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Abstract 

The Mycobacterium genus contains more than 180 species, including the causative 

agents of tuberculosis (Mycobacterium tuberculosis complex), one of the top 10 causes of 

death worldwide. Furthermore, many of the ubiquitous environmental nontuberculous 

mycobacteria are opportunistic pathogens able to cause local to disseminated infections 

in humans, particularly in susceptible individuals. The clinical impact of mycobacterial 

infections relies mostly on their increased resistance to the therapies currently in use, 

which reinforces the need of more active drug development. Mycobacteria produce unique 

intracellular carbohydrates, named polymethylated polysaccharides (PMPSs), which 

comprehend 3-O-methylmannose polysaccharides (MMPs) and 6-O-methylglucose 

lipopolysaccharides (MGLPs). MGLPs seem to be the only PMPSs common to all 

mycobacteria, revealing their importance to mycobacterial survival and the value of their 

biosynthetic pathway as source of new drug targets. Although MGLPs are known for 

about 50 years, their biosynthetic pathway is still not fully understood. Here, two 

mycobacterial enzymes – glucosyl-3-phosphoglycerate phosphatase (GpgP) and 

glucosylglycerate hydrolase (GgH) – proposed to be involved in the MGLPs biosynthetic 

pathway, particularly in glucosylglycerate (GG) metabolism, are structurally characterized.  

GpgP was previously proposed to participate in the second step of MGLPs production by 

dephosphorylating glucosyl-3-phosphoglycerate to GG. The crystallographic structures of 

a recombinant GpgP and of its complex with the phosphate analogue vanadate and the 

reaction product GG enable the identification of the amino acids involved in substrate 

binding and catalysis. Also, the high resolution X-ray diffraction data allowed identifying 

novel trivanadate glycerol ester molecules. GgH is highly conserved among rapid-growing 

mycobacteria and was proposed to be involved in mycobacterial recovery from nitrogen 

starvation by promoting the rapid mobilization of GG accumulated under these conditions. 

In vitro, GgH catalyzes the hydrolysis of GG to glucose and glycerate. Two catalytically 

inactive point mutants were produced and characterized in complex with substrates and 

substrate analogues. The structures of the complexes, as well as the apo-structure of 

GgH, allowed the clarification of the molecular details of substrate specificity, binding and 

hydrolysis. 

The present work contributes for elucidating the structure and reaction mechanism of the 

mycobacterial GpgP and GgH, both involved in the metabolism of GG, one of the earliest 

intermediates of the vital MGLP biosynthetic pathway.  
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Resumo 

O género Mycobacterium contém mais de 180 espécies, incluindo os agentes etiológicos 

da tuberculose (complexo Mycobacterium tuberculosis), a qual se encontra entre as dez 

principais causas de morte a nível mundial. Além disso, muitas das micobactérias 

ambientais não tuberculosas são agentes patogénicos oportunistas capazes de causar 

infeções locais a disseminadas em seres humanos, particularmente em indivíduos 

susceptíveis. O impacto clínico das infeções micobacterianas está principalmente 

relacionado com a crescente resistência das micobactérias às terapias actualmente em 

uso, o que torna urgente o desenvolvimento de fármacos mais eficazes. As micobactérias 

produzem hidratos de carbono intracelulares únicos, designados polissacáridos 

polimetilados (PMPSs), os quais incluem os polissacáridos de 3-O-metilmanose (MMPs) 

e lipopolisacáridos de 6-O-metilglucose (MGLPs). Aparentemente, os MGLPs são os 

únicos PMPSs comuns a todas as micobactérias, o que sugere o seu carácter essencial e 

o valor da sua via biossintética como fonte de novos alvos terapêuticos. Embora os 

MGLPs tenham sido descritos há mais de 50 anos, a via biossintética que leva à sua 

produção ainda não é totalmente conhecida. Aqui são caracterizadas estruturalmente 

duas enzimas micobacterianas, a fosfatase de glucosil-3-fosfoglicerato (GpgP) e a 

hidrolase de glucosilglicerato (GgH), propostas como intervenientes na via de biossíntese 

dos MGLPs, especificamente no metabolismo de glucosilglicerato (GG). 

A GpgP, considerada responsável pelo segundo passo de produção dos MGLPs, catalisa 

in vitro a desfosforilação de glucosil-3-fosfoglicerato a GG. A estrutura cristalográfica de 

uma GpgP recombinante e do seu complexo com o análogo do fosfato, vanadato, e o seu 

produto de reação, GG, permitiu identificar os aminoácidos envolvidos na ligação e na 

catálise do substrato. A elevada resolução dos dados de difracção de raios-X permitiu 

também descrever novos ésteres de trivanadato-glicerol. A GgH, altamente conservada 

entre as micobactérias de crescimento rápido, está implicada na recuperação das 

micobactérias submetidas a privação de azoto através da rápida mobilização do GG 

acumulado nestas condições. In vitro, a GgH é capaz de catalisar a hidrólise de GG a 

glucose e glicerato. Dois mutantes de GgH cataliticamente inactivos foram produzidos e 

caracterizados em complexo com os substratos da GgH e análogos dos mesmos. A 

estrutura dos complexos, assim como a estrutura da apo GgH, permitiu clarificar os 

detalhes moleculares envolvidos na especificidade, ligação e hidrólise dos substratos.  

O presente trabalho contribui para elucidar a estrutura e o mecanismo de reação das 

GpgP e GgH micobacterianas, ambas envolvidas no metabolismo do GG, um dos 

primeiros intermediários na via vital de biossíntese dos MGLPs. 
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1.1. Mycobacteria 

Mycobacteria are acid-fast rod-shaped bacilli, with a high G+C-content genome (65.6%) 

(Cole, Brosch et al. 1998). The genus Mycobacterium contains more than 180 species 

according to the List of prokaryotic names with standing in nomenclature (LPSN, 

www.bacterio.net), and to which the addition of two new species was recently proposed 

(Nouioui, Sangal et al. 2017).  

Traditionally, mycobacteria are divided into slow-growing mycobacteria (SGM), when they 

require at least 7 days to form visible colonies on agar medium, and rapid-growing 

mycobacteria (RGM), when less than 7 days are sufficient (Primm, Lucero et al. 2004). 

Although most mycobacteria are environmental bacteria with saprophytic or symbiotic 

lifestyle, some species are aggressive pathogens such as the well-known Mycobacterium 

tuberculosis and Mycobacterium leprae (Primm, Lucero et al. 2004). Due to their impact in 

human health and for their ability to cause tuberculosis in humans or other mammals, 

mycobacteria are also commonly divided into M. tuberculosis complex (see section 1.1.1) 

and nontuberculous mycobacteria (NTM) (see section 1.1.2), with M. leprae and 

Mycobacterium lepromatosis (Han, Seo et al. 2008, Singh, Benjak et al. 2015), the 

causative agents of leprosy (Smith, Aerts et al. 2017, Steinmann, Reed et al. 2017), 

forming a third distinct group. Although nontuberculous mycobacteria are environmental 

organisms, they may also cause opportunistic infections in humans (Primm, Lucero et al. 

2004). 

Mycobacteria in general display high drug resistance, which makes mycobacterial 

infections a clinical challenge (see section 1.1.3). Despite their differences, mycobacterial 

species share important characteristics. One of the most dominant features of 

mycobacteria is their cell wall, composed of unique carbohydrates and lipids (see section 

1.1.4). Mycobacteria possess the thickest outer membrane known, measuring 9-10 nm 

based on electron microscopy examination (Brennan and Nikaido 1995), that shields the 

cells from the environment, including drugs and the human immune system. Due to its 

contribution for mycobacteria success as pathogens, the pathways involved in the 

mycobacterial cell envelop synthesis are of high interest, especially for the identification of 

targets against which new drugs can be designed. 
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1.1.1. Mycobacterium tuberculosis complex and tuberculosis 

The tubercle bacillus was discovered in 1882 by Robert Koch. Since its discovery, 

tuberculosis (TB) has been associated to several mycobacterial species, including M. 

tuberculosis, M. bovis, M. africanum, M. caprae, M. canettii, M. microti, M. orygis, M. 

pinnipedii, M. suricattae, and M. mungi (Esteban and Muñoz-Egea 2016), altogether 

known as the Mycobacterium tuberculosis complex. 

Although the number of TB deaths fell by 26% in 16 years (from 2000 to 2016), TB 

remains  one of the top 10 causes of death worldwide and the leading cause from a single 

infectious agent (WHO 2017). The World Health Organization (WHO) estimated that in 

2016 there were 10.4 million new TB cases worldwide (1.5% lower than in 2014) and 1.7 

million TB deaths, 0.37 million of which among HIV-infected people (WHO 2017). In 2016, 

TB was also the leading cause of death among HIV-positive people, with 40% deaths due 

to TB (WHO 2017). It is estimated that about one-fourth of the world’s population has 

latent TB infection with approximately 5 to 15% lifetime risk of developing the disease 

(WHO 2017). 

Nowadays, active TB requires a minimum of 6 months of multidrug therapy in two phases: 

the intensive phase, consisting in 2 months of isoniazid (Bernstein, Lott et al. 1952), 

rifampicin (Maggi, Pasqualucci et al. 1966), pyrazinamide (Yeager, Munroe et al. 1952), 

and ethambutol (Thomas, Baughn et al. 1961) administration, followed by the continuation 

stage for 4 months with isoniazid and rifampicin (see Table 1.1 for details) (Zumla, Nahid 

et al. 2013). This treatment was introduced in 1970s and since then no new drugs were 

developed or approved as first-line treatment for TB (Zumla, Nahid et al. 2013). The poor 

adherence to the long-lasting TB treatment is one of the causes contributing for the 

emergence of multidrug-resistant TB (MDR-TB) strains and even extensively drug-

resistant TB (XDR-TB) strains. While MDR-TB strains are resistant to at least isoniazid 

and rifampicin, XDR-TB is defined as MDR-TB plus resistance to at least one 

fluoroquinolone (such as levofloxacin or moxifloxacin) and a second-line injectable agent 

(amikacin, capreomycin or kanamycin), the two most important classes of drugs for MDR-

TB treatment (Zumla, Nahid et al. 2013, WHO 2017). MDR-TB is a public health crisis and 

a health security threat. In 2016, the WHO estimated that there were 490,000 new cases 

of MDR-TB worldwide and an average proportion of MDR-TB cases with XDR-TB of 6.2% 

(WHO 2017). 

In contrast to the standardized first-line anti-TB treatment, MDR-TB requires an 

individualized treatment preferentially planed according to several criteria, including the 
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drug resistance pattern in the local geographic region, drugs previously administered to 

the patient, underlying medical condition of the patient and the drug-associated adverse 

effects (Zumla, Nahid et al. 2013). The treatment of MDR-TB is performed with at least 

four second-line anti-TB drugs, most of them injectable, (see Table 1.1) and requires at 

least a 8 month intense phase and a total therapy duration of at least 20 months. 

The XDR-TB treatment is significantly longer than that of MDR-TB and requires the use of 

third-line anti-TB drugs (see Table 1.1) (Zumla, Nahid et al. 2013). These drugs are 

expensive and often have more side effects than the first- and second-line anti-TB drugs. 

In HIV-infected patients, XDR-TB is associated with highly mortality rates. Worldwide, only 

54% of MDR-TB and 30% of XDR-TB patients are currently successfully treated (WHO 

2017). 

Encouragingly, the development of anti-TB drugs has evolved dramatically over the past 

ten years, and novel drugs are currently in Phase III trials for the treatment of MDR-TB 

(Cole 2016). Among these, a novel member of the diarylquinoline class, named 

bedaquiline (also known as TMC207 and R207910), was the first drug with a new 

mechanism of action to be approved in over 40 years. This drug displays bactericidal 

activity in vitro against M. tuberculosis and other mycobacterial species, by inhibiting the 

c-subunit of ATP-synthase of mycobacteria with high specificity (Andries, Verhasselt et al. 

2005, de Jonge, Koymans et al. 2007, Haagsma, Podasca et al. 2011). Although the 

Phase III trial has not been completed, bedaquiline was approved in 2012 by the United 

States Food and Drug Administration (US-FDA) based on the beneficial effect observed in 

two Phase IIb trials. The accelerated approval of this new drug aims to ensure that some 

eligible patients could benefit from this new drug. However, due to limited experience on 

bedaquiline use, the treatment with this drug should be performed under defined 

conditions and patients should be closely monitored (WHO 2013, WHO 2017). Up to now, 

bedaquiline was only approved for adult patients with pulmonary MDR-TB unresponsive to 

the existing drugs and should be given in combination with the multidrug treatment 

regimen recommended by WHO. 
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Table 1.1 – Main tuberculosis drugs in clinical use and their targets. Adapted from (Zumla, Nahid 

et al. 2013, Wishart, Feunang et al. 2017).  

Drug (year of discovery) Effect Target 

First-line drugs  

Isoniazid (1952) Inhibits mycolic acid biosynthesis Enoyl-[acyl-carrier-protein] reductase 

Rifampicin (1966) Inhibits transcription  -subunit of RNA polymerase 

Pyrazinamide (1952) Inhibits translation and trans-
translation; acidifies cytoplasm 

S1 component of 30S ribosomal 
subunit 

Ethambutol (1961) Inhibits arabinogalactan biosynthesis Arabinosyl transferases 

Second-line drugs  

p-amino salicylic acid 
(1948) 

Inhibits folate biosynthesis  Dihydropteroate synthase 

Streptomycin
a
 (1944) Inhibits protein synthesis  S12 and 16S rRNA components of 

30S ribosomal subunit 
Ethionamide (1961) 
 

Inhibits mycolic acid biosynthesis Enoyl-[acyl-carrier-protein] reductase 

Ofloxacin
 
(1980) 

 
Inhibits DNA supercoiling DNA gyrase and DNA 

topoisomerase 
Capreomycin

a
 (1963) 

 
Inhibits protein synthesis Interbridge B2a between 30S and 

50S ribosomal subunits 
Kanamycin

a
 (1957)  Inhibits protein synthesis 30S ribosomal subunit 

Amikacin
a
 (1972) Inhibits protein synthesis 30S ribosomal subunit 

Cycloserine (1955) Inhibits peptidoglycan synthesis D-alanine racemase and ligase 

Third-line drugs   

Clofazimine (1954) Cell cycle disruption; inhibition of 
potassium transporters function 

DNA; potassium transporters 

Linezolid (1990s) Inhibits protein synthesis S23 rRNA component of 50S 
ribosomal subunit 

Amoxicillin (1985) plus 
clavulanate (1974)

b
 

Inhibition of cell wall synthesis Penicillin-binding protein 

Imipenem (1970s)
a
 

plus cilastatin (1995)
a,c

 
Inhibition of cell wall synthesis 
 

Penicillin-binding protein 

Clarithromycin (1980s) Inhibits protein synthesis S23 rRNA component of 50S 
ribosomal subunit 

a
Belongs to the group of injectable anti-TB drugs. 

b
Clavulanate inhibits a wide variety of β-lactamases commonly found in penicillin-resistant microorganisms, 

improving the action of amoxicillin. 
c
Cilastatin is used to prevent the hydrolysis of imipenem by renal dehydropeptidase-I, through its specific and 

reversible inhibition. 

