cannot learn properly. For this, these datasets will not be

used for the rest of the research. Next we analyse the distribution of errors over the

parameters (Table 3.11).

Table 3.11: Distribution of problems over parameters (percentage).

(a) pD.

pD P1 (%) P2 (%) Both (%)

b 2.84 4.54 2.78

u 0.42 5.83 0.42

(b) pd.

pd P1 (%) P2 (%) Both (%)

0.0001 4.13 11.57 4.12

0.001 2.07 7.88 2.05

0.01 1.52 5.61 1.49

0.1 0.41 0.86 0.35

1 0.03 0.00 0.00

Considering the parameter pD, we can see (Table 3.11a) that the neural networks with

pD = b are the ones in which more problems occur, although in low percentage.
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For the pd parameter we can see (Table 3.11b) that there seems to be a relationship

between the parameter value and the percentage of problems found: there are more

problems with lower pd values.

As for parameters pn and pa there doesn’t seem to be any connection between the

value used for the parameter and the problem ratio. For completion, these results are

presented on Tables C.1a and C.1b in Appendix C, respectively.

3.3.6.1 Special case: dataset 10 (percentage)

As referred, this dataset has special behaviour. In this dataset, problem P1 occurs in

50.42% of the neural networks executed, P2 in 97.92% and in 50.42% of the networks

both problems occur simultaneously (Table 3.12).

Table 3.12: Total distribution of problems for dataset 10 (percentage).

P1 (%) P2 (%) Both (%)

50.42 97.92 50.42

Considering the distribution from which the initial weights were generated, we can

see (Table 3.13) that the neural networks with pD = b are the ones in which more

problems occur.

Table 3.13: Distribution of problems over pD for dataset 10.

pD P1 (%) P2 (%) Both (%)

b 98.67 99.83 98.67

u 2.17 96.00 2.17

These results suggest that this dataset may be responsible for the higher ratio of

problems verified in neural networks parameterised with pD = b.

As for the remaining parameters there doesn’t seem to be any connection between the

value used for the parameter and the problem ratio.

For completion, these results are presented on Tables C.2a, C.2b and C.2c in Ap-

pendix C.
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3.3.7 Similar datasets

We have referred that some of the datasets have been obtained from the same source

dataset. When looking separately at these, some of the parameterisations appear in

the top-5 for more than one dataset in the same group (Table 3.14).

Table 3.14: Parameterisations that appear more than once in the top-5 for datasets

on the same group.

Group 5 * (18) 8, 9 (2) 11 * (2) 12 * (3)

Nr. 5 4 3 2 2 2 2

p 4 79 5, 60, 65, 67, 7, 9, 45, 56, 58 19 8 46, 47

70, 81, 120 59, 68, 83, 86

We have made some observations from these results:

• Parameterisation p19 appears in the top-5 parameterisations in both datasets for

the group 8, 9;

• The same happens with parameterisation p8 for the group 11 *;

• Parameterisations p46 and p47 appear in the top-5 for two of the three datasets

in group 12 *;

• For group 5 *parameterisation p4 which appears in the top-5 of almost 28% of

the group’s datasets, and parameterisation p79 for 22%;

• The other ones presented on the table appear in the top-5 for three or two of

the groups’ datasets.

This suggests that there might be some characteristic on the data that makes a

parameterisation more suitable for learning it. In the next chapter we describe the use

of metalearning to select high-performance parameterisations, by taking advantage of

data characteristics.

We now present some sets of parameter values that can be used to parameterise neural

networks in order to achieve high performance or, at least, reduce the grid needed for

tuning the parameters.
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3.4 Cheat Sheet

We started with a grid search with 120 entries and were able to find some parameter

combinations that can lead to good performance of neural networks for regression

problems. Table 3.15 presents a summary of the parameterisations found.

Table 3.15: Good parameterisations for neural networks in regression problems.

pD pn pd pa

pBEST.MAJ u 20 0.0001 0.0001

pRANK.TOP5.A b 20 0.01 0.00001

pRANK.TOP5.B b 20 0.001 0.001

pRANK.TOP5.C u 20 0.01 0.00001

pRANK.TOP5.D u 20 0.001 0.001

pROBUST.AV G b 10 0.1 0.00001

pROBUST.V AR b 10 1 0.00001

By analysing the impact of individual parameter values on the neural networks, we

also found some partial parameterisations that have proven to be good starting points

for minimising the neural networks’ MSE0, duration and MSE while reducing the grid

size to 1/8, 1/40 or 1/10, respectively. These are presented on Table 3.16.

Table 3.16: Good partial parameterisations for neural networks in regression problems,

useful for reducing the grid search.

pD pn pd pa grid size

pPART.MSE0 b 3 ? ? 15

pPART.DURATION b 3 1 ? 3

pPART.MSE b ? 1 ? 12

3.5 Summary

We studied the performance of neural networks for regression problems. We performed

a grid search over several parameters in order to study the behaviour of different

parameterisations and the impact of the single parameter values separately. We also

studied the robustness of the parameterisations’ performance in several datasets.

We discovered that there are certain parameter values that can make the neural

networks have better starting points (pD = b, pn = 3), learn better (pD = b) or
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faster (pD = b, pn = 3, pd = 1). Besides that, we also identified four datasets for

which the neural networks had generally bad performance. However, as expected, we

did not find a parameterisation that generally leads to high performance in all of the

datasets.

Finally, summarising our findings, we suggested a group of neural network parame-

terisations expected to lead to high performance. Furthermore, we also suggested a

set of partial parameterisations that can be used to construct a smaller grid for the

parameter value selection. In both cases, the time needed for selecting the parameter

values for neural networks significantly decreases, while not affecting their predictive

performance.





Chapter 4

Metalearning for Parameter

Selection in Neural Networks

In this chapter we look for an answer to RQ2 (Chapter 1): Can metalearning be used

to support the parameterisation of neural networks? For that, we propose two sets of

metafeatures to characterise the datasets. These metafeatures aim at capturing the

datasets’ characteristics that can be used to select a high-performance parameterisa-

tion for configuring a neural network for the dataset at hand.

Next, we describe the metafeatures considered (Section 4.1) followed by the experi-

mental setup (Section 4.2) used to validate our method. Next, we discuss the results

obtained (Section 4.3) and, finally, we present a summary (Section 4.4) of the findings.

4.1 Metafeatures for Parameter Selection

The purpose of the metafeatures is to characterise the datasets. These characteristics

are then used by the metalearning and mapped, in this case, to the best parameter

values for a specific dataset.

We propose two different sets of metafeatures for the parameter selection task: MF 1
PS

and MF 2
PS. The first set is composed of traditional metafeatures and NN-specific

landmarkers. The second set is constructed based on the first: it contains the same

traditional metafeatures, and a larger set of NN-specific landmarkers, which are ex-

pected to better characterise the datasets. The sets of metafeatures are described

next.

53
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4.1.1 MF 1
PS metafeatures

The first set of metafeatures, MF 1
PS, is composed of 78 features. These are divided

into nine groups:

• G1: metafeatures describing the dataset

• G2: metafeatures describing the attributes

• G3: metafeatures describing the relationship between attributes

• G4: metafeatures describing the attributes’ distributions

• G5: metafeatures describing the existence of outliers on the dependent variables

• G6: metafeatures describing the dependent variable’s distribution

• G7: metafeatures describing the relationship between the independent

• G8: general landmarkers

• G9: Neural network specific landmarkers

Let us focus on the last group, Neural network specific landmarkers. Landmarkers are

quick estimates of the algorithms performance on the data and are normally obtained

in one of two ways:

1. Apply the algorithm to a subset of the data

2. Apply a simplification of the algorithm to the data

This way, we can obtain estimates of the algorithms performance, without needing as

much computational resources as for applying the algorithm to the complete dataset.

In the case of G9, the neural networks specific landmarkers follow the second approach:

applying simpler models (neural networks with 1 or 3 hidden units) to the data, and

evaluating the predictions according to metricM∈ mse0,mse, w.mean.dif, w.sd.dif ,

where mse0 is the MSE obtained without training, mse is the MSE obtained after

training, and w.mean.dif, w.sd.dif are the mean and standard deviation of the dif-

ference between the network’s initial and final weights.
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The nine groups of metafeatures, describe the following information:

G1: metafeatures describing the dataset

n.examples number of instances on the dataset

n.attrs number of attributes on the dataset

r.n.attrs.n.examples n.attrs
n.examples

r.n.examples.n.attrs n.examples
n.attrs

G2: metafeatures describing the attributes

n.bin.fea number of features containing only two distinct

values

n.h.outlier number of features with outliers

n.tri.fea number of features containing only three distinct

values

r.num.bin.fea.n.examples n.bin.fea
n.examples

r.n.h.outlier.n.attrs n.h.outlier
n.attrs

r.n.h.outlier.n.examples n.h.outlier
n.examples

r.num.tri.fea.n.attrs n.tri.fea
n.attrs

r.num.tri.fea.n.examples n.tri.fea
n.examples

r.num.bin.fea.n.attrs n.bin.fea
n.attrs

G3: metafeatures describing the relationship between attributes

avg.abs.attr.correlation average absolute attribute correlation

prop.cor.gt.50 proportion of attributes with mutual correlation

over 50%

G4: metafeatures describing the attributes’ distributions

avg.skewness average skewness of the attributes

avg.abs.skewness average absolute skewness of the attributes

avg.kurtosis average kurtosis of the attributes

avg.means average mean of the attributes

avg.sds average standard deviation of the attributes
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G5: metafeatures describing the existence of outliers on the dependent variables

target.h.outlier standarddeviation
standarddeviationofalphatrimmedmean

target.has.outliers 1 (target variable has outliers), or

0 (otherwise)

G6: metafeatures describing the dependent variable’s distribution

range.target.rel.avg range of the target variable’s values relative to its

average

target.coefficient.variation targetvaluesstandarddeviation
targetvaluesmean

abs.target.coefficient.variation absolute value of target.coefficient.variation

target.cv.sparsity 0 (target.coefficient.variation < 0.2),

1 (target.coefficient.variation < 0.5), or

2 (otherwise)

target.abscv.sparsity 0 (abs.target.coefficient.variation < 0.2),

1 (abs.target.coefficient.variation < 0.5), or

2 (otherwise)

target.stationarity 1 (target’s standard deviation higher than its

mean),

0 (otherwise)

target.hist.sparsity standard deviation of the proportions of a his-

togram with 100 bins of target values

avg.mean.res.dist.adjacent.target average mean distance between each target value

and its two neighbours (sorted by value)

G7: metafeatures describing the relationship between independent

and dependent variables

prop.target.cor.gt.50 proportion of attributes with correlation to target

over 50%

avg.abs.target.correlation average absolute correlation between attributes

and target
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G8: general landmarkers

r.squared R2 coefficient of multiple linear regression

clustering.{3, 5, 10, 20} number of points in each cluster, for models with

3, 5, 10 and 20 clusters

d.tree.leaves number of leaves in a decision tree

d.tree.mse MSE obtained by decision tree algorithm

mean.mse MSE obtained by predicting the average of the

target values

G9: Neural network specific landmarkers

l.nnet.1h.M the metric M (M) of a neural network with one

hidden unit

l.nnet.3h.M the metricM (M) of a neural network with three

hidden units

4.1.2 MF 2
PS metafeatures

The second set of metafeatures, MF 2
PS (with 12795 metafeatures) is based on MF 1

PS.

The metafeatures in groups G1 to G8 are maintained and the NN specific landmarkers

(G9) are replaced by new ones. To obtain this set of landmarkers we trained several

neural networks, considering different parameterisations: N , D and A take the same

values as parameters pn, pd and pa in the grid search.

As referred in Subsections 2.3.2 and 4.1.1, to obtain landmarkers we either:

1. Apply the algorithm to a subset of the data. Here we execute the full neural

networks in a smaller part of the dataset (we use SS ∈ {10, 25, 50, 100, 0.1×|E|}).

2. Apply a simplification of the algorithm to the data. Simpler models can be

obtained with smaller neural networks (one hidden unit, for example) or by

limiting the number of iterations (we use IT ∈ {0..10}).

The performance indicators are obtained by computing one of the metrics M ∈
{mse0,mse, time, learn, w.sd, w.mean,w.cv}, where mse0 is the network’s mse with

zero learning iterations, mse is the network’s mean squared error after convergence,

time is the amount of time needed for convergence, learn = mse0 − mse and the

metrics relative to weights (w) refer to the differences between initial and final weights:
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w.sd is the standard deviation of the weights differences, w.mean is its mean, and w.cv

is its coefficient of variance (w.cv = w.sd
w.mean

).

This way, the NN specific landmarkers (G10) refer to:

G10: neural network specific landmarkers

lm N D A IT SS M the metric M (M) of a neural network with N

hidden units, decay=D and abstol=A, run for a

maximum of IT iterations or using a sub-sample

of size SS

lm 1h best decay the best decay found for neural networks with only

1 unit on the hidden layer

lm 1h best abstol the best abstol found for neural networks with only

1 unit on the hidden layer

lm IT it M the metric M (M) of neural networks run for a

maximum of IT iterations

lm SS ss M the metric M (M) of neural networks run with a

sub-sample of size SS

lm N D A IT d NA M the difference in the metric M (M) when running

the networks for IT and IT-1 iterations with N hid-

den units, decay=D and abstol=A, not considering

the subsample size (NA)

lm N D A NA SS d M the difference in the metric M (M) when running

the networks with sub-samples with sizes SS and

SS-1 with N hidden units, decay=D and abstol=A,

not considering the number of iterations

To summarise, we are considering the following two sets of metafeatures:

MFPS metafeatures

MF 1
PS = G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G9

MF 2
PS = G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G10

4.2 Experimental setup

Our hypothesis is that metalearning can be used for automatic selection of parameters

for regression neural networks. We predict the parameter values that yield higher
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performance, using the parameterisations’ performance data obtained in the previous

phase and the metafeatures described in the previous section. We are only consid-

ering the performance data on the datasets marked in column “PS” on Table A.1 in

Appendix A and, from here further, networks parameterised with pD = b.

We evaluate the metamodels in terms of accuracy of the predictions (meta-level

evaluation) and performance of the NNs parameterised with the predicted values

(base-level evaluation). If the NNs parameterised with the predicted values have high

performance, then we have evidence to support our hypothesis.

Figure 4.1 shows the schema of the phases considered in our research, first presented in

Chapter 1 (Figure 1.2). The shaded area of the figure represents the study described in
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Figure 4.1: Metalearning for multiple domain transfer learning experimental process.

The shaded area corresponds to the experimental setup considered for learning the

parameterisation metamodel.

this chapter. The first step is to characterise the datasets, obtaining their metafeatures

(MFPS, detailed in Section 4.1). The metadataset is composed by the metafeatures

and the best parameterisation found for each dataset.

Given the large number of metafeatures, we performed feature selection using R

package caret (from Jed Wing et al., 2017). First, we removed the features with high
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mutual correlations (over 0.75) following the recommendation of findCorrelation,

which searches through the correlation matrix and returns the columns that should

be removed to reduce pair-wise correlations.

