
University of Porto
Faculty of Engineering

Email Classification:
a case study

!

Friday, November 12, 2010

André Ricardo Azevedo Gonçalves da Silva

July 2016

Scientific Supervision by
Ademar Aguiar, Assistant Professor

Department of Informatics Engineering

Scientific Co-supervision by
Hugo Ferreira, Assistant Professor

Department of Informatics Engineering

In partial fulfillment of requirements for the degree of
Master in Computer Engineering
by the EUR-ACE Programme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/222731592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.up.pt
http://www.fe.up.pt
mailto:andre.ee11304@gmail.com


Contact Information:

André Ricardo Azevedo Gonçalves da Silva
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal

Tel.: +351 913 152 186
Email: ei12133@fe.up.pt
URL: https://www.linkedin.com/in/andreragsilva

https://www.linkedin.com/in/andreragsilva


Acknowledgments

I must start by thanking my family for giving me the opportunity to reach this big step
in my life. Starting with Maria da Gloria for being the best grandmother one could ever
have, by listening to all my thoughts and nodding the head even when she was not follow
anything I said, not forgetting all the lunches and steaks cooked in favour of my greediness.
Following with António Silva, Alexandra Silva and Andria Silva for all the noise made
while one was working and for being great parents and sister. One could never repay you
for this opportunity, but one can show its gratefulness by continuing to grow as a person
and as an engineer, thriving through the game of life.

A special thanks goes to Ana Teresa Amorim for all the patience, caring, interest,
confidence and motivation showed during the process of this work. Just like my family,
one could not ask for a better girlfriend. Thank you for everything, specially the house
that served as the perfect work place during the rough times. All the snacks and meals
too!

Finally, one big hail to the person responsible for supervising my dissertation work and
for pointing me in the right direction when needed, Professor Ademar Aguiar. Another hail
goes to my co-supervisor, Professor Hugo Sereno Ferreira for all the expertise in machine
learning. The help provided was fundamental in structuring the dissertation approach to
this specific problem.

André Gonçalves Silva



This page was intentionally left mostly blank.



...to everyone who believes in me



This page was intentionally left mostly blank.



Abstract

Internet dependence on email has been frequent since its early days. In the present days,
electronic mail is widely used in a professional and personal context. Although this service
was developed as a way of communication, nowadays it serves many other purposes. The
majority of services available online require an email address in order to authenticate or
as a bridge of communication between the user and the service.

The average number of emails sent and received, by the average user, is in the order of
the hundreds per day, and these emails can be of varying categories: social, professional,
notifications, marketing, transactional, emails which warrant no response, emails to send
files, emails requiring response, among others with different purposes. This originates an
information overload problem, that proves difficult to be completely solved manually by
the email address owner.

Therefore, there is a growing need to develop systems that can automatically learn
and recommend users effective ways to organize their email information, which can
aggregate emails into user defined groups, expediting the process of reading and consulting
the mailbox. To alleviate this information overload problem there are several possible
approaches and techniques, such as machine learning to help on email classification, in
order to store new emails in the best fit folder of the massive inboxes we all have, now or
in the future.

After a careful review of the state of the art on different email text classification ap-
proaches, this work elaborates on a modular system that is capable of several preprocessing
configurations and takes advantage of a classifiers ensemble, in order to better solve the
problem of email classification.

Afterwards, the system is be adapted to a very concrete case study, a desktop email
client under development at Mailcube Lda. The case study tests and analyse different
pre-processing configurations using three text classifiers for several users mailboxes from
the Enron Corpus dataset. The final results are compared with work from the scientific
community with identical configuration as validation.

At the end, is expected that the resulting system adapts well to the case study,
automatically suggesting the user where to store the incoming messages, continuously
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adapting to the arrival of new emails, improving the overall user experience and saving
precious time for the users.



Resumo

A dependência da Internet no email tem se mantido constante desde os seus dias iniciais.
No presente, o correio eletrónico é bastante utilizado tanto em contexto pessoal, como
profissional. Embora o serviço tenha sido desenvolvido com o objetivo de servir como um
meio de comunicação, hoje em dia este serve muitos outros propósitos. A maioria dos
serviços disponíveis online utilizam o endereço de email como meio de autenticação ou
como uma ponte de comunicação entre o utilizador e o serviço.

Em média, o número de emails enviados e recebidos, pelo utilizador corrente, encontra-
se na ordem das centenas por dia e estes emails podem ser das mais diversas categorias:
social, profissional, notificações, publicidade, transações, emails que não requerem resposta,
emails como meio para enviar ficheiros, emails que requerem resposta, entre outros com
diferentes propósitos. Toda esta diversidade encontra-se na origem de um problema de
informação excessiva, difícil de resolver manualmente pela pessoa responsável pelo endereço
eletrónico.

Como tal, existe uma crescente necessidade de desenvolver sistemas que sejam dotados
de aprendizagem automática, capazes de recomendar ao utilizador formas eficientes de
organizar a informação presente nas suas contas de email e ainda agregar os emails
em grupos manualmente criados, de forma a facilitar a sua interpretação por parte do
utilizador, agilizando todo o processo de leitura e consulta da caixa de correio eletrónica.
Para atenuar o problema de informação excessiva, existem diversas abordagens e técnicas,
como aprendizagem de máquina, para ajudar na classificação dos emails, de forma a
atribuir automaticamente novas mensagens a pastas da massiva caixa de correio que todos
temos, agora e no futuro.

Após uma revisão cuidada ao estado da arte sobre as diferentes abordagens existentes
para a classificação de email recorrendo ao conteúdo de texto, este trabalha trata de
apresentar um sistema modular, capaz de diferentes configurações de pré-processamento
e que tira partido de um sistema que faz uma ponderação do resultado de diversos
classificadores, para chegar a uma classificação final, com o intuito de obter melhores
resultados para o problema de classificação de correio eletrónico.

De seguida, o sistema é adaptado a um caso de estudo muito especifico, um cliente de
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email em desenvolvimento na empresa Mailcube Lda. O caso é testado e analisado para
diferentes configurações, usando três classificadores e recorrendo a sete caixas de correio
provenientes do corpo de dados do Enron Corpus.

No fim, é esperado que o sistema criado se adapte harmoniosamente ao caso em questão,
sugerindo ao utilizador onde guardar as mensagens que vão chegando e ainda que seja
capacitado de se adaptar continuamente aos emails que vão entrando na conta. Com este
sistema, é expetável que a experiência de utilização melhore, rentabilizando o tempo dos
utilizadores.
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Users’ mailboxes keep growing in size due to all the electronic correspondence that is18

exchanged between people and services. The same email account, is usually used for many
different purposes: work and personal environment, events, tasks, subscribing services20

or newsletters, authentication and others. Different usages of email are continuously
emerging. A user should not have the necessity to create several email accounts in order22

to compartmentalize the information, one should be able to filter and organize the data
heterogeneity, contained in each email, to facilitate the reading and consulting interaction.24

Can machine learning, through the classification of unlabelled data and by adding the user
interaction history to create new knowledge, help with the treatment of this information? A26

human does not have the ability to manually treat thousands of emails within a reasonable
time, will the machine be able to do it, in a meaningful and valuable way for the user?28
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1.1 Email
Electronic mail is one of the most successful services yet created. In a simple way, email2

provides a bridge of communication between points over the network. It allows users to
send messages from an email address to another, or multiple addresses, asynchronously.4

Email was actually created before internet creation, it became bigger within the military
network operated, ARPANET and was used to exchange information and sharing and6

storage of documents. The most significant technical evolution of the service was to the
protocols used to move emails between systems and it had to be completely replaced8

several times [1]. The interface of the mailboxes also changed to cope with the continuous
evolution of design and with the appearance of new forms of email information.10

It is one of the most popular services available on the internet and continues to grow
mainly due to its high efficiency, its compatibility with many types of information, and12

low cost of usage and maintenance. Nowadays, email serves many different purposes that
it was not initially design for, contributing to the service becoming one of the most used14

tools in the business and personal world, so far.
The worldwide usage of email is also the main cause of the problems still looking to be16

solved today.

1.2 Current Email Usage18

As a broadly used technology, email is extensively used in our daily lives. To reinforce
the success of electronic mail, the number of emails being exchanged has been in constant20

growing ever since the service appeared. The Radicati Group, Inc, a technology market
research company based in Palo Alto, has been conducting studies on email since 1993,22

annually releasing a statistical report that provides information on the service usage,
together with a forecast for the next four years.24

Table 1.1 compiles email usage data present in the most recent report on email statistics,
released by Radicati [2].26

2015 2019
Emails sent/received per day (B) 205.6 246.5
Worldwide email accounts (M) 4.353 5.594
Worldwide email users (M) 2.586 2.943

Table 1.1: Worldwide email traffic, accounts and users forecast

The report states that, by the end of 2019, around one-third of the worldwide population
will be using email. It also shows that the number of accounts is expected to set a bigger28
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increase than the number of email users, mostly due to many consumers having multiple
email addresses.2

The main reason behind the escalating email usage is the increase of connectivity, with
all the available technology in the market people can obtain access to the Internet from4

almost anywhere on the planet. The dependency on email from upsurge services like online
shopping, banking, instant messaging, VOIP and many others that require an email to6

obtain access to the service, will also end up contributing to the continuous rise of email
users.8

Although the forecast indicates that the service will not stop expanding, many new
applications, containing some of the email functionalities, keep urging. It may also lead to10

an evolution of the service, to catch up with the new technologies.

1.3 Information Heterogeneity12

Initially, email was just used for plain text messaging. At the moment, it is still widely
used has a tool of communication between people, although with many more formats and14

finalities.
Users tend to use electronic mail as an archiving tool for documents, conversations16

and other types of files like photos. The service is also being used to exchange tasks
between users or by themselves, companies even use email to distribute work and assign18

jobs. Shopping services use email as an alert or notification tool for price changing. Airline
companies also uses it to report flights changes to the user. Event emails integrate with20

the consumer calendar applications and can be shared among users with the finality of
setting up a meeting or a trip, for example.22

Marketing, publicity and newsletter emails, that the user subscribes to, are more
diversified and graphical. Many of the spam1 continues to pass the security filters, ending24

up creating more trash in the users’ mailboxes, augmenting the overload problem.
Email may also possess a status, it can have a pending action to be performed such as,26

to be read or to be answered. The to do emails are inserted in the domain of task/action
emails.28

1.4 Overload Problem
The email overload problem was initially tackled in a paper by Whittaker and Sidner,30

back in 1996 [4]. The term was given as a result of the enormous quantity of emails, users
1 spam was defined by Cormack and Lyam, in 2005, as being "unsolicited, unwanted emails that were sent
indiscriminately, directly or indirectly, by a sender having no current relationship with the recipient" [3]



4 introduction

had in their mailboxes, leading to a time consuming problem, since they had to spend
more time digging their mailboxes.2

Ten years later, Microsoft researchers Fisher et al. [5] decided to compare their email
reality with 1996 and they realised that mailboxes did not change much in size, but the4

number of email users had grown. Consequentially, the overload problem was still present,
but in a wider range, since more people were using the service.6

More recently, in 2014, Grevet et al. [6] did a research that ended up also concluding
that the problem still persists and it has evolved into a two faced problem. On one side8

you have overload, meaning a large volume of emails in the users’ mailbox and, on the
other side, you have the term being justified with the many different types of email status,10

such as to do, to read, to answer, etc.
Only two years have passed and the problem is still on sight. It also seems that the12

problem is not just the number and the different status of emails, the variety of emails
described in section 1.3 also creates an overload of information due to the data being so14

diversified.
Summing up, the overload problem can be created from mailboxes having an enormous16

number of emails, many different states and activities over it (to do), or many different
types of content.18

1.5 Mailcube
The dissertation was developed in Mailcube, Lda. based in Porto, Portugal.20

Mailcube is a privately held startup company currently developing an email client for
desktop. The purpose of this product is to improve the email workflow by making it easier22

for users to consult, read and manage their mailboxes.
The application focuses on improving the experience and reduce the time and patience24

people need to put in email management by using new concepts such as faces, cubes and
contexts. These cubes work as storage boxes for the mailbox correspondence and faces are26

a way to visualise and slice information from each email in the cube.
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Figure 1.1: Graphical conceptualization - cube

This research aims to ensure that users do not need to do multiple clicks to organize
the emails in cubes, the system will do it automatically and the users can overpass the2

system by deliberated manual actions.