 

1.1.2. Nontuberculous mycobacteria 

Nontuberculous mycobacteria, also called atypical mycobacteria, Mycobacterium other 

than tuberculosis (MOTT) or environmental mycobacteria (Dawson 2000), include species 

other than the M. tuberculosis complex and M. leprae and accounts for more than 170 

species from the Mycobacterium genus (LPSN, www.bacterio.net). Many of these 

ubiquitous environmental bacteria are opportunistic pathogens, capable of causing 

lymphadenopathy in children, pulmonary, skin and soft tissue infections or even 

disseminated infections, particularly in susceptible individuals (Griffith, Aksamit et al. 

2007, Piersimoni and Scarparo 2008, Henkle and Winthrop 2015). Moreover, the number 

of reported NTM infections seems to be increasing over the last decades likely as a result 
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of improved imaging techniques and new molecular sequencing methods that allow better 

identification of different mycobacterial species (Alcaide, Pena et al. 2017). On the other 

hand, several environmental causes as well as host susceptibility factors may also 

contribute for an increase in NTM infections, including population aging, increased 

incidence of chronic diseases and deficient sanitary control of water-distribution systems 

(Lopez-Varela, Garcia-Basteiro et al. 2015). 

Since NTM are exposed to several environmental challenges, they display high resilience 

against stress conditions including nutrient starvation, desiccation, pH and temperature 

variations, as well as antibiotic and disinfectant action (Falkinham 2010). These 

characteristics allowed them to colonize artificial environments such as domestic and 

hospital water distribution systems, from where they easily access susceptible hosts. 

Moreover, NTM are naturally resistant to common antibiotics and some infections do not 

even respond to aggressive anti-TB treatments (Griffith, Brown-Elliott et al. 2015, 

Shahraki, Heidarieh et al. 2015, Nunes-Costa, Alarico et al. 2016). NTM infections are 

thus becoming a considerable clinical challenge for which therapeutic solutions are 

scarce. No significant treatment advances for NTM infection in general have been recently 

accomplished and the increasing resistance of some mycobacterial species to the 

therapeutics currently in use reinforces the need of more active drug development 

(Nessar, Cambau et al. 2012). 

 

1.1.3. Mycobacterial infections and the need for drug development 

One of the major barriers in mycobacterial infection treatment is the long-duration of the 

therapy that is prone to poor adherence and ultimately promotes drug resistance. Shorter 

periods of treatment have been associated to increased relapse rates, due to the 

presence of a bacterial subpopulation that is able to survive the action of antibiotics 

(Connolly, Edelstein et al. 2007, Dhar and McKinney 2007). The surviving bacteria are 

named persisters (Lewis 2010). One of the features that lead to persistence is the ability 

of some bacteria to slow down or suspend their growth to a viable non-replicating state 

and persist for months or years in a dormant state (Corper and Cohn 1933, Lewis 2007). 

Dormancy can be induced by different stresses, such as hypoxia, nutrient starvation and 

acidification (Lipworth, Hammond et al. 2016). Unfortunately, most of the studies on 

mycobacterial dormancy were so far restricted to M. tuberculosis and M. smegmatis. 
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The antibiotics currently in use mainly counter DNA replication, or RNA, protein or cell wall 

synthesis, indispensable functions for cell growth (Kohanski, Dwyer et al. 2010). Since 

these processes are almost suppressed in dormant cells, they are more likely to survive 

even to long-term therapy. Indeed, dormant cells have been associated to post-treatment 

relapse and development of genetic resistance (Gomez and McKinney 2004, Levin and 

Rozen 2006). Targeting essential molecules for mycobacterial dormancy and resuscitation 

may be a viable path for an effective treatment of mycobacterial infections (Downing, 

Mischenko et al. 2005, Lewis 2007, Kana, Gordhan et al. 2008, Rittershaus, Baek et al. 

2013, Cano-Muniz, Anthony et al. 2018).  

Understanding more in depth the biology of mycobacteria is important to find new, shorter 

and more effective anti-mycobacterial therapies. The cell envelope of mycobacteria is 

highly complex and one of the main reasons for their success as pathogens. One of the 

most characteristic components of the cell wall are the mycolic acids. The biosynthesis of 

mycolic acids precursors seems to be somehow modulated by unique carbohydrates (see 

section 1.2), whose structural uniqueness has been seen as a source of potential 

antigens and targets for new vaccines, diagnostics and drug development. Although they 

were discovered in 1960s, their function and biosynthetic pathway are still not fully 

understood (Mendes, Maranha et al. 2012). The development of new molecular tools 

allowed identifying the genes implicated in their biosynthesis. Since some of these genes 

were shown to be essential for mycobacterial in vitro growth, they represent promising 

drug targets for new anti-mycobacterial drug development (Sassetti, Boyd et al. 2003, 

Griffin, Gawronski et al. 2011, DeJesus, Gerrick et al. 2017). 

 

 

1.1.4. Mycobacterial cell envelope 

The cell envelope of mycobacteria comprises four main layers, named inner membrane, 

periplasm, peptidoglycan-arabinogalactan layer and outer membrane (Figure 1.1) 

(Jankute, Cox et al. 2015). The inner membrane, also termed cytoplasmatic membrane, is 

composed of a phospholipid bilayer similar to that found in other bacteria. The 

cytoplasmatic membrane contains glycolipids, such as diphosphatidylglycerol (DPG) and 

phosphatidylethanolamine (PE), as well as phosphotidyl-myo-inositol (PI), which in 

contrast to the former that are found in all living organisms, is an essential phospholipid of 

eukaryotic cells (Antonsson 1997, Nikawa and Yamashita 1997) rarely found in 

prokaryotes (Kataoka and Nojima 1967, Brennan and Ballou 1968, Yano, Furukawa et al. 

1969, Brennan and Lehane 1971). The glycolipid PI is a precursor of the phosphotidyl-
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myo-inositol mannosides, from which the most abundant are the tri- and tetra-acylated 

phosphatidyl-myo-inositol dimannosides (AcPIM2 and Ac2PIM2, respectively), tri- and 

tetra-acylated phosphatidyl-myo-inositol hexamannosides (AcPIM6 and Ac2PIM6, 

respectively), lipomannan (LM) and lipoarabinomannan (LAM) (Jankute, Cox et al. 2015).  

Outside the cytoplasmatic membrane an electron-transparent periplasmatic space is 

present, displaying a typical bilayer aspect (Zuber, Chami et al. 2008). The periplasm 

contains the lipoglycans LM and LAM attached to the plasma membrane via their 

phosphatidyl-myo-inositol anchor (Chatterjee, Hunter et al. 1992, Khoo, Dell et al. 1995, 

Jankute, Grover et al. 2014). Although not represented in Figure 1.1, LM and LAM are 

also abundant in the outer membrane of mycobacteria and are key immunomodulatory 

molecules (Ortalo-Magné, Lemassu et al. 1996, Pitarque, Larrouy-Maumus et al. 2008). 

The peptidoglycan-arabinogalactan layer is composed of peptidoglycan covalently linked 

to the heteropolysaccharide arabinogalactan. The highly cross-linked network of 

peptidoglycan is one of the main structural elements of the mycobacterial cell wall, 

conferring a structural integrity to the bacterium and withstanding the osmotic pressure 

(Kaur, Guerin et al. 2009).  The peptidoglycan is covalently linked to the complex 

polysaccharide arabinogalactan by a unique α-L-rhamnopyranose–(1→3)-α-D-N-acetyl-α-

D-glucosamine-(1→P) linker unit (McNeil, Daffe et al. 1990). Arabinogalactan is esterified 

at its non-reducing end to long-chains (C70–C90) of mycolic acids (McNeil, Daffe et al. 

1991). The mycobacterial mycolyl-arabinogalactan also contains galactosamine (GalNH2) 

attached to the arabinan chains of the slow-growing mycobacteria (Draper, Khoo et al. 

1997), or succinyl  groups attached to the non-mycolylated arabinogalactans of rapid and 

slow-growing mycobacteria (Bhamidi, Scherman et al. 2008). Altogether, the complex of 

peptidoglycan, arabinogalactan and mycolic acids, known as mycolyl-arabinogalactan-

peptidoglycan (mAGP) complex, is usually referred as the cell wall core of mycobacteria 

(Jackson 2014, Jankute, Cox et al. 2015).  

Mycolic acids are long chain (C60-C90) α-alkyl-β-hydroxy fatty acids and components of the 

electron-dense outer membrane of mycobacteria. These unique fatty acids have three 

distinct subclasses, termed α-, methoxy- and keto- mycolic acids (Watanabe, Aoyagi et al. 

2001, Watanabe, Aoyagi et al. 2002). Although unique, mycolic acids are not exclusive to 

mycobacteria as they were also found in other related genera such as Nocardia, 

Rhodococcus and Corynebacterium (Marrakchi, Laneelle et al. 2014). Beside mycolic 

acids, the outer membrane of mycobacteria also contains extractable lipids, including 

trehalose monomycolates, trehalose dimycolates, phthiocerol dimycocerosate (PDIM), 

sulfoglycolipids (SGL), diacyltrehaloses (DAT), polyacyltrehaloses (PAT), phenolic 
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glycolipids and lipooligosaccharides (Jackson 2014). Some of these lipids are almost 

limited to pathogenic mycobacteria, such as PDIM (Jackson, Stadthagen et al. 2007).  

Also, DAT and PAT seem to be limited to the virulent isolates of M. tuberculosis complex 

and SGL were exclusively found in M. tuberculosis (Jackson, Stadthagen et al. 2007, 

Layre, Paepe et al. 2011, Nobre, Alarico et al. 2014). The components of the 

mycobacterial outer membrane were proposed to be organized in two leaflets (Minnikin 

1982, Rastogi, Hellio et al. 1991, Hoffmann, Leis et al. 2008, Zuber, Chami et al. 2008), 

with the mycolic acids packed in a monolayer and oriented perpendicular to the plasma 

membrane (Nikaido, Kim et al. 1993). While the mycolic acids form the inner leaflet, the 

other lipids form the outer leaflet with their fatty acid chains intercalating into the mycolic 

acid layer (Minnikin 1982, Hoffmann, Leis et al. 2008, Zuber, Chami et al. 2008).  

An additional layer at the outermost compartment of the cell envelope, termed capsule, 

seems to be present in the pathogenic mycobacterial species (Chapman, Hanks et al. 

1959, Daffe and Draper 1998). The components of this capsule-like structure are loosely 

attached and include polysaccharides, proteins and a small fraction of lipids (Seibert 

1949, Lemassu and Daffé 1994, Ortalo-Magne, Dupont et al. 1995, Sani, Houben et al. 

2010). 
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Figure 1.1 – Schematic representation of the mycobacterial cell envelope. The abbreviations are: 

Ac/Ac2PIM2, tri-/tetra-acylated phosphatidyl-myo-inositol-dimannosides; Ac/Ac2PIM6, tri-/tetra-

acylated phosphatidyl-myo-inositol-hexamannosides; AG, arabinogalactan; DAT, diacyltrehalose; 

DPG, diphosphatidylglycerol; GalNH2, galactosamine; k, keto; LAM, lipoarabinomannan; LM, 

lipomannan; m, methoxyl; PDIM, phthiocerol dimycocerosate; PE, phosphatidylethanolamine; PG, 

peptidoglycan; PI, phosphatidyl-myo-inositol; PAT, polyacyltrehalose; SGL, sulfoglycolipid. The α-L-

rhamnopyranose–(1→3)-α-D-N-acetyl-α-D-glucosamine-(1→P) linker unit is indicated. Adapted 

from (Jankute, Cox et al. 2015). 
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1.2. Polymethylated polysaccharides 

Polymethylated polysaccharides (PMPSs) are a family of unusual carbohydrates unique to 

the order Actinomycetales (Jackson and Brennan 2009). These cytoplasmatic 

(lipo)polysaccharides are composed of 10 to 20 sugar units, many of which partially O-

methylated, which contributes to their hydrophobicity. In mycobacteria two classes of 

PMPSs were found, named 3-O-methylmannose polysaccharides (MMPs) (Gray and 

Ballou 1971, Maitra and Ballou 1977) and 6-O-methylglucose lipopolysaccharides 

(MGLPs) (Lee and Ballou 1964, Lee 1966) (Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Structures of mycobacterial PMPSs. A – MGLP from M. bovis BCG. B – MMP from M. 

smegmatis. R1, R2 and R3 represent octanoate, succinate and acetate groups, respectively (blue). 