Then, we performed Recursive Feature Elimination (RFE) with the aim of selecting

the smallest set of features that ensures the best predictive performance. This method

starts off by creating a model using all of the variables, estimating their importance

and discarding some of the least important ones. The process is repeated recursively

comparing the model’s performance for each subset of features. The output is the set

of features that originated the best performance. We used the method rfe to select

the best model. This method can be parameterised by defining the types of functions

(we use ldaFuncs, lmFuncs and rfFuncs), and the sizes of the subsets of features

(we use sizes = [1, . . . , I], where I is the total number of features) that should be

considered.

Metamodels are generated for different meta-learning approaches. We start by con-

sidering the set of metafeatures MF 1
PS (Subsection 4.1.1) and use a classification

(Subsection 2.1.1) approach. Then, since the values we are trying to predict are

numerical, a regression (Subsection 2.1.2) approach is used for the same metadata.

Because the metatarget values are discontinuous and have an underlying order, we

also include ordinal regression (OR, subsection 2.1.2.1)) techniques. Then we repeat

the classification and regression approaches considering the set of metafeatures MF 2
PS

(Subsection 4.1.2). Finally, to test if the metatargets are related, we consider a multi-

output regression (Subsection 2.1.2.2) approach.

In the multi-output regression approach, we consider the techniques referred to in

Subsection 2.1: Multi-target regressor stacking (MTRS) and Regressor Chains (RC).

Since the number of possible RC chains is small (6), we consider all of them:

RC1: pn → pd → pa RC4: pd → pa → pn

RC2: pn → pa → pd RC5: pa → pn → pd

RC3: pd → pn → pa RC6: pa → pd → pn

For example, the first chain, RC1, consists in starting with the prediction of parameter

pn, then the parameter pd and, finally, the parameter pa.

The approaches and algorithm implementations considered are presented on Table 4.3.

For simplification we refer to the implementations used for all the approaches by AL

(linear algorithms), AT (tree-based algorithms) and AF (forest-based algorithms), as

shown in the table.
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Table 4.3: Algorithm implementations considered.

Approach AL AT AF

Classification lda rpart randomForest

Regression lm rpart randomForest

Ordinal Regression ctree cforest

Multi-output Regression lm rpart randomForest

4.2.1 Performance evaluation

The performance evaluation is based on leave-one-out cross validation. Our meta-

dataset contains one example for each of the 35 datasets considered. The metalearning

process is repeated 35 times, each considering a different instance as testset, and the

remaining 34 as the trainset.

Furthermore, the evaluation is performed at two levels: meta and base. We also

compare these results with a baseline (BL) model: recommending the most frequent

value for each parameter.

The meta-level evaluation measures the predictive performance of the model used in

metalearning. The evaluation metrics used at this level are the ones described in

Subsection 2.1:

• ACC (Equation 2.2): for classification approaches;

• RRMSE (Equation 2.5): for (single and multi-output) regression approaches;

• MZOE (Equation 2.7): for ordinal regression approaches;

For the base-level evaluation we measure the MSE of the NN parameterised with the

values suggested by the metalearning models. We also measure the performance of

the NNs parameterised in the following three different ways:

• best: using the set of parameters found from the grid that yielded the best

performance (average MSE=0.141);

• baseline: using the parameter configuration suggested by the baseline model

referred above (average MSE=0.282);

• worst: using the set of parameters found from the grid that yielded the worst

performance (average MSE=0.563).

For easier comparison, we present the base-level results as the relative improvement in

performance with respect to the worst NNs. When compared to those, the NNs config-

ured with the parameters recommended by the baseline model have an improvement



62 CHAPTER 4. METALEARNING FOR PARAMETER SELECTION

of 50%, and the NNs configured with the best parameters found have an improvement

of 75%. These values are also presented in the results section below.

4.3 Results

In this section we present the results of our experiments for determining the metalearn-

ing’s ability to predict the best parameters for a NN. We start by comparing the results

of the classification and regression approaches using the MF 1
PS metafeatures only. We

then present the results of the same approaches for the metadataset composed of

the extended MF 2
PS metafeatures. Finally, we present the results of multi-output

regression on the metadataset containing MF 2
PS metafeatures.

4.3.1 Classification Approach with MF 1
PS metafeatures

Our first set of experiments addresses the problem of NN parameter selection as a

classification approach, as in Félix et al. (2017) with MF 1
PS metafeatures. The baseline

performance for each parameter pn, pd and pa, is: 43%, 34% and 37%. 1 The meta-

accuracy results are shown on Table 4.4.

Table 4.4: Meta-level evaluation of the classification experiments with MF 1
PS

metafeatures, in terms of accuracy percentage.

AL AF AT BL

pn 54 51 40 43

pd 43 51 37 34

pa 34 54 51 37

avg 44 52 43 38

Compared to the baseline, the gains obtained with AL for the prediction of the size

of the hidden layer (pn) represents a 26% increase in accuracy. The gains obtained

with AF in the other two problems were 50% and 46% respectively for the pd and

pa predictions. On average, the best performing algorithm is AF , with an accuracy

37% higher than the baseline. Compared to the ones obtained in Félix et al. (2017),

these results show that, as expected, the increase in the number of examples produces

better metalearning results.

1The values obtained here are different from the original ones (Félix et al., 2017), because we

considered more datasets in our work.
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4.3.1.1 Base-level evaluation

Figure 4.2 shows the improvement of the NNs configured with the parameters recom-

mended by metalearning.
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Figure 4.2: Base-level evaluation of the classification experiments with MF 1
PS

metafeatures, in terms of improvement.

The NNs trained with the parameters recommended by AF (average MSE=0.219)

obtain a 61% improvement, which is half way between the improvement of the baseline

model and the improvement of the best configuration found in the grid. Therefore,

metalearning seems to be useful for parameter prediction.

4.3.2 Single-target Regression Approach with MF 1
PS metafea-

tures

The metatargets domains are small, which first motivated a classification approach.

However, the values are numerical and, thus, the problem can also be addressed as

regression. Additionally, there is an intermediate approach – ordinal regression – that

is suitable for target variables with small but ordered domains.

We also perform traditional classification and regression with ordered target values:

instead of using, for example, the original values 3, 5, 10 and 20 for parameter pn, we

use the values 1, 2, 3 and 4 to express the order of the original values. Since we are

considering a regression approach, the results are evaluated at the meta-level in terms

of RRMSE. The results are presented on Table 4.5.

For parameter pn, the best result is achieved with AT on the ordered targets and

represents a performance 23% above the baseline. As for parameters pd and pa, the

AF on the original target obtained performance 37% and 43% higher than the baseline,
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Table 4.5: Meta-level evaluation of the regression experiments with MF 1
PS metafea-

tures, in terms of RRMSE.

original ordered

AL AF AT AL AF AT BL

pn 1.007 0.868 0.972 1.067 1.061 0.811 1.048

pd 1.201 0.756 0.950 1.219 1.174 1.225 1.203

pa 1.054 0.748 0.822 1.417 1.180 1.540 1.318

avg 1.087 0.791 0.915 1.234 1.138 1.192 1.190

respectively. On average, the best results are achieved with AF on original targets,

representing an improvement in performance 34% over the baseline’s.

For ordinal regression, the results were evaluated with MZOE (Table 4.6). On the

Table 4.6: Meta-level evaluation of the OR (and classification and regression) with

ordered targets using the MF 1
PS metafeatures, in terms of MZOE percentage.

ordinal classification regression

AF AT AL AF AT AL AF AT BL

pn 51 57 49 57 60 86 80 51 57

pd 63 66 51 54 63 83 80 80 66

pa 49 63 66 49 49 66 60 80 63

avg 54 62 55 53 57 78 73 70 62

table we compare these results with the ones obtained by using traditional regression

and classification with ordered values in the targets.

The best results for targets pn and pd are obtained with classification on ordered

targets using AL, respectively 14% and 23% higher than the baseline. For target pa

the best result (MZOE=49), is 22% higher than the baseline. It can be achieved using

either ordinal regression with AF or classification with AT or AF . On average, the

best results are obtained with classification on ordered targets using AF , which has a

performance 15% higher than the baseline’s.

4.3.2.1 Base-level evaluation

Figure 4.3 shows the improvement of the NNs configured with the parameters recom-

mended by metalearning.

In this case, the best result is achieved with regression on the original targets using AF

(average MSE=0.188). The NNs trained with these recommended parameters obtain

a 67% improvement.
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Figure 4.3: Base-level evaluation of the experiments with MF 1
PS metafeatures, in

terms of improvement.

Also, the neural networks are 14% more accurate than the ones suggested by the

classification metamodel referred before. This suggests that for this problem, as

expected, regression is more suited than classification.

4.3.3 Classification and Single-target Regression Approaches

with MF 2
PS metafeatures

To increase the performance of our framework, we created a new metadataset (MF 2
PS –

explained in Subsection 4.1.2) and conducted experiments using the same approaches

described above. Table 4.7 shows the results of the classification approach in terms of

accuracy.

The best results for all the parameters are obtained with AF . For pn, the best

performing approach uses the original target values (with a performance 72% higher

than the baseline). For pd and pa, the best approach uses the ordered target values

(with performance 68% and 124% higher than the baseline, respectively).

On average, the best result is obtained with the ordered targets using AF . This

represents an accuracy 71% higher than the baseline’s. Additionally, this is 25%

above the average best accuracy obtained with the MF 1
PS set of metafeatures.
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Table 4.7: Meta-level evaluation of the classification experiments with MF 2
PS

metafeatures, in terms of accuracy percentage.

original ordered

AL AF AT AL AF AT BL

pn 54 74 3 49 54 0 43

pd 43 51 14 40 57 14 34

pa 59 23 6 69 83 6 37

avg 52 49 8 53 65 7 38

For the regression approaches we measure RRMSE and the results are presented on

Table 4.8.

Table 4.8: Meta-level evaluation of the regression experiments with MF 2
PS metafea-

tures, in terms of RRMSE.

original ordered

AL AF AT AL AF AT BL

pn 1.128 1.1 2.534 1.048 1.407 2.835 1.048

pd 1.136 0.105 0.793 1.212 1.077 1.053 1.203

pa 0.928 0.495 2.18 0.867 1.318 2.556 1.318

avg 1.064 0.567 1.836 1.042 1.267 2.148 1.190

The best results for parameter pn are obtained with the AL algorithm on ordered

target values with the same performance as the baseline model. For the parameters

pd and pa the best results are achieved with AF using the original target values, with

RRMSE 91% and 62% lower than the baseline, respectively.

On average, the best result is obtained with AF using the original targets, which

represents a 52% increase in performance when compared to the baseline’s. In addition

to this, the best average RRMSE obtained before with the set of metafeatures MF 1
PS

was 0.791 and now it is 28% lower.

The results in terms of MZOE are presented on Table 4.9.

The best results are obtained with AF for classification using ordered target values,

improving the baseline MZOE by 19%, 35% and 73% for the problems pn, pd and pa,

respectively. The average MZOE is 35%, which represents a performance improvement

of 44% over the baseline’s. The average best MZOE obtained with MF 1
PS metafeatures

was 53% and now with MF 2
PS it is 34% higher.
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Table 4.9: Meta-level evaluation of the ordinal-regression (and classification and

regression) using ordered targets experiments with MF 2
PS metafeatures, in terms of

MZOE.

ordinal classification regression

AL AT AL AF AT AL AF AT BL

pn 51 57 57 100 46 83 80 94 57

pd 60 66 66 86 43 94 63 63 66

pa 31 63 51 94 17 51 69 71 63

avg 47 62 58 93 35 76 71 76 62

4.3.3.1 Base-level evaluation

Figure 4.4 shows the improvement of the NNs configured with the parameters recom-

mended by MF 2
PS based metalearning models.
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Figure 4.4: Base-level evaluation of the experiments with MF 2
PS metafeatures, in

terms of improvement.

As with MF 1
PS, the best result based on the MF 2

PS metafeatures is achieved with

regression using the original targets and AF (average MSE=0.17). Now, the NNs

configured with the recommended parameters achieve an improvement of 70%, which

is 10% higher than with MF 1
PS (Subsection 4.3.2). Meta- and base-level results suggest

that, as expected, the new set of metafeatures MF 2
PS leads to more accurate results

than the ones obtained with MF 1
PS metafeatures.
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4.3.4 Multi-output Regression Approach with MF 2
PS metafea-

tures

Finally, we drop the strong assumption that the targets (parameters) are not related.

Thus, we consider multi-output regression techniques on the MF 2
PS metadataset. The

meta-level performance results are presented on Table 4.10. Here we see that the best

Table 4.10: Meta-level evaluation of the multi-output regression experiments with

MF 2
PS metafeatures, in terms of RRMSE.

pn pd pa

AL AF AT AL AF AT AL AF AT

MTRS 0.220 1.106 0.464 0.302 0.160 0.790 1.654 0.356 2.180

RC1 1.128 1.096 2.534 1.205 1.243 1.001 0.934 1.194 1.041

RC2 1.128 1.096 2.534 1.076 1.216 1.121 1.017 1.132 0.977

RC3 1.254 1.096 0.843 1.136 0.099 0.793 2.347 1.136 1.552

RC4 1.439 1.236 0.843 1.136 0.099 0.793 0.879 0.984 1.626

RC5 1.224 0.935 1.111 1.560 1.252 1.304 0.928 0.486 2.180

RC6 2.308 1.045 1.213 1.256 1.270 1.275 0.928 0.486 2.180

baseline 1.048 1.203 1.318

results are obtained with AF for pd and pa (with increases in performance of 92%

and 73% respectively compared to the baseline’s), but for pn, the best algorithm is

AL (with an increase in performance of 79% when compared to the baseline). The

average meta-level performance (average relative root mean squared error – aRRMSE,

as presented in Equation 2.12 in Chapter 2) for each of the multi-output regression

methods is presented on Table 4.11.

Table 4.11: Meta-level evaluation of the multi-output regression experiments with

MF 2
PS metafeatures, in terms of aRRMSE.

AL AF AT

MTRS 0.725 0.541 1.145

RC1 1.089 1.177 1.525

RC2 1.074 1.148 1.544

RC3 1.579 0.777 1.063

RC4 1.151 0.773 1.087

RC5 1.237 0.891 1.531

RC6 1.497 0.934 1.556

baseline 1.19
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The best average performance is obtained with AF and MTRS method, which rep-

resents a performance 55% higher than the baseline’s and 5% higher than the one

obtained by the best single target approach (Table 4.8 RRMSE=0.567).

4.3.4.1 Base-level evaluation

Figure 4.5 shows the improvement of the NNs configured with the parameters recom-

mended by the multi-output metalearning models.
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Figure 4.5: Base-level evaluation of the multi-output regression experiments with

MF 2
PS metafeatures, in terms of improvement.

The average performance of the NNs configured with the parameters recommended by

AF and MTRS is a MSE of 0.16, which represents a 72% improvement compared to

the worst performing networks, which is 6% higher than the results obtained by the

best single target method. This suggests that the targets are related, and that there

is an advantage in predicting them together, when compared to using single target

models that discard the relations between the targets.

Additionally, the base-level performance is very close to the best possible value ob-

tained using grid search (only 13% higher). This shows that metalearning, especially

multi-target regressor stacking for multi-output regression, can be used to predict a

good configuration of parameters for NNs.