1.6 Motivation4

As described in section 1.4, the overload problem still persists and with the crescent usage
of email and also its variety, information problems will become even more serious. Due6

to emails from different categories and types continuing to pile up the users’ mailboxes,
making it harder and harder to use it, important messages will be lost or delayed to8

be answered since many people use the mailbox as documents and files storage. The
retrieval will also be more difficult and tasks will not be done. In general, problems of10

miscommunication and time consumption will be aggravated.
With so much correspondence being exchanged, users will not be able to efficiently12

deal with the electronic mail clog manually, therefore the necessity of creating a system
that can automatically organize all the mixture of information that continues to arrive.14

Some email clients, like Gmail from Google, try to filter emails into smart folders such
as forums, social, updates, etc., but if you are someone who works in the social area, which16

is a growing area, this will not be enough because your social folder will also be filled with
messages from different places and with divergent purposes, leading to the same problem.18

Also, they miss to adapt to each user mailbox which differ in variety and size, if one does
not have emails from forums, one does not have the necessity of a forum folder, capability20

of adaptation is very important.
Mailcube is a new mail client with a different concept from the rest of the email clients22

currently available. Mixing a new concept with the ability to self organize mailboxes and
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the capacity of adaptation to each individual, is one step further in the email management
that brings value and a better and less frustrating experience for the users.2

1.7 Goals
This dissertation main goals start with the creation of a system that is able to classify the4

new emails for a user. This classification must be significantly correct and fast, reducing
user frustration and augmenting the productivity.6

Second, the system needs to be sensitive to user interaction, adapting with the deliber-
ated changes the user will impose to it.8

Third, the system needs to be easily integrated with other applications and consume
as less resources as possible.10

Finally, the resulting system must be successfully validated using a case study, by
Mailcube desktop application.12

1.8 General Approach
Due to the nature of the problem, a supervised learning algorithm to perform text14

classification is used. It takes advantage of the already stored emails, belonging to the
user, to create and update the artificial intelligence knowledge model with the incoming16

correspondence and with the users manual actions, such as drag a message to a different
folder.18

All the textual contents of the messages may be used to boost the classification output.

1.9 Expected Results20

The resulting system uses an intelligent approach that adapts differently to each user
mailbox and improves the more it is used. More specifically, the system classification was22

significantly increased from other approaches, producing a more accurate output leading
to a less frustrating experience. With all this is expected that the email reading and24

consulting will be much easier and time consumption will be diminished. Communication
and productivity will increase and fewer important messages will be lost, forgotten, or26

simply wrongly organized.



how to read this dissertation 7

1.10 How to Read this Dissertation
The remainder of this dissertation is organized into three parts. For a more comprehensive2

understanding on this study, further reading should follow the bellow presented structure:

Part 1: Background & State of the Art provides a better understanding of com-4

monly used concepts and elaborates on studies relevant to the dissertation:

• Chapter 2, “Machine Learning and Email“(p. 9), offers an extensive survey on6

supervised learning algorithms, preprocessing techniques and datasets available
for email classification, followed by a review on multiple approaches that8

implement them.

Part 2: Problem & Solution clarifies the research problem and challenges, followed10

by the proposed solution:

• Chapter 3, “Research Problem“(p. 19), covers the general problem, elaborating12

on the specific research topics of this study.

• Chapter 4, “Proposed Solution“(p. 23), presents the resulting system, elaborat-14

ing on its architectural division and specifications.

Part 3: Validation & Conclusions presents the case study validation and the disser-16

tation conclusions.

• Chapter 5, “Mailcube Application: Case Study“(p. 31), covers the conducted18

studies on multiple scenarios, created to evaluate the classification performance
while following the case restrictions, finalizing with a results comparison with20

approaches from the scientific community.

• Chapter 6, “Conclusions“(p. 45), describes the main contribution and conclu-22

sions of this dissertation, and provides a direction for future work.
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Machine Learning and Email2

4
2.1 Email Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Email Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.3 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.5 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Ensembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510
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2.8 Approaches Using Enron Corpus . . . . . . . . . . . . . . . . . 1712

14

Machine learning, according to Mohri, Rostamizadeh and Talwalkar [7], is defined as16

"computational methods using experience to improve performance or to make accurate
predictions", where experience is "the past information available to the learner, which18

typically takes the form of electronic data collected and made available for analysis".
This chapter gives a better understanding on the email composition, the multiple20

techniques of preprocessing and representation used to adapt emails into a format that
is more suitable to the machine learning algorithms and the most used classifiers and22

datasets are also enumerated. The state of the art related to email on the different topics
are also covered.24

This dissertation research is not related to data mining, some of the algorithms described
in this chapter may be shared across both these major areas, due to the solving problem’s26

nature.
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2.1 Email Format
At the present days, email text messages format is defined by the RFC 5322 [8] and is2

extended by the internet standard MIME [9, 10, 11, 12, 13, 14], in order to support
non-ASCII text, non-text attachments (image, audio, video, application, messages, etc.)4

and multi-part message body support.
The research reviewed in this dissertation, takes advantage of a few fields from the6

email format structure.

2.2 Email Preprocessing8

The email preprocessing is a step that processes the raw email content and helps cleaning,
normalizing and transforming the input data. It is one fundamental step that can change10

completely the classifier outcome and is usually applied when one wants to remove noise
from the terms that are extracted in order to send only the more relevant ones to the12

algorithm.

2.2.1 Word Tokenizer14

A word tokenizer breaks text into word tokens. These tokens are separated for characters
that are called delimiters. These delimiters usually are punctuation marks, digits, symbols16

such as the at symbol (@), space character (␣) and escape codes like newline and others.
Table 2.1 displays some examples of the word tokenizer. Given an input text, it shows18

the output array of tokens for the used delimiters.

Delimiters Input Output
␣,.@ My␣new␣email,␣is␣john@mail.com My, new, email, is, john, mail, com
␣!- My␣number␣is␣San-Francisco-93! My, number, is, San, Francisco, 93

␣!?012 My␣username␣is␣alpha2001!? My, username, is, alpha

Table 2.1: Word tokenizer examples

2.2.2 N-Gram Tokenizer20

N-gram tokenizer creates tokens with n words from a text sentence, all the delimiters
mentioned in the word tokenizer 2.2.1 are ignored when creating tokens. Normally the22

algorithms implementation support the definition of a minimum and maximum n value,
leading to repeated words inside different tokens.24
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Table 2.2 displays some examples of the n-gram tokenizer using different simple
configurations. Given an input text, it shows the output array of tokens for the used2

configuration.
In 2015, Alsmadi and Alhami [15] conducted a study where they compare several4

clustering and classification approaches for email contents and show that N-Gram treatment,
in large multi-linguistic collections, gives the best result.6

n-min:n-max {Delimiters} Input Output
1:2 {,} My name is, John My name, name is, is John, John
2:2 {,} My name is, John My name, name is, is John
3:3 {,} My name is, John My name is, name is John

Table 2.2: N-Gram tokenizer examples

N-Gram models may also be used for frequency analysis, speech recognition and many
other applications.8

2.2.3 Stop Words Removal

The stop words removal technique uses the occurrence of words in documents to represent10

them. Stop words are known to be the most common words of a language. Usually they
are removed from the data representation because they normally serve a grammatical12

function, therefore adding little value for pattern matching and content identification.
Both tokenizers mentioned (2.2.1, 2.2.2) can integrate a stop words removal in order to14

ignore certain words when creating tokens.
In 1992, Wilbur and Sirotkin [16] published a technique that automatically identifies16

the high percentage of words in documents, by measuring document-document similarity,
that can be identified as stop words.18

Kumar et al. [17] proposed a framework for email clustering that removes the stop
words - defined manually as a list of words - previously to the algorithm’s execution,20

reducing significantly the number of words to describe each email, making similarity
analysis more accurate.22

Alsmadi et al. [15] also presented the different results with and without stop words
removal, proving that removing the stop words changes the top 100 most frequent words24

completely, resulting in a significantly accuracy increase.

2.2.4 Stemming26

Stemming is a technique that tries to reduce words to their stem form. In order for the
algorithm to understand how the fundamental word is composed, usually the stemming28
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needs to be implemented with a dictionary from a specific language that helps in finding
the different words stem form.2

A stemming algorithm reduces the words "stems", "stemming", "stemmer" and "stemmed"
to their stem word "stem".4

The first English stemming algorithm was introduced in 1968 by Julie Lovins [18], and
it was already able to reduce all words to a common reduced form. Latter, in 1980, Martin6

Porter [19] created an English stemming algorithm that has a new way of automatically
remove suffixes from words, not resorting to a set of rules has Lovins.8

2.3 Feature Representation
In order to apply machine learning techniques to datasets of emails, the data present in10

them needs to be represented in a way that is more comprehensible for the algorithms.
The present section describes the techniques more frequently used in the area of ML,12

for data representation.

2.3.1 Vector Space Model14

Salton, Wong and Yang [20], in 1975, proposed an algebraic model that allows to represent
objects in a vector of identifiers for the object in question. Each of the vector dimension,16

represents a feature of the object. Later, in 1988, Salton et al. [21] presented a term-
weighted approach that adds a weight value to each term of the 1975 model, this approach18

proved to obtain better results, heavily depending on the selected weighting system, as
stated by the authors "These results depend crucially on the choice of effective term20

weighting systems".

2.3.2 Bag-of-Words Model22

The BoW model represents documents data as a set of unordered words with the corre-
sponding frequency of each others. Citing Turney and Pantel [22], "The bag of words24

hypothesis is the basis for applying the VSM to information retrieval" [20].

2.3.3 Term Frequency-Inverse Document Frequency26

TF-IDF is a weighting technique created in 1972, by Spärck Jones [23], that is being
widely used in the scientific community. This technique tries to give more importance to28

unexpected changes than expected ones. Turney and Patel [22] refer to this approach as
being "The most popular way to formalize this idea for term-document".30
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In 1996, Singhal et al. [24] present another weighting technique based on TF-IDF called
length normalization. Since TF-IDF tends to favour longer documents, this approach2

takes into account the analysed document length, in order to normalize the results.
In 1999, Segal and Kephart [25] presented MailCat, an assistant for organizing email4

and they use the TF-IDF before applying the text classifier.

2.4 Feature Selection6

Feature selection is an important step of classification, what it does is to reduce the number
of features provided to the classifiers by means of an evaluator and a search algorithm.8

The objective is to remove attributes that are not so relevant to the classification process,
sometimes increasing the performance and decreasing the execution time consumption.10

2.4.1 Evaluators

The evaluators or scoring algorithms take care of creating a weighted analysis of a certain12

attribute relatively to its class. Some algorithms resort to the information entropy function
H(X) or others, using multiple combinations to offer different evaluation scenarios.14

Information Gain evaluates the amount of chaos reduction in terms of information
entropy. It tries to find groups of attributes with the most information gain to the16

correspondent class.

InfoGain (Attribute, Class) = H (Class)−H (Attribute|Class)18

Gain Ratio is a modification of the information gain evaluator that reduces its tendency
towards multi-valued attributes.20

GainRatio (Attribute, Class) = InfoGain(Attribute,Class)
H(Attribute)

Correlation evaluators calculate the correlation between a feature and its class, by means22

of the Pearson product-moment correlation function. Guyon and Elisseeff [26] article
offers an extensive clarification on the subject. In 1998, Mark Hall [27] introduced a24

now known correlation-based evaluator has his thesis project.

2.4.2 Search Algorithms26

The search algorithm is responsible for retrieving and select the attributes distribution,
based on the evaluators score. In 2010, Richard Korf [28] wrote an article that gives a28

further insight on search algorithms.
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Greedy algorithms may also be used as a search algorithm. They follow the greedy
theory which is to evaluate an heuristic at each stage, in order to select the most2

promising local path to follow next.

