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ABSTRACT

A number of systems based on synthetic molecules, among them cationic liposomes and
poly(ethylene imine)-based polymers, have been proposed as delivery vehicles for nucleic acids.
Some of these systems have even reached the market, ensuring efficient and transient transfection
levels in a variety of cell types. However, toxicity issues have limited their application in vivo. In this
context, chitosan, a biocompatible and biodegradable polysaccharide, has been proposed as a
promising alternative for the delivery of nucleic acid-based molecules. Here we present an overview
of the state of the art of chitosan-based vectors for nucleic acid delivery and the most recent data on
the in vivo testing of the proposed systems. We additionally express our view on the barriers that
might be hampering the translation of this knowledge into clinical practice and the challenges that
need to be fulfilled for these promising vehicles to reach patients.
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Chitosan: Sources and properties

Chitosan is a linear co-polymer of D-glucosamine and N -acetyl- D-glucosamine in a B-(1—4) linkage,
in which glucosamine is the predominant repeating unit (Figure 1). The molar fraction of N-acetylated
units defines the degree of acetylation (DA) of a given chitosan, expressed in molar percentage of N-
acetylated units. Chitosan is soluble in lightly acidic aqueous solutions. At a pH lower than its pKa,
ranging from ~6.5 to ~7, chitosan is a polycation, and at pH 4.0 and below, it is completely
protonated.* The cationic character of chitosan under mildly acidic conditions and its ability to
complex and condense nucleic acid-based molecules are the basis for its use as a transfection agent.

Chitosan is mostly obtained by deacetylation of chitin. The most commonly used sources of chitin
are the exoskeleton of crustaceans and squids. The chitin present in squid pens is easier to
deacetylate due to the absence of inter-sheet hydrogen bonding.> To conduct the deacetylation
process with chitin from crustaceans, harsher conditions need to be applied, and the resulting
chitosan typically has lower molecular weight. Consequently, this has been the preferred source of
chitosan for use in nucleic acid delivery, as smaller and less disperse complexes can be formed when
chitosan of lower molecular weight is used.3# In either case, the fact that chitosan has an animal origin
has raised some concerns, as it might be a potential source of allergens. More recently, chitosan
isolated from the cell walls of mushrooms has become commercially available. As compared to
chitosan obtained from marine animal resources, chitosan isolated from fungi cultured under
controlled growing conditions presents higher reproducibility among batches and traceability,5
which makes it of interest for application in medical and pharmaceutical products. Irrespective of the
original source, chitosan of ultrapure grade can now be obtained.

In addition to its ability to condense nucleic acid-based molecules and protect them from
endonuclease degradation, a particular advantage of chitosan over other polycations proposed as
non-viral vectors for nucleic acids relies on its low cytotoxicity and biodegradability. Besides chemical
hydrolysis, enzymes can also mediate chitosan degradation in vivo.® Among these, lysozyme has
been identifi ed as the main one being involved in this process.”® It can hydrolyze partially N-
acetylated chitosans, with the active site of the enzyme binding six sugar rings, being three
consecutive N -acetyl-D-glucosamine residues required for lysozyme catalytic activity.” As a
consequence, the susceptibility of chitosan to lysozyme depolymerization depends not only on the
DA but also on the distribution of N-acetylated units along the chitosan chains.

Further contributions to the fi eld are expected when enzymatic production of chitosan will become
readily available.? This will allow precise control over the resulting chain molecular weight, DA, and
the distribution of the monomer units along the polymer backbone. Consequently, nanocomplex
formation reproducibility and fine-tuning of biodegradation can be achieved, ultimately affecting the
overall process of cell transfection.