4.4 Summary

In this chapter we described a metalearning methodology for combined parameter

recommendation in neural network learning. For this, the datasets are characterised

through metafeatures that can be used to predict the performance of a wide set of

neural network configurations. We propose two different sets of metafeatures: MF 1
PS

and MF 2
PS. The latter is based on MF 1

PS, but we have replaced the NN specific

landmarkers.
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The results were evaluated in terms of meta- and base-level performance. Results

indicate that metalearning is a good approach for this problem and that, as expected,

the improved set of metafeatures increases the metalearning predictive performance.

Also, for this problem, regression techniques perform better than classification and

ordered regression does not seem to bring any advantage over the other approaches

considered.

The best base-level result was obtained with multi-output regression. This suggests

that the target variables are, in fact, related and that there is an advantage in

predicting all the parameters simultaneously, instead of considering the problems

separately.

The average MSE of the NNs configured with the predicted parameters achieve MSE

values only slightly above the ones optimised by grid-search. As a result, the data

scientist need not put any effort or time into selecting the NN parameters. Instead,

with our method’s suggestions, he can obtain a NN with good performance.



Chapter 5

Weights Transfer in Heterogeneous

Domain Neural Networks

In this chapter we describe the work performed to answer RQ3 (Chapter 1): What

is the impact of Transfer Learning (weights transfer) on Neural Networks? We study

the transfer of weights from previously learned neural networks (source) to new ones

(target) expecting to obtain faster training neural networks, without harming their

performance.

We are using the same datasets considered previously. Because of that, in most cases,

the source and target domains have very different natures. This way, we are performing

heterogeneous weights transfer.

This requires mapping the source domain’s features into the target domain’s features.

We propose several simple methods for feature mapping in heterogeneous weights

transfer, presented in Section 5.1. We also propose a weight transfer process (see

Section 5.2) that takes the mapping into account.

We empirically evaluate the proposed methods by analysing the impact of the trans-

fers on the target network’s performance. We present the experimental setup used

(Section 5.3) and the results obtained (Section 5.4). Finally, we present a summary

of our findings (Section 5.5).

5.1 Mapping Process

In our transfer learning scenario, we have a new learning task and the corresponding

dataset (the target dataset dT ). Given a previously learned network NNS from a

source dataset, the aim is to (at least partially) reuse NNS to train a new network

NNT from dT .

71
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Datasets dS and dT may have different natures and different feature sets with different

sizes: L and I are the number of features on the source and target datasets, respec-

tively. In our transfer algorithm we will initialise NNT as having I input nodes, and

one output node. The number of hidden nodes depends on the parameterisation used

for each target dataset. Weights of NNT are selected from the weights of NNS.

Different strategies can be used for weight selection. In our scenario, we start by

mapping the features in the target dataset with features in the source dataset.

In this section we propose several simple methods for mapping the features. The

objective of the mapping process is to find the most adequate source feature for each

target feature. This way, a generic mapping method is represented by the generic

mapping function:

Mxi
= xl (5.1)

that assigns to each target feature i the most adequate source feature l.

The considered datasets only contain numerical features and thus, relationships be-

tween the domains can be found in many ways. One possible method of finding

similarities between the domains is applying statistical methods to them.

In this case we are considering two different main approaches: KL mapping – us-

ing the similarities between source and target features distributions (described in

Subsection 5.1.1), and Correlation mapping – using the relatedness of the datasets

independent and dependent variables (see Subsection 5.1.2).

Besides the mapping methods explained next, we also use a baseline mapping that

consists in randomly selecting a source feature to be mapped to each target feature:

MR
xi

= random(x1, . . . , xL), ∀i ∈ {1...I} (5.2)

5.1.1 Kulback Leibler Mapping

In the first approach we evaluate the influence of the source and target features

distributions on the transfer results. In this case, the transfer is performed considering

the similarity between the features’ distribution.

For each target feature, we select the source feature with closer distribution. For

this, we obtain the Kulback Leibler (KL) divergence of each pair of source/target

features. Since we wish to perform the transfer between the features with the most

similar distributions, each target feature will be mapped with the source feature which

presents the lower KL-divergence. In this case, the generic mapping (Equation 5.1) is

instantiated with:

MKL
xi

= argminxl
{KL(xi, xl)},∀i ∈ {1...I}, l ∈ {1...L} (5.3)
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For example, let us consider we wish to perform a KL-mapped transfer of weights

between the neural networks corresponding to the source and target datasets presented

on Table 5.1.

Table 5.1: Source and Target datasets.

(a) Source dataset

x1 x2 x3 x4 yS

10.2 37.7 77.3 3.5 14.9

33.3 0.9 23.8 62.6 87.1

59.1 12.6 8.2 44.7 93.7

15.4 93.8 75.8 45.0 12.3

25.9 60.5 61.1 65.8 48.5

87.4 51.9 59.8 75.8 75.6

88.9 91.4 92.4 57.2 8.9

64.9 93.6 93.0 12.8 24.2

89.9 36.2 27.8 99.3 59.3

8.9 87.5 35.6 11.8 4.5

(b) Target dataset

x1 x2 x3 yT

30.8 74.6 95.7 9.6

52.9 53.7 7.2 30.8

45.7 45.1 40.1 24.9

17.0 94.9 62.0 26.4

58.6 48.6 58.1 84.4

67.9 9.2 35.0 71.2

0.9 14.3 9.4 20.7

The source dataset is composed of four independent variables (x1 to x4) and the

dependent variable yS. The target dataset is composed of three independent variables

(x1 to x3) and yT as dependent variable.

First, we need to obtain the KL-divergence between all the source and target datasets’

features, as shown on Table 5.2.

Table 5.2: KL-divergences obtained for the source and target datasets presented on

Table 5.1. i and l represent the indexes of the target and source features, respectively.

i 1 1 1 1 2 2 2 2 3 3 3 3

l 1 2 3 4 1 2 3 4 1 2 3 4

KL 0.063 0.023 0.008 0.070 0.039 0.098 0.065 0.013 0.060 0.167 0.117 0.028

Then, for each target feature, we choose the most adequate source feature. In the case

of KL mapping, following Equation 5.3, for each target feature we select the source

features presenting the lower KL-divergence (represented in bold in the table). Given

this, the mapping will be:

{MKL
x1
,MKL

x2
,MKL

x3
} = {x3, x4, x4} (5.4)

5.1.2 Correlation Mapping

In the second approach we assess the relatedness of the datasets’ independent and

dependent variables. The relatedness of two variables is obtained by their correlation.
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We obtain the relatedness of every source and target feature separately. Then, for

each target feature, we will select the source feature with the most similar relatedness.

In this case, the generic mapping (Equation 5.1) is instantiated with:

M
∗Cor
xi

= argminxl
{|corr(xi, yT )− corr(xl, yS)|},∀i ∈ {1...I}, l ∈ {1...L} (5.5)

The correlation mapping is performed in three different ways: using Kendall (MKCor),

Pearson (MPCor) and Spearman (MSCor) correlations.

For example, considering the source and target datasets referred on Table 5.1, first we

obtain the correlations of each dataset’s independent variable and the corresponding

dependent variable as shown on Table 5.3 for Spearman correlation.

Table 5.3: Source and Target datasets’ Spearman correlations.

(a) Source dataset

l 1 2 3 4

cor 0.382 -0.758 -0.636 0.467

(b) Target dataset

i 1 2 3

cor 0.786 -0.214 -0.250

Then we obtain the absolute difference between the correlations (Table 5.4).

Table 5.4: Absolute differences in correlations.

i 1 1 1 1 2 2 2 2 3 3 3 3

l 1 2 3 4 1 2 3 4 1 2 3 4

Dif.Cor 0.404 1.543 1.422 0.319 0.596 0.543 0.422 0.681 0.632 0.508 0.386 0.717

Finally, similarly to what happens for KL mapping, for each target dataset’s indepen-

dent variable, we choose the source dataset’s independent variable with lower difference

(values represented in bold). In this case the mapping will be:

{MSCor
x1

,MSCor
x2

,MSCor
x3
} = {x4, x3, x3} (5.6)

5.2 Weights transfer method

The weights are transferred from a source neural network (NNS) to a target neural

network (NNT ) with the same number of hidden layers and units. Because of this, the

weights of the connections with origin on the bias and the hidden units are directly

transferred between the networks.
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The rest of the weights (relative to the connections between the input and hidden

layers) are transferred in a different way. The weights of the connections ending in

each of the hidden units of the source network are transferred to the same hidden unit

on the target network, and the origin of each connection is chosen according to the

mapping referred on the previous section.

For example, let us assume we want to transfer the weights between the source (5.1a)

and target (5.1b) neural networks depicted in Figure 5.1 corresponding to the source

and target datasets referred on Table 5.1.

x1

x2 h1
o

h2

b’’b’

x3

x4

1
2

3
4

5

6

7

8

9
10
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(a) Source Network
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x2

h1
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(b) Target Network
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b’’b’

x3

1112

7

8

9

9

10

10

12

13

(c) Target Network after

transfer.

Figure 5.1: Example Neural Networks for transfer.

Both neural networks have two nodes on the hidden layer and one on the output

layer and the respective bias (b’ and b”) nodes. The source network has four nodes

on the input layer (corresponding to the independent variables x1 to x4), while the

target network has three (x1 to x3). The numbers in the source network in Figure 5.1a

correspond to the best set of weights obtained for the network:

WS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
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Also, let us assume that we are using KL mapping method, that determines that the

mapping is obtained from Equation 5.4:

{MKL
x1
,MKL

x2
,MKL

x3
} = {x3, x4, x4}

This means that the source dataset’s feature x3 is the most appropriate for transferring

for target dataset’s feature x1, and source dataset’s feature x4 for both target features

x2 and x3.

With this, we will transfer all the weights of the connections originating in the second

input unit of the source network to the connections originating in the first input unit

of the target network. We will proceed the same way for the rest of the variables. As

referred, the weights of the connections with origin on the bias and the hidden nodes

are transferred directly.

At the end of the transfer process the set of weights that will be used to initialise the

target neural network will be: WT←S = [1, 2, 7, 8, 9, 10, 9, 10, 11, 12, 13], as depicted in

Figure 5.1c.

5.2.1 Transfer Learning algorithm

The transfer of weights between each pair of datasets is performed according to

Algorithm 1.

Input: dS, dT , NNS

Output: NNT←S

1 Map vars(dS) into vars(dT )

2 foreach xi ∈ vars(dT ) do

3 wxihn = wMF
xi
hn

4 end

5 foreach hidden node h of NNT do

6 whnyT = whnyS

7 end

8 foreach bias node b of NNT do

9 wb′T hn = wb′Shn

10 wb′′T yT = wb′′SyS

11 end
Algorithm 1: Transfer algorithm.

The input dS corresponds to the source dataset that is composed by L independent

variables xl : l ∈ {1, . . . , L} and the dependent variable yS. dT is the target dataset
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and consists of xi : i ∈ {1, . . . , I} as independent and yT as dependent variables. NNS

is the neural network learned from the source dataset.

The first step of the algorithm consists in mapping the variables from the source to

the ones on the target datasets (line 1). For each target dataset’s variable xi we find

the most appropriate source dataset’s variable xl. The mapping process is conducted

as explained in Section 5.1, uses the entire dataset and is performed independently of

the weights transfer step.

The transfer step consists in transferring the variables weights according to the map-

ping (lines 2-4), then the hidden nodes’ weights (lines 5-7) and, finally, the bias nodes’

weights (lines 8-11). The output of the algorithm is the set of weights transferred from

the source, to be used to initialise the target neural network (NNT←S).

5.3 Experimental Setup

Our hypothesis is that a neural network model can converge faster (or more accurately)

on a target dataset if, instead of randomly generated, the initial weights are transferred

from a source network trained previously. We test the proposed transfer method on

all source/target combinations (the source is always different from the target).

We assess the results of our methods against the usual random weight initialisation

method, and also the baseline random mapping referred. If the transfer of weights

shortens the network’s convergence time or improves its predictive performance, then

we have evidence to support our hypothesis.

Figure 5.2 shows the schema of the phases considered in our research, first presented

in Chapter 1 (Figure 1.2). The shaded area of the figure represents the experimental

setup considered for this study.

As depicted in the figure, in the first phase of this research project, we trained several

neural networks for each of the datasets and saved the results (in PR). Now, to

perform the transfers, we take each pair of source/target datasets (the source is always

different from the target) and perform the mapping process. Then, for each target

dataset the weights transfer is performed according to the parameterisation selected

by metalearning (pmeta, described in Chapter 4), but also the best parameterisation

found (pgrid).

Each target neural network is trained starting with the initial set of weights transferred

from the source neural network. Besides the parameterisation, performance values

(MSE and duration) and best set of weights found, we now also save the source

dataset and the mapping method used for the transfer (in PT ).

The experiment was performed using a subset of 28 of the datasets used in the
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Figure 5.2: Metalearning for multiple domain Transfer learning experimental process.

The shaded area corresponds to the experimental setup considered for studying the

impact of the transferring weights between neural networks.

remainder of the work (marked in the column “WT” in the Table A.1 in Appendix A),

because some datasets require very high computational power (the 7 datasets missing

in this case are: 5 4, 5 5, 5 10, 5 11, 5 13, 5 15 and 13).

5.3.1 Performance evaluation

The neural networks evaluation is conducted in the same way as for the first part of

our research: it is estimated with 10-fold cross-validation. We generate ten random

samples of the dataset and repeat the learning process ten times. Each time (fold),

a different sample is considered as testset and the remaining data is used as trainset,

where the network learns until convergence.

For each fold, we evaluate the following:

• MSE0: the predictive performance in terms of MSE (Equation 2.4) on the

testset before training. This allows us to evaluate the network’s starting point;
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• duration: the time needed for convergence;

• MSE: the predictive performance in terms of MSE (Equation 2.4) on the testset

after training.

At the end of the process, the neural network’s performance is the set of averages for

each of the metrics obtained for the folds. These values are saved (in the figure, in

PR), together with the parameterisation and the initial and average final weights.

Then, we analyse the transfer learning results for predictive and computational per-

formance using the three metrics (M) referred:

1. M=MSE0: If transfer learning reduces this value, it means that the networks

initialised with transferred weights have a starting point closer to the expected

result;

2. M=duration: If transfer learning reduces this value it means that, when

initialised with transferred weights, the networks’ learning process is faster. This

may also be a consequence of a lower MSE0;

3. M=MSE: If transfer learning reduces this value, it means that the neural

networks initialised with transferred weights are more accurate after training.

For each metric we compare the performance obtained on the randomly initialised

neural networks (MR) and the ones obtained on the transfer initialised neural networks

(MT ). With this, we obtain the impact achieved by each transfer:

impact =
MR −MT

MR
(5.7)

expressed in percentage. Positive impact values mean that the transfer of weights

brings advantages for the neural network learning process (positive transfer). In the

same way, negative impact means that a negative transfer has occurred.

5.4 Results

We now analyse the results obtained with transfer learning for both pmeta and pgrid

parameterisations. In each, we analyse the positive and negative transfers achieved,

and also the impact transfer learning has on the neural networks’ performance when

considering the mapped transfer (transfer of weights considering the proposed mapping

methods).
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5.4.1 Transfer of weights with pmeta

Figure 5.3 shows the number of positive and negative transfers obtained by random

transfer and mapped transfers. We can see that random transfer gives origin to
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Figure 5.3: Proportion of positive and negative transfers by method.

poorer results: fewer positive transfers, and more negative transfers. This suggests

that, as hypothesised, mapping the datasets’ features for the transfer of weights is

advantageous.