Best-first is an algorithm that uses an heuristic function to discover the best attributes.4

In 1993, Korf [29] presented a linear-spaced version of the algorithm, reducing the
space complexity of the algorithm.6

Ranker is a simple ranking algorithm that ranks the attributes by their evaluation. A
fine suit for any evaluator.8

2.5 Classification Algorithms
Classification is considered an instance of supervised learning. It tries to categorize a new10

observation into a predefined set of categories. The classifiers can be of different types,
not exclusively, such as:12

• Linear (probabilistic or not);
• Support vector machines;14

• Kernel estimation;
• Decision trees.16

In this work case study simulation, specifically the Section 5.3, the first three algorithms
presented are analysed and compared for multiple preprocessing techniques combinations.18

2.5.1 Naive Bayes

Naive Bayes is a probabilistic classifier that is based on the Bayes’ theorem. It was20

described by Lewis as being "long a favorite punching bag of new classification techniques"
[30] and it was still the most used text classification technique.22

In 2000, Jason Rennie [31], presented an application for email filtering, called ifile,
that uses Naive Bayes to perform the classification.Training is done based on a predefined24

dataset of emails with specific folders and, as the mail arrives, they are attributed to a
folder from the learning set.26

Rennie et al. [32] tried to fight the negative assumptions of Naive Bayes as a text
classifier by presenting heuristics that can handle some of the algorithm problems. In28

2004, Zhang [33] presents a new explanation for the algorithm and shows the "superb
classification performance" of the same.30
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2.5.2 Support Vector Machine

SVM was first introduced in 1995, by Cortes and Vapnik under the name, support vector2

networks [34].
In 1998, John Platt [35] presented an algorithm for training support vector machines,4

capable of achieving fast execution times. The approached was denominated as Sequential
Minimal Optimization (SMO). In 2001, Keerthi et al. [36] published an article with6

improvements to the algorithm, making it more able to perform classification tasks.
Drucker, Wu and Vapnik [37] studied the validation of the algorithm for email spam8

categorization and even compared with other algorithms realizing that, for binary decisions,
SVM is the best, for more dimension it is similar in accuracy and speed. In 2002, Tong10

and Koller [38] presented a modified version of SVM that is able to do active learning,
this means it does not use a selected training set to learn. This is useful if such approach12

is to be integrated into an application.
Shawe-Tayler and Sun [39], presented a review of the state-of-the-art on techniques for14

optimizing the training of SVM classifiers.
The algorithm was also reviewed and tested using a library in the research by Aslamadi16

et al. [15].

2.5.3 Random Forest18

Random Forest was created by Leo Breiman [40] as a decision tree classifier. It was based
on the random selection of features discussed by Ho [41][42] and also by Amit and Geman20

[43].
In 2004, Rios and Zha accomplished a research where they compared SVM with22

Random Forest for spam detection [44]. They concluded that both algorithms have similar
performances.24

2.5.4 K-Nearest Neighbour

Cunningham and Delany [45], did a more detailed review of the algorithm as a classifier.26

They also state that it "is very simple to understand and easy to implement", therefore "it
should be considered in seeking a solution to any classification problem" and they follow28

up with an enumeration of the algorithms advantages.

2.6 Ensembling30

Ensembling is the process of using methods for combining multiple classifiers, in order to
obtain better classification results. The book from Kuncheva [46] presents a very complete32
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bibliography on methods for combining classifiers.

2.6.1 Bagging2

Bagging, or bootstrap aggregation, was initially proposed in 1994 and published in 1996,
by Leo Breiman [47]. The method extracts multiple samples from the training data and4

creates new classifiers for each sample. The multiple classifiers are aggregated and the
average is calculated in order to provide a classification (other rules, beside the average,6

may be used to combine the distributions). This ensemble method tries to improve the
accuracy and reduce the variance of statistical classification algorithms.8

2.6.2 Boosting

Boosting is an ensemble method that starts with any base classifier that is trained and10

then resorts to another classifier to better classify instances, from the training data, that
the first classifier could not properly classify. The process may replicate the creation of12

classifiers until a certain stopping criteria is reached, a fixed number of models or a specific
accuracy are usually imposed.14

The AdaBoost algorithm initial implementation was presented in 1995, by Freund and
Schapire [48] and is, by far the most popular boosting algorithm and was even awarded16

with the Gödel Prize. After presenting it, the authors made a second paper [49] where
they compare the algorithm with bagging method. Latter, in 1999, Freund et al. [50]18

published a short paper describing the concept of boosting and the AdaBoost more clearly.

2.6.3 Voting20

Voting is the process of combining multiple classifiers probability distribution using
a combination rule, in order to estimate a classification. The most commonly used22

combination methods are:

• Majority voting24

• Probabilities average
• Probabilities product26

• Minimum or maximum probability

This work approach main contribution takes advantage of a voting ensemble using the28

minimum probability combination rule. The results can be consulted in Chapter 5, more
specifically from Section 5.4 to 5.8.30
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2.6.4 Stacking

Finally, the stacking method, combines multiple classifiers by resorting to the stacking2

generalization introduced to the scientific community in 1992, by Wolpert [51].

2.7 Available Datasets4

Due to privacy issues involved with the contents of email messages, large and realistic
email corpora is very hard to find.6

Popular email datasets used through the scientific community are enumerated. The
use of such databases, in several approaches, creates a bridge that enables performance8

analysis and comparison.

2.7.1 Enron Corpus10

Enron Corpus is a popular email dataset used through the scientific community. Its usage
creates a bridge that enables performance analysis and comparison between approaches.12

In 2004, an article introducing the database was published by Klimt and Yang [52].
In the same year, a more detailed analysis on its "suitability with respect to email folder14

prediction" was released, by the same authors [53].
The dataset contains about half a million messages from one hundred and fifty different16

users. It is available, free of charge, at the Carnegie Mellon University Enron dedicated
page [54].18

This approach uses the Enron Corpus due to its popularity and the datasets used can
be consulted in Appendix A.20

2.7.2 TREC Public Spam Corpus

The Text Retrieval Conference (TREC) created an email corpus [55] to help with the22

creation of techniques to identify spam mail. The dataset contains around seventy five
thousand emails, from which fifty are labelled as being spam.24

With the creation of this database in 2005, the techniques elaborated by the scientific
community started using the corpus as a reference and to enable results comparison26

between different approaches.

2.8 Approaches Using Enron Corpus28

The present section enumerates several approaches for the email categorization problem,
that take advantage of the Enron Corpus dataset to obtain results and compare them with30
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other research. The proposed solution is compared with some of the following research, by
comparing the accuracy achieved, validating the system capacity in handling the problem2

being studied.
Bekerman, McCallum and Huang [56] published a technical report on automatic email4

foldering that offers extensive accuracy results comparison between different classifiers.
In 2011, Carmona-Cejudo et al. [57] present an open framework for on-line email6

classification called GNUsmail. They use known software frameworks with implemented
algorithms to perform classification on several users from the dataset. In the same year,8

Carmona-Cejudo et al. [58] developed a study that compares different feature extraction
and selection techniques.10

Bermejo et al. [59] article propose a new method based on learning and sampling
probability distributions to improve the classification of a Naive Bayes Multinominal12

classifier.
Carmona-Cejudo et al. [60], published a study where they present ABC-DynF, an14

adaptive learning framework created to solve the email foldering high dimensionality and
dynamic nature problem.16

In 2015, Boryczka, Probierz and Kozak [61] published an article that uses an adaptive
ant colony decision forest to perform categorization of emails into folders, comparing18

the results with multiple ensemble methods and algorithms, achieving relatively higher
accuracy values.20

More recently, in 2016, Dehghani et al. [62] present ALECSA as an attentive learn-
ing approach for email foldering, displaying promising results when compared to older22

approaches, being able of achieving high efficiency when performing the categorization
task.24
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No different from main research areas, the email classification has several problems that
may not have a scientific answer and are mainly subjective. One of the research objectives14

is to integrate the resulting system with an email client, which means many different types
of people will be using the application. Email rookies will not have their mailboxes filled16

with emails, if any. Many different problems will arise from this.

3.1 General Problem18

Ever since the email service initial years, new purposes to it have been appearing. The
mail is used to exchange many types of information and this trade of emails is growing20

larger by the day. With higher data complexity and dimensionality, the classification
task will become harder and the current algorithms may not perform good enough when22

integrated with an email client that offer features that resort to artificial intelligence.
This dissertation will address the general problem of email classification and the24

challenges that arise from it, trying to fit an intelligent system with several classification
techniques available, to simulate a specific case study, the application under development26

by Mailcube .
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3.2 Specific Research Topics
Although there are many possible approaches on preprocessing text, this work focus some2

of those and tries to analyse different combination of techniques. To perform classification
many algorithms are available, making it difficult to test all of them. With that said,4

this study uses only three popular classifiers in the scientific community. Finally, to try
and boost the accomplished results one step further a voting ensemble is also tested and6

analysed.
With these plans in mind, this dissertation focus the following research topics and8

correspondent subtopics:

• Text preprocessing techniques:10

– Stopwords removal
– Tokenization12

– Stemming
– Text representation14

– Attribute selection

• Supervised classifiers:16

– Naive Bayes
– Support Vector Machine18

– Random Forest

• Voting Ensemble20

3.3 Email Classification Challenges
There are multiple problems related with the classification and treatment of email due22

to its dynamic, multi-topical and changing nature. An email contains many different
properties and it is a hard task to select the relevant ones, conversations topics may change24

along the way. In order to perform classification, it is expected that the user already
has some emails that may be used for training, those might not be enough for a proper26

classification output.

3.3.1 Email Properties Relevance28

As shown in section 2.1, the email comprises many different properties that one can consider.
The weight of each one is relevant for the grouping achieved with the algorithms used.30

Every mailbox is different which makes it difficult to choose and attribute weights prior to
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the algorithm’s execution, meaning a dynamic weighting approach must be followed. Such
method needs to take into account the properties available within the data and define the2

weight accordingly.

3.3.2 Email Conversations4

Another important aspect that needs attention is the email conversations. Threads topic
may drift along the communication interaction. Should the system group messages from6

the same conversation together? What if the topic drifts so much that the emails would fit
another group? This is a difficult problem to solve and a perfect solution may not exist.8

3.3.3 User Organization

Email users may already have emails organized in folders. The organization pattern they10

have for their mailbox might be really hard to discover with a classifier. This is a problem
that proves difficult to solve, if not impossible. Users with no organization at all, should12

not be considered.
One approach is to dynamically learn and adapt the model to try and find the best fit14

configuration along the mailbox evolution.

3.3.4 Classes Unbalance16

A user might have folders containing thousands of emails while other just have a few.
This may lead to a shadowing effect where classes with many instances end up being18

more accurately classified then classes with much less instances, sometimes leading to false
accuracy results.20

This particular problem results from the diversification and organization of the user
mailbox and relates to a well known problem with classification in general, which was22

presented by Japkowicz and Stephen in their study [63].
In 2012, Lemnaru et al. [64] extensively covers the imbalance issues and enumerates a24

group of best practices to attain the solution for this problem.

3.4 Solution Perspective26

Due to the nature of these problems, a supervised system will need to be implemented.
It will be constituted by a parser module that cleans and prepares the messages to be28

processed, a set of preprocessing techniques that help in extracting the most relevant
features from the email text content, evolving the extracted output when there are30
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changes to the mailbox emails, and a classification module that is capable of high accurate
predictions.2

Such system will enable learning with already classified user mail and be capable of
accurately predict the different possible classifications for new incoming email. It will also4

be able to adapt from user manual actions, by retraining the system model.

3.5 Validation Methodology6

In order to validate the outcome work of this dissertation, the proposed system will have
to successfully adapt to a very specific case study. The adapted system will be tested8

and the results compared with approaches from the scientific community with identical
configuration for the same problem.10
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This chapter presents the solution proposed by this dissertation project. The resulting12

system is presented starting with the conceptualization and architecture of the modular
design. Each module used is extensively covered and described, when possible with14

examples mentioning the input and output of the piece.
We also cover ways of integrating the system and how it can be updated to better cope16

with the application integrating it.

4.1 Proposed System18

The dissertation proposed solution consists in a system highly dynamic and volatile, easily
integrated with an external application. The system is capable of achieving high accuracies,20

even when dealing with high dimensional data.
The main objective of developing a simple system is to make it easier to integrate22

with external applications and to replace sections of it, with this said, there is a need
for the system to follow a simple modular architecture, expediting the integration and24

update process, making it able to support more then just the provided algorithms and
preprocessing techniques. The parsing and output modules may also be changed to meet26

the application requirements.
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4.2 System Architecture
The system architecture overview is illustrated by Figure 4.1, the design is distinguished2

by its modular separation. The entire system also works as a big module at the parent
application disposal.4

Figure 4.1: Architecture overview

Figure 4.2 exhibits the system high-level architecture to get a more expanded view
over each module interaction.6

Figure 4.2: High-level architecture

The system is fully replaced and some modules support multiple configurations. These
settings allow for the system to be adapted to the application using it, in order to obtain8

better performance results or to meet the application requirements.