Methyl groups are coloured green. Adapted from (Mendes, Maranha et al. 2012, Maranha, 

Moynihan et al. 2015).  
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MMPs are linear chains of 10 to 13 α-(1→4)-linked 3-O-methyl-D-mannoses, containing a 

single α-(1→4)-linked unmethylated D-mannose at the non-reducing end and an α-methyl 

aglycon at the reducing end (Figure 1.2B) (Maitra and Ballou 1977).  Structurally, MGLPs 

display higher complexity compared to MMPs. MGLPs are composed of α-(1→4)-linked 

glucose and 6-O-methylglucose units, terminated at the non-reducing end by a 3-O-

methylglucose unit and at the reducing end by an α-(1→6)-linked α-D-glucopyranosyl-(1, 

2)-D-glycerate  (Figure 1.2A) (Tuffal, Albigot et al. 1998). Also, two β-(1→3)-linked 

branching glucoses are present at the first and third glucoses of the MGLPs main chain 

(Tuffal, Albigot et al. 1998). MGLPs are composed of 15 to 20 sugar units that may 

possess variable chemical modifications with acyl groups, including acetate, propionate 

and isobutyrate, at the glucose units close to the non-reducing end, and succinate, 

esterified to the branching glucose units (Keller and Ballou 1968, Smith and Ballou 1973). 

An octanoate modification is also present close to the reducing end of MGLPs, likely at 

the atom O6 of the second glucose unit (Smith and Ballou 1973, Maranha, Moynihan et al. 

2015). An unusual monosaccharide, named 2-N-acetyl-2,6-dideoxy-β-glucopyranose, was 

so far identified only in the MGLP of M. bovis BCG (Tuffal, Albigot et al. 1998). 

While MMPs have been isolated from multiple non-pathogenic RGM species, such as M. 

smegmatis and M. phlei, MGLPs have been found in both RGM and SGM species (Table 

1.2). Interestingly, MMPs were never detected in SGM, raising the hypothesis that this 

group of organisms might be unable to produce mannosylated PMPSs. Moreover, the 

ability of both RGM and SGM, as well as of other members of the Actinobacteria phylum, 

to produce MGLPs, indicates that their biosynthesis must be fundamental for 

mycobacterial survival. Although PMPSs were first isolated in 1960s (Lee and Ballou 

1964, Lee 1966, Keller and Ballou 1968), the knowledge about PMPS function (see 

section 1.2.1) and biogenesis (see sections 1.2.2 and 1.2.3) is still limited.  
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Table 1.2 – Distribution of PMPSs among mycobacteria and other related genera. 

Species MGLPs MMPs Growth type References 

Mycobacterium     

M. smegmatis   Rapid-growing (Keller and Ballou 1968, 
Bergeron, Machida et al. 
1975, Weisman and Ballou 
1984, Kamisango, Dell et al. 
1987) 

M. phlei   Rapid-growing (Lee 1966, Saier and Ballou 
1968, Gray and Ballou 
1971, Weisman and Ballou 
1984) 

M. parafortuitum   Rapid-growing (Weisman and Ballou 1984) 

M. aurum (M. 
cuneactum, M. 
petrophilum) 

  Rapid-growing (Weisman and Ballou 1984) 

M. chitae   Rapid-growing (Weisman and Ballou 1984) 

M. vaccae   Rapid-growing (Tian, Li et al. 2000) 

M. tuberculosis   Slow-growing (Lee 1966) 

M. bovis   Slow-growing (Tuffal, Albigot et al. 1998) 

M. leprae   Slow-growing (Hunter, Gaylord et al. 1986) 

M. xenopi   Slow-growing (Tuffal, Ponthus et al. 1995) 

Nocardia     

N. otitidis-caviarum    (Pommier and Michel 1986) 

N. brasiliense    (Pommier and Michel 1986) 

N. farcinica    (Pommier and Michel 1986) 

N. kirovani    (Pommier and Michel 1986) 

N. corallina n.d.   (Saier and Ballou 1968) 

Streptomyces     

S. griseus    (Candy and Baddiley 1966, 
Harris and Gray 1977) 

Corynebacterium     

“C. adiphtheriae” n.d.   (Pommier and Michel 1986) 

C. pseudodiphtheriticum n.d.   (Pommier and Michel 1986) 

C. xerosis n.d.   (Saier and Ballou 1968) 

Propionibacterium     

P. shermanii n.d.   (Saier and Ballou 1968) 

n.d. not demonstrated. 

 

 

1.2.1. Physiological role 

The PMPSs were proposed to play a role in fatty acid biosynthesis, with MMPs and 

MGLPs sharing similar properties. In vitro, PMPSs are able to form stable 1:1 ratio 

complexes with fatty acyl-coenzyme A (acyl-CoA) derivatives, preferentially with chain 

length ranging from C16 to C22 (Machida and Bloch 1973). Also, PMPSs seem to increase 

the overall rate of fatty acid synthesis by fatty acid synthase I (FAS-I) and shift the length 

of synthesized chains from long (C20-24) to short (C14-18) (Ilton, Jevans et al. 1971, Flick 

and Bloch 1974, Wood, Peterson et al. 1977). In agreement, PMPSs markedly lower the 

Km of FAS-I for acyl-CoA substrates, which enable fatty acids biosynthesis to proceed at 
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low substrate concentrations, as well as may shift product distribution in favour of more 

rapidly diffusing short-chain fatty acid products (Ilton, Jevans et al. 1971, Vance, 

Mitsuhashi et al. 1973, Banis, Peterson et al. 1977). On the other hand, PMPSs seem to 

facilitate the release of de novo synthetized fatty acid chains by sequestering them from 

FAS-I, contributing for enzyme turnover and earlier termination of fatty acid chain 

elongation (Banis, Peterson et al. 1977). 

PMPSs were also proposed to act as fatty acyl carriers, regulating their processing for the 

synthesis of longer, and more complex and insoluble fatty acids, including mycolic acids, 

by increasing the mycobacteria tolerance to high cytoplasmatic concentrations of these 

compounds (Kawaguchi and Bloch 1976, Yabusaki and Ballou 1979, Mita and Yasumasu 

1981), as well as protecting them from enzymatic degradation (Yabusaki and Ballou 

1979). These findings are also in agreement with the proposed PMPS structure (Figure 

1.3). Both MMPs and MGLPs were proposed to adopt a coiled conformation in solution, 

with a hydrophobic interior determined by the inward projection of the methyl groups, in 

which PMPSs can accommodate their hydrophobic ligands. (Bergeron, Machida et al. 

1975, Yabusaki and Ballou 1978, Yabusaki, Cohen et al. 1979, Maggio 1980, Tuffal, 

Ponthus et al. 1995). Thus, PMPS may physically avoid the access of enzymes to the 

fatty acids, while coating fatty acids with a hydrophilic surface that increases their 

solubility. More recently, molecular dynamic simulations revealed that the MMP helix with 

a hydrophobic channel lined by methyl groups immediately unfolds into disordered 

conformations and results in unrealistic carbohydrate ring conformations (Liu, Siuda et al. 

2016). A lower energy conformation was found for helical MMP with 3-O-methyl groups 

along the outside of the helical axis. When bound to fatty acid chain, hydrophilic hydroxyl 

and 3-O-methyl groups of MMP are solvent exposed and shield the fatty acid chain from 

water molecules (Figure 1.3A). Molecular dynamic simulations also pointed for the lower 

energy required for MMP-fatty acid complex when the carboxyl group of the fatty acid is 

oriented towards the reducing end of MMP (Liu, Siuda et al. 2016). 
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Figure 1.3 – Three-dimensional representation of PMPSs. A – Structural model of a lauric acid 

molecule (spheres) bound to a MMP chain (sticks), whose methyl groups are indicated by black 

arrows. Adapted from (Liu, Siuda et al. 2016). B – Structural model of the stearic acid (green 

spheres) bound to a 6-O-methylglucose polysaccharide chain containing 20 glucose units, of which 

12 are O-methylated (sticks). Adapted from (Jackson and Brennan 2009). 

 

However, physiological evidence for the role of PMPSs in lipid metabolism regulation is 

still limited. A M. smegmatis spontaneous mutant with half of the wild-type production of 

MGLPs and only residual production of MMPs displayed no significant change in fatty 

acids synthesis, and surprisingly showed higher accumulation of short-chain fatty acids 

instead of the expected long-chain fatty acids (Maloney and Ballou 1980). Since the 

production of fatty acids still occurred in near absence of MMPs, MGLPs are likely to 

display a more important role in fatty acids metabolism than MMPs. 

PMPSs may also play a role in mycobacterial thermal adaptation. Indeed, it was observed 

that mutants with limited production of MGLPs were more sensitive to high temperatures, 

displaying a lower growth rate or inability to grow at temperatures usually well tolerated by 

the wild-type strain (Stadthagen, Sambou et al. 2007). The growth temperature seems 

also to influence the production of mycolic acids. During growth at high temperatures, 

increased synthesis of long-chain mycolic acids and a decrease in unsaturated fatty acids 

were observed for M. phlei (Toriyama, Yano et al. 1980). In agreement, an increase in 

short-chain mycolic acids synthesis, with a concomitant decrease in long-chain mycolic 

acids production, were observed for M. smegmatis growing at low temperatures (Baba, 

Kaneda et al. 1989). Since PMPS-deficient strains are more sensitive to temperature and 

the proportion of short to long fatty acid chains is temperature-dependent, PMPSs are 

likely involved in thermal adaptation by modulating fatty acid chain length. 
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Therefore, the physiological role of these unique PMPSs in fatty acids metabolism still 

needs to be clarified. Also, the existence of two types of PMPSs apparently with 

redundant functions in some mycobacteria is puzzling. For a better understanding of 

PMPSs physiological role it is necessary to identify the genes involved in PMPSs 

biosynthesis, to evaluate their relevance in bacterial survival and virulence, and to 

characterize functional and structurally their coding proteins.    

 

1.2.2. MMP biosynthesis 

The currently knowledge on the biosynthesis of MMPs is limited to the work performed by 

Ballou’s research group from 1970s to 1980s and more recently by the Lowary laboratory 

(Xia, Zheng et al. 2012, Xia 2013). A model for MMP biosynthesis was proposed after the 

isolation of MMP precursors (Maitra and Ballou 1977, Yamada, Cohen et al. 1979) and 

the characterization of an α-(1,4)-mannosyltransferase (ManT) (Weisman and Ballou 

1984) and a 3-O-methyltransferase (MeT) (Weisman and Ballou 1984) from M. smegmatis 

cell-free extracts. According to the proposed model, MMPs are likely to be elongated by a 

linear alternating process of mannosylation and O-methylation, using GDP-mannose as 

sugar donor and S-adenosylmethionine (SAM) as source of methyl groups (Figure 1.4) 

(Weisman and Ballou 1984). 

When the MMP chain reaches 10 to 13 units of 3-O-methylmannose the elongation 

process ends (Maitra and Ballou 1977). At this length, the polysaccharide displays good 

fatty acid-binding properties and the MMP-fatty acid complex is no longer available as 

substrate for MeT, resulting in the termination of the elongation reaction (Weisman and 

Ballou 1984). Also, since the Km of MeT for the polysaccharide-fatty acid complex is 

significantly higher than that of ManT, the MMP chain ends with an unmethylated 

mannose (Weisman and Ballou 1984).  

The MMP biosynthetic gene cluster of M. smegmatis mc2155 was recently proposed (Xia 

2013). This cluster includes three genes predicted to encode for an α-(1,4)-

mannosyltransferase (MSMEG_6484), a 3-O-methyltransferase (MSMEG_6483) and 

another methyltransferase (MSMEG_6482). The function of a recombinant MSMEG_6484 

encoding protein was evaluated in vitro and confirmed to display α-(1,4)-

mannosyltransferase activity (Xia 2013). 
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Figure 1.4 – Proposed MMP biosynthetic pathway. The proposed pathway for MMP biosynthesis 

involves the sequential mannosylation and methylation reactions performed by a α-(1,4)-

mannosyltransferase (ManT) and a 3-O-methyltransferase (MeT), respectively. The ManT uses 

GDP-mannose as mannose donor, whereas MeT uses S-adenosylmethionine (SAM) as source of 

methyl groups, releasing S-adenosyl-homocysteine (SAH). The elongation ends when the MMP is 

long enough (10 to13 mannose units) to bind fatty acids and is no longer available as substrate for 

MeT. Adapted from (Stadthagen, Sambou et al. 2007). 

 

1.2.3. MGLP biosynthesis 

The steps that led to MGLP formation started to be defined after the partial purification 

and characterization of a methyltransferase able to transfer methyl groups from SAM to 

glucose units of the polysaccharide (Ferguson and Ballou 1970, Grellert and Ballou 1972), 

and of an acyltransferase that catalysed the acylation of MLGP with acetyl, propionyl, 

isobutyl, succinyl and octanoyl groups from acyl-CoA derivatives (Tung and Ballou 1973). 

The acylation and methylation steps were proposed to occur together during the synthesis 

of MGLPs, with one process affecting the extent and direction of the other (Grellert and 

Ballou 1972). Approximately 14 years later, free 2-O-(α-D-glucopyranosyl)-D-glycerate 

(glucosylglycerate, GG) and α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→2)-D-
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glycerate [α-(1→6)-diglucosylglycerate, α-(1→6)-DGG] were detected in cell extracts of M. 

smegmatis and were considered the precursors of MGLPs (Kamisango, Dell et al. 1987). 

A new biosynthetic mechanism was proposed, in which MGLP elongation would occur 

stepwise through sequential glucosylation and methylation reactions from the reducing 

end to the non-reducing end (Kamisango, Dell et al. 1987). 

Although the pathway leading to the production of MGLPs is still not fully understood, the 

availability of the whole-genome sequence of M. tuberculosis and of closely related 

microorganisms, as well as the development of tools for genetic manipulation of 

mycobacteria, have significantly contributed to the identification and functional 

characterization of the genes potentially involved in MGLP biosynthesis. 