Chitosan as a vector for nucleic acid delivery

Gene therapy is currently considered a strategy that provides cells with the genetic information
required to produce specific therapeutic proteins or increase their overall expression levels, thus
correcting or modulating specific pathologies. Moreover, the concept has been expanded to include
specific regulation of gene expression through the use of short oligonucleotides targeting DNA or
RNA, otherwise named as antisense gene therapy or oligonucleotide gene therapy.
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Over the past several years, many attempts have been made to design non-viral vectors that could
achieve the level of gene expression and specificity attained by viral vectors, while providing greater
flexibility in terms of size of the transported nucleotide cargo, bypassing the immune system, and
reducing safety concerns.*® Among them, chitosan-based carriers have gained a great deal of
attention for delivery of plasmid DNA (pDNA), small interference RNA (siRNA), and single-stranded
oligonucleotides (ssON) (Figure 2). In the following sections, we present the state of the art of
chitosan-based nanocarriers, focusing on their ability to deliver different types of nucleic acids.

Plasmid DNA

At the molecular level, pDNA can be considered to be a pro-drug that, upon cellular internalization
and nuclear entry, leads to the biosynthesis of a therapeutic protein®* (Figure 2a). In addition to
disease treatment, plasmids can be used as DNA vaccines for genetic immunization. DNA vaccines
function through induction of immune response by introducing gene encoding antigens for specific
pathogens.2? pDNA is a double-stranded DNA molecule (1-200,000 base pairs) that can occur in three
topological forms: the compact supercoiled form, the open circular form, and the linearized form.

Supercoiling arises from inherent properties of the DNA double helix to twist (turn) and writhe (turn
over itself) and allows formation of a more compact molecule with implications for complex
formation and transfection capabilities, also dependent on the type of vector used.3 The US Food
and Drug Administration (FDA) guidelines require the majority of pDNA (>80%) to be in its
supercoiled form for application in pDNA vaccines for infectious disease indications.

There are a large number of reports describing the potential of chitosan and its derivatives for pPDNA
delivery.®s Both chitosan-pDNA complexes*® and chitosan-based nanocarriers prepared by ionic
gelation7.28 have been described for pDNA transfection. Overall, results revealed that transfection
efficiency of chitosan-based delivery vehicles is dependent on several formulation parameters, such
as chitosan molecular weight, DA, and stoichiometry (N / P ratio, moles of positive charges from
amino groups to moles of negative charges from phosphate groups), among others.*9 Therefore,
these parameters should be carefully considered and optimized when designing a pDNA delivery
system. An in-depth review describing factors affecting pDNA delivery mediated by chitosan has
been recently published.?°

Although chitosan has been proposed as an alternative to other non-viral vectors such as cationic
liposomes or poly(ethylene imine) (PEI), it generally presents lower transfection efficiencies.?* This
difference could be attributed to its limited solubility at physiological pH as well as to its inefficient
cellular uptake, endolysosome escape, and polyplex dissociation (see Figure 2a). Consequently,
several efforts are being made toward improving chitosan transfection efficiency by introducing
different types of chemical modifi cations into the polymer backbone.

One common approach to enhance transfection efficiency is by improving chitosan solubility under
physiological conditions. Chitosan grafted with PEI led to increased solubility, as well as improved
transfection efficiency in relation to PEIl alone.2> Another strategy relies on the grafting of the
poly(ethylene glycol) chain (PEGylation) to chitosan, which improves polymer solubility, yielding
nanostructures that are more stable in the blood stream (extending their circulation time) and
mediating transfection more efficiently.2324 The quaternization of chitosan by methylation of
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primary amine groups was also found to improve chitosan solubility and polyplex stability in
physiological conditions.25

In order to overcome the endosomal barrier (see Figure 2a),conjugation of imidazole to chitosan has
been explored to improve chitosan buffering capacity and endosomal escape.?%27 The introduction
of hydrophobic moieties into the polymer backbone also led to more efficient endosomal escape?®
along with improvement of pDNA condensation capacity due to enhanced interaction between
tethered hydrophobic domains and nucleic acids. Thiolation of chitosan also resulted in improvement
of pDNA protection against degradation and formation of more stable complexes via establishment
of disulfide bonds between chitosan chains. Additionally, in the reductive environment of the
cytoplasm, there is an enhanced dissociation of pDNA from the polymer resulting in enhanced
transgene expression.2% 3 Finally, an amphiphilic modification of chitosan has also been attempted.
Hydrophobic modification of chitosan with linoleic acid led to improved endonuclease protection
ability, promoting cell binding and enhanced pDNA dissociation. Contrarily, introduction of
poly(beta-malic acid) via ester bonds led to enhanced water solubility, minimized nonspecific protein
adsorption, and facilitated pDNA unloading, resulting in an overall improved transfection efficiency.3*