4.2.1 Parser Module10

The parser module receives the raw emails input, cleaning and normalizing the data that
is needed into a single line of text.12

The date field gets a specific treatment to transform it into a more useful format.
The remaining fields are parsed by removing punctuation and other special characters14
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from the text, ".com" and ".net" are also removed since they do not add value to the
classification. Finally, all the words are converted to lowercase and spaced by one space2

character, consequentially merged into a single text line.
Table 4.1 displays some parsing examples. The "Contact" refers to fields with email4

addresses such as From or To.

Field Input Output
Date Date: Thu, 9 Nov 2000 10:44:00 -0800 (PST) thursday 9 november 2000

Contact From: david.delainey@enron.com david delainey enron
Other Guys, ENA 2001 expense budget "attached". guys ena 2001 expense budget attached

Table 4.1: Parsing example

The parsing significantly reduces the memory used to represent emails, speeding up6

the preprocessing process.

4.2.2 Preprocessing Module8

The preprocessing module receives the parser output as input and proceeds with the data
processing using multiple configurations available. Figure 4.3 illustrates the preprocessing10

module architecture overview.

Figure 4.3: Preprocessing module architecture

The module has three optional steps, which are the removal of stop words, stemming12

and attributes selection. The tokenization and representation steps are mandatory, since
the classification module algorithms need a specific structure in order to function properly.14

Stop Words Removal unit is responsible for removing words that are listed in a config-
uration file, subsection 2.2.3 provides a more extensive review on stop words removal.16

The unit iterates through all the words from each message content and removes
words that exist in the list of words. Normally the most used words in a certain18

linguistic are removed but specific words, not only common, may also be ignored by
adding them to the configuration file.20
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Stemming unit is responsible for transforming the words into stems, subsection 2.2.4
offers a detailed review on the stemming technique. For this system, only the Porter2

stemmer was considered, others stemmer should be added if multilingual support is
needed.4

Tokenization unit creates tokens with the data so far processed. The system supports
either a default word tokenizer 2.2.1 or n-gram 2.2.2. The delimiters should be6

configured before using.

Attributes Representation unit transforms each message content into a weighted vector8

of words. In the unit configuration is possible to select the amount of words used to
represent each message and/or to limit the number of words per class. TF and/or10

IDF may also be applied to the vector. A more complete understanding on feature
representation is offered by section 2.3.12

Attributes Selection unit filters the extracted features from the representation unit,
selecting the most relevant ones based on a scoring algorithm working with a search14

algorithm to perform the ranking 2.4.

4.2.3 Classification Module16

The classification module is responsible for the model training and for classifying unlabelled
instances. Figure 4.4 illustrates an overview of the classification module.18

Figure 4.4: Classification module overview

Although there exists two classification modules, single classifier and classifiers ensemble
module, the system may only use one, this means the user shall choose the fittest approach,20
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the decision should be held considering time-cost proficiency since in order to obtain better
accuracy results, time and memory may be sacrificed.2

Figure 4.5 clarifies the classification module providing a more detailed view over its
architecture.4

Figure 4.5: Classification module architecture

Single Classifier module takes care of the classification algorithm implementation and
execution, using data originated from the preprocessing process. For this dissertation,6

only a standard Naive Bayes [65], SVM (Table 4.2) and Random Forest [40] were
integrated. The module returns each instance classification distribution.8

Ensemble model uses a voting technique with the results of two classifiers and tries to
merge them in order to produce better results. Simply put, an instance is classified10

twice, one for each classifier, and the final classification is decided by means of a
voting function. Different combination rules are supported (Section 2.6.3).12

Implementation SMO [35] with improvements [36]
Calibrator Logistic Regression
Kernel Polynomial

Complexity 0,56

Table 4.2: SVM configuration

4.2.4 Output Module

The output module is the simpler one and its existence is justified by the need to have a14

way of customizing the application outputs, without interfering with the remainder system
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modules. The default is to return the final classification for each non classified message
you pass into the system.2

In some cases, a different output might be required. For instance, the module may be
configured to retrieve the three most likely classifications instead of just one.4

4.3 System Integration
The system being external to the application has only two endpoints of communication,6

one for input and another for output. This way we guarantee the system does not directly
interfere with the application performance.8

Figure 4.6: Integration overview

Input is expected to be an array containing the already classified messages from the user
and new emails to be classified. The mails may be represented as a string of text10

content and an extra field for the class.

Output is controlled by correspondent model 4.2.4 and may be configured to meet any12

imposed standard as long as it is possible to create such output with the data
provident from classification module.14

Taking into account performance issues, the system shall always run in background
and the application should not depend immediately on the classification output.16

On a last note, since the system supports different configurations of several modules it
should be tuned to further improve the outcome results.18
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4.4 Implementation Details
The system was implemented mainly in Java with a small resort to Python for the parser2

module. The programming languages choice is justified by the integration of WEKA
software [66], written in Java, and Python due to its huge text processing ability.4
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This chapter covers the entire Mailcube application case study. The cube concept is briefly
described to better understand how it fits to classification techniques. A simulation of the18

system integration with the application is adapted to take into account the case study
implications.20

During the simulation, several tests evaluate the proposed system performance. The
Enron Corpus is adapted to serve as the entry dataset. Results were analysed and22

compared along all the simulation phases and with other approaches found in the scientific
community.24

It is expectable for the system to adjust properly to the case study at hand, performing
with high accuracy and precision.26

5.1 Introduction
Mailcube is an email client that created a concept of cube to bundle messages, contacts,28

and other typical email entities you find in most mail clients. In the context of this work,
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a cube can be seen as a message storage unit that tries to separate the concept of mailbox
from the folder. A cube named Science may contain messages relative to the science topic2

but these messages may be in any mailbox like the inbox, outbox, sent, spam, archive,
trash or drafts. On the contrary of the folders, the cubes do not support sub-cubes, this4

brings implications to the simulation.
The cube also supports following specific contacts or conversations. If a cube is following6

a certain contact, at the arrival of new emails that have the contact in question, the
messages are automatically redirected to the cube. This feature requires no classification8

and it was not attained during this case study. The incoming emails that already have
a cube by means of this feature, should be used to retrain the model in order to better10

perform the classification of other mail.

5.2 Case Study Simulation12

The main objective of the simulation is to see if the system can be adapted to the
application and still perform accurately and with the enough precision not to become14

frustrating towards the user. Due to Mailcube application concepts, several steps were
accomplished in order to meet the case study restrictions as best as possible.16

The simulation serves to test multiple configurations that might increase the system
output. Therefore multiple classifiers and preprocessing techniques were simulated.18

Mailcube also wishes to be able to enable the user with multiple possible choices for
the message classification, this means the system output module was adapted, in order to20

return the number of choices given, instead of a final classification.

5.2.1 Technical Specifications22

The simulation tests were executed in a Macbook Pro running OS X El Capitan with the
specifications listed in Table 5.1.24

Disk 512GB SSD
RAM 16GB (used 8GB)
CPU 2,5GHz Intel Core i7

Table 5.1: Machine technical specifications

5.2.2 Implementation Design

Since the simulation uses the Enron Corpus dataset, some pre-treatment is necessary in26

order to not induce in false results.
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Figure 5.1: Enron email example (from beck-s user)

First, all the dataset emails contain the x-folder field that needs to be removed because
it already has the folders name on it.2

Concerning the cube concept, it is necessary to flatten the users subfolders, since
hierarchy is not supported by the application, and also to remove folders that represent4

mailboxes or of non-topical characteristics, for this the following folders were removed:
all_documents, calendar, contacts, deleted_items, discussion_threads, inbox, notes_inbox,6

sent, sent_items, _sent_mail and outbox.
Since fewer than three messages do not represent a decent sample to train, all the8

folders with less than three emails were not considered in the simulation.

5.2.3 Simulation Structure10

In order to analyse several different configurations, the simulation is divided into five
phases, figure 5.2 illustrates the simulation flow.12
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Figure 5.2: Simulation structure

Phase 1 serves as a base to decide each user best pre-processing configuration and
algorithms to use in the following phases. A set of eight different configurations was2

tested for three algorithms.

Phase 2 uses the Phase 1 best configuration achieved, for each user, and tests the voting4

module to verify if ensemble classifiers increases the performance.

Phase 3 uses the same setup as Phase 2 but the dataset is restricted to include only6

classes with a more significant amount of messages, at least twenty.

Phase 4 also uses Phase 2 setup but the system evaluates its accuracy when it outputs8

three possible classifications for each message.

Phase 5 uses Phase 3 restricted configuration setup to test the three choices output,10

like in Phase 4.

Phase 6 uses Phase 5 setup but it incrementally trains the classification model as12

messages are classified, giving the most realistic implementation scenario for the
system integration with Mailcube.14

The parsing module, described in 4.2.1, takes care of the message parsing and the
possible preprocessing configurations are enumerated in table 5.2.16

Code Configuration
WordVector0 50 words per class, stopwords removal, word tokenizer
WordVector1 TF-IDF, 50 word per class, stopwords removal, word tokenizer
WordVector2 50 words per class, Porter stemming, stopwords removal, word tokenizer
WordVector3 TF-IDF, 50 words per class, Porter stemming, stopwords removal, word tokenizer

AttributeSelection Information gain using Ranker with 0 threshold

Table 5.2: Preprocessing configurations
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5.3 Phase 1
The first phase of the simulation takes advantage of the single classifier module to discover2

the configuration and algorithm that gives the best classification results, for each user.
The testing datasets from the seven users to be used in this phase are listed in Table4

5.3.

User Emails Number Classes (Folders)
beck-s 1971 101

farmer-d 3672 25
kaminski-v 4477 41
kitchen-l 4015 47
lokay-m 2493 11
sanders-r 1188 30

williams-w3 2769 18

Table 5.3: Dataset 1 (Section A.1)

Table 5.4 displays the different configurations of preprocessing techniques used.6

Code Configuration
Config. 0 WordVector0
Config. 1 WordVector1
Config. 2 WordVector2
Config. 3 WordVector3
Config. 4 WordVector0 + AttributeSelection
Config. 5 WordVector1 + AttributeSelection
Config. 6 WordVector2 + AttributeSelection
Config. 7 WordVector3 + AttributeSelection

Table 5.4: Phase 1 preprocessing configuration (using Table 5.2)

For each one of the seven users listed in Table 5.3, the test structured is clarified in
Table 5.5.8
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Number Runs Method Preprocessing Config. Classifier

5 10-folds cross validation

Config. 0
Naive Bayes

SVM
Random Forest

Config. 1
Naive Bayes

SVM
Random Forest

Config. 2
Naive Bayes

SVM
Random Forest

Config. 3
Naive Bayes

SVM
Random Forest

Config. 4
Naive Bayes

SVM
Random Forest

Config. 5
Naive Bayes

SVM
Random Forest

Config. 6
Naive Bayes

SVM
Random Forest

Config. 7
Naive Bayes

SVM
Random Forest

Table 5.5: Phase 1 structure

After performing the tests for each user, Table 5.6 presents the accuracy, standard
deviation, maximum and minimum value achieved. The cells follow a value (classifier -2

configurations) format, presenting only the best values. The complete set of results are
listed in Appendix B.4

User Accuracy Std. Deviation Max Min

beck-s
61,461 (Naive Bayes - 0, 1) 2,880 (Naive Bayes - 4, 5) 71,066 (Naive Bayes - 0, 1) 48,731 (Naive Bayes - 0, 1, 2, 3)
67,458 (SVM - 0, 1) 2,759 (SVM - 6, 7) 73,604 (SVM - 0, 1) 56,853 (SVM - 0, 1)

61,370 (Random Forest - 1) 2,761 (Random Forest - 5) 67,005 (Random Forest - 0) 56,853 (Random Forest - 0, 1)

farmer-d
73,203 (Naive Bayes - 2, 3) 1,856 (Naive Bayes - 6, 7) 76,839 (Naive Bayes - 0, 1) 67,935 (Naive Bayes - 0, 1)
81,471 (SVM - 2, 3) 1,638 (SVM - 6, 7) 86,376 (SVM - 0, 1) 78,261 (SVM - 6, 7)