 

1.2.3.1. Initiation of the pathway 

It is currently accepted that the MGLP pathway is initiated by the production of glucosyl-3-

phosphoglycerate (GPG) by the glucosyl-3-phosphoglycerate synthase (GpgS), using 

UDP-glucose as donor substrate and 3-phosphoglyceric acid (3-PGA) as acceptor 

substrate (Figure 1.5). This GpgS activity was initially identified in methanogenic archaea 

and in hyperthermophilic bacteria (Costa, Empadinhas et al. 2006, Costa, Empadinhas et 

al. 2007). The non-homologous mycobacterial GpgS was identified 1 year later: 

recombinant enzymes from M. smegmatis and M. bovis BCG were biochemically 

characterized (Empadinhas, Albuquerque et al. 2008), and the crystallographic structure 

of a recombinant M. tuberculosis GpgS was determined (Figure 1.6A) (Pereira, 

Empadinhas et al. 2008), being the first enzyme of the MGLP pathway to have its three-

dimensional structure unveiled. In M. tuberculosis H37Rv, this enzyme is encoded by the 

Rv1208 gene that was considered essential for mycobacterial in vitro growth (Sassetti, 

Boyd et al. 2003, Griffin, Gawronski et al. 2011, DeJesus, Gerrick et al. 2017). Also, the 

inactivation of the Rv1208 ortholog in M. smegmatis dramatically decreased the MGLP 

levels, suggesting the involvement of this gene in MGLP biosynthesis (Kaur, Pham et al. 

2009). Other studies followed to better characterize this enzyme, including site-directed 

mutagenesis (Kumar, Guan et al. 2014) and co-crystallization with substrates (Albesa-

Jove, Mendoza et al. 2015, Albesa-Jove, Romero-Garcia et al. 2017), which allowed a 

more clear understanding of the molecular details of the reaction. 

The reaction product of GpgS is subsequently dephosphorylated by the glucosyl-3-

phosphoglycerate phosphatase (GpgP), producing GG. In M. tuberculosis, the GpgP 
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activity was associated to the Rv2419c gene (Mendes, Maranha et al. 2011), which was 

considered non-essential for mycobacterial growth since mycobacteria lacking this gene 

were still able to grow in vitro (Sassetti, Boyd et al. 2003, Griffin, Gawronski et al. 2011, 

DeJesus, Gerrick et al. 2017). Nevertheless, no studies were performed to evaluate the 

impact of Rv2419c-disrupted gene in bacterial virulence and survival in the host, as well 

as in MGLP production. Although Rv2419c was first annotated as coding for a putative 

phosphoglycerate mutase, GpgP was proved recently to display only residual mutase 

activity (Mendes, Maranha et al. 2011). The recombinant GpgP from M. tuberculosis 

displays dephosphorylating activity against mannosyl-3-phosphoglycerate, 

mannosylglucosyl-3-phosphoglycerate and, with much higher specificity, against GPG 

(Mendes, Maranha et al. 2011). Highlighting its function, it was reclassified as glucosyl-3-

phosphoglycerate phosphatase (EC 3.1.3.85). In this thesis, the structure of GpgP is 

elucidated, as well as the molecular details of substrate binding and catalysis (Chapter 2). 

For this reason, the histidine phosphatase superfamily to which GpgP belongs is 

described in more detail in section 1.3. 

 

1.2.3.2. MGLP Elongation 

As initially proposed, GG is considered the precursor of α-(1→6)-DGG that in turn is the 

starting moiety for the α-(1→4)-glycosidic elongation of MGLP (Kamisango, Dell et al. 

1987). The gene Rv3032, coding for a α-(1→4)-glycosyltransferase, was proposed to be 

involved in MGLP elongation (Stadthagen, Sambou et al. 2007). This gene displays a 

limited distribution within prokaryotes, with orthologs only among mycobacteria species. 

Moreover, the disruption of gene Rv3032 led to impairment of mycobacterial in vitro 

growth (Sassetti, Boyd et al. 2003, Griffin, Gawronski et al. 2011, DeJesus, Gerrick et al. 

2017). The mutation of this gene in M. smegmatis conduced to a significant reduction of 

MGLP production, concomitant with a reduction of MGLP chain length (Stadthagen, 

Sambou et al. 2007). In agreement, the introduction of an exogenous gene to the Rv3032-

deficient strain restored the production of MGLP and shifted the MGLP length towards the 

mature forms (Stadthagen, Sambou et al. 2007). Although Rv3032 seems to be clearly 

involved in MGLP biosynthesis, the low levels of MGLP that were found in the RV3032-

deficient strain suggest that a compensatory mechanism may exist, and that another gene 

may partially replace Rv3032 function. Indeed, a second gene (Rv1212c) encoding an α-

(14)-glycosyltransferase (GlgA) and known to be involved in glycogen and capsular 

glucan synthesis was shown to compensate the absence of gene Rv3032 (Sambou, 

Dinadayala et al. 2008). However, unlike the Rv3032 mutant, the Rv1212c-disrupted 
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strain was still able to produce wild-type amounts of MGLP. Curiously, overexpression of 

gene Rv3032 fully restored the production of glucan synthesis in the Rv1212c mutant 

(Sambou, Dinadayala et al. 2008). Also, the Rv3032 mutant revealed an important 

decrease in glycogen content compared to the wild-type strain (Stadthagen, Sambou et al. 

2007). Therefore, these two genes seem to have partially redundant functions, although 

Rv1212c seems to be preferentially used for glucan synthesis, whereas Rv3032 is 

preferred to synthetize glycogen and MGLP. A double knockout mutant for genes 

Rv1212c and Rv3032 was never recovered, suggesting that at least one of these genes is 

strictly essential for mycobacterial survival (Sambou, Dinadayala et al. 2008). 

Rv3032 is separated by only 32 bp from gene Rv3031, suggesting that they might be 

expressed together. Gene Rv3031 was reported as essential for mycobacterial in vitro 

growth (Sassetti, Boyd et al. 2003, Griffin, Gawronski et al. 2011, DeJesus, Gerrick et al. 

2017). Up to date, only a single study highlighted the contribution of Rv3031 for MGLP 

biosynthesis. Disruption of the M. smegmatis MSMEG_2349 gene induced a significant 

reduction in MGLP cell content and shifted the chain type production from mature to short 

polysaccharide chains (Stadthagen, Sambou et al. 2007). MSMEG_2349 is an ortholog of 

Rv3031, with MSMEG_2349 and Rv3031 encoding proteins sharing 80% sequence 

identity for 99% sequence coverage (Kapopoulou, Lew et al. 2011). This suggested that 

Rv3031 might be implicated in MGLP production, however unequivocal functional 

evidence is still needed. The Rv3031 gene displays sequence similarity with enzymes 

from the glycoside hydrolase family 57 (GH57) (CAZy database, 

http://www.cazy.org/Glycoside-Hydrolases.html). Within GH57 there are two structurally 

characterized enzymes that catalyse α-(1→6)-branching points in polysaccharides (EC 

2.4.1.18). These proteins are produced by Thermococcus kodakaraensis (Murakami, 

Kanai et al. 2006, Santos, Tonoli et al. 2011) and Thermus thermophilus (Palomo, Pijning 

et al. 2011) and with which Rv3031-encoding protein displays 30 and 34% sequence 

identity, respectively. Although the sequence identity is relatively low, the overall structure 

and function are usually better preserved. Therefore, Rv3031 is a potential candidate for 

α-(1→6)-DGG synthesis. The proposed mechanism for the T. thermophilus branching 

enzyme suggests that this enzyme acts on α-(1→4)-linked polysaccharide, hydrolysing 

the α-(1→4)-linkage and promoting a new α-(1→6)-linkage between the same sugar units 

(Palomo, Pijning et al. 2011). If the Rv3031-encoding enzyme catalyses the α-(1→6)-

DGG formation through an identical mechanism, it is likely that a α-D-glucopyranosyl-

(1,4)-α-D-glucopyranosyl-(1,2)-D-glycerate (α-(1→4)-DGG) molecule precedes the 

reported α-(1→6)-DGG. 
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In close vicinity to Rv3031 and Rv3032, there are three additional genes coding for two 

putative S-adenosylmethionine-dependent methyltransferases (Rv3030 and Rv3037c) 

and one putative acyltransferase (Rv3034c), which are also likely to play a role in MGLP 

biosynthesis (Stadthagen, Sambou et al. 2007). Analysis of gene essentiality by Himar1-

based transposon mutagenesis indicated that Rv3030 (Sassetti, Boyd et al. 2003, Griffin, 

Gawronski et al. 2011, DeJesus, Gerrick et al. 2017) and Rv3034c (Griffin, Gawronski et 

al. 2011, DeJesus, Gerrick et al. 2017) are essential for mycobacterial in vitro growth. 

Although Rv3037c was considered non-essential for mycobacterial in vitro growth 

(Sassetti, Boyd et al. 2003, DeJesus, Gerrick et al. 2017), this gene was predicted to be 

required for mycobacterial survival in macrophages (Rengarajan, Bloom et al. 2005). 

Recently, the function of gene Rv2418c (adjacent to the GpgP-encoding gene) was 

elucidated by in vitro analysis of the activity of recombinant protein orthologs from M. 

smegmatis and M. hassiacum (Maranha, Moynihan et al. 2015). This gene encodes an 

acyltransferase, named octanoyltransferase (OctT), that transfers in vitro the ester groups 

from octanoyl- and hexanoyl-CoA preferentially to the α-(1→6)-DGG (Maranha, Moynihan 

et al. 2015). Since methylation of MGLP was only observed for partially acylated gluco-

oligosaccharides (Grellert and Ballou 1972), OctT may be responsible for the initial 

acylation of the polysaccharide required for 6-O-methylation to occur. Although gene 

Rv2418c was considered essential for mycobacterial in vitro growth (Sassetti, Boyd et al. 

2003, Griffin, Gawronski et al. 2011), a more recent study reported only an in vitro growth 

defect for a Rv2418c-disrupted strain (DeJesus, Gerrick et al. 2017).  

An octanoyl group was previously suggested to be present at the glycerate moiety of 

MGLP (Smith and Ballou 1973), however the analysis of the reaction product obtained in 

vitro by OctT showed that octanoate was added to the O6 atom of the second glucose unit 

of α-(1→6)-DGG (Maranha, Moynihan et al. 2015). The presence of octanoate at atom O6 

may impair the addition of a new α-(1→6)-linked glucose, directing to α-(1→4)-glucan 

elongation. Distinct acyl groups were initially proposed to be added to MGLP by a single 

enzyme, however the same report showed that octanoyl-CoA is a poor substrate for the 

acetyltransferase enzyme preparation analysed (Tung and Ballou 1973). In contrast, OctT 

displays in vitro significantly lower efficiency for shorter chain fatty acids (Maranha, 

Moynihan et al. 2015). Altogether, these studies suggest that more than one 

acyltransferase may be required for MGLP maturation. As previously mentioned, the 

Rv3034c gene is likely to encode an acyltransferase, and due to its localization in the 

mycobacterial genome its transcription may occur simultaneously to other MGLP 
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biosynthetic enzymes. Therefore, Rv3034c is a promising candidate for catalysing an 

acylation reaction other than octanylation using MGLP as acceptor substrate. 
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Figure 1.5 – Proposed pathways for MGLP biosynthesis. The GpgS-GpgP and TreS-Mak-GlgE 

pathways are highlighted in blue and wheat, respectively. The enzymes catalysing the indicated 

reactions and their encoding genes are in bold and italic, respectively. The genes with question 

marks were proposed to be involved in the corresponding reaction. Essential genes are coloured 

red. Enzymes marked with an asterisk were characterized structurally. The glycosylation, 

methylation and most of the acylation reactions occur at unknown stages of MGLP biosynthesis. 

Methyl and acyl groups [octanoate (R1), succinate (R2), and acetate, propionate and isobutyrate 

(R3)] are coloured in green and blue, respectively. A GgH, apparently restricted to rapid-growing 
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mycobacteria, may be responsible for GG recycling (dashed line). The enzymes structurally 

characterized in this thesis are in dotted squares. The abbreviations are: 3-PGA, 3-

phosphoglyceric acid; α-(1→4)-GT, α-(1→4)-glucosyltransferase; α-(1→6)-DGG, α-(1→6)-

diglucosylglycerate; β-(1→3)-GT, β-(1→3)-glucosyltransferase; AcT, acetyltransferase; GG, 

glucosylglycerate; GgH, glucosylglycerate hydrolase; glucose-1P, glucose-1-phosphate; GPG, 

glucosyl-3-phosphoglycerate; GpgP, glucosyl-3-phosphoglycerate phosphatase; GpgS, glucosyl-3-

phosphoglycerate synthase; maltose-1P, maltose-1-phosphate; Mak, maltokinase; MeT, 

methyltransferase; OctT, octanoyltransferase; TreS, trehalose synthase; SAM, S-

adenosylmethionine; SAH, S-adenosyl-homocysteine. Adapted from (Mendes, Maranha et al. 

2012, Alarico, Costa et al. 2014, Maranha, Moynihan et al. 2015). 

 

1.2.3.3. Alternative pathway  

An alternative pathway for MGLP biosynthesis has also been hypothesized, starting with 

the disaccharide trehalose (Figure 1.5) (Kalscheuer, Syson et al. 2010). This pathway 

seems to be controlled by three genes: Rv0126, Rv0127, and Rv1327c, coding for a 

trehalose synthase (TreS), a maltokinase (Mak), and a maltosyltransferase (GlgE), 

respectively. Three studies have evaluated the essentiality of these genes by Himar1-

based transposon mutagenesis (Sassetti, Boyd et al. 2003, Griffin, Gawronski et al. 2011, 

DeJesus, Gerrick et al. 2017). While Rv1327c was considered an essential gene for 

mycobacterial in vitro growth in all these studies, the essentiality of Rv0126 and Rv0127 

was only reported by two (Sassetti, Boyd et al. 2003, Griffin, Gawronski et al. 2011) and 

one (Griffin, Gawronski et al. 2011) of them, respectively. An in vivo study linked the 

Rv1327c essentiality to the accumulation of toxic levels of maltose-1-phosphate (maltose-

1P) in a Rv1327c-deleted mutant (Kalscheuer, Syson et al. 2010). 

This alternative pathway involves three enzymatic steps, including the conversion of 

trehalose into maltose by TreS (Figure 1.6B) (Caner, Nguyen et al. 2013, Miah, Koliwer-

Brandl et al. 2013), followed by maltose phosphorylation by Mak (Figure 1.6C) (Mendes, 

Maranha et al. 2010, Roy, Usha et al. 2013, Li, Guan et al. 2014, Fraga, Maranha et al. 