As an alternative to chitosan backbone modification, the preparation of ionically cross-linked
chitosan-TPP (tripolyphosphate) nanoparticles was also proposed.32 Such systems were found to
improve stability, achieving comparable gene expression levels to other efficient transfection agents.
A more advanced system combines chitosan, TPP, and an additional poly/oligosaccharide such as
hyaluronic acid33 or beta-cyclodextrins.34

While non-viral vectors can associate with most cell types via nonspecific binding to the cell surface,
specific targeting strategies based on receptor-ligand interactions are preferable to prevent
widespread delivery and off-target effects. The incorporation of targeting moieties into the chitosan
nanoparticles was found to modify the particle uptake, with the ligand/ receptor interaction
governing the internalization pathway and the subsequent intracellular trafficking.2935.3¢

Small interfering RNA

siRNAs are short, usually 19—21 base pair double-stranded synthetic RNA molecules, which elicit the
degradation of messenger RNA (mRNA), thereby achieving down-regulation of a target gene
through the mechanism of RNA interference (Figure 2b).37

Due to its chemical nature, siRNA is highly sensitive to degradation by nucleases and unable to cross
cellular membranes. Being much smaller than pDNA, siRNA has far less charge

density, possessing an inherently different structure and topology. These differences underlie the
specificity of certain synthetic vectors in achieving efficient delivery with only one type of nucleic acid
molecule. Chitosan-based vectors follow this rule, hence chemical and physical parameters need to
be specifically optimized for siRNA delivery.

To the best of our knowledge, the first report on the use of chitosan-based nanoparticles for siRNA
delivery was published in 2006.38 This study explored different methods of complexation (simple
coacervation, ionic gelation, and adsorption to chitosan-TPP nanoparticles prepared by ionic
gelation) using high molecular weight chitosans (110—-470 kDa). The results showed that the
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molecular weight did not significantly influence transfection efficiency, although smaller particles
were formed with the lowest molecular weight chitosan. The method of siRNA association, in turn,
was relevant for transfection efficiency, with entrapment by ionic gelation being the most effective.

Recent reports highlight the effect of chitosan molecular weight on its interaction with siRNA and
the transfection efficiency of the resulting complexes. However, the results are not definite yet. Some
authors indicated that low molecular weight chitosan is not able to stably interact with sSiRNA merely
because of insufficient electrostatic interactions between the two oppositely charged molecules. This
effect was observed when 10 kDa chitosan (5% DA)3® was compared to that of 35 kDa (fully
deacetylated).4° In contrast, another paper showed that effi cient silencing could be achieved with a
chitosan of 12 kDa (8% DA).4*

Overall, the conclusion at this point could be that increasing polymer molecular weight might not
translate into further increases in performance.4%42 This could be explained by a productive
interaction threshold between siRNA and the polymer chains, leading to sufficient condensation and
intracellular dissociation capacity of the complexes. The previously mentioned examples also reveal
that low DAs favor the interaction with siRNA and the overall vector performance. The use of chitosan
with low DA is particularly crucial when preparing nanoparticles using the ionic complexation
technique. In contrast, when using the ionic gelation technique, siRNA molecules, besides
establishing possible ionic interactions with chitosan, are physically entrapped during the particle
formation process.3243