81,035 (Random Forest - 4) 1,506 (Random Forest - 0) 85,831 (Random Forest - 4) 77,929 (Random Forest - 0, 4, 5)

kaminski-v
60,607 (Naive Bayes - 0, 1) 2,311 (Naive Bayes - 0, 1) 65,548 (Naive Bayes - 0, 1) 55,357 (Naive Bayes - 0, 1)

67,555 (SVM - 0, 1) 2,061 (SVM - 2, 3) 73,602 (SVM - 0, 1) 63,170 (SVM - 0, 1)
67,867 (Random Forest - 0) 2,015 (Random Forest - 6) 74,330 (Random Forest - 0, 1) 63,393 (Random Forest - 0)

kitchen-l
57,694 (Naive Bayes - 0, 1) 2,025 (Naive Bayes - 2, 3) 62,687 (Naive Bayes - 0, 1) 52,985 (Naive Bayes - 4, 5)
63,153 (SVM - 0, 1) 1,734 (SVM - 4, 5) 68,579 (SVM - 0, 1) 59,204 (SVM - 0, 1)

62,775 (Random Forest - 5) 1,775 (Random Forest - 5) 67,662 (Random Forest - 4) 59,204 (Random Forest - 4, 5)

lokay-m
76,214 (Naive Bayes - 0, 1) 2,097 (Naive Bayes - 2, 3) 82,329 (Naive Bayes - 0, 1) 70,400 (Naive Bayes - 4, 5)

85,118 (SVM - 4, 5) 1,755 (SVM - 6, 7) 89,960 (SVM - 4, 5) 79,920 (SVM - 0, 1)
86,161 (Random Forest - 4) 1,561 (Random Forest - 1) 90,361 (Random Forest - 4, 5) 82,329 (Random Forest - 1, 4)

sanders-r
78,756 (Naive Bayes - 0, 1) 3,758 (Naive Bayes - 4, 5) 88,136 (Naive Bayes - 0, 1) 71,186 (Naive Bayes - 0, 1)
85,270 (SVM - 4, 5) 3,033 (SVM - 0, 1) 93,277 (SVM - 4, 5) 78,151 (SVM - 0, 1, 2, 3, 4, 5)

85,018 (Random Forest - 4, 5) 2,669 (Random Forest - 1) 90,756 (Random Forest - 5) 75,630 (Random Forest - 5)

williams-w3
91,592 (Naive Bayes - 2, 3) 1,457 (Naive Bayes - 2, 3) 94,585 (Naive Bayes - 2, 3, 6, 7) 88,043 (Naive Bayes - 2, 3)
96,735 (SVM - 6, 7) 0,925 (SVM - 0, 1) 98,556 (SVM - 2, 3) 94,585 (SVM - all)

95,847 (Random Forest - 4) 0,907 (Random Forest - 3) 97,834 (Random Forest - 1, 2, 5, 6, 7) 93,502 (Random Forest - 6)

Table 5.6: Phase 1 results

We can see from the results that SVM and Random Forest classifiers stand out from
Naive Bayes, clearly obtaining better results. From all the multiple configurations possible6
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there is not a best one that fits every user, this is the reason a tune is need to better cope
with the dataset being used.2

Class Naive Bayes SVM Random Forest
bill 0,176 0,412 0,176

bill_williams_iii 0,841 0,973 0,983
california_messages 0,875 0,875 0,500

el_paso 0,833 0,917 0,667
enron_messages 0,000 0,250 0,000

gwolfe 0,250 0,250 0,000
hr 0,919 0,919 0,849

human_resources 0,978 1,000 1,000
operations_committee_isas 1,000 0,737 0,632

personal 0,875 0,875 0,875
preschedule 0,800 0,733 0,200
rt_cuts 0,250 0,250 0,000
rt_strat 0,667 0,722 0,444

schedule_crawler 0,995 0,999 0,999
settlements 0,167 0,167 0,000
symesees 0,827 0,901 0,827

tie_meter_multipliers 1,000 0,667 0,667
timbelden 0,727 0,727 02545

Table 5.7: Phase 2 williams-w3 classes true positive rate

Table 5.7 gives the detailed true positive rate per class from one cross validation. It
is possible to see that, despite of the high accuracy achieved with the Random Forest4

for the williams-w3 user, some folders were completely missed (enron_messages, gwolfe,
rt_cuts and settlements). This is mainly due to the algorithms nature, being a decision6

tree instead of constructing a hyperplane like SVM does, and also the unbalance present
in the williams-w3 classes with some having just a few instances while others have more8

then a thousand, experiencing the shadowing problem covered in 3.3.4.

5.4 Phase 210

Phase 2 uses the initial phase dataset 5.3 and focus on using the best configuration from
each user and the two more accurate classifiers, provided from the results 5.6. With this in12

mind, this phase uses an ensemble through voting using the minimum probability from the
SVM and Random Forest algorithms classification. Table 5.8 displays the test structure14

that is followed.
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User Number Runs Method Configuration Classifier
beck-s

5 10-folds cross validation

Config. 1

Voting (SVM:Random Forest)

farmer-d Config. 3
kaminski-v Config. 1
kitchen-l Config. 1
lokay-m Config. 5
sanders-r Config. 5

williams-w3 Config. 7

Table 5.8: Phase 2 structure

Table 5.9 displays the phase 2 test results. Only the accuracy results are being displayed,
the complete set is listed in Section C.1.2

User Accuracy Std. Deviation Max Min
beck-s 67,316 2,882 73,604 56,853

farmer-d 82,320 1,729 86,376 78,747
kaminski-v 68,439 2,073 73,826 64,063
kitchen-l 63,831 1,917 68,657 59,453
lokay-m 87,012 1,839 90,763 83,936
sanders-r 86,146 3,123 93,277 78,151

williams-w3 96,822 0,964 98,195 94,585

Table 5.9: Phase 2 results

With the exception of beck-s user, that experienced a decrease, the remainder users
had a small accuracy increase of around one percent 5.10. This happens because the two4

algorithms do not compensate each other much, since they obtain similar results. This
means that when one misses, the other is also likely to miss, compensating only when6

one of them has the correct answer. If time restriction is not a problem, the ensemble by
voting should be used, since this 1% increase might translate to a significant amount of8

instances being correctly categorized.

User Phase 1 Phase 2 Phase 2 - Phase 1
beck-s 67,458 67,316 -0,142

farmer-d 81,471 82,320 0,849
kaminski-v 67,867 68,439 0,572
kitchen-l 63,153 63,831 0,678
lokay-m 86,161 87,012 0,851
sanders-r 85,270 86,146 0,876

williams-w3 96,735 96,822 0,087

Table 5.10: Accuracy comparison between phase 1 and 2
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5.5 Phase 3
Phase 3 follows phase 2 setup but uses a restricted dataset 5.11. The purpose is to see if2

there exists a significant increase when each class has, at least twenty messages.

User Emails Number Classes (Folders)
beck-s 1379 30

farmer-d 3560 15
kaminski-v 4347 27
kitchen-l 3852 31
lokay-m 2471 9
sanders-r 1097 17

williams-w3 2632 5

Table 5.11: Dataset 2 (Section A.2)

Using the voting configuration from phase 2 and the restricted dataset, the results are4

enumerated at Table 5.12. The complete set of results is presented in Section C.2.

User Accuracy Std. Deviation Max Min
beck-s 79,797 3,277 86,232 71,739

farmer-d 83,433 1,727 86,517 78,090
kaminski-v 69,648 1,748 74,194 65,438
kitchen-l 65,208 1,930 70,909 61,818
lokay-m 87,212 1,613 90,688 83,401
sanders-r 87,384 3,158 93,636 80

williams-w3 98,936 0,662 100 96,958

Table 5.12: Phase 3 results

As we can see from the comparison results in Table 5.13, there has been a significant6

increase in the accuracy of beck-s (12%), probably because of the huge reduce in dimen-
sionality, from 101 to 30 classes. The user williams-w3 experience a maximum of 100%8

meaning at least once, every instance was successfully classified. Overall, the accuracy
was increased between 0,2% and 12%, for each user. This increase is small for the users10

data that has not suffered a dramatic change of dimensionality and size.



40 mailcube application: case study

User Phase 2 Phase 3 Phase 3 - Phase 2
beck-s 67,316 79,797 12,481

farmer-d 82,320 83,433 1,113
kaminski-v 68,439 69,648 1,209
kitchen-l 63,831 65,208 1,377
lokay-m 87,012 87,212 0,200
sanders-r 86,146 87,384 1,238

williams-w3 96,822 98,936 2,114

Table 5.13: Accuracy comparison between phase 2 and 3

5.6 Phase 4
Phase 4 follows the configuration and setup of phase 2, but allows the algorithm to answer2

three possible classifications for each instance, the ones with higher probability. The
structure, present in Table 5.8, was changed for this test using a data split method after4

randomizing the data, resulting in the structure displayed by Table 5.14.

User Number Runs Method Configuration Classifier
beck-s

100 66% split

Config. 1

Voting - 3 Best Classifications

farmer-d Config. 3
kaminski-v Config. 1
kitchen-l Config. 1
lokay-m Config. 5
sanders-r Config. 5

williams-w3 Config. 7

Table 5.14: Phase 4 structure

The results are displayed at Table 5.15 with the exception of the measured accuracy6

standard deviation.

User Accuracy Max Min
beck-s 79,507 83,283 76,418

farmer-d 96,014 96,955 94,631
kaminski-v 84,959 87,385 83,114
kitchen-l 85,151 87,839 82,417
lokay-m 96,721 97,995 95,165
sanders-r 93,978 96,535 91,337

williams-w3 99,012 99,681 97,981

Table 5.15: Phase 4 results

Table 5.16 shows the results comparison between phase 2 and 4. Verifiying that when8

the classifier gives three possible correct classifications (the three possibilities with the
higher value), the accuracy was significantly increased for all users, detaining a correct10
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classification percentage above 79%. Although williams-w3 did not experience a full
correct classification, the average accuracy achieved was still higher.2

User Phase 2 Phase 4 Phase 4 - Phase 2
beck-s 67,316 79,507 12,191

farmer-d 82,320 96,014 13,694
kaminski-v 68,439 84,959 16,520
kitchen-l 63,831 85,151 21,320
lokay-m 87,012 96,721 9,709
sanders-r 86,146 93,978 7,832

williams-w3 96,822 99,012 2,190

Table 5.16: Accuracy comparison between phase 2 and 4

5.7 Phase 5
Phase 5 serves as a complementary study for phase 3 and 4. This test follows phase4

4 structure (Table 5.14) using the restricted dataset (Table 5.11) to validate a possible
increase in accuracy, due to the three choices output and the data morphological change.6

Table 5.17 shows the experiment results.

User Accuracy Max Min
beck-s 91,842 95,096 88,699

farmer-d 97,375 98,430 96,446
kaminski-v 86,158 88,701 83,424
kitchen-l 86,658 88,855 84,885
lokay-m 96,855 98,095 95,595
sanders-r 95,903 98,391 91,957

williams-w3 99,931 100 99,665

Table 5.17: Phase 5 results

As expected (Table 5.18) there was a small increase in almost every user accuracy,8

with beck-s experiencing the most accentuated positive change. The williams-w3 average
accuracy went up almost 1% and the difference between the observed maximum and10

minimum value, was drastically reduced to 0,3%.
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User Phase 4 Phase 5 Phase 5 - Phase 4
beck-s 79,507 91,842 12,335

farmer-d 96,014 97,375 1,361
kaminski-v 84,959 86,158 1,199
kitchen-l 85,151 86,658 1,507
lokay-m 96,721 96,855 0,134
sanders-r 93,978 95,903 1,925

williams-w3 99,012 99,931 0,919

Table 5.18: Accuracy comparison between phase 4 and 5

All the results are now above the 86%. This means that if the system is integrated
with an application, it can suggest three correct classifications for each unclassified email,2

using folders with at least twenty messages, with a high rate of correct classifications.