Next, we analyse the positive transfers obtained for each dataset. In Figure 5.4 we

can see, for each evaluation metric, the proportion of positive transfers obtained by

transferring with the mapping methods.
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Figure 5.4: Comparison of proportion of the mapped positive transfers (relative to

the random transfer) for each dataset. The xx axis represents the target datasets on

the same order as in Table A.1 in Appendix A. The yy axis, for each performance

metric, corresponds to the proportion of positive transfers (relative to the proportion

of positive transfer obtained by random transfer) when considering each mapping

method.

The results are presented for each target dataset, by the same order as in column

“WT” of Table A.1 in Appendix A. Positive values mean that mapped transfer leads
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to more positive transfers than random transfer. In the figure we can see that, as

hypothesised, mapped transfer generally leads to positive transfers more often than

random transfer. There are, however, some exceptions, presented on Table 5.5.

Table 5.5: Datasets in which random transfer shows larger proportion of positive

transfers for each evaluation metric considered.

(a) duration

dT R KL KCor PCor SCor

*1 62 53 59 50 59

2 2 59 62 59 56 71

5 1 94 94 88 91 100

5 2 38 56 35 26 38

5 3 35 44 35 24 32

5 6 35 50 41 26 44

5 9 50 56 44 50 50

5 12 32 47 32 26 26

5 17 15 26 18 12 18

5 18 91 85 88 88 91

*7 94 91 85 91 91

*11 1 65 56 59 62 53

12 3 15 12 18 21 18

16 12 9 12 15 18

(b) MSE0

dT R KL KCor PCor SCor

*7 1 65 62 44 47 47

(c) MSE

dT R KL KCor PCor SCor

1 97 94 97 91 94

2 2 76 79 65 74 74

4 56 44 53 56 50

5 2 15 41 32 12 32

5 6 62 65 56 74 62

5 7 74 79 65 65 56

5 9 100 94 91 100 88

*5 14 97 76 85 91 85

12 2 79 76 76 76 79

*15 97 85 85 94 88

*16 79 76 71 56 65

*17 94 91 91 91 91

We can see, for each transfer evaluation metric, the datasets for which positive transfer

is more often achieved with random transfer. Only for the ones marked with (*) there

is not a single mapped transfer with more positive transfers than random transfer.

Even for these, the mapped transfers’ proportion of positive transfers is not much

lower than the random transfer’s.

The results still suggest that mapping the source/target datasets’ features for the

transfer of weights is advantageous. However, the proportion of positive transfers is

not enough to assess which mapping method leads to the best transfer results.

Figure 5.5 shows the impact obtained for each performance metric in each dataset

(with the same order as the ones marked in the column “WT” on Table A.1 in

Appendix A), when considering the different mapping methods.

We can see that the random transfers are outperformed by the mapped transfers.

This is supported by Tables G.1a, G.1b and G.1c in Appendix G, that show the best

transfer for each dataset, when considering each performance metric: MSE0, duration

and MSE, respectively.
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Figure 5.5: Impact of the transfers for each measure and method. The columns

represent the different mapping methods and the rows represent the different

performance metrics. The xx axis represents the target datasets on the same order as

in Table A.1 in Appendix A. The yy axis represents the highest impact obtained for

each target dataset.

Furthermore, Figure 5.6 shows the frequencies of the mapping methods on the best

transfer achieved for each target dataset. The random mapping does not appear on

the best transfers.
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Figure 5.6: Proportion of best transfer by method.

Considering the results of each mapping method separately, we can obtain the impact

of the transfers. Table 5.6 shows the average impact of transfers when considering

each mapping method for each metric referred before (MSE0, duration, MSE).

On average, *Cor-mapped transfers lead to the higher impacts. From within these,
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Table 5.6: Average impact for each method.

Mapping MSE0 duration MSE avg

R 9 20 4 11

KL 45 28 12 28

KCor 57 27 12 32

PCor 56 28 12 32

SCor 57 27 13 33

SCor is slightly better for metrics MSE0 and duration, although the other (KCor and

PCor are very near). This way, since the impacts are on average very similar, from

now on we will consider SCor mapping method only.

5.4.2 Transfer of weights with pgrid

The results described so far in this chapter were obtained by parameterising the

neural networks with the suggestion made in the previous chapter (pmeta) and using

the transferred weights. We now analyse the impact of transfer for neural networks

parameterised with the best parameterisation found in the grid search (pgrid) aiming

at studying the impact of transfer learning in the case where the parameterisation

suggested is closer to the one obtained by grid-search.

First, we analyse the proportion of positive transfers achieved with SCor-mapped

transfers. Figure 5.7 shows the comparison of the proportion of positive transfers

obtained when considering SCor mapping method.
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Figure 5.7: Percentage of positive transfers obtained with SCor-mapped transfer

(relative to the random transfer). The xx axis represents the target datasets on

the same order as in Table A.1 in Appendix A. The yy axis, for each performance

metric, corresponds to the proportion of positive transfers (relative to the proportion

of positive transfer obtained by random transfer) when considering SCor mapping

method.

Similarly to Figure 5.4, positive values mean that SCor-mapped transfer leads to

positive transfers more often than random transfer. We observe that SCor-mapped
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transfer generally leads to more positive transfers than random transfer, except for

five datasets for the duration metric and four for the MSE metric. These are presented

on Table 5.7, where we can see that the differences are not too large.

Table 5.7: Datasets in which random transfer shows larger proportion of positive

transfers for each evaluation metric considered.

(a) duration

dT R SCor

5 7 47 41

5 12 56 44

5 14 26 21

5 18 41 38

11 3 0

(b) MSE

dT R SCor

2 2 71 56

5 7 74 56

16 79 65

17 56 50

However, as stated before, the proportion of positive transfers is not enough to assess

the best transfer results. Figure 5.8 shows the impact obtained by random transfer

and SCor-mapped transfer for each performance metric in each dataset.
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Figure 5.8: Impact of the transfers for each metric with random transfer and SCor-

mapped transfer. The xx axis represents the target datasets on the same order as in

Table A.1 in Appendix A. The yy axis represents the highest impact obtained for each

target dataset.

As we can see in the figure, there is only one case in which SCor-mapped transfer

leads to negative transfer, while random mapping leads to several negative transfers.
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Furthermore, we present the best transfer found for each target dataset with the SCor-

mapped transfer for both parameterisations considered: pmeta (Table H.1, Appendix H)

and pgrid (Table I.1, Appendix I).

5.5 Summary

In this chapter we studied the impact of transfer learning on neural networks for

regression problems. The experiments were performed with a set of 28 datasets and

we tried transfer learning for every possible combination of source/target datasets (the

source is always different from the target). The transfers were performed considering

two parameterisations: the one suggested by the metalearning method described in the

previous chapter; and the best parameterisation found in a grid search. The objective

of using this last one is to assess the transfer learning results if the metalearning model

suggested a parameterisation that is closer to the best possible (from within the ones

tested).

Results indicate that, provided that the source dataset is well chosen, transfer learning

can be used to initialise neural networks in order to increase their computational

performance, while not harming (and, sometimes, even increasing) their predictive

performance.

Also, this is not due to the initial weights having a distribution closer to the optimal.

If it was the case, random transfer would lead to similar impacts as mapped transfer

and this is not the case. Mapped transfers lead to higher impacts and SCor-mapped

transfer revealed to achieve better results and so it was chosen to be used for the rest

of the work. In the following chapter we study how metalearning can be used to select

a good source dataset for a new target dataset.





Chapter 6

Metalearning for source selection in

heterogeneous transfer learning for

neural networks

In this chapter we describe the study performed to answer RQ4 (Chapter 1): Can

metalearning be used to support transfer learning in neural networks? Our objective

is to use metalearning to predict if transferring weights from a specific source network

will make the target network converge faster, without harming its performance. This

will be performed according to the transfers’ characteristics (metafeatures).

We propose seven sets of metafeatures for the selection of the source network for

a specific target network (Section 6.1). These metafeatures aim at capturing the

transfers’ characteristics that can be used to decide whether a specific transfer will

be advantageous for a determined target dataset. The metafeatures are then used by

the metalearning that tries to map the data characteristics to the impact of a certain

transfer.

We perform an extensive experimental setup (Section 6.2) to validate our method and

its results are presented in Section 6.3). We present two resources developed that allow

data scientists to fully configure neural networks for the R package nnet (Section 6.4)

and finish with a summary of our observations (Section 6.5).

6.1 Metafeatures for source network selection

The purpose of the metafeatures is to characterise the transfers. These characteristics

are then used by the metalearning and mapped to the impact of the transfers on the

neural networks.

87
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We propose metafeatures for the task of selecting a neural network to be used as

source for initialising a specific target network. Our objective is that, by initialising

the target network with weights coming from a previously learned source network, the

target network’s performance will be improved.

We start by generating three separate groups of metafeatures specific for characterising

the transfers (described next in Subsections 6.1.1, 6.1.2 and 6.1.3) and then aggregate

the groups of metafeatures in seven sets (see Subsection 6.1.4).

6.1.1 Simple metafeatures

The simple metafeatures aim at characterising the similarity between the datasets and

are based on groups G1 to G8 referred in Section 4.1. Besides those, for each dataset,

we compute the correlations of the independent variables with the dependent variable

and use some statistics of the correlations. To illustrate the datasets’ similarity,

these metafeatures are obtained by the absolute difference between the source and

target metafeatures. For example, let us consider the metafeature n.examples. If the

source dataset contains 300 examples and the target contains 400, the value for this

metafeature (d n.examples) will be 100. This set is composed of 48 metafeatures:

G11

d n.bin.fea d avg.mean.res.dist.adjacent.target

d n.h.outlier d r.squared

d n.examples d clustering.{3.5.10.20}
d n.attrs d d.tree.leaves

d n.tri.fea d d.tree.mse

d avg.abs.attr.correlation d mean.mse

d avg.skewness d r.num.bin.fea.n.attrs

d avg.abs.skewness d r.num.bin.fea.n.examples

d avg.kurtosis d r.n.h.outlier.n.attrs

d prop.cor.gt.50 d r.n.h.outlier.n.examples

d prop.target.cor.gt.50 d r.num.tri.fea.n.attrs

d avg.means d r.num.tri.fea.n.examples

d avg.sds d r.n.attrs.n.examples

d range.target.rel.avg d r.n.examples.n.attrs

d target.coefficient.variation d min

d abs.target.coefficient.variation d mean

d target.cv.sparsity d max

Continued on next page
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G11 (cont.)

d target.abscv.sparsity d sd

d target.h.outlier d min abs

d target.has.outliers d mean abs

d target.stationarity d max abs

d avg.abs.target.correlation d sd abs

d target.hist.sparsity

6.1.2 Correlation-based metafeatures

As referred on the previous chapter, the mapping of the variables for transfer is

performed by measuring difference in the relatedness of the datasets’ independent

and dependent variables (using Spearman correlation). By measuring the average

minimum and maximum differences, we create the correlation-based metafeatures

aiming at characterising the similarity of the source and target datasets’ variables.

This set is composed of 2 metafeatures:

G12

avgmin average of the minimum correlation differences

avgmax average of the maximum correlation differences

6.1.3 Source selection specific landmarkers

Landmarkers are performance estimators. In this case, the landmarkers consist in

running a simpler version of the model on the entire dataset. We initialise the neural

networks with the transferred weights and limit its maximum number of iterations to

1, 10 and 100. We measure the mse0 (the network’s initial mean squared error, without

training) and the performance indicators: M∈ {mse, time, learn, w.sd, w.mean,w.cv},
where mse is the network’s mean squared error after convergence, time is the amount

of time needed for convergence, learn = mse0 − mse and the metrics relative to

weights (w) refer to the differences between initial and final weights: w.sd is the

standard deviation of the weights differences, w.mean is its mean, and w.cv is its

coefficient of variance (w.cv = w.sd
w.mean

).

This set contains 19 metafeatures and aims at describing the behaviour of each par-

ticular transfer.
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G13

lm.transfer.mse0 neural network’s MSE0

lm.transfer M IT the metric M (M) of a neural network that run

for a maximum of IT iterations, IT ∈ {1.10.100}

6.1.4 Sets of metafeatures

The sets of metafeatures considered characterise the differences between the source

and target datasets, their variables, and also include estimators of the transfers per-

formance. However, combining the sets of metafeatures may be advantageous.

Because of this, we generated seven combinations of metafeatures to evaluate which

of the characteristics are more informative for predicting the impact of each transfer

on the target network:

MFT metafeatures

MF 1
T = G11

MF 2
T = G12

MF 3
T = G13

MF 4
T = G11 +G12

MF 5
T = G11 +G13

MF 6
T = G12 +G13

MF 7
T = G11 +G12 +G13

6.2 Experimental Setup

Our hypothesis is that metalearning can be used to determine if a specific transfer will

make the target network converge faster, without harming its performance. We try to

predict the impact of the transfers and recommend the best one (the one with highest

predicted impact).

We evaluate the metamodels’ accuracy (meta-level evaluation) and the impact of the

recommended transfers (base-level evaluation). For this part of the research we are

only considering the datasets marked in column “SST” on Table A.1 (Appendix A).

If the recommended transfers have positive impact on the NNs’ performance, then we

have evidence to support our hypothesis.

Figure 6.1 shows the schema of the phases considered in our research, first presented

in Chapter 1 (Figure 1.2). The shaded area of the figure represents the experimental

setup considered for this study.
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Figure 6.1: Metalearning for multiple domain Transfer learning experimental process.

The shaded area corresponds to the experimental setup considered for learning the

transfer metamodel.

The first step is to characterise the datasets, obtaining their metafeatures (MFT ,

detailed in Section 6.1). Then we use the impact values of SCor-mapped transfers

presented in Chapter 5 to build the metamodel (for pmeta and also pgrid).

We aim at predicting the source dataset that leads to a higher positive impact for each

target dataset. Since the values are continuous, we consider the regression approach

and the algorithms referred in 2.1.2. We perform the predictions by using the original

impact values, but also a scaled transformation of them.

We also use the correlation-based feature selection (CFS) method to remove features

with high mutual correlations. We consider three CFS settings: no CFS (cutoff=∅),
CFS with cutoff=0.75 and CFS with cutoff=0.5. The final number of attributes

obtained for each metadataset with each of the cutoff values is presented on Table 6.5.

In the case of the set of metafeatures MF 2
T , as there are only two metafeatures, CFS

removes both of them. This is represented with NA in the table.

First, we try to predict positive and negative transfers. For this we use the values pre-
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Table 6.5: Number of meta-attributes used after CFS.

Cutoff MF 1
T MF 2

T MF 3
T MF 4

T MF 5
T MF 6

T MF 7
T

∅ 48 2 19 50 67 21 69

0.75 19 NA 11 21 30 13 32

0.5 11 NA 8 12 20 10 20

dicted by regression and consider negative prediction values as predictions of negative

transfers and positive prediction values as predictions of positive transfers.

In a second step, we try to predict the best (or a good) transfer for each target

dataset. For this, we use the same prediction values and consider that the predicted

best transfer is the one with highest predicted value. If the highest value is still

negative, we consider that the model is predicting that the best possible outcome

will be a negative transfer (the user will have better results with randomly initialised

neural networks).