A myriad of modifications in the polymer backbone, aimed at improving nanoparticle formation with
siRNAs, have been explored. Similar to pDNA delivery, chitosan quaternization44 and chitosan
thiolation4s have also been investigated. Hydrophobic modification of chitosan with tocopheryl
(vitamin E) has also been achieved.4¢ Other possible modifications include glycolchitosan, PEGylated
chitosan, and guanidinylated chitosan, which have basically conferred improved stability, solubility,
and cellular uptake resulting in enhanced transfection capabilities.4? Another alternative for efficient
encapsulation of siRNA combines PEGylated chitosan with hyaluronic acid and the process of
nanoparticle formation induced by ionic gelation using TPP.48

Single-stranded oligonucleotides

The therapeutic potential of single-stranded ONs (ssONs) was discovered in 1978, when Zamecnik
and Stephenson reported that a DNA oligonucleotide complementary to the target RNA was able to
inhibit virus replication in cell culture.4 Soon after, the idea of achieving generalized blocking of RNA
function through hybridization of ssONs with the RNA started to develop and with it the fi eld of
antisense oligonucleotides (AON). As with siRNAs, these molecules can be easily degraded and have
difficulty entering cells. Attempts have been made to increase their stability by chemical modification
and to maintain their effectiveness upon in vivo administration; however, the high amounts of ssONs
needed to achieve a good response and the lack of specific cell targeting may raise some toxicity
issues.s° Thus, the development of appropriate delivery vectors is also critical in this context (Figure
2¢). As in the case of siRNA, the small size and low charge density of the molecule poses a problem
for complexation. Additionally, its single-stranded character confers a slight apolar characteristic to
the molecule due to exposure of aromatic nitrogenous bases.
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Although the number of reports on chitosan-based vectors for ssON delivery is still low, there are
some approaches that have led to promising data. Chitosan nanocomplexes showed transfection
activity in a model of intranasal application, even though very high amounts (100 p g) were needed
to achieve a response.s* In another example, complexes of ssON with a galactose-modified chitosan
resulted in an improved in vitro transfection efficiency as compared to the parent chitosan
complexes.52 Moreover, in vivo galactosylation of chitosan was found to vectorize high amounts of
AON to specific liver cells, which was seen as the major event leading to the increased efficiency of
this vector.

The combination of chitosan with alginate for complexation of AON either by a lyophilization 53 or a
pre-gelling methods has also led to interesting results. Indeed, chitosan-alginate nanoparticles
prepared by lyophilization showed a capacity to transfect skin cells in vivo in an excisional wound
model. Those prepared according to the pre-gelling method were found to control the AON release
over a 50-hour periodss and to transfect a human breast cancer cell line.s®

The delivery of AON from nanoparticles made by ionic gelation has also been reported in few
studies.5” A relevant example is the one showing that chitosan nanoparticles are useful carriers of
AON for delivery into rat skin cells,5® with the authors suggesting the potential of this approach for
topical application on human skin. More recently, the use of thiolated chitosan in order to facilitate
the dissociation of the AON from the complex was also explored.59

Overall, the information reported so far does not yet offer a comprehensive view of the most
favorable properties for ssON delivery by chitosan. Considering the enormous potential for ssON-
based therapeutics, a more detailed view on the use of chitosan with ssON is warranted.

In vivo application of chitosan as a vector for nucleic acid delivery

Since initial proposals of chitosan as a nucleic acid delivery system, chitosan and its derivatives have
been widely tested as nucleic acid carriers in animal models. The majority of the reported in vivo
studies focus on the use of reporter gene models in order to evaluate biodistribution and transfection
levels mediated by chitosan-pDNA complexes-2° Following these pioneering studies, there has been
anincreasing number of reports evaluating the efficacy of chitosan as a delivery carrier of therapeutic
genes, namely in the fields of cancer, infections, and inflammatory diseases (Table I).