5.8 Phase 64

The final phase is the best approximation to an integration of the system with an external
application. The phase configuration is identical to phase 5 with the particularity of6

performing a continuous update on the entire classification model after classifying one
instance, simulating a real situation of incoming email.8

Table 5.19 enumerates the experience results. Phase 5 structure was followed, using
the test split instances to incrementally train and classify the classification model.10

User Accuracy Max Min
beck-s 93,639 94,456 93,177

farmer-d 97,563 98,347 96,287
kitchen-l 87,568 88,701 85,927
kaminski-v 87,412 88,473 86,565
lokay-m 97,327 97,759 96,905
sanders-r 96,458 96,783 96,247

williams-w3 99,799 100 99,464

Table 5.19: Phase 6 results

Table 5.20 comprises the results comparison for the two phases. It was possible to
verify that, continuously updating the model has a small increase in the performance, with12

the exception of williams-w3.
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User Phase 5 Phase 6 Phase 6 - Phase 5
beck-s 91,842 93,639 1,797

farmer-d 97,375 97,563 0,188
kaminski-v 86,158 87,568 1,410
kitchen-l 86,658 87,412 0,754
lokay-m 96,855 97,327 0,472
sanders-r 95,903 96,458 0,555

williams-w3 99,931 99,799 -0,132

Table 5.20: Accuracy comparison between phase 5 and 6

This phase validates the system reliability when working with a real application. Having
a feature capable of providing three possible classifications, even with the class quota2

restrictions, can be of great value to the end user. This means, the application being
evaluated in this case study could benefit greatly from the proposed system.4

5.9 Results Comparison
The results obtained in this simulation using the proposed system were compared with6

other approaches that have an identical configuration. Since the results obtained in phase
3, 4, 5 and 6 have too many restrictions to meet the case study evaluation, no identical8

configuration was found. Although, for phases 1 and 2, there are many approaches that
can be used as an accuracy validation, but only phase 2 results were compared since they10

show an higher accuracy.
Table 5.21 shows an accuracy comparison between the proposed system and other12

approaches best results, for the dataset configuration presented in Table 5.3.

Approach beck-s farmer-d kaminski-v kitchen-l lokay-m sanders-r williams-w3
Beckerman et al. [56] 56,4 77,5 57,4 59,1 83,6 73,0 94,6

GNUsmail [57] - 76,4 66,6 - 78,8 73,5 95,5
Bermejo et al. [59] 50,6 70,3 56,7 46,5 73,2 75,9 89,0
ABC-DynF [60] 49,5 61,1 65,8 59,9 87,5 76,3 88,3

Boryczka et al. [61] 51,7 77,5 65,7 58,3 84,6 75,9 94,4
Alecsa [62] 63,8 70,8 63,1 58,3 91,6 74,3 96,8

Proposed approach 5.8 5.9 67,3 82,3 68,4 63,8 87,0 86,1 96,8

Table 5.21: Accuracy comparison between approaches

From the comparison is very clear that this work approach gets higher accuracies, with14

the exception of the lokay-m user, where Dehghani et al. Alecsa [62] managed to obtain
an higher value then the rest remainder of the approaches, with a value above 90%. This16

may be duo to the dynamic concept behind the framework leading to a raise in values for
that specific distribution (the lokay-m user mailbox).18
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In the remainder distributions, the resulting system surpassed the other approaches
with a difference ranging from 2% to 10%. The williams-w3 user is difficult to improve2

any further since the results are already near the maximum value and mainly thanks to
the unbalanced nature of the dataset class distribution.4
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There is much research work in the area and many ways of classifying emails into folders.
Most of the study techniques focus on text retrieval and obtaining knowledge from the12

email text attributes, which shows that a lot of work is still to be accomplished in this area.
There is a wide space of improvement for approaches who consider email attachments and14

contacts network of connections.
The main effort for companies like Google or Microsoft is in the spam-detection16

methodologies, although a system that can organize mailboxes and adapt accordingly to
user interaction and information arrival, may be of great interest since it will save the users18

precious time, therefore improving the productivity and communication that represent
areas of focus for these companies.20

6.1 Main Results
This dissertation work provides the conceptualization of a classification system, capable22

of adapting to an external application without the necessity of great modifications. The
system allows to configure the preprocessing and classification techniques used, allowing it24

to be optimized towards the dataset being classified. The ability to achieve high accuracy
derivates from the methods used, presenting a classification ensemble that proved to be26

effective in improving the overall performance.
Besides validating the classification capability, it was possible to test different use28

case scenarios for the system, validating the possibility of integrating it into an existing
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application, in this case being the Mailcube case study, furthermore analysing how the
integration could be done, in order to obtain valuable performance for the end user.2

6.2 Future Work
There are many different directions one can take to further extend the work presented in4

this dissertation. Although it seems the text classification is reaching a limit in the email
categorization problem, there is still many topics that need more research. If it is indeed6

reaching its limit, new ways of classifying email need more focus, such as network analysis
and other approaches.8

The scientific community is also in need for an up-to-date email dataset, with a more
complete message content, containing attachments, html and others. This way, new10

patterns to approach this problem can be studied.
The next sections provide a more extensive explanation on the future work that may12

be accomplished in this area.

6.2.1 Preprocessing Techniques and Classifiers14

The proposed system was analysed with eight different preprocessing configurations and
only three most well know classifiers, which led to good results, but there is almost an16

infinite number of possible combinations and algorithms available, making it very hard to
test every single one of them or making a meta-algorithm learn them all. With this in18

mind, some techniques are very similar and only aim at improving certain parts of the
classification.This leaves space to conduct a study that aggregates similar approaches,20

selecting only the most efficient, and comparing them with not so similar ones, or even try
to combine them.22

6.2.2 Model Update

The adaptability of a system to changes in the data size and dimension is fundamental for24

any real case scenario. Dividing and classifying a static dataset produces results that may
not be verified along the system usage, as the user mailbox keeps getting bigger.26

All the literature work reviewed in this dissertation, does not take into account the
classification model evolution during its integration with an application. Section 5.8 study28

aims at reproducing an approximation to what would be a real integration with an external
application, updating the model every time it classifies a message, but such heavy approach30

might not be necessary.
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This calls for a more extensive analysis on how one can update the model. Should
it be updated every time a new message arrives, or should it work in a batch way, only2

updating when a certain number of messages are classified? Is it worthy to continuously
update it? If a new message arrives and is classified as belonging to the class with the4

highest number of messages, rebuild the model might not be necessary, since it already
has a decent amount of training data.6

6.2.3 Non-text Attributes

In the conducted study, only the messages text content was considered to perform the8

classification. Although very good accuracy results were achieved, there is still space for
improving. Is very likely that the classification of email through their text content may10

not evolve any further but one may take more patterns into account. For instance, email
messages with the same categorization share more then just similar test, they usually have12

a network of contacts that can be extracted and used as an attribute in the classification
process.14

Future work could take advantage of this system text classification and merge it with
a classifier that treats non-text features, where ensembling methods could be use.16

6.2.4 Meta Parametrization

The results achieved from the simulation helped concluding that the dynamics of a user18

mailbox directly affects the output of a classification system and there is no good-for-all
approach that gives the best possible results. With this in mind, although the system is20

capable of supporting different configurations, it is still depending on a manual tuning to
reach optimized results.22

Using meta programming to dynamically tweak the preprocessing methods used, would
make the system less dependent on manual configuration, increasing its volatility and24

adaptability to different environments.
The classification module may also take advantage of such automated learning, changing26

the different parameters of the classifiers, with the intent of maximizing the entire system
classification.28

The system modular architecture makes it easier to integrate a meta programming
module that can automatically tune the system, by exchanging information with the30

configurable modules (preprocessing and classification module). Figure 6.1 illustrates an
overview on the integration of such module with the proposed system.32
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Figure 6.1: Meta programming module integration overview

To perform this meta parametrization the scientific community tends to use bio inspired
algorithms, such as genetic algorithms and ant colony optimization approaches that create2

populations. Basically, each population is a different possible configuration that is tested
to find the best parameters.4

6.2.5 Data Considerations

The Enron Corpus did not have any attachments that could be used in the classification.6

If the attachment contains text, it is easily adapted to fit the proposed system. What if
the attachment is a picture? There are already a lot of graphic mining techniques that8

extract features from images.
The case study did not require taking into account folders hierarchy, since Mailcube10

cubes do not support it. Flatten the subfolders results in a higher accuracy error, since
folders inside folders tend to have the same overall topic. A possible research approach12

is to create a classifier that initial checks if a given message is inside a parent folder and
afterwards performs classification using only the sub-folders categories, continuing iterating14

until the hierarchical tree can not be more expandable.

6.3 System Integration with Mailcube16

One of the main goals of this dissertation project was to validate the system integration
with an email client. This validation was successful, remaining to be accomplished the18

proposed system integration with the application. In order to do that one needs to export
the system in a library format — since there is only the need for the app to call the system20

— and properly merge it with the desktop client implementation.
The Mailcube application is written in Objective-C, one of the two native languages of22

macOS, which might prove difficult to integrate with a Java library, this means the system
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will likely have to be adapted and re-written in C++, Objective-C or Swift using other
machine learning libraries available. Since those languages are supported by the operating2

system, using them will fully enable the integration.



50 conclusions



Nomenclature

API Acronym for Application Programming Interface.2

ARPANET Acronym for Advanced Research Projects Agency Network.

ASCII Acronym for American Standard Code for Information Interchange.4

BoW Acronym for Bag of Words.

EGM Acronym for Email Grouping Method.6

HTML Acronym for HyperText Markup Language.

MIME Acronym for Multipurpose Internet Mail Extensions.8

ML Acronym for Machine Learning.

OS Acronym for Operating System.10

RFC Acronym for Request for Comments.

SMO Acronym for Sequential Minimal Optimization.12

SVM Acronym for Support Vector Machines.

TF-IDF Acronym for Term Frequency-Inverse Document Frequency.14

TREC Acronym for Text Retrieval Corpus.

VOIP Acronym for Voice Over Internet Protocol.16

VSM Acronym for Vector Space Model.

WEKA Acronym for Waikato Environment for Knowledge Analysiss.18
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Appendix A

Enron Datasets Distribution2

The present appendix enumerates the two datasets distributions used in this dissertation
work. Both sets contain the mailboxes of seven Enron Corpus users. Dataset 1 A.1 only4

considers folders with at least three messages, while dataset 2 A.2 needs, at least twenty.

A.1 Dataset 16

User Emails Number Folders Number
beck-s 1971 101

farmer-d 3672 25
kaminski-v 4477 41
kitchen-l 4015 47
lokay-m 2493 11
sanders-r 1188 30

williams-w3 2769 18

Table A.1: Dataset 1 distribution

Figure A.1: beck-s class distribution



60 enron datasets distribution

Figure A.2: farmer-d class distribution Figure A.3: kaminski-v class distribution

Figure A.4: kitchen-l class distribution Figure A.5: lokay-m class distribution

Figure A.6: sanders-r class distribution Figure A.7: williams-w3 class distribution



dataset 2 61

A.2 Dataset 2

User Emails Number Folders Number
beck-s 1379 30

farmer-d 3560 15
kaminski-v 4347 27
kitchen-l 3852 31
lokay-m 2471 9
sanders-r 1097 17

williams-w3 2632 5

Table A.2: Dataset 2 distribution

Figure A.8: beck-s class distribution

Figure A.9: farmer-d class distribution Figure A.10: kaminski-v class distribution



62 enron datasets distribution

Figure A.11: kitchen-l class distribution Figure A.12: lokay-m class distribution

Figure A.13: sanders-r class distribution Figure A.14: williams-w3 class distribu-
tion



Appendix B

Phase 1 Results2

Phase 1 uses the Dataset 1 (Section A.1) with the following configuration:

Number Runs Method Preprocessing Config. Classifier

5 10-folds cross validation

Config. 0
Naive Bayes

SVM
Random Forest

Config. 1
Naive Bayes

SVM
Random Forest

Config. 2
Naive Bayes

SVM
Random Forest

Config. 3
Naive Bayes

SVM
Random Forest

Config. 4
Naive Bayes

SVM
Random Forest

Config. 5
Naive Bayes

SVM
Random Forest

Config. 6
Naive Bayes

SVM
Random Forest

Config. 7
Naive Bayes

SVM
Random Forest

Table B.1: Phase 1 structure
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Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 61,461 3,245 71,066 48,731 67,458 2,869 73,604 56,853 61,258 2,954 67,005 53,299
Config. 1 61,461 3,245 71,066 48,731 67,458 2,869 73,604 56,853 61,370 2,873 66,497 51,269
Config. 2 61,177 3,182 68,528 48,731 66,585 2,899 73,096 56,345 58,569 2,803 62,944 48,223
Config. 3 61,177 3,182 68,528 48,731 66,585 2,899 73,096 56,345 58,772 2,909 64,975 48,731
Config. 4 51,720 2,880 57,868 45,685 56,266 2,807 61,421 48,731 56,012 2,866 62,944 46,701
Config. 5 51,720 2,880 57,868 45,685 56,266 2,807 61,421 48,731 55,992 2,761 62,437 48,223
Config. 6 51,618 3,031 58,883 41,624 55,495 2,759 62,437 50,254 55,769 2,798 62,944 49,239
Config. 7 51,618 3,031 58,883 41,624 55,495 2,759 62,437 50,254 55,961 2,886 62,437 49,239