6.2.1 Performance evaluation

The metalearning results evaluation is based in leave-one-out cross validation, more

specifically “leave-one-target-out” cross validation. Our metadataset contains 34 ex-

amples for each of the 28 target datasets considered (for each target, every dataset

except itself is considered as source). The metalearning process is repeated 28 times,

each considering the examples relative to a specific target dataset as testset and the

remaining data as trainset.

Furthermore, the evaluation is performed in two levels:

• meta-level: evaluate the predictive performance of the metalearning models used.

We use three different metrics:

– MM1: evaluates if the model correctly identifies negative and positive

transfers (i.e., positive and negative impacts);

– MM2: evaluates if the model correctly identifies the best possible transfer

(i.e., the highest impact);

– MM3: evaluates if the model correctly identifies a good transfer (i.e., a

positive transfer).

• base-level: evaluate the true impact of following the suggestions made by the

metalearning (i.e., the true impact of performing the suggested transfer).



6.3. RESULTS 93

For comparison, we consider two baseline models:

• BL1: the model that predicts the average impact value of the trainset for each

instance of the testset. This baseline is used when evaluating MM1;

• BL2: the model that predicts that the best transfer for each target dataset

is the one that considers the source dataset with higher proportion of positive

transfers. Here we have BLduration
2 and BLMSE

2 because we have different results

for each of the metatargets considered.

6.3 Results

Since the results obtained with different CFS settings are similar, we only present here

the results of the experiments performed without considering CFS. The same way, the

scaling of the metatargets does not change the results much. This way, we only present

the results of using the original values of the metatarget. For completion, the tables

in Appendixes E and F show the complete results. In the following tables, the highest

performance is represented in bold.

6.3.1 Metalearning results for pmeta parameterisation

We start by applying metalearning to the results obtained for parameterisation pmeta

and analysing MM1: the accuracy in predicting positive and negative transfers. Ta-

ble 6.6 shows these results for the two metatargets.

Table 6.6: MM1 accuracies (percentage) on pmeta neural networks.

duration MSE

AF AL AT AF AL AT

MF 1
T 62 63 64 55 55 55

MF 2
T 53 55 57 52 53 55

MF 3
T 57 51 57 55 53 55

MF 4
T 64 62 64 54 55 55

MF 5
T 61 60 61 54 50 55

MF 6
T 58 52 53 55 48 55

MF 7
T 61 59 62 54 47 55

BL1 55 55

For the metatarget duration, the highest accuracy is 16% higher than the baseline.

As for metatarget MSE, the highest accuracy is the same as the one obtained by the



94 CHAPTER 6. METALEARNING FOR SOURCE SELECTION

baseline model BL1, suggesting that this is a more difficult problem, which may be

related to the iterative nature of the neural networks’ training process.

The algorithms AF and AT obtain good results for both metatargets. As for the set of

metafeatures used, MF 1
T and MF 4

T can both be used to obtain the highest accuracies.

Both sets contain the simple metafeatures. This suggests that the similarity between

the source and target datasets can be used to predict if a certain transfer will improve

the neural network’s performance.

We then evaluate MM2: the metalearning ability to predict the best transfer possible

for each target dataset. The baselines BL2 used here show the effect of choosing the

source dataset with more hits for each metric. In this case 5 18 for duration and 5 8

for MSE. These results are shown on Table 6.7. Here we are only considering AL and

AF , because the models generated by AT were not able to predict a single maximum.

Table 6.7: MM2 accuracies (percentage) on pmeta neural networks.

duration MSE

AF AL AF AL

MF 1
T 25 14 0 4

MF 2
T 4 11 4 4

MF 3
T 4 0 0 7

MF 4
T 32 18 4 0

MF 5
T 18 11 4 0

MF 6
T 7 4 0 7

MF 7
T 29 11 0 0

BL2 14 14

The accuracies presented on the table show that, for the metatarget duration, the

highest accuracy (32) is 1.3 times higher than the baseline’s and was achieved with

AF algorithm and the set of metafeatures MF 4
T . This suggests that the metafeatures

characterising the similarity between source and target datasets and between their

variables are the ones with more information about the impact of the transfers.

As for metatarget MSE, the results show that it is difficult to predict which is the

best possible transfer for a given target dataset to improve its predictive performance.

The best performing models have accuracies 50% lower than the ones obtained by the

baseline model BL2. The sets of metafeatures used in the best performing models are

MF 3
T and MF 6

T . Both these sets include the landmarkers, which suggests that these

are the best possible estimators of the neural networks’ performance.

The last meta-level metric to be analysed is MM3: the ability of the models to predict

a good (positive) transfer. These results are presented on Table 6.8.
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Table 6.8: MM3 accuracies (percentage) on pmeta neural networks.

duration MSE

AF AL AF AL

MF 1
T 75 57 57 54

MF 2
T 46 68 39 36

MF 3
T 54 29 57 46

MF 4
T 75 57 57 57

MF 5
T 71 61 39 54

MF 6
T 57 46 54 46

MF 7
T 82 61 46 64

BL2 64 46

MF 7
T is the set of metafeatures that originates the highest MM3 accuracies for both

metatargets. This set of metafeatures is composed by all the three groups of metafea-

tures considered. This suggests that, to predict if a certain transfer will improve a

neural network’s performance, besides the similarity of the source and target datasets

and their variables, we also need to consider the transfer performance estimators

(landmarkers).

Finally, we perform the base-level evaluation to assess the impact of the metalearning

predictions on the neural networks’ performance. We are considering only the models

with highest MM3 accuracies, because these are the ones that predict a higher number

of positive transfers. The impact of the models is presented on Table 6.9.

There is one case for metatarget MSE in which the models suggest that no transfer

should be performed (marked with NA on DS field). In this case the impact is 0,

because the model’s suggestion is not to transfer.

There are several cases for each metatarget in which the transfer leads to a positive

impact in both evaluation components: 16 for duration and 9 for MSE. As for negative

transfers for both evaluation components, there are three for each metatarget. The

number of positive transfers is usually higher than the number of negative transfers,

especially for the duration metatarget.

The results also show that datasets from the same group are normally paired for

transfer. This happens for datasets in group 5 * for both the metadatasets, 11 * and

12 * for metadataset duration. Another example is when the same dataset is chosen

as source to transfer to datasets of the same group, as is the case of datasets 11 * with

metatarget MSE. This suggests that the metalearning was able to find characteristics

in the datasets that correctly capture the similarities between datasets.

Our main objective is to provide the user with faster neural networks, without harming

the predictive performance. When considering metatarget duration (i.e., trying to
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Table 6.9: True Impact of the metalearning predictions on the neural networks

parameterised with pmeta.

(a) duration

ds dt duration MSE

12 2 1 1 1

4 2 1 9 1

4 2 2 8 4

12 2 3 -13 0

11 4 8 0

5 9 5 1 45 -14

5 18 5 2 25 34

5 13 5 3 15 -2

5 18 5 6 42 -7

5 9 5 7 21 9

5 18 5 8 53 36

5 11 5 9 21 2

5 8 5 12 52 -5

5 17 5 14 36 16

5 14 5 16 -4 7

5 18 5 17 53 37

5 8 5 18 46 53

3 6 -6 -15

12 2 7 7 1

3 10 -4 -5

11 2 11 15 5

11 11 2 -9 -29

12 2 12 1 19 -3

12 3 12 2 36 1

12 2 12 3 10 -6

4 15 11 0

3 16 1 0

12 2 17 20 -1

Average 19 4

POS 23 14

NEG 5 10

(b) MSE

ds dt duration MSE

12 1 1 10 2

17 2 1 -10 -1

13 2 2 -2 5

7 3 -8 0

7 4 8 1

5 2 5 1 19 -4

5 5 5 2 15 10

5 2 5 3 -18 -12

12 1 5 6 -3 3

5 16 5 7 -11 17

5 7 5 8 17 22

NA 5 9 0 0

5 8 5 12 52 -5

5 7 5 14 35 10

5 5 5 16 -11 4

5 1 5 17 -12 -195

5 4 5 18 6 -82

12 3 6 -3 3

4 7 9 1

5 13 10 -19 -24

13 11 -6 2

13 11 2 -17 -13

4 12 1 -5 -9

4 12 2 12 1

6 12 3 -3 -2

12 1 15 1 1

5 5 16 -31 0

13 17 1 2

Average 1 -9

POS 12 15

NEG 15 10

predict the impact of the transfers in terms of time needed for the neural networks to

converge) we obtain neural networks that are, in average, 19% faster, while 4% more

accurate.

Also, when considering the MSE metatarget, we can still recommend faster conver-

gence neural networks, while losing only 10% in predictive performance. This suggests

that metalearning can be used to select a good source dataset for a given target dataset.

6.3.2 Metalearning results for pgrid parameterisation

Next, we analyse the results obtained in a situation where the choice of parameters is

optimal (neural networks parameterised with pgrid). Besides analysing the results, we

will also compare them to the ones shown for pmeta

We start by analysing the results in terms of MM1: the models’ ability to predict

if a specific transfer will have positive or negative impact on the performance. The

results are presented on Table 6.10. Concerning the algorithms, AF is the best for
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Table 6.10: MM1 accuracies (percentage) for pgrid neural networks.

duration MSE

AF AL AT AF AL AT

MF 1
T 68 73 74 64 61 64

MF 2
T 68 64 70 62 63 64

MF 3
T 69 66 65 65 63 64

MF 4
T 76 73 75 64 63 64

MF 5
T 78 72 74 64 61 64

MF 6
T 72 66 66 66 63 64

MF 7
T 79 71 75 64 64 64

BL1 67 59

both metatargets.

For predicting the impact in terms of duration all the metafeatures considered have

useful information. For predicting the impact in terms of MSE the most important in-

formation consists in the similarity between the datasets’ variables and the estimators

of the transfer performance (landmarkers).

Comparing these results with the ones obtained previously, we see that the best

performing model is one of the same as before for metatarget MSE, while for duration

we now have another model. However, if we look at the values obtained by the best

models for the previous analysis we can see that their results are also high (around

75).

Next, we analyse MM2: the models’ ability to predict which is the best transfer

possible for a specific target dataset. These results are shown on Table 6.11. As

Table 6.11: MM2 accuracies (percentage) for pgrid neural networks.

duration MSE

AF AL AF AL

MF 1
T 7 18 4 4

MF 2
T 7 18 4 0

MF 3
T 0 4 0 4

MF 4
T 14 14 4 0

MF 5
T 7 14 11 4

MF 6
T 4 4 0 0

MF 7
T 11 14 7 0

BL2 18 11

happened in the previous analysis, AT is not capable of predicting a single maximum,

and therefore we ignore it for this analysis. In this case, the best performing algorithm

for MSE is still AF , while for duration it is AL, although the performance is the same
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as the baseline’s.

As for the metafeatures, we have different sets for each metatarget, and also the sets

are different from the ones obtained on the previous analysis. The results suggest that

predicting the best possible transfer for a specific target dataset is a difficult task,

even for neural networks parameterised with the best configuration found in the grid

search.

Finally, we analyse the results in terms of MM3: the models’ ability to predict a good

transfer for a specific target dataset. The results are presented on Table 6.12. In this

case the best results are obtained with AF for both metatargets.

Table 6.12: MM3 accuracies (percentage) for pgrid neural networks.

duration MSE

AF AL AF AL

MF 1
T 43 57 50 43

MF 2
T 57 61 43 32

MF 3
T 39 18 43 32

MF 4
T 57 57 54 39

MF 5
T 64 61 39 43

MF 6
T 50 57 46 32

MF 7
T 64 57 36 43

BL2 57 36

As for the metafeatures, for the metatarget duration, the best results can be obtained

with MF 5
T or MF 7

T . Both these sets contain the simple metafeatures and the land-

markers. This suggests that, to predict the impact in terms of duration, we need to

consider the similarity between the source and target datasets, but also the estimators

of the transfer performance.

When considering the metatarget MSE, the best results are obtained with MF 4
T , which

is composed by the simple and correlation-based metafeatures. This suggests that, for

predicting the impact in terms of MSE, we need to consider the similarity between

the datasets, but also between their variables.

When comparing these results with the ones obtained previously, we see that the

best performing model here is the same for duration metatarget, but not for MSE

metatarget. However, in this case, the model with highest performance in the previous

analysis (using AL and MF 7
T ) still has a performance above the baseline’s.

This way, for the base-level evaluation, we will use here the same models as for the

pmeta neural networks. The impacts of following the predictions on the neural networks’

performance are shown on Table 6.13. For each metatarget there are cases in which

the model suggests not to transfer. These are marked with NA on the dS field and
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represent an impact of 0 in each evaluation component.

Table 6.13: True Impact of the metalearning predictions on the neural networks

parameterised with pgrid.

(a) duration

dS dT duration MSE

NA 1 0 0

5 4 2 1 5 3

5 6 2 2 3 0

NA 3 0 0

NA 4 0 0

5 5 5 1 65 -18

5 17 5 2 31 22

5 7 5 3 24 0

5 18 5 6 47 7

5 9 5 7 25 9

5 18 5 8 39 -387

5 11 5 9 27 -8

5 6 5 12 39 -39

5 6 5 14 -1 -38

5 5 5 16 11 42

5 18 5 17 58 37

5 17 5 18 45 32

NA 6 0 0

NA 7 0 0

NA 10 0 0

NA 11 0 0

11 11 2 -34 -12

12 2 12 1 7 -9

NA 12 2 0 0

12 2 12 3 -27 -172

NA 15 0 0

NA 16 0 0

NA 17 0 0

Average 13 -19

POS 14 7

NEG 3 8

(b) MSE

dS dT duration MSE

5 13 1 -22 -2

17 2 1 -2 2

13 2 2 -2 1

4 3 -30 0

7 4 6 1

5 14 5 1 17 -19

NA 5 2 0 0

4 5 3 -15 -52

NA 5 6 0 0

11 2 5 7 -3 -6

5 15 5 8 -12 -5

5 11 5 9 27 -8

5 8 5 12 58 -5

NA 5 14 0 0

5 5 5 16 11 42

5 5 5 17 7 7

5 12 5 18 22 29

NA 6 0 0

4 7 -15 32

NA 10 0 0

13 11 -25 -16

13 11 2 -43 -25

2 1 12 1 -19 -3

15 12 2 7 0

15 12 3 -60 -154

12 1 15 -3 0

11 2 16 2 0

13 17 -9 0

Average -4 -6

POS 9 7

NEG 14 11

There are cases in which the suggested transfer leads to positive impacts in both the

evaluation components: 9 for duration and 6 for MSE metatargets. As for negative

impact in all the components, there are only 3 cases for metatarget duration and 8 for

metatarget MSE.

Also, we can see that for each metatarget we have cases in which both impact values

are positive: 6 for metatarget MSE and 9 for metatarget duration and negative in 3

cases for metatarget duration and 8 for metatarget MSE. These values are similar to

the ones obtained in the previous analysis.

As before, we can see that datasets in group 5 * are normally chosen as source for

transfers in which the target is another dataset from the same group. Also, dataset 13

is chosen as source for both datasets in group 11 *, when considering metatarget MSE.

This suggests that metalearning was able to detect similarities between the datasets

and predicts the best source according to them.
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As stated, our objective is to provide the user with a way to have faster neural

networks, without harming their predictive performance. In average, the highest

impact in the duration is obtained with the model that predicts metatarget duration.