2015) and finally the transference of the maltose moiety from maltose-1P to the non-

reducing end of α-1,4-glucans by GlgE (Figure 1.6D) through an α-retaining catalytic 

mechanism (Kalscheuer, Syson et al. 2010, Syson, Stevenson et al. 2011, Lindenberger, 

Veleti et al. 2015). This alternative pathway is dispensable for viability and virulence as 

long as the GpgS-GpgP pathway is functioning. Indeed, the simultaneous inhibition of 

both pathways proved to be lethal for M. tuberculosis H37Rv (Kalscheuer, Syson et al. 

2010). GlgA, one of the candidates for MGLP elongation (section 1.2.3.2), was recently 
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demonstrated to catalyse the formation of maltose-1P using ADP-glucose and glucose-1-

phosphate (glucose-1P) as donor and acceptor substrates, respectively (Koliwer-Brandl, 

Syson et al. 2016). Furthermore, GlgA was clearly more efficient in catalysing the 

formation of the maltose-1P than in elongating the non-reducing ends of glycogen using 

ADP-glucose as a donor substrate, suggesting that mycobacterial GlgA may play only a 

minor direct role in α-glucan elongation (Koliwer-Brandl, Syson et al. 2016).  

The gene coding for GlgE is adjacent to a gene encoding an α-1,6-branching enzyme 

(Rv1327c) that is also suspected to be implicated in MGLP pathway. This glycogen 

branching enzyme, named GlgB (EC 2.4.1.18), catalyses the introduction of α-(1→6)-

linked branches into linear α-1,4-glucans. Its coding gene was found essential for 

mycobacterial survival (Sambou, Dinadayala et al. 2008) and later on, its essentiality was 

linked to the intracellular accumulation of maltose-1P (Kalscheuer, Syson et al. 2010, 

Miah, Bibb et al. 2016). It was hypothesized that in the absence of GlgB, the activity of 

GlgE is limited by the availability of acceptor substrate, leading to toxic build-up of 

maltose-1P (Kalscheuer, Syson et al. 2010).  

The assembly mechanism of α-glucans by GlgE and GlgB was proposed recently 

(Rashid, Batey et al. 2016). According to this mechanism, the polysaccharide synthesis is 

initiated by GlgE and its donor substrate maltose-1P. GlgE yields a linear polysaccharide 

sufficiently long (16 sugar units) for GlgB to introduce a branch. The branching by M. 

tuberculosis GlgB seems to be strictly intrachain. After branching, GlgE preferentially 

extends the new chain until it is long enough to undergo a new GlgB branching. These 

simultaneous events generate the arboreal structure of the α-glucans. The length of α-

glucans is likely controlled by the ability of GlgE to catalyse a disproportionation reaction 

through maltosyl transference between malto-oligosaccharides. The M. tuberculosis GlgB 

transfers maltosyl units from a donor to an acceptor polysaccharide, both at least four 

sugar units long (Kalscheuer, Syson et al. 2010). During MGLP biosynthesis, the activity 

of GlgB may be limited by the methyl and acyl groups introduced at atom O6 of the 

glucose units. 
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Figure 1.6 – Three-dimensional structure of mycobacterial GpgS, TreS, Mak and GlgE. The α-

helices and β-strands of M. tuberculosis GpgS (A, PDB accession code 3E26), M. smegmatis TreS 

(B, PDB accession code 3ZO9), M. tuberculosis Mak (C, PDB accession code 4O7O) and M. 

tuberculosis GlgE (D, PDB accession code 4U33) are represented by cylinders and flat arrows, 

respectively. Oligomerization is highlighted in different colour shades. 

 

1.2.3.4. GG bioversatility and potential roles 

Glucosylglycerate, one of the earlier intermediates in MGLP biosynthesis, is widespread 

among microorganisms. At least four distinct GG-containing molecules are known, 

including MGLPs, α-(1→6)-DGG, mannosylglucosylglycerate (MGG) and GG-containing 

glycolipids (Nunes-Costa, Maranha et al. 2017). The first GG-containing molecules to be 

described were the MGLPs (Lee 1966), which have been isolated from several species of 

Mycobacterium, Nocardia and Streptomyces genera (Table 1.2). α-(1→6)-DGG, also a 

precursor of the mycobacterial MGLPs, was found in the hyperthermophilic bacterium 

Persephonella marina, which seems to accumulate α-(1→6)-DGG as a response to salt 

stress (Lamosa, Rodrigues et al. 2013). Up to now, GG-containing glycolipids were only 

isolated from Nocardia caviae (Pommier and Michel 1981). The most recently discovered 

GG-containing molecule, MGG, was detected for the first time in thermophilic anaerobic 

bacterium Petrotoga miotherma (Jorge, Lamosa et al. 2007) and later in Petrotoga mobilis 

and mesophilic Rhodopirellula baltica (Fernandes, Mendes et al. 2010, d'Avo, Cunha et 

al. 2013). Two pathways for MGG production in P. mobilis was proposed and one of which 

uses GG as a precursor molecule (Fernandes, Mendes et al. 2010). 

GG is also considered a compatible solute that can be accumulated intracellularly even at 

very high levels without affecting the cell functions (Empadinhas and da Costa 2011). 

Free GG was found in diverse organisms and its accumulation proposed as a strategy to 

cope with salt stress and nitrogen starvation. In the cyanobacterium Synechococcus 

PCC7002 (formaly known as Agmenellum quadruplicatum), the intracellular GG levels 

were shown to increase during growth in nitrogen poor medium, pointing for the novel role 
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of GG during nitrogen starvation (Kollman, Hanners et al. 1979). Later, the accumulation 

of GG in this species was also associated with salt stress and shown to be considerable 

stimulated by salt stress and nitrogen starvation combined (Engelbrecht, Marin et al. 

1999, Klahn, Steglich et al. 2010). Similarly, in the marine cyanobacterium 

Prochlorococcus marinus the accumulation of GG during growth in high salinity medium 

was exacerbated by low nitrogen availability (Klahn, Steglich et al. 2010). Interestingly, 

both Synechococcus spp. and P. marinus accumulate glutamate when nitrogen is 

available, however when nitrogen is limited the intracellular glutamate is reduced and 

replaced by the negatively charged GG (Klahn, Steglich et al. 2010). The planctomycete 

Gimesia maris also replaces the glutamate with GG as main anionic solute when growing 

under high salt and low nitrogen conditions (Ferreira, Soares et al. 2016). The 

accumulation of GG instead of glutamate in hypertonic and nitrogen-deficient medium was 

also observed for the marine α-proteobacterium Dinoroseobacter shibae (Kleist, Ulbrich et 

al. 2017).   

Although in the previous examples both nitrogen scarcity and osmotic pressure were 

necessary to induce significant GG accumulation, in Hydrogenothermus marinus and 

Mycobacterium spp. that was not observed. In H. marinus the salt stress was shown to be 

sufficient to trigger the accumulation of GG (Beblo-Vranesevic, Galinski et al. 2017). On 

the other hand, in M. smegmatis and M. hassiacum the accumulation of GG occurred 

under nitrogen starvation and was shown to be independent on osmotic pressure 

(Behrends, Williams et al. 2012, Alarico, Costa et al. 2014). In M. smegmatis, the 

accumulation of GG was linked to the up-regulation of GpgS encoding gene 

(MSMEG_5084) that catalyzes the first step of GG synthesis (Behrends, Williams et al. 

2012). In agreement, a gpgS deleted mutant, unable to produce detectable amounts of 

GG, showed a slight reduction in growth rate under nitrogen-limiting conditions compared 

to wild-type (Behrends, Williams et al. 2012). Although GG seems not essential for 

mycobacterial survival under low nitrogen, the phenotypic effect observed suggest that it 

may contribute for bacterial fitness in diverse environmental situations. 

In vitro, GG was shown to increase the thermostability of proteins and prevent the loss of 

activity for a number of enzymes (Faria, Mingote et al. 2008, Sawangwan, Goedl et al. 

2010, Sato, Kitamoto et al. 2014). Additionally, GG also displays a protective effect 

against DNA scission (Sato, Kitamoto et al. 2014). Thus, the accumulation of intracellular 

GG may increase the stability of macromolecules, such as nucleic acids and proteins, 

fundamental for keeping cell viability until improvement of the environmental conditions. 
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1.2.3.5. GG recycling 

The GG stored during mycobacterial growth under nitrogen limited conditions was shown 

to decrease when the nitrogen availability was restored (Alarico, Costa et al. 2014). The 

reduction of intracellular GG in M. hassiacum was linked to the up-regulation of a gene 

encoding for a glucosylglycerate hydrolyse (GgH, EC 3.2.1.-) that catalyses in vitro the 

hydrolysis of GG to glucose and glycerate (Alarico, Costa et al. 2014). Therefore, GgH 

seems to contribute for recycling the accumulated GG, allowing the assimilation of the 

metabolite when nitrogen availability is restored, and the rapid energy mobilisation 

required for cell growth and division.  

Although no information is available regarding the importance of GgH for bacterial survival 

and pathogenicity, this enzyme is highly conserved among rapid-growing mycobacteria 

and members of related genera, reflecting its evolutive importance. On the basis of its 

amino acid sequence, GgH is grouped into the glycoside hydrolase family 63 (GH63). In 

Chapter 3, the three-dimensional structure of recombinant M. hassiacum GgH (MhaGgH) 

is presented, highlighting its molecular determinants of substrate specificity. An overview 

of glycoside hydrolases classification, structural features and mechanism of reaction is 

given in section 1.4. 
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1.3. Histidine phosphatases 

The histidine phosphatases are found in both prokaryotic and eukaryotic organisms, 

forming a group with an impressive range of activities, including regulatory and signalling 

functions (Rigden 2008). These proteins share a small RHG motif at the beginning of their 

amino-acid sequence, whose histidine is transiently phosphorylated during the catalytic 

reaction (see section 1.3.1) (Rigden 2008).  

The histidine phosphatase superfamily (clan ID CL0071) of the Pfam database (Finn, 

Coggill et al. 2016) hosts all histidine phosphatases. However, due to their sequence 

divergence, histidine phosphatases are subdivided into two branches, named branch 1 

(Pfam family ID PF00300) and branch 2 (Pfam family ID PF00328). In the present version 

of the Pfam database (Pfam 31.0, March 2017, http://pfam.xfam.org/), branch 1 is 

composed mainly of prokaryotic proteins (17027 prokaryotic sequences against 9272 

eukaryotic sequences), whereas branch 2 contains a higher number of eukaryotic 

members (5975 eukaryotic sequences against 305 prokaryotic sequences).  

The development of bioinformatics tools allowed the fast annotation of the genomic data 

produced over the years. However, automated genome annotation tools are also prone to 

mis- and over-annotation (Friedberg 2006). The sequence and functional diversity of the 

histidine phosphatase superfamily represent a particular challenge. Also, since the 

histidine phosphatase superfamily has a mutase-dominated history, many members found 

in the genomes have been annotated as mutases (see section 3.3), when phosphatase 

activity is much more likely (Rigden 2008). Thus, the functional and structural 

characterization of these enzymes is essential to validate the annotated function and 

optimize future annotations by increasing knowledge regarding structure-function 

relationships. 

 

1.3.1. Mechanism of reaction 

The catalytic activity of histidine phosphatases is centred in the phosphorylation and 

dephosphorylation of a highly conserved histidine (Figure 1.7) usually localized closer to 

the N-terminus, immediately after the first β-sheet.  

The transference of the phosphoryl group from the substrate to the enzyme is aided by 

several surrounding residues, which are responsible for holding the phosphoryl group 

during the course of reaction (Wang, Liu et al. 2006). These residues include a pair of 
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arginines and an additional histidine that are highly conserved among the members of the 

histidine phosphatase superfamily (Rigden 2008). Additionally, a highly conserved glycine, 

occasionally replaced by an alanine, is part of the well-known and characteristic RHG 

motif. This residue forms a hydrogen bond via its carbonyl group with the catalytic 

histidine side chain, important for keeping it in an appropriate position for catalysis. The 

phosphate pocket also contains other less conserved residues (represented as PP in 

Figure 1.7) involved in additional phosphoryl group interactions, including an asparagine 

(Hamada, Kato et al. 2005) and a glutamine (Rigden, Littlejohn et al. 2003). 

Other important component of the catalytic machinery is the proton donor, required to 

donate a proton to the leaving group of the substrate upon the transference of the 

phosphoryl group to the catalytic histidine. Most of the branch 1 members have a 

glutamate as proton donor (Lin, Li et al. 1992), however is was predicted that in other 

members an aspartate is likely to perform this function (Hamada, Kato et al. 2005). 

Although for the branch 2 members it is consensus that the proton donor is an aspartate 

(Ostanin and Van Etten 1993), an histidine residue was proposed to act as secondary 

proton donor (Lee, Cottrill et al. 2003). The proton donor is usually localized shortly after 

strands β1 or β3 in branch 1, or β4 in branch 2 members. 
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Figure 1.7 – Schematic representation of the catalytic mechanism of histidine phosphate superfamily members. The catalytic histidine residue becomes 

phosphorylated during the course of the reaction, while the surrounding residues interact electrostatically with the phosphoryl group. Neutral or positively 

charged residues (PP) may also contribute for phosphoryl group stabilization by hydrogen bonding. The proton donor (PD), an aspartate or glutamate, is 

indicated. Adapted from (Rigden 2008). 
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1.3.2. Vanadate as transition-state mimic 

The identification of the residues involved in substrate binding and catalysis is usually 

performed by engineered site-specific amino acid substitutions and/or by structure 

determination in complex with substrates, substrate analogues or inhibitors. 

In general, phosphatases are inhibited by oxometalate anions such as arsenate, 

molybdate, tungstate and vanadate, which are often described as phosphate analogues 

(Dennis Chasteen 1983, Zhang, Zhou et al. 1997, Foster, Young et al. 1998, Reiter, White 

et al. 2002, Hamada, Kato et al. 2005, Peck, Sunden et al. 2016). Among these 

compounds, vanadate is the most commonly used due to its structural and chemical 

similarities to phosphate and to its high binding affinity (Crans, Smee et al. 2004). 