Table B.2: Results for beck-s

Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,604 0,615 0,990 0,625 0,665 0,675 0,991 0,659 0,599 0,613 0,985 0,584
Config. 1 0,604 0,615 0,990 0,625 0,665 0,675 0,991 0,659 0,600 0,614 0,985 0,585
Config. 2 0,601 0,612 0,989 0,613 0,656 0,666 0,990 0,645 0,570 0,586 0,982 0,558
Config. 3 0,601 0,612 0,989 0,613 0,656 0,666 0,990 0,645 0,572 0,588 0,982 0,557
Config. 4 0,505 0,517 0,991 0,547 0,550 0,563 0,989 0,537 0,547 0,560 0,989 0,545
Config. 5 0,505 0,517 0,991 0,547 0,550 0,563 0,989 0,537 0,547 0,560 0,989 0,543
Config. 6 0,504 0,516 0,991 0,546 0,542 0,555 0,989 0,531 0,545 0,558 0,989 0,544
Config. 7 0,504 0,516 0,991 0,546 0,542 0,555 0,989 0,531 0,547 0,560 0,990 0,545

Table B.3: Statistics for beck-s (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,825 9,379 12,215 1,108 36,719 0,083
Config. 1 0,943 10,702 12,184 1,098 22,329 0,059
Config. 2 0,652 7,458 12,149 1,147 18,342 0,052
Config. 3 0,659 7,496 12,454 1,137 18,404 0,052
Config. 4 0,022 0,455 9,833 0,085 4,640 0,034
Config. 5 0,022 0,452 9,822 0,085 4,653 0,034
Config. 6 0,020 0,412 9,782 0,080 4,424 0,034
Config. 7 0,020 0,410 9,789 0,080 4,459 0,034

Table B.4: Performance for beck-s (s - seconds)

Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 73,160 2,056 76,839 67,935 81,209 1,741 86,376 77,929 80,675 1,506 84,469 77,929
Config. 1 73,160 2,056 76,839 67,935 81,209 1,741 86,376 77,929 80,735 1,795 85,831 76,839
Config. 2 73,203 2,001 76,567 67,302 81,471 1,676 85,559 78,202 80,610 1,785 84,741 77,657
Config. 3 73,203 2,001 76,567 67,302 81,471 1,676 85,559 78,202 80,305 1,855 85,014 76,022
Config. 4 72,441 2,000 76,022 67,575 81,356 1,728 85,286 77,929 81,035 1,564 85,286 77,929
Config. 5 72,441 2,000 76,022 67,575 81,356 1,728 85,286 77,929 80,975 1,648 85,014 77,929
Config. 6 72,500 1,856 76,567 67,030 81,395 1,638 86,104 78,261 80,768 1,788 84,741 77,112
Config. 7 72,500 1,856 76,567 67,030 81,395 1,638 86,104 78,261 80,550 1,897 84,741 76,839

Table B.5: Results for farmer-d
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Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,687 0,732 0,960 0,767 0,775 0,812 0,961 0,810 0,763 0,807 0,942 0,800
Config. 1 0,687 0,732 0,960 0,767 0,775 0,812 0,961 0,810 0,764 0,807 0,943 0,802
Config. 2 0,687 0,732 0,960 0,766 0,778 0,815 0,960 0,812 0,762 0,806 0,940 0,799
Config. 3 0,687 0,732 0,960 0,766 0,778 0,815 0,960 0,812 0,758 0,803 0,939 0,797
Config. 4 0,679 0,724 0,960 0,763 0,777 0,814 0,960 0,812 0,768 0,810 0,946 0,803
Config. 5 0,679 0,724 0,960 0,763 0,777 0,814 0,960 0,812 0,768 0,810 0,946 0,803
Config. 6 0,679 0,725 0,960 0,762 0,777 0,814 0,961 0,811 0,764 0,808 0,942 0,800
Config. 7 0,679 0,725 0,960 0,762 0,777 0,814 0,961 0,811 0,761 0,806 0,941 0,798

Table B.6: Statistics for farmer-d (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,419 1,412 3,022 0,066 0,534 0,064
Config. 1 0,416 1,415 3,036 0,067 0,470 0,063
Config. 2 0,390 1,282 3,265 0,071 ,857 0,062
Config. 3 0,393 1,288 3,275 0,071 ,867 0,062
Config. 4 0,310 1,071 2,760 0,057 ,231 0,060
Config. 5 0,310 1,069 2,758 0,057 ,198 0,060
Config. 6 0,316 1,046 3,067 0,062 ,862 0,059
Config. 7 0,310 1,034 3,060 0,062 ,786 0,059

Table B.7: Performance for farmer-d (s - seconds)

Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 60,607 2,311 65,548 55,357 67,555 2,462 73,602 63,170 67,867 2,425 74,330 63,393
Config. 1 60,607 2,311 65,548 55,357 67,555 2,462 73,602 63,170 67,621 2,562 74,330 62,500
Config. 2 58,642 2,406 64,509 54,241 67,273 2,061 72,321 61,607 67,068 2,351 71,429 62,723
Config. 3 58,642 2,406 64,509 54,241 67,273 2,061 72,321 61,607 67,041 2,480 72,098 62,500
Config. 4 59,290 2,412 65,324 54,688 65,634 2,267 71,588 61,384 67,130 2,399 73,438 60,268
Config. 5 59,290 2,412 65,324 54,688 65,634 2,267 71,588 61,384 67,345 2,250 72,545 62,054
Config. 6 58,893 2,399 63,393 53,571 65,879 2,257 71,875 62,054 67,711 2,015 71,205 63,170
Config. 7 58,893 2,399 63,393 53,571 65,879 2,257 71,875 62,054 67,814 2,292 72,483 62,054

Table B.8: Results for kaminski-v

Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,579 0,606 0,971 0,632 0,652 0,676 0,975 0,684 0,653 0,679 0,970 0,691
Config. 1 0,579 0,606 0,971 0,632 0,652 0,676 0,975 0,684 0,650 0,676 0,970 0,688
Config. 2 0,558 0,586 0,970 0,623 0,649 0,673 0,974 0,683 0,644 0,671 0,968 0,685
Config. 3 0,558 0,586 0,970 0,623 0,649 0,673 0,974 0,683 0,643 0,670 0,968 0,685
Config. 4 0,566 0,593 0,973 0,618 0,631 0,656 0,973 0,667 0,647 0,671 0,973 0,674
Config. 5 0,566 0,593 0,973 0,618 0,631 0,656 0,973 0,667 0,649 0,673 0,973 0,676
Config. 6 0,562 0,589 0,972 0,617 0,634 0,659 0,973 0,668 0,652 0,677 0,973 0,679
Config. 7 0,562 0,589 0,972 0,617 0,634 0,659 0,973 0,668 0,654 0,678 0,973 0,679

Table B.9: Statistics for kaminski-v (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 1,546 8,000 16,110 0,585 18,955 0,126
Config. 1 1,495 7,375 69,926 0,487 30,738 0,168
Config. 2 1,049 63,993 19,120 0,330 15,894 0,108
Config. 3 0,715 3,795 9,922 0,320 15,893 0,108
Config. 4 0,236 1,433 5,653 0,113 12,597 0,100
Config. 5 0,238 1,438 5,686 0,114 12,584 0,099
Config. 6 0,209 1,245 5,844 0,114 11,844 0,098
Config. 7 0,209 1,234 5,842 0,114 11,127 0,095

Table B.10: Performance for kaminski-v (s - seconds)
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Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 57,694 2,453 62,687 50,498 63,153 2,034 68,579 59,204 61,430 1,870 65,672 56,965
Config. 1 57,694 2,453 62,687 50,498 63,153 2,034 68,579 59,204 61,425 2,135 65,423 55,473
Config. 2 55,886 2,025 60,349 50,498 62,018 2,025 66,667 57,711 59,044 2,276 63,184 53,234
Config. 3 55,886 2,025 60,349 50,498 62,018 2,025 66,667 57,711 59,463 2,144 63,184 53,483
Config. 4 57,166 2,063 62,095 52,985 62,520 1,734 66,169 58,706 62,685 2,089 67,662 59,204
Config. 5 57,166 2,063 62,095 52,985 62,520 1,734 66,169 58,706 62,775 1,775 66,833 59,204
Config. 6 55,741 2,212 60,697 49,502 61,753 1,887 66,418 57,214 61,350 2,073 65,423 55,473
Config. 7 55,741 2,212 60,697 49,502 61,753 1,887 66,418 57,214 61,609 1,905 65,835 56,965

Table B.11: Results for kitchen-l

Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,548 0,577 0,970 0,590 0,604 0,632 0,972 0,645 0,579 0,614 0,958 0,626
Config. 1 0,548 0,577 0,970 0,590 0,604 0,632 0,972 0,645 0,579 0,614 0,958 0,627
Config. 2 0,529 0,559 0,969 0,575 0,592 0,620 0,971 0,632 0,551 0,590 0,952 0,612
Config. 3 0,529 0,559 0,969 0,575 0,592 0,620 0,971 0,632 0,556 0,595 0,953 0,615
Config. 4 0,543 0,572 0,971 0,591 0,597 0,625 0,972 0,640 0,596 0,627 0,966 0,631
Config. 5 0,543 0,572 0,971 0,591 0,597 0,625 0,972 0,640 0,597 0,628 0,966 0,631
Config. 6 0,528 0,557 0,970 0,578 0,589 0,618 0,972 0,631 0,580 0,614 0,962 0,622
Config. 7 0,528 0,557 0,970 0,578 0,589 0,618 0,972 0,631 0,583 0,616 0,962 0,623

Table B.12: Statistics for kitchen-l (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,753 4,542 7,973 0,460 33,387 0,132
Config. 1 0,752 4,432 7,892 0,454 23,420 0,104
Config. 2 0,588 3,438 8,560 0,429 19,209 0,095
Config. 3 0,586 3,460 8,567 0,433 19,233 0,096
Config. 4 0,447 2,833 6,648 0,310 18,919 0,098
Config. 5 0,447 2,835 6,642 0,309 18,929 0,098
Config. 6 0,374 2,279 6,984 0,305 26,588 0,127
Config. 7 0,807 4,842 9,766 0,452 16,147 0,092

Table B.13: Performance for kitchen-l (s - seconds)

Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 76,214 2,211 82,329 69,600 84,926 2,040 88,755 79,920 85,624 1,696 89,558 81,928
Config. 1 76,214 2,211 82,329 69,600 84,926 2,040 88,755 79,920 85,680 1,561 89,157 82,329
Config. 2 73,285 2,097 76,800 67,600 82,840 1,957 87,550 78,715 84,035 1,639 87,550 79,920
Config. 3 73,285 2,097 76,800 67,600 82,840 1,957 87,550 78,715 83,971 1,670 87,149 79,920
Config. 4 75,724 2,100 81,928 70,400 85,118 2,077 89,960 78,313 86,161 1,745 90,361 82,329
Config. 5 75,724 2,100 81,928 70,400 85,118 2,077 89,960 78,313 86,145 1,698 90,361 81,928
Config. 6 73,157 2,256 76,707 67,470 83,249 1,755 87,149 78,715 84,533 1,715 87,952 78,313
Config. 7 73,157 2,256 76,707 67,470 83,249 1,755 87,149 78,715 84,252 1,570 88,353 79,920