We here have neural networks 13% faster, although 19% less accurate. This loss

in accuracy may be due to the performance obtained by randomly initialised neural

networks already being very high (metric (MR) very low), making them difficult to

outperform. Besides, as the impact is obtained as defined in Equation 5.3.1, if we

have MR very near zero, the impact will be very high. For example, let us look at

the datasets with the highest negative impacts in MSE, presented on Table 6.14. The

Table 6.14: Highest negative impacts of the transfers.

DS DT MR MT impact

5 18 5 8 0.000157 0.000767 -387

12 2 12 3 0.008253 0.22473 -172

MR in these cases is already very low. Even with low performances in and the impact

is very high due to this fact.

This way, even with results harder to outperform, metalearning still seems to be a

good approach for selecting the source dataset for a transfer. In average, we will

obtain neural networks 13% faster without losing too much predictive performance in

the majority of the target datasets.

6.4 Developed resources

For dissemination purposes, and to enable the easy use of our methodologies, we

have developed two different ways of using our metamodels to fully configure neural

networks: an R Shiny application, and an R library.

With this, the data scientist can use the metamodels described in this research to

predict both parameterisation and initialisation of neural networks, thus reducing the

effort and time needed for the task.

Both resources work only with numerical datasets for regression tasks, such as the ones

presented in our research and follow the four step methodology depicted in Figure 6.2.
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PS Characterisation Parameterisation SS Characterisation Source selectionData nnet 
configuration

Figure 6.2: Methodology followed on the resources developed.

First, in the PS Characterisation step, the dataset is characterised for the parameter

selection task. In this step, the set of metafeatures MF 2
PS (Section 4.1) is computed.

The metafeatures are then used in the Parameterisation phase to select a high-

performance set of parameter values, according to the best metamodel found for this

task (Chapter 4).

In the third step, SS Characterisation, the dataset is characterised for the source

selection task. The set of metafeatures MF 7
T (Section 6.1) is computed. This set of

metafeatures contains the transfer specific landmarkers. The landmarkers estimate

the performance of neural networks initialised with transferred weights on the dataset

at hand. For this, the mapping process (Section 5.1) is performed for all the source

datasets available (the ones used in this research, and presented on Table A.1 in

Appendix A).

Finally, these metafeatures are used in the Source selection step to select the network

from which the weights should be transferred. This is performed according to the

best metamodel found for this task (Chapter 6). At the end of the process, the user

can obtain the full neural network configuration, including the recommended values

for parameters size, decay and abstol and the initial weights to feed to the neural

network.

6.4.1 NN configurer Application

We developed an R Shiny application, publicly available at (https://catarinafelix.

shinyapps.io/nn_shiny/) and also available for download at (https://gitlab.com/

catarinafelix/nn_shiny). Figure 6.3 shows the screen of NN configurer GUI during

the metafeature computation phase.

After the characterisation, the user can download the metafeatures computed. Then,

he can obtain the parameterisation recommended by our metamodel. After this, he can

choose to use transferred weights or skip this step and simply use randomly generated

weights.

In case the user prefers transferred weights, the transfer specific landmarkers are com-

puted, the source network is selected and, finally, the full neural network configuration

is presented. Otherwise, the configuration presented will include the parameter values

https://catarinafelix.shinyapps.io/nn_shiny/
https://catarinafelix.shinyapps.io/nn_shiny/
https://gitlab.com/catarinafelix/nn_shiny
https://gitlab.com/catarinafelix/nn_shiny
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Figure 6.3: NN configurer GUI during the metafeature computation phase.

recommended previously, and a set of randomly generated initial weights.

6.4.2 nnetConf library

We have also developed an R library, available at https://gitlab.com/catarinafelix/

nnetconf. The command to obtain the full neural network configuration for a dataset

named “data” is:

configure(data)

In this case, the library will compute the metafeatures and neural network specific

landmarkers and recommend a parameterisation. It will then compute the transfer

specific landmarkers and recommend the set of weights to be transferred. At the end

of the process, the full neural network configuration is presented to the user.

However, if the user wants to skip the transfer and use randomly generated weights

instead, the command to use is:

configure(data, notransfer=T)

https://gitlab.com/catarinafelix/nnetconf
https://gitlab.com/catarinafelix/nnetconf
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In this case, the configuration presented will include the parameter values recom-

mended and, similarly to what happens in NN configurer, a set of randomly generated

initial weights.

6.5 Summary

In this chapter, our objective was to create a model that could choose good source

networks for a given target network, i.e., when transferring weights from that source

neural network to the target neural network, we would have a positive impact on the

neural network’s performance, avoiding negative transfer.

We conducted experiments considering two different parameterisations. For the neural

networks parameterised with pmeta (the parameterisation suggested in Chapter 4) we

were able to achieve neural networks that were, on average, 19% faster and 4% more ac-

curate than randomly initialised networks. For the neural networks parameterised with

pgrid (the best parameterisation found by grid search) we obtained neural networks

13% faster than randomly initialised networks, although 19% less accurate than those,

in average. This loss in average accuracy may be related to the randomly initialised

neural networks already having high performance which, besides being difficult to

outperform, make negative impacts be very high.

The results obtained suggest that metalearning can be used to select a source network

from which to transfer weights to a given target network. Instead of spending time

experimenting with different sets of initial weights, the data scientist can use our

metamodel to select the weights to initialise the neural network in order to have a fast

training model without losing much predictive performance.

Furthermore, we presented two resources that can be used by any data scientist to

fully configure neural networks: a R Shiny application and a R library, both capable

of fully configuring neural networks for the nnet package.





Chapter 7

Conclusion

Neural networks are difficult to configure. Both parameterisation and initialisation

tasks are difficult and time consuming, also requiring user expertise. Our objective

was to provide the data scientist with methods to perform these tasks. For that, we

proposed using metalearning together with transfer learning.

We started by trying to answer RQ1: How do different parameter values impact

the performance of neural networks? For this, we studied several parameter

configurations and different datasets, aiming at finding a configuration that yields

good average performance (Chapter 3). The results obtained show that there are

certain parameter values that can make the neural networks learn better or faster.

This way, we suggested a group of (full and partial) neural network parameterisations

that can lead to good performance. However, the results also indicate that there might

be some characteristic of the data that makes a certain parameterisation more suited

for a specific dataset.

This way, to try to answer RQ2: Can metalearning be used to support the pa-

rameterisation of neural networks?, we then propose a metalearning methodology

to select a high-performance parameterisation for neural networks. This methodology

is presented in Chapter 4. We designed different sets of metafeatures to characterise

the datasets and used them to predict the parameterisations to be used. Results

suggest that metalearning is a good approach for selecting a high-performance param-

eterisation, especially when using the more extensive set of neural network specific

landmarkers. The best result was obtained with multi-output regression, suggesting

that the parameter values are, in fact, related and that there is an advantage in

predicting all of them simultaneously, instead of considering separate problems. The

average performance of the neural networks configured with the predicted parameters

are only slightly lower than the ones optimised by grid-search. With this, the data

scientist can use our methodology’s predictions to obtain a neural network with high

105
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performance.

We then studied the use of transfer learning to help on the neural networks’ initial-

isation task, trying to answer RQ3: What is the impact of transfer learning

(weights transfer) on neural networks?. Our objective was to improve the

neural networks’ performance by initialising them with weights obtained from pre-

viously learned neural networks, instead of using randomly generated initial weights.

Besides, we propose methods for mapping the source and target features, in order to

perform the transfers between the most adequate ones. We performed several different

transfers, considering the different mapping methods and evaluated the impact of the

transfer of weights on neural networks (Chapter 5). We compared the performance

of randomly initialised networks with the performance of networks initialised with

weights transferred from previously learned ones. The experiments were performed

using parameterisations pmeta (suggested by metalearning) and pgrid (found from grid-

search). The results obtained suggest that transfer learning can be used to initialise

neural networks in order to accelerate their training process with minimal loss in

predictive performance. Furthermore, the mapped transfers obtained better results

than random transfers, suggesting that the improvement brought by transfer learning

is not only related to the initial weights’ distribution. The higher transfer impacts

revealed that the transfer of weights is a suitable approach for initialising neural

networks, provided that the source network is well chosen.

Finally, to answer RQ4: Can metalearning be used to support transfer learn-

ing in neural networks?, we studied the use of metalearning to perform the source

network selection for a given target network, preventing negative transfer (i.e., so

that the transfer has a positive impact on the neural network’s performance). This

part of the work is presented in Chapter 6. We designed several sets of metafeatures

to characterise the similarity among source and target datasets and their variables,

and also landmarkers that estimate the impact of the transfers. The experiment was

conducted considering both parameterisations referred above. The results obtained

suggest that metalearning can be used to select a source network from which to

transfer weights to a given target network in order to have a fast training model

without much loss in predictive performance. With this, the data scientist can use

our methodology to obtain a faster training neural network with almost no loss in

predictive performance.

Ultimately, the data scientist can use our methodology to obtain a high-performance

neural network configuration. The methodology is also available as one of the two

resources we developed: NN configurer (https://catarinafelix.shinyapps.io/nn_

shiny/ and downloadable at https://gitlab.com/catarinafelix/nn_shiny), an R

https://catarinafelix.shinyapps.io/nn_shiny/
https://catarinafelix.shinyapps.io/nn_shiny/
https://gitlab.com/catarinafelix/nn_shiny
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Shiny application; or the R library nnetConf (https://gitlab.com/catarinafelix/

nnetconf) described in Section 6.4.

First, he can use the parameter selection metamodel to parameterise the network.

Then, according to the parameterisation selected, he can use the source selection

metamodel to select a source network from where the initial weights can be transferred

to his new neural network. With this, the data scientist will reduce the time needed

for both parameterisation and training of the network, still reaching high predictive

performance.

The results can be improved in the future. We aim at creating new neural-network-

and transfer-specific landmarkers that more accurately capture the characteristics

needed for the metamodels that select the parameterisation and the source network.

Furthermore, we can consider both models as a single one, and try to predict both

configurations simultaneously, instead of considering them as separate problems. Fi-

nally, the models could be applied to different architecture neural networks, possibly

including deep models, to improve their performance.

https://gitlab.com/catarinafelix/nnetconf
https://gitlab.com/catarinafelix/nnetconf
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A Datasets

Table A.1: Complete list of UCI Datasets used for the Empirical study of the perfor-

mance of neural networks (ES, Chapter 3), Metalearning for Parameter Selection in

Neural Networks (PS, Chapter 4), Weights Transfer in Heterogeneous Domain Neural

Networks (WT, Chapter 5) and Metalearning for source selection in heterogeneous

transfer learning for neural networks (SST, Chapter 6).

ES PS WT SST id Dataset Dependent Variable

X X X X 1 Airfoil Self-Noise Scaled.sound.pressure.level

X X X X 2 1
Condition Based Maintenance of Naval Propulsion Plants

GTCompressor

X X X X 2 2 GTTurbine

X X X X 3 Combined Cycle Power Plant PE

X X X X 4 Communities and Crime ViolentCrimesPerPop

X X X X 5 1

Communities and Crime Unnormalized

murders

X X X X 5 2 murdPerPop

X X X X 5 3 rapes

X X 5 4 rapesPerPop

X X 5 5 robberies

X X X X 5 6 robbbPerPop

X X X X 5 7 assaults

X X X X 5 8 assaultPerPop

X X X X 5 9 burglaries

X X 5 10 burglPerPop

X X 5 11 larcenies

X X X X 5 12 larcPerPop

X X 5 13 autoTheft

X X X X 5 14 autoTheftPerPop

X X 5 15 arsons

X X X X 5 16 arsonsPerPop

X X X X 5 17 violentPerPop

X X X X 5 18 nonViolPerPop

X X X X 6 Concrete Compressive Strength Concrete.compressive.strength.MPa..megapascals.

X X X X 7 Computer Hardware ERP

X 8 Challenger USA Space Shuttle O-Ring (erosion only) Number.experiencing.thermal.distress

X 9 Challenger USA Space Shuttle O-Ring (erosion or blowby Number.experiencing.thermal.distress

X X X X 10 Online News Popularity shares

X X X X 11 1
Parkinsons Telemonitoring

motor UPDRS

X X X X 11 2 total UPDRS

X X X X 12 1

Concrete Slump Test

SLUMP.cm.

X X X X 12 2 FLOW.cm.

X X X X 12 3 Compressive.Strength..28.day..Mpa.

X X 13 Buzz in social media ND

X X X X 15 Wine Quality (red) quality

X X X X 16 Wine Quality (white) quality

X X X X 17 Yacht Hydrodynamics Residuary.resistance.per.unit.weight.of.displacement





B. AUXILIARY PLOTS 123

B Auxiliary plots

0.0

0.5

1.0

1.5

2.0

pn 3 5 10 20

Figure B.1: Neural network MSE by pn. The xx axis refers to the datasets used in

the same order as on Table A.1 in Appendix A. The yy axis corresponds to the MSE

obtained for each dataset.
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Figure B.2: Neural network MSE0. The xx axis refers to the datasets used in the

same order as on Table A.1 in Appendix A. The yy axis corresponds to the MSE0

obtained for each dataset.
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Figure B.3: Neural network performance by pa. The xx axis refers to the datasets

used in the same order as on Table A.1 in Appendix A. The yy axis corresponds to

the performance metric obtained for each dataset.
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C Auxiliary tables

Table C.1: Distribution of problems over parameters (percentage).

(a) Parameter pn

pn P1 (%) P2 (%) Both (%)

3 2.87 6.30 2.85

5 1.45 4.59 1.43

10 0.86 4.72 0.81

20 1.36 5.13 1.32

(b) Parameter pa

pa P1 (%) P2 (%) Both (%)

0.00001 1.68 5.17 1.65

0.0001 1.61 5.14 1.56

0.001 1.61 5.25 1.60

Table C.2: Distribution of problems over parameters for dataset 10 1 (percentage).