Due to their mucoadhesive properties, chitosan-based nanoparticles have been applied in the
development of strategies to treat diseases that affect mucosal surfaces, such as the gastrointestinal
tract, lung, and eye. Kai and Ochiya reported successful oral delivery of the B -galactosidase reporter
gene mediated by chitosan alone or N-acetylated to the intestine.®® Others have reported similar
findings in the gastric and intestinal mucosa. pDNA-loaded chitosan-based nanoparticles have also
been explored in the fi eld of respiratory diseases. An example is the work of Jiang et al., in which it
was shown that aerosol delivery of pDNA producing small hairpin RNA, complexed to folate-
chitosan-graft-PEl, specifically silenced the isoform 1 of the protein kinase B (Akt1) in lung tumor
cells, resulting in lung tumorogenesis suppression.5

Hyaluronic-chitosan nanoparticles made by ionic gelation have also been proposed for the delivery
of nucleic acids to the ocular mucosa, which is a thin, continuous mucous membrane layer that lines
the inner surface of the eyelids and eye surface.5293 In this case, the mucoadhesive properties of both
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polymers were combined with the CD44 targeting ability of hyaluronic acid, rendering the system
very efficient for transfection of both the corneal epithelium and conjunctiva, ocular tissues that
express this receptor.

Another field of application has been mucosal administration of vaccines. For example, Roy et al.
reported that oral immunization with pDNA vaccine-loaded chitosan nanoparticles led to successful
immunological protection in a murine peanut allergy model.® Another pDNA vaccine encoding for
the dense granule protein 1 (GRA1) has been proposed, intended to prevent Toxoplasma gondii
infection. A significant immune response against the encoded protein was observed after gastric
administration of chitosan nanoparticles containing GRA1 pDNA to mice.®s Nanovaccines have also
been designed for intranasal administration. For example, a pDNA-loaded chitosan nanoparticle
vaccine against the respiratory syncytial virus (RSV) infection was developed and tested in a murine
model. The results showed an attenuation of pulmonary inflammation by induction of protective T
helper 1 (Tha) cell type®® and cytotoxic T lymphocyte responses 7 in BALB/c mouse strain.

The encouraging results of chitosan in delivering pDNA molecules drove interest in it as an attractive
carrier for siRNA. Compared to in vivo pDNA delivery, research on siRNA delivery mediated by
chitosan-based vectors is still in its infancy, the majority of current work being basic research
involving model siRNA molecules. Delivery of siRNA for therapeutic purposes has recently started to
receive increasing attention, with specific emphasis in the field of infectious diseases and cancer
(Table 1). One example is intranasal delivery of chitosan nanoparticles loaded with siRNA targeting
the viral NSz gene that encodes for a RSV nonstructural protein sequence with an important role in
the virus replication process. The results showed a significant reduction of virus concentration (titers)
in the lung and decreased pulmonary inflammation associated with RSV infection.®869 On the other
hand, in the field of cancer therapy, Pille et al. reported a 90% inhibition of tumor growth in a
xenograft aggressive breast cancer model after intravenous administration of anti-Ras homologous
A (Rho A) siRNA encapsulated in chitosan-coated polyisohexylcyanoacrylate nanoparticles.7®

Although being reported as one of the most promising nucleic acid carriers for clinical applications,
so far chitosan-based nanoparticles have only been evaluated in pre-clinical settings. Therefore,
much research is needed in order to advance toward the clinical development phase. This
advancement is expected to be favored by the fact that several chitosan-based products are under
clinical development, among them, an adjuvant for a Norwalk virus-like particle, 7* whereas others,
such as for wound dressing and as a dietary supplement, are already being marketed.7* 73

Translating chitosan into the clinic for nucleic acid delivery:
progress and challenges

The use of chitosan nanocarriers for gene therapy is largely documented, and there is now a
considerable body of knowledge supporting this application. Notwithstanding, there are still no
reports of marketed products or current clinical trials with chitosan-based vectors for in vivo
administration of nucleic acids. While trying to bring such products from bench-to-bedside, a number
of requisites must be taken into account. Important issues to be tackled are inherent to the use of
nucleic acids as therapeutic molecules, namely the optimization of sequences to ensure robust gene
expression while evading immune system surveillance (pDNA) or to minimize off-targets and reduce
toxicity effects (ssONs and siRNA), as well as to determine therapeutic dosages. On the other hand,
the proposed vector needs to fulfill its role as a carrier of the therapeutic agent. Some of the
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strategies being pursued to improve the efficiency of chitosan for nucleic acid delivery have been
discussed in the previous sections. Most of the chitosan-related limitations are common to other
vectors, as well as approaches being adopted to overcome these hurdles.