Vanadate and phosphate are structural analogues of similar size, displaying 

circumscribing spheres of 125 and 105 Å3, respectively (Rehder 2013). The most 

significant difference between vanadate and phosphate is the ability of vanadate to easily 

reach a stable penta-coordination, commonly in a trigonal bi-pyramidal geometry, while 

this type of coordination is just a transition state in the case of phosphate (Crans, Tarlton 

et al. 2014, Rehder 2015). Thus, vanadate can mimic the transition-state of the 

phosphoryl group transfer, by forming a stable complex with the catalytic residue (Figure 

1.8). Moreover, the formation of this complex leads to enzyme inhibition since the active 

site is no longer accessible to the substrate.  

Vanadate is thus a powerful tool for the structural study of phosphatases in general 

(Davies and Hol 2004). In one hand, vanadate is able to form a highly stable complex with 

the enzyme and mimic the transition-state of phosphoryl group transfer, allowing the 

identification of the residues involved in substrate binding and providing information about 

the enzyme mechanism. On the other hand, its high affinity of binding is important to 

promote the fast formation of stable complexes, increasing the molecular homogeneity 

necessary to produce high quality and easily interpretable structural data.  
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Figure 1.8 – Analogy between phosphate and vanadate. Penta-coordinated species produced by 

the interaction of phosphate (A) and vanadate (B) with a histidine residue. Phosphate forms a labile 

transition state, symbolized by a dashed bond between phosphorus and nitrogen atoms, whereas 

vanadate forms a stable complex. Adapted from (Rehder 2015).  

 

1.3.3. Histidine phosphate mutases 

Although most histidine phosphatases are responsible for the simple removal of a 

phosphoryl group from the substrate (EC 3.1.3.-), other members can act as mutases (EC 

5.4.2.-) (Rigden 2008). The phosphatase mutases (PGMs) are divided in two groups, 

named monophosphoglycerate mutases (mPGMs) and bisphosphoglycerate mutases 

(bPGMs), based on the number of phosphoryl groups in the reaction product glycerate. 

Since mPGMs may or not require 2,3-bisphosphoglycerate as initiator of the reaction, they 

are also subdivided into 2,3-bisphosphoglycerate dependent (dPGM) and 2,3-

bisphosphoglycerate independent PGMs (iPGMs), respectively. 

While mPGMs catalyse the interconversion between 2-phosphoglycerate and 3-

phosphoglycerate (EC 5.4.2.11, dPGMs; EC 5.4.2.12, iPGMs), bPGMs are involved in the 

production of 2,3-bisphosphoglycerate from 1,3-bisphosphoglycerate (EC 5.4.2.4). The 

activity of dPGMs and bPGMs is interconvertible, although at a much lower reaction rate 

(Fothergill-Gilmore and Watson 1989).  

The difference between mutases and phosphatases is the ability of the former to keep the 

intermediates in the active site, allowing their reorientation and protecting the 

phosphorylated enzyme from hydrolysis (Rigden 2008). This protection is likely promoted 

by the C-terminal tail. Indeed, its removal was associated to a reduction of the mutase 

activity (Walter, Nairn et al. 1999). Moreover, the structure of the C-terminal tail was only 
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determined for the phosphorylated form of dPGMs and found to interact with the residues 

implicated in substrate binding (Bond, White et al. 2001, Rigden, Littlejohn et al. 2003). 
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1.4. Glycoside hydrolases 

Glycoside hydrolases (GHs), also known as glycosidases or glycosyl hydrolases (EC 

3.2.1.-), are enzymes that catalyse the hydrolysis of the glycosidic linkage of glycosides 

(Figure 1.9), producing a hemiacetal or hemiketal sugar and the corresponding free 

aglycon (Withers and Williams 2017).  

 

 

 

 

 

 

Figure 1.9 – General reaction catalysed by a glycoside hydrolase. Adapted from (Withers and 

Williams 2017). 

 

These enzymes act on a variety of carbohydrates, and due to their ubiquity in nature, GHs 

are of high interest in human health and disease, as well as in biotechnology industries. 

GHs form a diverse group of enzymes that are classified based on their amino acid 

sequence and according to the Carbohydrate-Active Enzymes (CAZy) database system 

(http://www.cazy.org/Glycoside-Hydrolases.html) (Lombard, Golaconda Ramulu et al. 

2014). Up to date, GHs are divided into 149 families (numbered from 1 to 149), and 

approximately one-third of the total number of families are grouped into 17 clans (named 

from GH-A to GH-Q), highlighting their folding similarities.  

 

1.4.1. Mechanisms of reaction 

The gross mechanisms of GHs were first proposed more than 60 years ago (Koshland 

1953), remaining largely true today. The hydrolysis of the glycosidic bond occurs via a 

general acid catalysis, involving two critical residues, an acid and a nucleophile/base 

(Koshland 1953). The reaction consists in the nucleophilic substitution at the anomeric 

carbon by two possible mechanisms, named retaining and inverting mechanism according 

to the stereochemical outcomes for the hydrolysis of the glycosidic bond (Koshland 1953). 

While the retaining mechanism leads to the overall conservation of the anomeric 

configuration, the inversion mechanism induces its inversion (see sections 1.4.1.1. and 
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1.4.1.2. for details). Therefore, GHs are also classified into retaining and inverting GHs 

according to the type of hydrolysis mechanism used. 

The increasing knowledge on GHs reaction mechanism has been promoted by the 

structural analysis of GHs and of their complexes with ligands. In addition to the vast 

number of GHs that operate by the classical Koshland retaining and inverting 

mechanisms, a growing number of enzymes acting on glycosides by slightly different to 

new mechanisms are coming to light (see section 1.4.1.3. for more details). 

 

1.4.1.1. Classical inverting mechanism 

The inverting mechanism, thus named due to the inversion of the anomeric configuration 

of the glycosyl group, comprises a single step reaction involving the formation of an 

oxocarbenium ion-like transition state (Figure 1.10A) (Koshland 1953). The reaction 

occurs via the nucleophilic attack by a water molecule, previously activated by a 

negatively charged base, and concomitantly to proton transfer from an acidic residue. This 

reaction involves typically glutamates or aspartates, which are usually separated by 9.0 

and 9.5 Å in α-glycosidases and β-glycosidases, respectively (McCarter and Withers 

1994).  

 

1.4.1.2. Classical retaining mechanism 

The glycoside hydrolysis via a retaining mechanism occurs by a two-step reaction marked 

by the formation of two transition states and the preservation of the anomeric 

stereochemistry (Figure 1.10B) (Koshland 1953). During the first step, the nucleophilic 

attack is performed directly by an amino acid residue (nucleophile) to the anomeric 

carbon, concomitantly to proton transfer from the acidic residue to the glycosidic oxygen. 

The first oxocarbenium ion-like transition state is formed. As soon as the glycosidic 

oxygen is protonated, the aglycon is displaced whereas the glycosyl group remains 

covalently bound to the nucleophile. Due to the formation of this glycosyl-enzyme 

intermediate, this step is often referred as glycosylation step.  

In a second reaction step, the residue previously acting as acid, is now negatively charged 

and acts as a base, activating a water molecule. The activated water performs a 

nucleophilic attack against the anomeric carbon of the glycosyl group and the second 
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oxocarbenium ion-like transition state forms. Once the glycosydic oxygen becomes 

protonated, the glycosyl group is released. At the end of the reaction, the charge of the 

nucleophile and the protonation state of the acid are re-established. The retaining 

mechanism usually involves glutamates and aspartates as catalytic residue, which are 

closer (~4.8 and 5.3 Å for α-glycosidases and β-glycosidases, respectively) than those of 

inverting GHs (McCarter and Withers 1994). 

 

1.4.1.3. Variations of the classical retaining mechanism 

A variation of the classical retaining mechanism was found among myrosinases, S-

glycosidases responsible for hydrolysing the plant anionic 1-thio-β-D-glucosides 

(glucosinolates) and whose products of reaction were linked to plant defence (Bones and 

Rossiter 1996, Cottaz, Henrissat et al. 1996). Although belonging to the GH family 1 

(GH1), myrosinases are unusual members in this family in that they lack the classical 

acid/base residue (glutamate) at their active site. The catalytic glutamate residue of the 

classical β-glucosidases is replaced by a glutamine in myrosinases that contributes for the 

correct positioning of the nucleophilic water (Burmeister, Cottaz et al. 1997). The 

nucleophilic water seems to be activated by the co-factor ascorbic acid, used by 

myrosinases as an alternative base (Burmeister, Cottaz et al. 2000). 

Another variation was observed on sialidases and trans-sialidases. Sialidases, also known 

as neuraminidases, and trans-sialidases hydrolyse or transfer sialic acids with retention of 

the anomeric configuration (Chong, Pegg et al. 1992, Kao, Lerner et al. 1997, Todeschini, 

Mendonca-Previato et al. 2000). While sialidases are separated into three distinct families 

based on their amino acid sequence similarities (GH33, GH34 and GH83), trans-

sialidases are found in a single GH family (GH33). Despite their amino acid sequence 

differences, they seem to share a common active-site machinery. These enzymes use a 

tyrosine as catalytic nucleophile, instead of the usual acidic residue. Since tyrosine is a 

neutral amino acid, an adjacent base residue (glutamate) is required to enhance its 

nucleophilicity (Watson, Dookhun et al. 2003, Watts, Damager et al. 2003, Amaya, Watts 

et al. 2004). 

Some enzymes, belonging to GH families 18, 20, 25, 56, 84 and 85, hydrolyse substrates 

containing an N-acetyl group at the 2-position. These enzymes lack the catalytic 

nucleophile and use the 2-acetyl group as intramolecular nucleophile, leading to the 

formation of an oxazolinium ion intermediate (Terwisscha van Scheltinga, Armand et al. 
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1995, Drouillard, Armand et al. 1997, Mark, Vocadlo et al. 2001, Vocadlo and Withers 

2005). 

Finally, the two GH families that stand out mechanistically are GH4 and GH109. The 

enzymes from these families are unique among GHs because they require NAD+ for 

catalysis. The mechanism involves elimination and redox reactions, leading to the 

formation of anionic intermediates rather than the oxocarbenium ion-like transition states 

of the classical Koshland mechanisms. In GH4, NAD+ effects a transient oxidation of the 

substrate, whereas a divalent cation, usually Mn2+, stabilizes the negative charges that 

develop during the reaction (Rajan, Yang et al. 2004, Yip, Varrot et al. 2004). Although 

GH109 seems to follow a mechanism very similar to that of the GH4 family, GH109 does 

not require a metal cofactor for its activity (Liu, Sulzenbacher et al. 2007). 
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Figure 1.10 – General glycosidase mechanism for inverting α-glycosidase (A) and retaining α-

glycosidase (B). Adapted from (Withers and Williams 2017). 
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2.1. Introduction 
 

The genus Mycobacterium contains more than 180 species including those belonging to 

the Mycobacterium tuberculosis complex, the causative agents of tuberculosis. Although 

the number of TB deaths has fallen by 26% from 2000 to 2016, TB remains one of the 

top 10 causes of death worldwide (WHO 2017). It is estimated that about one-fourth of the 

world’s population has latent TB infection with 5 to 15% lifetime risk of developing the 

disease (WHO 2017). The increasing number of multidrug resistant and even extensively 

drug-resistant TB strains urges for the identification of novel targets against which efficient 

drugs can be designed. 

Mycobacteria have one of the thickest biological membranes known, rich in complex 

carbohydrates and unique lipids, namely mycolic acids, to which mycobacteria owe much 

of their pathogenicity (Jackson 2014, Jankute, Cox et al. 2015). It has been proposed that 

the biosynthesis of fatty acids, such as mycolic acids, is regulated by intracellular 

polymethylated polysaccharides (Ilton, Jevans et al. 1971, Machida and Bloch 1973, Flick 

and Bloch 1975, Banis, Peterson et al. 1977). Two types of PMPSs are known: the 

methylmannose polysaccharides and the methylglucose lipopolysaccharides (Lee 1966, 

Gray and Ballou 1971). Interestingly, while the two types of PMPSs were found in the 

environmental mycobacteria, MGLPs were the only ones found in slow-growing 

pathogenic mycobacteria, such as M. tuberculosis (Mendes, Maranha et al. 2012).  

The biosynthesis of MGLPs is a complex process that involves different classes of 

enzymes (Mendes, Maranha et al. 2012). The first intervenient enzyme in the MGLP 

biosynthetic pathway is a glucosyl-3-phosphoglycerate synthase (GpgS), and it was also 

the first enzyme to be biochemical and structurally characterized (Empadinhas, 

Albuquerque et al. 2008, Pereira, Empadinhas et al. 2008). GpgS synthesizes in vitro 

glucosyl-3-phosphoglycerate from UDP-glucose and 3-phosphoglyceric acid 

(Empadinhas, Albuquerque et al. 2008). The reaction product of GpgS is the substrate of 

the second intervenient enzyme, glucosyl-3-phosphoglycerate phosphatase. In vitro, this 

enzyme dephosphorylates GPG producing glucosylglycerate (Mendes, Maranha et al. 

2011). 

The gene coding for GpgP is highly conserved among mycobacteria and related genera. 

Although it was reported as non-essential for mycobacterial in vitro growth (Sassetti, Boyd 

et al. 2003), the high conservation of this gene suggests that it may confer an evolutive 

advantage. Indeed, its reaction product, GG, is a compatible solute involved in 

osmoadaptation and a precursor of other molecules such as glycolipids and 
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polysaccharides (Pommier and Michel 1981, Kamisango, Dell et al. 1987, Jorge, Lamosa 

et al. 2007, Empadinhas and da Costa 2011, Behrends, Williams et al. 2012, Alarico, 

Costa et al. 2014, Nunes-Costa, Maranha et al. 2017). The impairment of GG production 

by targeting GpgP activity may reduce the ability of mycobacteria to adapt to a fluctuating 

environment, which is highly important during infection. Therefore, GpgP appears as 

potential target for drug development against mycobacteria infections, including TB. 