Table B.14: Results for lokay-m
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Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,687 0,762 0,954 0,795 0,793 0,849 0,947 0,849 0,797 0,856 0,927 0,858
Config. 1 0,687 0,762 0,954 0,795 0,793 0,849 0,947 0,849 0,797 0,857 0,927 0,859
Config. 2 0,650 0,733 0,947 0,768 0,765 0,828 0,942 0,828 0,773 0,840 0,920 0,845
Config. 3 0,650 0,733 0,947 0,768 0,765 0,828 0,942 0,828 0,772 0,840 0,920 0,843
Config. 4 0,681 0,757 0,953 0,791 0,795 0,851 0,946 0,850 0,805 0,862 0,933 0,860
Config. 5 0,681 0,757 0,953 0,791 0,795 0,851 0,946 0,850 0,805 0,861 0,933 0,860
Config. 6 0,649 0,732 0,947 0,766 0,769 0,832 0,941 0,832 0,781 0,845 0,924 0,846
Config. 7 0,649 0,732 0,947 0,766 0,769 0,832 0,941 0,832 0,777 0,843 0,925 0,843

Table B.15: Statistics for lokay-m (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,167 0,254 1,514 0,009 5,217 0,046
Config. 1 0,142 0,220 1,349 0,009 4,459 0,037
Config. 2 0,152 0,218 1,551 0,009 4,199 0,035
Config. 3 0,139 0,205 1,589 0,009 3,924 0,037
Config. 4 0,114 0,177 1,120 0,006 3,705 0,031
Config. 5 0,114 0,177 1,125 0,007 3,710 0,032
Config. 6 0,111 0,164 1,323 0,007 3,594 0,031
Config. 7 0,111 0,163 1,322 0,007 3,966 0,033

Table B.16: Performance for lokay-m (s - seconds)

Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 78,756 3,979 88,136 71,186 85,220 3,033 90,756 78,151 82,089 2,939 88,136 73,950
Config. 1 78,756 3,979 88,136 71,186 85,220 3,033 90,756 78,151 81,719 2,669 86,555 73,109
Config. 2 76,685 3,773 86,441 69,492 84,867 3,218 91,525 78,151 79,160 3,350 85,593 70,588
Config. 3 76,685 3,773 86,441 69,492 84,867 3,218 91,525 78,151 79,311 3,054 84,746 71,429
Config. 4 74,731 3,758 83,051 66,387 85,270 3,095 93,277 78,151 85,019 3,161 90,678 74,790
Config. 5 74,731 3,758 83,051 66,387 85,270 3,095 93,277 78,151 85,018 3,289 90,756 75,630
Config. 6 73,957 4,011 83,051 64,706 84,093 3,232 89,916 74,790 84,328 2,974 89,076 74,790
Config. 7 73,957 4,011 83,051 64,706 84,093 3,232 89,916 74,790 84,075 3,036 89,076 73,950

Table B.17: Results for sanders-r

Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,754 0,788 0,974 0,813 0,823 0,852 0,967 0,845 0,777 0,821 0,926 0,803
Config. 1 0,754 0,788 0,974 0,813 0,823 0,852 0,967 0,845 0,772 0,817 0,924 0,797
Config. 2 0,731 0,767 0,973 0,798 0,818 0,849 0,963 0,839 0,737 0,792 0,908 0,775
Config. 3 0,731 0,767 0,973 0,798 0,818 0,849 0,963 0,839 0,739 0,793 0,910 0,772
Config. 4 0,712 0,747 0,977 0,806 0,825 0,853 0,973 0,860 0,820 0,850 0,966 0,845
Config. 5 0,712 0,747 0,977 0,806 0,825 0,853 0,973 0,860 0,820 0,850 0,966 0,845
Config. 6 0,704 0,740 0,978 0,800 0,811 0,841 0,969 0,845 0,810 0,843 0,958 0,832
Config. 7 0,704 0,740 0,978 0,800 0,811 0,841 0,969 0,845 0,807 0,841 0,958 0,832

Table B.18: Statistics for sanders-r (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,220 0,919 1,504 0,049 3,547 0,023
Config. 1 0,214 0,893 1,454 0,049 3,215 0,022
Config. 2 0,172 0,698 1,550 0,052 2,804 0,021
Config. 3 0,189 0,748 1,594 0,052 3,029 0,021
Config. 4 0,058 0,280 1,161 0,020 1,958 0,017
Config. 5 0,060 0,289 1,137 0,019 1,904 0,018
Config. 6 0,054 0,251 1,168 0,020 1,779 0,018
Config. 7 0,055 0,250 1,169 0,020 1,827 0,017

Table B.19: Performance for sanders-r (s - seconds)
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Configuration Naive Bayes SMO Random Forest
Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min Accuracy Std. Dev. Max Min

Config. 0 90,935 1,613 94,224 87,365 96,699 0,925 98,195 94,585 95,825 0,991 97,826 93,141
Config. 1 90,935 1,613 94,224 87,365 96,699 0,925 98,195 94,585 95,652 0,983 97,834 93,141
Config. 2 91,592 1,457 94,585 88,043 96,613 0,977 98,556 94,585 95,608 1,036 97,834 93,116
Config. 3 91,592 1,457 94,585 88,043 96,613 0,977 98,556 94,585 95,428 0,907 97,112 93,141
Config. 4 90,820 1,486 93,863 87,365 96,562 0,999 98,195 94,585 95,847 0,932 97,473 93,141
Config. 5 90,820 1,486 93,863 87,365 96,562 0,999 98,195 94,585 95,832 0,984 97,834 93,478
Config. 6 91,390 1,534 94,585 87,004 96,735 0,945 98,195 94,585 95,710 0,927 97,834 93,502
Config. 7 91,390 1,534 94,585 87,004 96,735 0,945 98,195 94,585 95,666 0,964 97,834 92,780

Table B.20: Results for williams-w3

Configuration Naive Bayes SMO Random Forest
Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision Kappa T. P. Rate T. N. Rate Precision

Config. 0 0,855 0,909 0,990 0,940 0,945 0,967 0,990 0,963 0,930 0,958 0,983 0,942
Config. 1 0,855 0,909 0,990 0,940 0,945 0,967 0,990 0,963 0,927 0,957 0,982 0,941
Config. 2 0,865 0,916 0,990 0,941 0,944 0,966 0,990 0,961 0,926 0,956 0,981 0,939
Config. 3 0,865 0,916 0,990 0,941 0,944 0,966 0,990 0,961 0,923 0,954 0,980 0,937
Config. 4 0,853 0,908 0,989 0,940 0,943 0,966 0,990 0,962 0,931 0,958 0,983 0,944
Config. 5 0,853 0,908 0,989 0,940 0,943 0,966 0,990 0,962 0,930 0,958 0,983 0,944
Config. 6 0,862 0,914 0,990 0,941 0,946 0,967 0,991 0,964 0,928 0,957 0,982 0,941
Config. 7 0,862 0,914 0,990 0,941 0,946 0,967 0,991 0,964 0,927 0,957 0,981 0,941

Table B.21: Statistics for williams-w3 (T.P. - True Positive; T.N. - True Negative)

Configuration Naive Bayes SMO Random Forest
Time Training (s) Time Testing (s) Time Training (s) Time Testing (s) Time Training (s) Time Testing (s)

Config. 0 0,312 0,801 0,819 0,031 3,567 0,026
Config. 1 0,296 0,771 0,732 0,027 3,437 0,025
Config. 2 0,265 0,670 0,780 0,029 3,102 0,025
Config. 3 0,268 0,678 0,760 0,028 3,099 0,025
Config. 4 0,224 0,592 0,697 0,022 2,804 0,023
Config. 5 0,225 0,592 0,699 0,022 3,049 0,026
Config. 6 0,472 1,202 1,305 0,049 6,601 0,049
Config. 7 0,590 1,534 1,217 1,878 2,813 0,025

Table B.22: Performance for williams-w3 (s - seconds)
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Phase 2 and 3 Results2

C.1 Phase 2
Phase 2 uses the Dataset 1 (Section A.1).4

User Accuracy Std. Deviation Max Min
beck-s 67,316 2,882 73,604 56,853

farmer-d 82,320 1,729 86,376 78,747
kaminski-v 68,439 2,073 73,826 64,063
kitchen-l 63,831 1,917 68,657 59,453
lokay-m 87,012 1,839 90,763 83,936
sanders-r 86,146 3,123 93,277 78,151

williams-w3 96,822 0,964 98,195 94,585

Table C.1: Phase 2 results

User Kappa T.P. Rate F.P. Rate T.N. Rate F.N. Rate Precision Recall
beck-s 0,663 0,673 0,010 0,990 0,327 0,656 0,673

farmer-d 0,787 0,823 0,041 0,959 0,177 0,817 0,823
kaminski-v 0,661 0,684 0,025 0,975 0,316 0,692 0,684
kitchen-l 0,611 0,638 0,028 0,972 0,362 0,651 0,638
lokay-m 0,819 0,870 0,055 0,945 0,130 0,868 0,870
sanders-r 0,835 0,861 0,027 0,973 0,139 0,868 0,861

williams-w3 0,947 0,968 0,009 0,991 0,032 0,963 0,968

Table C.2: Phase 2 statistics
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User Time Training (s) Time Testing (s)
beck-s 63,841 2,683

farmer-d 19,923 0,207
kaminski-v 41,688 0,737
kitchen-l 47,209 0,868
lokay-m 7,329 0,054
sanders-r 4,213 0,051

williams-w3 6,182 0,084

Table C.3: Phase 2 performance results (s - seconds)

C.2 Phase 3
Phase 3 uses the Dataset 2 (Section A.2).2

User Accuracy Std. Deviation Max Min
beck-s 79,797 3,277 86,232 71,739

farmer-d 83,433 1,727 86,517 78,090
kaminski-v 69,648 1,748 74,194 65,438
kitchen-l 65,208 1,930 70,909 61,818
lokay-m 87,212 1,613 90,688 83,401
sanders-r 87,384 3,158 93,636 80

williams-w3 98,936 0,662 100 96,958

Table C.4: Phase 3 results

User Kappa T.P. Rate F.P. Rate T.N. Rate F.N. Rate Precision Recall
beck-s 0,787 0,798 0,011 0,989 0,202 0,814 0,798

farmer-d 0,798 0,834 0,042 0,958 0,166 0,836 0,834
kaminski-v 0,673 0,696 0,026 0,974 0,304 0,709 0,696
kitchen-l 0,624 0,652 0,029 0,971 0,348 0,672 0,652
lokay-m 0,820 0,872 0,059 0,941 0,128 0,872 0,872
sanders-r 0,844 0,874 0,035 0,965 0,126 0,882 0,874

williams-w3 0,981 0,989 0,004 0,996 0,011 0,990 0,989

Table C.5: Phase 3 statistics
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User Time Training (s) Time Testing (s)
beck-s 8,523 0,110

farmer-d 43,389 0,438
kaminski-v 262,203 3,152
kitchen-l 61,135 0,780
lokay-m 14,249 0,127
sanders-r 8,206 0,086

williams-w3 4,280 0,050

Table C.6: Phase 3 performance results (s - seconds)
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Appendix D

Phase 4, 5 and 6 Results2

D.1 Phase 4
Phase 4 uses the Dataset 1 (Section A.1).4

User Accuracy Max Min
beck-s 79,507 83,283 76,418

farmer-d 96,014 96,955 94,631
kaminski-v 84,959 87,385 83,114
kitchen-l 85,151 87,839 82,417
lokay-m 96,721 97,995 95,165
sanders-r 93,978 96,535 91,337

williams-w3 99,012 99,681 97,981

Table D.1: Phase 4 results

D.2 Phase 5
Phase 5 uses the Dataset 2 (Section A.2).6

User Accuracy Max Min
beck-s 91,842 95,096 88,699

farmer-d 97,375 98,430 96,446
kaminski-v 86,158 88,701 83,424
kitchen-l 86,658 88,855 84,885
lokay-m 96,855 98,095 95,595
sanders-r 95,903 98,391 91,957

williams-w3 99,931 100 99,665

Table D.2: Phase 5 results
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D.3 Phase 6
Phase 6 uses the Dataset 2 (Section A.2).2

User Accuracy Max Min
beck-s 93,639 94,456 93,177

farmer-d 97,563 98,347 96,287
kitchen-l 87,568 88,701 85,927
kaminski-v 87,412 88,473 86,565
lokay-m 97,327 97,759 96,905
sanders-r 96,458 96,783 96,247

williams-w3 99,799 100 99,464

Table D.3: Phase 6 results
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