It is also important to consider that while chitosan is not currently listed as an excipient in any drug
formulation approved by regulatory authorities, chitosan hydrochloride has been on the list of
excipients of the European Pharmacopeia since 2002 92and in the US Pharmacopeia and The National
Formulary since 2011.93 Moreover, chitosan (from shrimp and Aspergillus niger origin) is “generally
recognized as safe” by the FDA as a direct ingredient in foods and beverages.9 Chitosan is also being
used as a dietary supplement to reduce fat adsorption and in wound dressings, 95 indicating that a
good understanding of its topical and oral tolerance exists. In addition, there are a number of clinical
trials reported by the FDA involving the use of chitosan for oral and nasal peptide/vaccine delivery
where chitosan is being used as a vaccine adjuvant. In spite of this, there is still a need for standard
guidelines describing the range of requirements, both for suppliers and product manufactures, of
product quality and characterization methods.s¢ The American Society for Testing and Materials
(ASTM) is making a concerted effort to establish standard guidelines for tissue-engineered medical
products and has recently dedicated one of these documents (F2103—11) to the characterization and
testing of chitosan salts as starting materials for biomedical applications.”

One must be aware that chitosan is not a single chemical entity but varies in compositional DA and
distribution of the monomer units along the polymer backbone and molecular weight, depending on
the source, extraction, and preparation method.%: 9 99 For nucleic acid delivery, the polymer
molecular weight and DA are very important parameters, as they will have animpact in terms of chain
flexibility and the number of positive charges per chitosan molecule. Moreover, solubility,
biodegradability, aggregation properties, and immune response will be affected by physicochemical
properties of chitosan as well.*° In this context, regulatory issues concerning polymer preparation
and characterization methods will have to be addressed such that chitosan can successfully reach the
clinic. In this respect, there are three main areas that must be dealt with: (1) polymer characterization
and functionality, (2) product reproducibility between different batches, and (3) toxicology and long-
term safety.2o2

The ASTM guideline F2103-11 suggests the use of infrared spectroscopy (IR) and nuclear magnetic
resonance (NMR) to correctly identify chitosan.97 It also establishes limits of insoluble impurities,
residual protein content, inorganic matter, and presence of heavy metals in the chitosan samples.
The ASTM standard F2260—03 describes the methodology for determination of chitosan DA using
1H-NMR.%2 It is based on the work of Varum et al. and is valid for DA values from 50% down to 1%6.2°3
For molecular weight determination, a specific ASTM standard (F2602—-08Eo11) has been
published.®o4 Several mobile phases are proposed for size exclusion chromatography, with many
composed of not only acetic acid and sodium acetate, but also ammonium acetate. Finally, according
to FDA specifi cations, the endotoxin content of chitosan samples should not exceed 5 EU/kg for non-
intrathecal administration routes, in order for the material to be considered safe for biomedical
applications.os

The ASTM guidelines represent a promising attempt to surpass some of the diffi culties listed
previously. If properly followed, they should improve the manufacturing efficiency of chitosan-based
products, with significant reduction in the cost of product development.
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Another key issue to take into consideration is chitosan biodegradability. In the literature, multiple
studies regarding chitosan processed in different forms (hydrogels, scaffolds, beads, or just in
solution) have asserted this material as biodegradable. Most of these studies assess biodegradation
upon variation of the polymer DA, since this parameter is positively related with the rate of chitosan
degradation. In spite of this, little is known about the degradation of chitosan in nanoparticle
systems.°® The extrapolation to nanoparticle biodegradation is not straightforward, because when
the polymer is complexed with nucleic acids, the exposure of acetylated groups may not favor the
degradation