Here, the crystallographic structure of a recombinant M. tuberculosis GpgP (MtuGpgP) is 

presented. Moreover, the substrate binding mode of MtuGpgP is also proposed based on 

the structure of its complex with the phosphate mimic vanadate and the product of 

reaction GG. The high resolution of the data allowed the identification of the amino-acid 

residues involved in substrate binding, orientation and catalysis. 
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2.2. Materials and methods 

2.2.1. Expression and purification of recombinant MtuGpgP 

Escherichia coli BL21 (DE3) cells transformed with a pET30a-derived plasmid harbouring 

the optimized Rv2419c gene sequence (Mendes, Maranha et al. 2011) were grown in LB 

medium supplemented with 50 μg mL–1 kanamycin at 37°C to an OD600 of 0.6-0.8. At this 

point, the temperature was decreased to 20°C and expression induced with 1 mM IPTG. 

After 4 h growth, cells were harvested, resuspended in 20 mM sodium phosphate 7.5, 500 

mM NaCl, 20 mM imidazole, 5 mM β-ME (buffer A) and stored at -20°C. Thawed cells 

were stirred gently on ice for 1 h after adding 5 μg mL–1 lysozyme, 5 μg mL–1 DNAse I, 5 

mM MgCl2, 1 mM PMSF and one tablet of cOmpleteTM EDTA-free protease inhibitor 

cocktail (Roche). The protein extract was clarified by centrifugation and loaded onto an 

immobilized metal affinity column (GE Healthcare) loaded with nickel and pre-equilibrated 

with buffer A. Bound MtuGpgP was eluted with 175 mM imidazole in buffer A. Fractions 

containing MtuGpgP protein were pooled and loaded onto a HiPrep 26/60 Sephacryl 200 

(GE Healthcare) size exclusion column using 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 10 

mM DTT as mobile phase. The purest MtuGpgP-containing fractions were dialyzed 

against 50 mM BTP pH 7.0, 50 mM NaCl, 10 mM DTT and concentrated on a 3 kDa cutoff 

ultrafiltration device (Millipore). The concentration of the purified MtuGpgP was estimated 

by measuring the absorbance at 280 nm on a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies). The protein was flash-frozen in liquid nitrogen and kept at -

80°C until needed. 

 
 

2.2.2. Analytical size-exclusion chromatography 

MtuGpgP was analysed by size exclusion chromatography on a Superdex 200 increase 

5/150 GL column (GE Healthcare) pre-equilibrated with 50 mM BTP pH 7.0, 50 mM NaCl, 

10 mM DTT. The column was calibrated using ferritin (400 kDa), aldolase (158 kDa), 

ovalbumin (43 kDa) and ribonuclease A (13.7 kDa) as standards. The Kav vs log MW was 

calculated based on the equation 𝐾𝑎𝑣 =
𝑉𝑒− 𝑉0

𝑉𝑡−𝑉0
, where Ve is the elution volume of the 

protein, V0 is the void volume of the column and Vt is the column bed volume. 
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2.2.3. Differential scanning fluorimetry 

The melting temperature of MtuGpgP was determined by a thermal shift (Thermofluor) 

assay. After centrifugation at 13,000xg and 4°C for 15 min, MtuGpgP (0.2 mg mL–1) was 

mixed with 5x SYPRO Orange (Life Technologies) in 50 mM BTP pH 7.0, 50 mM NaCl, 10 

mM DTT, and loaded in white 96-well PCR plates (Bio-Rad) sealed with Optical-Quality 

Sealing Tape (Bio-Rad). The plate was heated from 25 to 95°C in 0.5°C steps with 30 s 

hold time per step on an iCycler iQ5 Multicolor Real-Time PCR Detection System (Bio-

Rad) and the fluorescence was followed over time using a Cy3 dye filter (545 nm 

excitation, 585 nm emission). The experiment was performed in triplicate. The melting 

curves were analysed using the CFX Manager software (Bio-Rad), and the melting 

temperature determined as the inflexion point of the melting curve.  

 

2.2.4. Chemical synthesis of glucosylglycerate 

The chemical synthesis of glucosylglycerate [GG, 2-O-(α-D-glucopyranosyl)-D-glycerate)], 

was performed by Eva Lourenço and Rita Ventura (Bioorganic Chemistry Group, ITQB – 

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal) as 

previously described (Lourenco, Maycock et al. 2009, Lourenco and Ventura 2011). 

 

2.2.5. Crystallization of MtuGpgP 

Initial crystallization conditions were screened at 293 K using the sitting-drop vapour-

diffusion method with commercial sparse-matrix crystallization screens (Hampton 

Research). The drops consisted of equal volumes (1 μL) of protein (at 13 mg mL–1 in 50 

mM BTP pH 7.0, 50 mM NaCl, 10 mM DTT) and precipitant solution and were equilibrated 

against 300 μL of precipitant. Crystals were obtained after 6 days using solution number 7 

[0.2 M calcium chloride dihydrate, 20% (w/v) PEG 3,350] of PEG/Ion Crystallization 

Screen (Hampton Research) as precipitant. The condition was refined and improved 

crystals were obtained from 15 to 30% (w/v) PEG 3,350 both in presence and absence of 

0.1 M MES pH 6.5 or 6.7. The MtuGpgP-vanadate and MtuGpgP-vanadate-GG 

complexes were obtained by co-crystallization of MtuGpgP with approximately 50-fold 

molar excess of activated sodium orthovanadate (Sigma) and from drops composed of 1 

μL each of protein and precipitant solutions and 2 μL of 10 mM sodium orthovanadate. 

For the MtuGpgP-vanadate-GG complex, protein was previously incubated with a 10-fold 
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molar excess of GG for 1h on ice. Crystals appeared after approximately 15 days, were 

cryo-protected in mother liquor solution supplemented with 15% (v/v) glycerol and were 

flash-cooled in liquid nitrogen. Iodide-containing crystals were obtained from a second 

crystallization condition consisting of 0.2 M sodium iodide, 0.12 M MES pH 6.0, 20% (w/v) 

PEG 6,000. Crystals were cryo-protected in mother liquor solution containing 10% (v/v) 

glycerol and were flash-cooled in liquid nitrogen. The initial MtuGpgP crystallization 

conditions were determined by Fernando Vilela and Sara Fernandes (IBMC, Porto, 

Portugal). 

 

2.2.6. Data collection and processing 

High-resolution data sets were collected from cryo-cooled (100 K) single crystals on a 

PILATUS 6M detector (Dectris) at beamlines ID29 (de Sanctis, Beteva et al. 2012) and 

ID23-1 (Nurizzo, Mairs et al. 2006) of the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France) and PROXIMA-1 of the French National Synchrotron Source (SOLEIL, 

Gif-sur-Yvette, France). All data sets were processed with XDS (Kabsch 2010) and 

reduced with utilities from the CCP4 software suite (Winn, Ballard et al. 2011), except for 

MtuGpgP-vanadate-GG complex data, which were processed using the Grenoble 

Automatic Data ProcEssing pipeline (Monaco, Gordon et al. 2013). X-ray diffraction data 

collection and processing statistics are summarized in Table 2.1. 

 

2.2.7. Structure determination, model building and refinement 

The structure of MtuGpgP was solved by SAD using the anomalous signal from an iodide-

derivative crystal with the SAS protocol of Auto-Rickshaw pipeline (Panjikar, 

Parthasarathy et al. 2005, Panjikar, Parthasarathy et al. 2009). The refined coordinates 

were used as search model to solve the structure of all other MtuGpgP complexes by 

molecular replacement with PHASER (McCoy, Grosse-Kunstleve et al. 2007). Alternating 

cycles of model building with Coot (Emsley, Lohkamp et al. 2010) and refinement with 

PHENIX (Adams, Afonine et al. 2010) were performed until model completion. Refinement 

statistics are summarized in Table 2.2. 
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2.2.8. Analysis of crystallographic structures  

The crystallographic models were superposed with Coot (Emsley, Lohkamp et al. 2010) 

and the secondary structure elements were identified with DSSP (Kabsch and Sander 

1983, Touw, Baakman et al. 2015). The interface area between the monomers was 

determined using PISA (Krissinel and Henrick 2007). The electrostatic potential surface 

was calculated with APBS (Baker, Sept et al. 2001) using the AMBER force field (Cornell, 

Cieplak et al. 1995). Figures depicting molecular models were created using PyMOL 

(Schrödinger). 
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2.3. Results and discussion 

2.3.1. Biophysical analysis and crystallization of MtuGpgP 

Recombinant Mycobacterium tuberculosis GpgP (MtuGpgP) containing a C-terminal 

hexahistidine tag was produced in E. coli and purified to homogeneity by a combination of 

immobilized metal-affinity and size-exclusion chromatography. The purity of MtuGpgP was 

assessed by analytical size-exclusion chromatography and SDS-PAGE (Figure 2.1A and 

B). In SDS-PAGE MtuGpgP migrated with an apparent MW of 25 kDa, which is consistent 

with the theoretical MW of 25.7 kDa. In the analytic size-exclusion chromatography, 

MtuGpgP eluted with an apparent MW of 53.2 kDa, almost twice the theoretical MW of 

monomeric MtuGpgP, suggesting that a dimer may form in solution. 

The thermostability of MtuGpgP was evaluated by differential scanning fluorimetry (Figure 

2.1C). MtuGpgP displays a typical denaturation curve with a clear and sharp temperature 

transition, allowing the straightforward estimation of a melting temperature (Tm) of 44ºC in 

50 mM BTP pH 7.0, 50 mM NaCl, 10 mM DTT. As previously proposed, the Tm of a 

molecule can be used to estimate its crystallization propensity (Dupeux, Rower et al. 

2011). In agreement, the Tm of MtuGpgP suggests that it is likely to crystallize at 293K. 

Thus, initial crystallization experiments were performed at this temperature and high 

quality crystals were obtained from two different crystallization conditions. The first 

crystallization condition yielding crystals used PEG 3,350 as precipitant (Figure 2.1D). The 

second crystallization condition contained sodium iodide and used PEG 6,000 as 

precipitant.  
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Figure 2.1 – Biophysical characterization and crystallization of recombinant MtuGpgP. A – 

Analytical size-exclusion chromatogram. The standards (1, Ferritin; 2, Aldolase; 3, Ovalbumin; 4, 

Ribonuclease A) used for column calibration are indicated by downward black triangles. B – SDS-

PAGE analysis of purified MtuGpgP. The MW of the standards (lane 1) is indicated in kDa to the 

left of the gel. MtuGpgP (lane 2) displays an apparent MW of 25 kDa. C – Melting curve of 

MtuGpgP (solid line) obtained by differential scanning fluorimetry and its first derivative curve 

(dashed line). MtuGpgP displays a melting temperature of 44C in the assay conditions. D – 

Monoclinic crystals of recombinant MtuGpgP belonging to space group C2. 
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2.3.2. Overall structure of MtuGpgP 

Diffraction data were collected from recombinant MtuGpgP crystals at synchrotron 

radiation sources (Supplemental figure S2.1). Crystals obtained from the iodide-containing 

condition and belonging to the monoclinic space group P21 (Supplemental figure S2.2A) 

were measured with 1.5498 Å radiation to maximize the anomalous signal of iodide 

(Supplemental figure S2.3). Two data sets were collected to increase the completeness 

and multiplicity of the data. At this wavelength, the crystals diffracted X-rays to beyond 2.5 

Å resolution (Table 2.1). The phase problem was subsequently solved by single-

wavelength anomalous diffraction (SAD), using the anomalous signal of iodide with the 

SAS protocol of the Auto-Rickshaw pipeline (http://www.embl-hamburg.de/Auto-

Rickshaw/) (Panjikar, Parthasarathy et al. 2005, Panjikar, Parthasarathy et al. 2009). The 

input diffraction data was first prepared and converted for use in the Auto-Rickshaw 

pipeline using programs of the CCP4 software suite (Winn, Ballard et al. 2011). Fifty six 

heavy atom sites were identified using SHELXD (Sheldrick 2010) with CCall and CCweak of 

40.5 and 19.9%, respectively. The correct hand for the substructure was determined using 

ABS (Hao 2004) and SHELXE (Sheldrick 2010), followed by refinement of the 

substructure atom occupancy using BP3 (Winn, Ballard et al. 2011). The twofold NCS 

operator was found using RESOLVE (Terwilliger 2000). Density modification, phase 

extension and NCS-averaging were performed with DM (Cowtan 1994), resulting in a 

FOM of 0.713 and real-space-free-residual of 0.131. A partial α-helical model containing 

49 α-carbons was produced using HELICAP, an ARP/wARP module for tracing helices 

and strands (Langer, Cohen et al. 2008). A partial model, containing 279 out of the total 

944 residues in the asymmetric unit, was finally obtained with BUCCANEER (Cowtan 

2006).  

The partial model was subsequently improved with the MRSAD protocol, which combines 

molecular replacement and SAD phasing. This was performed with PHASER (McCoy, 

Grosse-Kunstleve et al. 2007), which analysed the heavy atom sites based on the starting 

model. Heavy atom occupancy was refined with MLPHARE (Otwinowski 1991) and 

density modification was performed with PIRATE (Cowtan 2000) followed by NCS 

detection and density modification with RESOLVE (Terwilliger 2000). A step of model 

building with SHELXE (Sheldrick 2010) was followed by amino acid sequence docking in 

the SHELXE model using RESOLVE (Terwilliger 2003). The resulting model was refined 

with REFMAC5 (Murshudov, Vagin et al. 1997) and PHENIX (Adams, Afonine et al. 

2010). A final step of model building was performed with BUCCANEER (Cowtan 2006) 

and the model obtained was refined in two steps with REFMAC5 (Murshudov, Vagin et al. 



Chapter 2 

74 

 

1997) and PHENIX (Adams, Afonine et al. 2010). These steps of phasing, model building 

and refinement were performed twice. The resulting model, containing 872 out of the 944 

total amino acid residues, displayed a Rwork of 25.2% and Rfree of 31.6%, with 86.5% of the 

residues in most favoured regions and only 0.4% in disallowed regions. 