(a) Parameter pn

pn P1 (%) P2 (%) Both (%)

3 51.67 93.50 51.67

5 50.33 98.17 50.33

10 49.83 100.00 49.83

20 49.83 100.00 49.83

(b) Parameter pd

pd P1 (%) P2 (%) Both (%)

0.0001 51.04 94.79 51.04

0.001 50.42 95.83 50.42

0.01 50.42 98.96 50.42

0.1 51.67 100.00 51.67

1 48.54 100.00 48.54

(c) Parameter pa

pa P1 (%) P2 (%) Both (%)

0.00001 49.88 98.50 49.88

0.0001 50.63 97.38 50.63

0.001 50.75 97.88 50.75
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D Parameterisations

id pD pn pd pa

1 b 3 0.0001 0.00001

2 b 3 0.0001 0.0001

3 b 3 0.0001 0.001

4 b 3 0.001 0.00001

5 b 3 0.001 0.0001

6 b 3 0.001 0.001

7 b 3 0.01 0.00001

8 b 3 0.01 0.0001

9 b 3 0.01 0.001

10 b 3 0.1 0.00001

11 b 3 0.1 0.0001

12 b 3 0.1 0.001

13 b 3 1 0.00001

14 b 3 1 0.0001

15 b 3 1 0.001

16 b 5 0.0001 0.00001

17 b 5 0.0001 0.0001

18 b 5 0.0001 0.001

19 b 5 0.001 0.00001

20 b 5 0.001 0.0001

21 b 5 0.001 0.001

22 b 5 0.01 0.00001

23 b 5 0.01 0.0001

24 b 5 0.01 0.001

25 b 5 0.1 0.00001

26 b 5 0.1 0.0001

27 b 5 0.1 0.001

28 b 5 1 0.00001

29 b 5 1 0.0001

30 b 5 1 0.001

31 b 10 0.0001 0.00001

32 b 10 0.0001 0.0001

33 b 10 0.0001 0.001

Continued on next page
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id pD pn pd pa

34 b 10 0.001 0.00001

35 b 10 0.001 0.0001

36 b 10 0.001 0.001

37 b 10 0.01 0.00001

38 b 10 0.01 0.0001

39 b 10 0.01 0.001

40 b 10 0.1 0.00001

41 b 10 0.1 0.0001

42 b 10 0.1 0.001

43 b 10 1 0.00001

44 b 10 1 0.0001

45 b 10 1 0.001

46 b 20 0.0001 0.00001

47 b 20 0.0001 0.0001

48 b 20 0.0001 0.001

49 b 20 0.001 0.00001

50 b 20 0.001 0.0001

51 b 20 0.001 0.001

52 b 20 0.01 0.00001

53 b 20 0.01 0.0001

54 b 20 0.01 0.001

55 b 20 0.1 0.00001

56 b 20 0.1 0.0001

57 b 20 0.1 0.001

58 b 20 1 0.00001

59 b 20 1 0.0001

60 b 20 1 0.001

61 u 3 0.0001 0.00001

62 u 3 0.0001 0.0001

63 u 3 0.0001 0.001

64 u 3 0.001 0.00001

65 u 3 0.001 0.0001

66 u 3 0.001 0.001

67 u 3 0.01 0.00001

68 u 3 0.01 0.0001

Continued on next page
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id pD pn pd pa

69 u 3 0.01 0.001

70 u 3 0.1 0.00001

71 u 3 0.1 0.0001

72 u 3 0.1 0.001

73 u 3 1 0.00001

74 u 3 1 0.0001

75 u 3 1 0.001

76 u 5 0.0001 0.00001

77 u 5 0.0001 0.0001

78 u 5 0.0001 0.001

79 u 5 0.001 0.00001

80 u 5 0.001 0.0001

81 u 5 0.001 0.001

82 u 5 0.01 0.00001

83 u 5 0.01 0.0001

84 u 5 0.01 0.001

85 u 5 0.1 0.00001

86 u 5 0.1 0.0001

87 u 5 0.1 0.001

88 u 5 1 0.00001

89 u 5 1 0.0001

90 u 5 1 0.001

91 u 10 0.0001 0.00001

92 u 10 0.0001 0.0001

93 u 10 0.0001 0.001

94 u 10 0.001 0.00001

95 u 10 0.001 0.0001

96 u 10 0.001 0.001

97 u 10 0.01 0.00001

98 u 10 0.01 0.0001

99 u 10 0.01 0.001

100 u 10 0.1 0.00001

101 u 10 0.1 0.0001

102 u 10 0.1 0.001

103 u 10 1 0.00001

Continued on next page
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id pD pn pd pa

104 u 10 1 0.0001

105 u 10 1 0.001

106 u 20 0.0001 0.00001

107 u 20 0.0001 0.0001

108 u 20 0.0001 0.001

109 u 20 0.001 0.00001

110 u 20 0.001 0.0001

111 u 20 0.001 0.001

112 u 20 0.01 0.00001

113 u 20 0.01 0.0001

114 u 20 0.01 0.001

115 u 20 0.1 0.00001

116 u 20 0.1 0.0001

117 u 20 0.1 0.001

118 u 20 1 0.00001

119 u 20 1 0.0001

120 u 20 1 0.001
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Table D.2: Ranking - Top 5 parameterisations (each dataset).

1 1 2 1 2 2 3 1 4 1 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8

52 108 47 113 74 27 66 38 62 112 61 101 1

113 106 46 53 75 25 65 37 61 101 1 40 2

51 107 107 54 73 106 3 39 52 53 2 42 64

50 47 108 50 14 108 4 102 112 102 66 55 16

114 46 48 52 13 111 2 42 53 107 32 53 65

5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 6 1 7 1 8 1

101 54 117 62 46 66 55 35 3 62 50 3 86

102 52 55 3 42 1 49 36 62 18 116 2 85

100 53 115 61 47 65 53 69 63 17 49 62 87

40 55 116 1 100 5 52 2 18 16 109 1 27

42 113 57 2 40 116 54 78 17 77 53 63 12

9 1 10 1 11 1 11 2 12 1 12 2 12 3 13 1 15 1 16 1 17 1

70 15 51 51 11 75 111 100 28 118 47

72 13 50 111 59 73 96 42 89 119 106

11 14 110 109 120 13 110 101 13 120 108

71 74 49 50 118 74 109 85 43 103 48

26 30 111 49 119 90 95 87 15 58 107
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Table D.3: Best and worst parameterisations for each dataset.

(a) Best

dataset pD pn pd pa

1 1 b 20 0.01 0.00001

2 1 u 20 0.0001 0.001

2 2 b 20 0.0001 0.0001

3 1 u 20 0.01 0.0001

4 1 u 3 1 0.0001

5 1 b 5 0.1 0.001

5 2 u 3 0.001 0.001

5 3 b 10 0.01 0.0001

5 4 u 3 0.0001 0.0001

5 5 u 20 0.01 0.00001

5 6 u 3 0.0001 0.00001

5 7 u 10 0.1 0.0001

5 8 b 3 0.0001 0.00001

5 9 u 10 0.1 0.0001

5 10 b 20 0.01 0.001

5 11 u 20 0.1 0.001

5 12 u 3 0.0001 0.0001

5 13 b 20 0.0001 0.00001

5 14 u 3 0.001 0.001

5 15 b 20 0.1 0.00001

5 16 b 10 0.001 0.0001

5 17 b 3 0.0001 0.001

5 18 u 3 0.0001 0.0001

6 1 b 20 0.001 0.0001

7 1 b 3 0.0001 0.001

8 1 u 5 0.1 0.0001

9 1 u 3 0.1 0.00001

10 1 b 3 1 0.001

11 1 b 20 0.001 0.001

11 2 b 20 0.001 0.001

12 1 b 3 0.1 0.0001

12 2 u 3 1 0.001

12 3 u 20 0.001 0.001

13 1 u 10 0.1 0.00001

15 1 b 5 1 0.00001

16 1 u 20 1 0.00001

17 1 b 20 0.0001 0.0001

(b) Worst

dataset pD pn pd pa

1 1 u 3 0.0001 0.001

2 1 b 3 1 0.00001

2 2 b 3 1 0.001

3 1 b 3 1 0.00001

4 1 u 5 0.0001 0.001

5 1 b 3 0.0001 0.001

5 2 b 20 0.0001 0.001

5 3 u 3 0.0001 0.00001

5 4 b 20 1 0.00001

5 5 b 3 0.0001 0.00001

5 6 u 10 0.0001 0.0001

5 7 b 3 0.0001 0.001

5 8 u 10 0.0001 0.001

5 9 u 3 0.0001 0.0001

5 10 b 3 1 0.001

5 11 u 3 0.0001 0.0001

5 12 b 3 1 0.001

5 13 b 3 0.0001 0.00001

5 14 u 10 0.0001 0.001

5 15 u 3 0.0001 0.0001

5 16 u 20 0.001 0.00001

5 17 u 10 0.0001 0.00001

5 18 b 3 1 0.00001

6 1 u 3 1 0.00001

7 1 b 3 1 0.001

8 1 u 5 0.0001 0.0001

9 1 b 5 0.0001 0.00001

10 1 u 20 0.0001 0.00001

11 1 u 3 0.0001 0.0001

11 2 b 3 1 0.00001

12 1 u 10 0.0001 0.00001

12 2 u 10 0.0001 0.0001

12 3 b 3 1 0.00001

13 1 u 10 0.0001 0.001

15 1 u 20 0.0001 0.001

16 1 b 20 0.0001 0.00001

17 1 u 5 1 0.001
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E Complete evaluation results for transfer learning

with pmeta parameterisations

Table E.1: Accuracies (percentage) for meta-target MSE0.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 54 57 57 54 57 57 54 57 57 55 57 57 55 55 57 55 55 57

MF 2
T 61 57 57 61 57 57 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 57 56 57 57 56 57 57 56 57 57 56 57 57 56 57 57 56 57

MF 4
T 57 72 57 57 72 57 57 69 57 57 69 57 56 55 57 57 55 57

MF 5
T 57 55 57 57 55 57 57 54 57 57 54 57 57 56 57 57 56 57

MF 6
T 57 58 57 57 58 57 57 58 57 57 58 57 57 58 57 57 58 57

MF 7
T 57 66 57 57 66 57 57 68 57 57 68 57 57 66 57 57 66 57

Table E.2: Accuracies (percentage) for meta-target duration.

NO CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 62 63 64 62 63 64 62 63 66 62 63 66 61 66 60 61 66 60

MF 2
T 53 55 57 53 55 57 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 57 51 57 56 51 57 51 53 52 51 53 52 52 53 51 52 53 51

MF 4
T 64 62 64 63 62 64 63 63 67 62 63 67 63 64 64 62 64 64

MF 5
T 61 60 61 61 60 61 64 59 63 63 59 63 62 61 64 62 61 64

MF 6
T 58 52 53 58 52 53 55 52 55 55 52 55 54 52 47 53 52 47

MF 7
T 61 59 62 61 59 62 63 58 66 63 58 66 63 60 62 63 60 62

Table E.3: Accuracies (percentage) for meta-target MSE.

NO CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 55 55 55 54 55 55 54 54 55 54 54 55 53 53 55 54 53 55

MF 2
T 52 53 55 52 53 55 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 55 53 55 54 53 55 55 53 55 55 53 55 56 54 55 55 54 55

MF 4
T 54 55 55 55 55 55 54 53 55 54 53 55 54 52 55 54 52 55

MF 5
T 54 50 55 55 50 55 53 49 55 53 49 55 54 50 55 54 50 55

MF 6
T 55 48 55 54 48 55 53 50 55 53 50 55 55 51 55 55 51 55

MF 7
T 54 47 55 54 47 55 53 49 55 53 49 55 54 49 55 54 49 55
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Table E.4: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target MSE0.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 7 7 7 7 0 4 7 4 0 0 4 0

MF 2
T 11 7 14 7 NA NA NA NA NA NA NA NA

MF 3
T 4 7 0 7 4 4 4 4 7 11 11 11

MF 4
T 4 4 4 4 7 11 7 11 0 11 0 11

MF 5
T 0 4 0 4 4 4 4 4 0 0 0 0

MF 6
T 0 14 4 14 11 11 4 11 7 7 7 7

MF 7
T 0 4 0 4 4 7 0 7 7 11 4 11

Table E.5: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target duration.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 25 14 25 14 25 11 25 11 21 7 25 7

MF 2
T 4 11 4 11 NA NA NA NA NA NA NA NA

MF 3
T 4 0 4 0 0 4 4 4 4 7 4 7

MF 4
T 32 18 32 18 29 7 29 7 25 11 25 11

MF 5
T 18 11 14 11 18 11 18 11 18 11 21 11

MF 6
T 7 4 11 4 11 11 14 11 11 14 14 14

MF 7
T 29 11 25 11 25 11 21 11 21 4 21 4
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Table E.6: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target MSE.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 0 4 0 4 11 4 0 4 11 7 4 7

MF 2
T 4 4 4 4 NA NA NA NA NA NA NA NA

MF 3
T 0 7 4 7 0 4 7 4 7 4 4 4

MF 4
T 4 0 11 0 7 7 4 7 7 4 4 4

MF 5
T 4 0 0 0 0 0 0 0 7 0 11 0

MF 6
T 0 7 0 7 0 7 7 7 4 7 7 7

MF 7
T 0 0 4 0 0 4 0 4 0 4 7 4

Table E.7: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target MSE0.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 46 39 50 39 36 39 36 39 46 43 43 43

MF 2
T 75 93 79 93 NA NA NA NA NA NA NA NA

MF 3
T 57 46 57 46 46 50 46 50 61 54 54 54

MF 4
T 57 50 46 50 46 57 57 57 50 54 39 54

MF 5
T 46 46 43 46 32 32 32 32 36 39 43 39

MF 6
T 64 71 57 71 61 68 61 68 57 75 61 75

MF 7
T 46 54 46 54 46 61 43 61 50 68 46 68



136 APPENDIX . COMPLETE EVALUATION PMETA

Table E.8: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target duration.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 75 57 75 57 75 75 75 75 71 54 71 54

MF 2
T 46 68 46 68 NA NA NA NA NA NA NA NA

MF 3
T 54 29 50 29 46 32 54 32 39 36 43 36

MF 4
T 75 57 75 57 75 75 75 75 75 82 75 82

MF 5
T 71 61 71 61 71 71 75 71 79 79 82 79

MF 6
T 57 46 57 46 57 46 64 46 61 54 61 54

MF 7
T 82 61 75 61 75 68 79 68 75 79 79 79

Table E.9: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target MSE.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 57 54 54 54 46 57 46 57 39 57 46 57

MF 2
T 39 36 46 36 NA NA NA NA NA NA NA NA

MF 3
T 57 46 43 46 39 46 54 46 46 39 43 39

MF 4
T 57 57 54 57 46 54 43 54 50 54 43 54

MF 5
T 39 54 36 54 39 36 36 36 46 39 46 39

MF 6
T 54 46 43 46 39 43 39 43 46 46 43 46

MF 7
T 46 64 39 64 43 39 43 39 43 54 54 54



F. COMPLETE EVALUATION PGRID 137

F Complete evaluation results for transfer learning

with pgrid parameterisations

Table F.1: Accuracies (percentage) for meta-target MSE0.

NO CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 58 57 59 58 57 59 58 59 59 58 59 59 58 56 59 59 56 59

MF 2
T 61 59 59 61 59 59 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 59 58 59 59 58 59 59 59 59 59 59 59 59 59 59 59 59 59

MF 4
T 60 69 59 60 69 59 60 69 59 60 69 59 59 57 59 59 57 59

MF 5
T 60 54 59 59 54 59 59 57 59 60 57 59 59 58 59 59 58 59

MF 6
T 59 61 59 59 61 59 59 60 59 59 60 59 60 59 59 60 59 59

MF 7
T 60 64 59 60 64 59 60 67 59 60 67 59 60 64 59 60 64 59

Table F.2: Accuracies (percentage) for meta-target duration.

NO CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 68 73 74 68 73 74 68 74 74 69 74 74 68 73 76 68 73 76

MF 2
T 68 64 70 68 64 70 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 69 66 65 68 66 65 63 64 65 63 64 65 62 65 63 61 65 63

MF 4
T 76 73 75 76 73 75 78 73 75 78 73 75 76 73 75 75 73 75

MF 5
T 78 72 74 78 72 74 77 74 71 77 74 71 77 72 73 77 72 73

MF 6
T 72 66 66 71 66 66 70 63 70 69 63 70 70 63 70 69 63 70

MF 7
T 79 71 75 79 71 75 78 72 74 79 72 74 78 72 73 78 72 73

Table F.3: Accuracies (percentage) for meta-target MSE.