mediated by enzymes. Chellat and colleagues evaluated biodegradation of chitosan and chitosan
complexed with xanthan (CH-X) (an anionic polysaccharide) in degradation media simulating gastric
(containing pepsin) or intestinal fluids (containing pancreatin) and found that chitosan degradation
was faster than CH-X microspheres.2*7 To the best of our knowledge, in vivo degradation of chitosan
nanoparticles containing nucleic acids has not been disclosed in the literature. It is worthwhile
mentioning that this is a common limitation for most nanoparticulate systems.

Conclusions

This review highlights some of the most promising results involving the use of chitosan as a vector
for nucleic acids, including examples already in pre-clinical trials that have been fueling the interest
of the research community and manufacturers into use of this biopolymer. Chitosan has advantages
over other non-viral carriers in terms of its nontoxicity and biodegradability. Another interesting
feature widely explored is the mucoadhesive properties of chitosan, with impact on gastrointestinal,
lung, and ocular applications.

While the field of gene therapy is still addressing many of the hurdles that have been hampering the
widespread translation of nucleic acid-based therapies to the clinic, there are several products in
clinical trials based on both viral and non-viral vectors supporting the high potential of such
therapeutic strategies. Recently, two products successfully reached the market (Glybera and
Gendicine) for the treatment of lipoprotein lipase deficiency and head and neck squamous cell
carcinoma, respectively. Nevertheless, attaining safe and efficient delivery of the nucleic acid of
interest is at the forefront of this quest, which makes chitosan and its derivatives attractive
candidates.

While a number of issues that are common to all non-viral vectors remain to be addressed, there are
a number of questions that are particular to chitosan. Many of these involve standardization of
production and characterization methodology. While seemingly trivial, these issues have held back
manufacturers and made comparison between studies difficult at times. Addressing these issues will
certainly provide the basis for a deeper understanding of the behavior of this material in different
biomedical settings, of which vectorization of nucleic acids is an example with great therapeutic
potential. We believe that this will make pharmaceutical companies more secure to bring chitosan
into clinical trials and finally to the market.
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Figure 1. Chemical structure of partially deacetylated chitosan. a: D-glucosamine; b: N -acetyl D-

glucosamine. Note: n, repetition unit.
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Figure 2. Schematic representation of the internalization of

chitosan-nucleic acid nanoparticles and mechanisms of action

of the different nucleic acids commonly used in gene therapy.
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Glossary

Alginate: Anionic polysaccharide present in the cell wall of brown algae.

Chitin: A high molecular weight, crystalline polysaccharide, theoretically composed entirely of N-
acetylglucosamine units; it is the main component of the cell walls of fungi, the exoskeletons of
arthropods such as crustaceans (e.g., crabs, lobsters, and shrimps) and insects, as well as it is present

in the endoskeleton of cephalopods, including squid and octopuses.

Coacervation: The process that results in the aggregation of molecules or formation of colloidal
particles under the action of electrostatic attractive forces.

lonic gelation: The process of formation of particles driven by the reticulation (gelation) of a polymer
induced by small charged molecules.

Endonuclease: Phosphodiesterase that cleaves bonds within a polynucleotide chain.

Endotoxin: Toxin present inside a bacterial cell that is released when it disintegrates; consists of
lipopolysaccharide and lipoprotein complexes.

Intrathecal administration: Administration of a therapeutic agent into the subarachnoid space, which
contains the cerebrospinal fl uid, in the spinal cord.

pKa: Decimal logarithm of the acid dissociation constant.
Polyplex: Complex between the cationic polymer and anionic nucleic acid.

Pro-drug: Therapeutic agent administered in an inactive form that must undergo a chemical or
biological conversion before becoming an active agent.

Transfection: the process of deliberately introducing nucleic acids into cells.
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