NO CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scaling Scaling No scaling Scaling No scaling Scaling

AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT AF AL AT

MF 1
T 64 61 64 64 61 64 64 60 63 63 60 63 63 61 64 63 61 64

MF 2
T 62 63 64 62 63 64 NA NA NA NA NA NA NA NA NA NA NA NA

MF 3
T 65 63 64 65 63 64 65 62 64 65 62 64 65 61 64 64 61 64

MF 4
T 64 63 64 64 63 64 64 59 64 64 59 64 63 62 64 64 62 64

MF 5
T 64 61 64 64 61 64 63 61 64 64 61 64 64 60 64 64 60 64

MF 6
T 66 63 64 65 63 64 65 60 64 65 60 64 65 60 64 66 60 64

MF 7
T 64 64 64 64 64 64 64 63 64 64 63 64 64 61 64 64 61 64
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Table F.4: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target MSE0.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 4 0 0 0 0 0 4 0 4 0 4 0

MF 2
T 11 11 11 11 NA NA NA NA NA NA NA NA

MF 3
T 21 4 18 4 0 7 7 7 4 14 4 14

MF 4
T 0 0 0 0 4 0 7 0 0 7 4 7

MF 5
T 7 0 7 0 7 0 4 0 0 0 7 0

MF 6
T 14 18 18 18 14 18 7 18 14 18 14 18

MF 7
T 7 4 4 4 0 0 4 0 4 11 4 11

Table F.5: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target duration.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 7 18 11 18 7 14 11 14 7 14 7 14

MF 2
T 7 18 4 18 NA NA NA NA NA NA NA NA

MF 3
T 0 4 4 4 4 4 4 4 7 0 4 0

MF 4
T 14 14 14 14 18 11 18 11 11 11 11 11

MF 5
T 7 14 7 14 11 7 14 7 14 14 7 14

MF 6
T 4 4 7 4 11 18 7 18 14 14 14 14

MF 7
T 11 14 14 14 14 14 14 14 21 14 21 14
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Table F.6: Percentage of cases when metalearning correctly predicts the best transfer,

with meta-target MSE.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 4 4 7 4 4 0 4 0 4 4 4 4

MF 2
T 4 0 4 0 NA NA NA NA NA NA NA NA

MF 3
T 0 4 0 4 0 0 0 0 4 4 0 4

MF 4
T 4 0 7 0 11 0 7 0 7 0 0 0

MF 5
T 11 4 7 4 7 4 7 4 4 4 4 4

MF 6
T 0 0 7 0 0 0 7 0 11 0 4 0

MF 7
T 7 0 4 0 4 4 4 4 7 0 4 0

Table F.7: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target MSE0.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 32 18 36 18 29 29 32 29 29 32 36 32

MF 2
T 64 89 71 89 NA NA NA NA NA NA NA NA

MF 3
T 68 46 54 46 50 61 57 61 50 54 54 54

MF 4
T 43 50 43 50 43 36 57 36 36 39 36 39

MF 5
T 46 36 50 36 43 32 50 32 39 43 46 43

MF 6
T 68 89 71 89 86 93 64 93 71 96 79 96

MF 7
T 50 46 46 46 46 36 50 36 46 46 50 46
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Table F.8: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target duration.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 43 57 43 57 54 50 46 50 46 50 46 50

MF 2
T 57 61 57 61 NA NA NA NA NA NA NA NA

MF 3
T 39 18 36 18 43 50 43 50 43 32 39 32

MF 4
T 57 57 57 57 61 54 61 54 54 54 50 54

MF 5
T 64 61 64 61 64 54 61 54 64 50 61 50

MF 6
T 50 57 50 57 46 50 43 50 46 50 50 50

MF 7
T 64 57 64 57 68 50 61 50 68 54 64 54

Table F.9: Percentage of cases when metalearning correctly predicts a good transfer,

with meta-target MSE.

No CFS CFS(cutoff=0.75) CFS(cutoff=0.5)

No scalling Scalling No scalling Scalling No scalling Scalling

AF AL AF AL AF AL AF AL AF AL AF AL

MF 1
T 50 43 46 43 39 36 43 36 39 46 39 46

MF 2
T 43 32 36 32 NA NA NA NA NA NA NA NA

MF 3
T 43 32 43 32 39 43 32 43 32 29 36 29

MF 4
T 54 39 46 39 50 36 57 36 46 50 39 50

MF 5
T 39 43 32 43 39 39 32 39 25 46 32 46

MF 6
T 46 32 54 32 39 43 46 43 39 32 32 32

MF 7
T 36 43 36 43 39 39 36 39 36 50 29 50
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G Transfer learning impact on the neural networks’

performances

Table G.1: Higher improvement for NNs parameterised with pmeta parameterisation.

(a) MSE0

dS dT mapping imp.

3 1 1 1 KCor 61.4

5 14 2 1 KCor 33.5

5 5 2 2 SCor 18.4

7 1 3 1 PCor 91.1

5 3 4 1 SCor 19.6

5 7 5 1 KL 77.5

5 6 5 2 KL 38.1

5 9 5 3 KL 90.5

5 18 5 6 PCor 80.4

5 13 5 7 KL 85.4

5 18 5 8 KCor 84.3

5 13 5 9 KL 79.2

5 18 5 12 PCor 83.6

5 6 5 14 KL 55.6

5 18 5 16 KCor 22.1

5 18 5 17 KCor 89.9

5 17 5 18 SCor 96.8

7 1 6 1 PCor 37.0

5 18 7 1 SCor 88.7

5 6 10 1 KCor 4.4

5 18 11 1 SCor 86.5

5 18 11 2 KCor 89.3

5 18 12 1 PCor 83.3

11 1 12 2 KCor 82.6

17 1 12 3 PCor 43.3

12 2 15 1 KCor 49.0

12 2 16 1 KCor 49.0

12 3 17 1 KCor 84.8

(b) duration

dS dT mapping imp.

6 1 1 1 PCor 14.5

5 4 2 1 KL 11.1

2 1 2 2 KL 16.9

6 1 3 1 SCor 37.1

12 3 4 1 PCor 18.6

5 9 5 1 KL 74.4

5 4 5 2 KL 42.3

5 9 5 3 KL 48.0

5 8 5 6 PCor 44.7

5 13 5 7 KL 66.1

5 18 5 8 KCor 55.9

5 3 5 9 KL 58.2

5 8 5 12 SCor 52.4

5 6 5 14 KL 40.9

5 2 5 16 KCor 17.1

5 18 5 17 PCor 56.4

5 17 5 18 PCor 68.1

12 3 6 1 PCor 5.3

5 17 7 1 SCor 44.1

7 1 10 1 KL 10.5

4 1 11 1 SCor 24.8

5 8 11 2 PCor 3.0

12 3 12 1 SCor 19.5

12 1 12 2 PCor 38.0

12 2 12 3 PCor 13.0

11 2 15 1 KCor 18.8

11 2 16 1 SCor 9.2

12 2 17 1 PCor 24.1

(c) MSE

dS dT mapping imp.

3 1 1 1 KCor 3.0

5 16 2 1 SCor 2.8

4 1 2 2 KL 6.8

2 1 3 1 KCor 0.3

12 3 4 1 PCor 12.4

12 2 5 1 SCor 8.4

5 13 5 2 PCor 63.4

7 1 5 3 KL 11.8

5 9 5 6 SCor 17.1

5 17 5 7 KL 21.0

5 17 5 8 KCor 41.6

5 10 5 9 PCor 9.6

2 2 5 12 SCor 34.9

5 3 5 14 PCor 22.9

5 17 5 16 SCor 15.6

5 18 5 17 SCor 36.8

5 8 5 18 SCor 53.0

5 7 6 1 KCor 6.1

5 8 7 1 SCor 5.8

12 3 10 1 PCor 5.6

5 2 11 1 KL 15.1

5 16 11 2 KL 5.9

2 1 12 1 KCor 1.6

5 10 12 2 KL 1.5

5 12 12 3 SCor 1.1

6 1 15 1 SCor 2.4

2 1 16 1 KCor 1.3

5 18 17 1 KL 5.1
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Table G.2: Higher improvement for NNs parameterised with pgrid parameterisation.

(a) MSE0

dS dT mode value

3 1 1 1 PCor 74

5 14 2 1 KL 40

5 6 2 2 KCor 33

12 2 3 1 PCor 67

5 1 4 1 SCor 33

5 13 5 1 KL 76

5 6 5 2 KL 38

5 9 5 3 KL 90

5 8 5 6 PCor 85

5 13 5 7 KL 85

5 18 5 8 PCor 84

5 13 5 9 KL 80

5 18 5 12 PCor 84

5 6 5 14 KL 56

5 18 5 16 KCor 20

5 18 5 17 KCor 90

5 17 5 18 SCor 97

7 1 6 1 PCor 55

5 18 7 1 SCor 90

5 6 10 1 KCor 4

5 18 11 1 SCor 87

5 18 11 2 KCor 90

5 18 12 1 PCor 84

11 1 12 2 KCor 83

7 1 12 3 SCor 47

12 2 15 1 KCor 49

12 2 16 1 KCor 49

5 18 17 1 KCor 79

(b) duration

dS dT mode value

6 1 1 1 PCor 7

5 2 2 1 KL 17

4 1 2 2 R 11

15 1 3 1 PCor 13

5 8 4 1 KL 13

5 13 5 1 KL 72

5 4 5 2 KL 50

5 15 5 3 KL 48

5 8 5 6 PCor 58

5 13 5 7 KL 68

5 17 5 8 KCor 52

5 3 5 9 KL 62

5 8 5 12 SCor 58

5 17 5 14 PCor 46

5 4 5 16 PCor 47

5 18 5 17 PCor 61

5 17 5 18 KCor 49

15 1 6 1 SCor 4

5 8 7 1 SCor 19

5 2 10 1 SCor 13

15 1 11 1 KL 3

5 17 11 2 KCor -4

12 3 12 1 KCor 9

12 1 12 2 PCor 25

5 17 12 3 KL 19

3 1 15 1 PCor 17

11 2 16 1 PCor 2

5 17 17 1 SCor 13

(c) MSE

dS dT mode value

2 1 1 1 KCor 6

5 7 2 1 KL 4

5 4 2 2 SCor 6

1 1 3 1 KCor 1

5 3 4 1 KL 5

2 2 5 1 PCor 13

5 13 5 2 PCor 63

3 1 5 3 PCor 12

1 1 5 6 KCor 45

5 17 5 7 KL 21

2 1 5 8 SCor 35

5 3 5 9 PCor 3

2 2 5 12 SCor 35

5 8 5 14 KCor 60

5 17 5 16 KCor 49

5 18 5 17 SCor 37

5 3 5 18 PCor 66

5 17 6 1 PCor 2

2 2 7 1 KCor 51

12 1 10 1 KL 4

11 2 11 1 KL 50

11 1 11 2 KL 48

2 2 12 1 PCor 2

5 10 12 2 KCor 1

5 12 12 3 PCor 23

6 1 15 1 KCor 1

2 1 16 1 KCor 1

5 9 17 1 PCor 8
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H Best SCor transfers for pmeta NNs

Table H.1: Impacts of the best transfers found for neural networks parameterised with

pmeta.

(a) MSE0

ds dt impact

3 1 61

5 1 2 1 33

5 5 2 2 18

7 1 3 91

5 3 4 20

5 5 5 1 46

5 8 5 2 26

5 13 5 3 62

5 17 5 6 68

5 5 5 7 49

5 18 5 8 83

5 5 5 9 67

5 18 5 12 84

5 18 5 14 23

5 18 5 16 21

5 18 5 17 90

5 17 5 18 97

3 6 1 27

5 18 7 1 89

5 18 10 1 4

5 18 11 87

5 18 11 2 89

11 12 1 79

5 14 12 2 77

16 12 3 28

5 15 15 46

12 2 16 48

12 3 17 85

(b) duration

ds dt impact

5 2 1 13

4 2 1 9

1 2 2 10

6 1 3 37

12 2 4 17

5 5 5 1 54

5 10 5 2 28

5 11 5 3 19

5 18 5 6 42

5 5 5 7 33

5 18 5 8 53

5 5 5 9 39

5 8 5 12 52

5 17 5 14 36

5 18 5 16 15

5 18 5 17 53

5 17 5 18 61

5 6 6 1 2

5 17 7 1 44

12 3 10 1 8

4 11 25

3 11 2 0

12 3 12 1 20

12 3 12 2 36

12 2 12 3 10

3 15 17

11 2 16 9

12 3 17 22

(c) MSE

ds dt impact

3 1 3

5 16 2 1 3

5 3 2 2 6

2 1 3 0

12 2 4 11

12 2 5 1 8

5 8 5 2 55

12 1 5 3 8

5 9 5 6 17

5 8 5 7 19

5 18 5 8 36

16 5 9 9

2 2 5 12 35

5 5 5 14 19

5 17 5 16 16

5 18 5 17 37

5 8 5 18 53

5 10 6 1 4

5 8 7 1 6

12 1 10 1 2

5 14 11 12

5 4 11 2 5

12 2 12 1 -3

5 10 12 2 2

5 12 12 3 1

6 1 15 2

2 1 16 1

5 15 17 5
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I Best SCor transfers for pgrid NNs

Table I.1: Impacts of the best transfers found for neural networks parameterised with

pgrid.

(a) MSE0

ds dt impact

3 1 74

5 17 2 1 40

5 8 2 2 33

16 3 58

5 1 4 33

5 5 5 1 38

5 8 5 2 26

5 13 5 3 52

5 17 5 6 68

5 5 5 7 49

5 17 5 8 82

5 5 5 9 70

5 18 5 12 84

5 18 5 14 27

5 18 5 16 18

5 18 5 17 90

5 17 5 18 97

7 1 6 1 52

5 18 7 1 90

5 12 10 1 4

5 18 11 87

5 18 11 2 90

11 12 1 82

5 14 12 2 73

7 1 12 3 47

5 15 15 45

12 2 16 48

5 18 17 79

(b) duration

ds dt impact

6 1 1 5

4 2 1 17

5 2 2 2 10

16 3 10

5 14 4 9

5 5 5 1 65

5 10 5 2 36

5 13 5 3 27

5 17 5 6 50

5 5 5 7 37

5 17 5 8 51

5 5 5 9 41

5 8 5 12 58

5 8 5 14 45

5 4 5 16 44

5 18 5 17 58

5 17 5 18 45

15 6 1 4

5 8 7 1 19

5 2 10 1 13

12 3 11 -1

5 6 11 2 -9

12 3 12 1 8

12 3 12 2 23

5 17 12 3 12

3 15 16

11 2 16 2

5 17 17 13

(c) MSE

ds dt impact

2 1 1 6

5 3 2 1 3

5 4 2 2 6

1 3 1

5 1 4 5

5 2 5 1 5

5 8 5 2 55

5 5 5 3 4

1 5 6 39

5 8 5 7 19

2 1 5 8 35

11 5 9 2

2 2 5 12 35

7 1 5 14 32

5 12 5 16 43

5 18 5 17 37

5 15 5 18 52

5 5 6 1 -1

2 2 7 1 51

12 1 10 1 3

11 2 11 47

5 4 11 2 19

11 2 12 1 1

5 10 12 2 1

5 7 12 3 19

6 1 15 1

2 1 16 1

11 17 7
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