The automatically generated model was subsequently improved with alternating cycles of 

manual building with Coot (Emsley, Lohkamp et al. 2010) and refinement with PHENIX 

(Adams, Afonine et al. 2010). The asymmetric unit contained four MtuGpgP monomers 

(named A, B, C and D), corresponding to a Mathews coefficient of 2.18 Å3Da-1 and a 

solvent content of 43.6% (Table 2.1). These four molecules were modelled from Ala3 to 

Ser219 (molecule A) or Ala 216 (molecule D), and from Arg2 to Ala 216 (molecule B) or 

Val218 (molecule C). The polypeptide segment from residues 196 to 202 was not entirely 

modelled for any of the molecules due to the absence of interpretable electron density 

(see Table 2.2 for details). 

Higher resolution data (1.45 Å) were collected from a single cryo-protected crystal, 

belonging to space group C2 (Supplemental figure S2.2B). The phase problem was 

solved by molecular replacement with PHENIX using the coordinates of the lower-

resolution structure as search model. Two molecules were located in the asymmetric unit, 

corresponding to a Matthews coefficient of 2.13 Å3Da-1 and a solvent content of 42.4% 

(Table 2.1). The high-resolution structure was improved with alternating cycles of manual 

building with Coot (Emsley, Lohkamp et al. 2010) and refinement with PHENIX (Adams, 

Afonine et al. 2010). The molecules present in the asymmetric unit, named molecule A 

and molecule B, were modelled from Met1 to His234, and from Met1 to His233, 

respectively (see Table 2.2 for details).  

The MtbGpgP monomer displays an elongated shape and is composed of 6 β-strands (β1 

to β6) arranged into a single twisted β-sheet flanked by 11 α-helices (α1 to α11) (Figure 

2.2). The recombinant MtuGpgP contains an extra helix (α12) induced by the engineered 

C-terminal KLAAALEHHHHHH sequence, which includes a hexahistidine tag preceded by 

a linker to the native MtuGpgP sequence. The strands β1, β2, β3, β4 and β6 run parallel, 

whereas β5 runs antiparallel. An uncommon ψ-loop from amino acid residue 158 to 

residue 189, involving strands β1, β4 and β5, is also present. 
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Table 2.1. Data collection and processing statistics
a
. 

Crystal 
MtuGpgP 

iodide 
MtuGpgP 

MtuGpgP 
vanadate 

MtuGpgP 
vanadate-GG 

Synchrotron Radiation 
Facility 

ESRF ESRF SOLEIL ESRF 

Beamline ID29 ID29 PROXIMA 1 ID23-1 

Wavelength (Å) 1.54980 0.97718 0.97934 0.97934 

Frames 3,600 + 3,600 2,400 1,200 2,600 

Rotation (°) 0.1 0.1 0.2 0.1 

Space Group P21 C2 C2 C2 

Unit Cell Dimensions 

a=97.0 Å; b=46.1 
Å; c=103.2 Å; 

=104.3° 

a=99.0 Å; b=48.8 
Å; c=93.48 Å; 

=104.3° 

a=98.7 Å; b=49.0 
Å; c=93.6 Å; 

=104.0° 

a=98.8 Å, b=48.9 
Å; c= 93.4 Å; 

=103.8° 

Resolution range (Å) 
50.0 – 2.50 

(2.60 – 2.50) 
47.5 – 1.45 

(1.47 – 1.45) 
47.9 – 1.49 

(1.58 – 1.49) 
47.3 – 1.54 

(1.59 – 1.54) 

Reflections 
(measured/unique) 

336,664/27,533 332,291/75,999 300,810/69,647 306,935/63,815 

Completeness (%) 88.7 (49.8) 99.0 (98.9) 98.8 (94.1) 99.3 (98.0) 

Multiplicity 12.2 (7.8) 4.4 (4.4) 4.3 (4.2) 4.8 (4.8) 

Anomalous completeness 87.7 (46.3) - - - 

Anomalous multiplicity 6.3 (4.1) - - - 

Rmerge
b 

0.085 (0.433) 0.082 (1.427) 0.068 (0.900) 0.084 (0.847) 

Rmeas
c 

0.089 (0.464) 0.093 (1.614) 0.077 (1.026) 0.094 (0.947) 

Rp.i.m.
d
 0.025 (0.162) 0.043 (0.739) 0.036 (0.484) 0.041 (0.414) 

Half-set correlation CC1/2 0.999 (0.911) 0.998 (0.506) 0.998 (0.543) 0.998 (0.624) 

Half-set anomalous 
correlation CCAnom 

0.605 (-0.007)    

Mean (I)/ (I) 26.1 (4.3) 8.4 (1.1) 10.2 (1.3) 11.9 (1.8) 

Protomers per asymmetric 
unit 

4 2 2 2 

Matthews coefficient (Å
3
Da

-

1
) 

2.18 2.13 2.14 2.13 

Solvent content (%) 43.6 42.4 42.6 42.4 

Average mosaicity (º) 0.10 0.13 0.11 0.15 
a 
Values in parenthesis correspond to the outermost resolution shell. 

b 𝑅𝑚𝑒𝑟𝑔𝑒 =  ∑  ∑  |𝐼𝑖(ℎ𝑘𝑙) − 〈𝐼ℎ𝑘𝑙〉|𝑖 ℎ𝑘𝑙   ∑ ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖 ℎ𝑘𝑙 ⁄ , where 𝐼𝑖(ℎ𝑘𝑙) is the observed intensity and 〈𝐼ℎ𝑘𝑙〉 is the average intensity of 

multiple observations of symmetry-related reflections. 

c 𝑅𝑚𝑒𝑎𝑠 = ∑ √
𝑛

𝑛−1ℎ𝑘𝑙 ∑ |𝐼𝑖(ℎ𝑘𝑙) − 〈𝐼ℎ𝑘𝑙〉|𝑛
𝑖=1 ∑ ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖ℎ𝑘𝑙⁄ , where 𝐼𝑖(ℎ𝑘𝑙)  is the observed intensity and 〈𝐼ℎ𝑘𝑙〉 is the average intensity 

of multiple observations of symmetry-related reflections. 

d 𝑅𝑝.𝑖.𝑚. = ∑ √
1

𝑛−1
 ∑  |𝐼𝑖(ℎ𝑘𝑙) − 〈𝐼ℎ𝑘𝑙〉| 𝑛

𝑖=1ℎ𝑘𝑙  ∑  ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖 ℎ𝑘𝑙⁄ , where 𝐼𝑖(ℎ𝑘𝑙)  is the observed intensity and 〈𝐼ℎ𝑘𝑙〉  is the average 

intensity of multiple observations of symmetry-related reflections. 
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Table 2.2. Refinement statistics and structure solution. 

Crystal 
MtuGpgP 

iodide 
MtuGpgP 

MtuGpgP 
vanadate 

MtuGpgP 
vanadate-GG 

Resolution range (Å) 50.0 – 2.50 47.5 – 1.45 47.9 – 1.50 47.3 – 1.54 

Rfactor/Free Rfactor (%) 19.0/23.2 17.5/20.0 16.8/20.0 16.7/19.9 

Unique reflections 
(working/test set) 

52,752/2,532 75,971/3,676 69,633/3,430 63,810/3,223 

Completeness 
(working/test) (%) 

88.0/4.8 98.9/4.8 98.8/4.9 99.3/5.1 

Wilson B-factor (Å
2
) 38.2 19.6 20.9 16.8 

Total number of atoms 6,761 4,179 4,212 4,338 

B-factor (Å
2
)     

Overall 48.2 32.6 33.0 26.6 

Protein 48.3 31.4 32.2 25.0 

Ligand 75.8 52.3 22.3 28.2 

Water 42.3 41.4 41.7 36.6 

RMSD     

Bond lengths (Å) 0.009 0.009 0.007 0.009 

Bonds angles () 1.244 1.029 0.845 0.876 

DPI 0.312 0.068 0.074 0.080 

Ramachandran     

Favoured (%) 94.9 97.0 97.6 97.4 

Outliers (%) 1.57 0.86 0.65 0.43 

Polypeptide length  

A: 234 (Ala3 – Ser219) 
B: 232 (Arg2 – Ala216) 
C: 231 (Arg2 – Val218)  
D: 229 (Ala3 – Ala216) 

A: 234 (Met1 – 
His234) 

B: 233 (Met1 – 
His233) 

A: 231 (Met1 – 
His231) 

B: 235 (Met1 – 
His235) 

A: 231 (Met1 – 
His231) 

B: 236 (Met1 – 
His236) 

Polypeptide gaps 
4 (A, B: Trp196 – Ala198; 
C: Ala197 – Phe202; D: 

Trp196 – Ser200) 
0 0 0 

Water molecules 175 472 438 586 

Ligands
a
 Iodide ion 

 
VO4, TVG1, TVG2 

VO4, TVG1, TVG2, 
9WN 

a 
VO4, 9WN, TVG1 and TVG2 correspond to orthovanadate, GG, and trivanadate glycerol 1 and 2, respectively. 
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Figure 2.2 – Structural arrangement of MtuGpgP. A – Topology diagram of recombinant MtuGpgP. 

Secondary structural elements are coloured salmon (α-helices, from α1 to α12) and blue (β-

strands, from β1 to β6) and their boundaries are indicated. C and N-termini are highlighted in 

yellow. The dashed box indicates the secondary structure induced by the engineered C-terminal 

linker and hexahistidine tag. B – Tertiary structure of MtuGpgP coloured as in A. 
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2.3.3. Quaternary structure of MtuGpgP 

 

The quaternary structure of MtuGpgP was initially evaluated by analytical size-exclusion 

chromatography. Since MtuGpgP eluted with an apparent MW twice the theoretical value, 

a dimer was expected to form in solution (see section 2.3.1).  

In agreement, the crystallographic structure of MtuGpgP was analysed with PISA 

(Krissinel and Henrick 2007), which allows the evaluation of the molecular interfaces 

occurring in the asymmetric unit and between the symmetry-related molecules in the 

crystal. The largest molecular interface area was found for the two molecules present in 

the asymmetric unit. Molecules A and B share a total interface area of 904 Å2, which 

corresponds to ~8% of the total surface area of each monomer (Table 2.3). This interface 

contains mainly β6-β6 and β6-α10 interactions (Figure 2.3), predominantly of hydrophobic 

character (Table 2.3). This dimer composed of molecules A and B is probably that formed 

in solution (Figure 2.3).   

 

 

Table 2.3 – Analysis of the quaternary structure of MtuGpgP using PISA (Krissinel and Henrick 

2007). 

  
Total surface area 

(Å
2
) 

Total interface area 
(Å

2
) 

Interaction (No.) 

Hydrogen 
bonds 

Salt bridges 
Non-bonded 

contacts 

Monomer 
A 10,996.2     

B 10,974.9     

Interface A:B  904.0 13 1 103 
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Figure 2.3 – Three-dimensional structure of recombinant MtuGpgP. Homodimeric MtuGpgP is 

shown in two different orientations. Monomers are coloured wheat and blue. The α-helices and β-

sheets are labelled. The engineered C-terminal peptide linker and partially modelled tag are 

represented as sticks. Strand β6 and helix α10 are localized at the interface between the 

monomers. 

 

Homodimeric MtuGpgP displays twofold symmetry with the active sites localized at 

opposite positively charged clefts (Figure 2.4). Each cleft is shaped by both monomers 

and lined by the side chain of arginine and histidine amino acid residues, resulting in an 

overall basic character. The complementary contribution of the monomers for the active 

site clefts suggests that the dimer might be the minimal functional unit of MtuGpgP. 

Indeed, the inability of the individual monomers to perform the dephosphorylation of the 

synthetic substrate p-nitrophenyl phosphate (PNPP) was reported previously (Zheng, 

Jiang et al. 2014).  

The active site cleft of molecule B is larger than that of molecule A, which probably results 

from crystal packing constrains. Indeed, the segment Trp196-Ile205 (Figure 2.4B) of 

molecule A is stabilised by a symmetry-related molecule, forcing a superopen state of the 

active site cleft of molecule B, whereas in molecule B this segment displays higher 

mobility (Supplemental figure S2.4). The superopen state of the active site cleft of 

molecule B is also accompanied by the loss of an hydrogen bond between the carbonyl 

group of Leu181 and the side chain of Arg123, the position of which may be important for 

substrate binding (see section 2.3.4). 
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Figure 2.4 – Electrostatic potential of MtuGpgP surface. A – Solid surface representation of 

dimeric MtuGpgP coloured according to the electrostatic surface potential [contoured from -8kT/e 

(red) to 8kT/e (blue)], highlighting the positively charged active sites (dashed ellipses) and the 

position of the engineered C-terminus. B – Cross section of the MtuGpgP homodimer oriented as 

in A. The catalytic His11 (yellow sticks) is localized at the bottom of the active site cleft (marked 

with an asterisk) flanked by Arg10 and Arg60 (yellow sticks). The entrance to the active sites is 

indicated by the arrows. The molecular surface was coloured by electrostatic potential as in A. 

 

2.3.4. MtuGpgP in complex with vanadate 

In order to understand the molecular details of substrate binding, recombinant MtuGpgP 

was crystallized in the presence of sodium orthovanadate. Vanadate is a phosphate 

analogue that mimics the transition-state of the phosphoryl group transfer, by forming a 

stable complex with the catalytic residue. Here, sodium orthovanadate was used to induce 

the formation of a stable transition-state that could allow the identification of the residues 

involved in phosphoryl group stabilisation and transfer. 
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Several crystals grown in the presence of sodium orthovanadate were measured and 

analysed. The active site of MtuGpgP crystallized with orthovanadate is occupied by a 

large residual electron density, over 6 Å long. The anomalous difference electron density 

map, calculated from data collected at 0.98 Å, reveals three positive difference peaks 

compatible with vanadium atoms (Figure 2.5A). Two peaks are localized close to the side 

chains of His11 and Glu84, suggesting the presence of covalent bonds to these residues 

(see distances in Figure 2.6D). The third peak is equally distant from the other two (3Å), 

suggesting the existence of bonds between them. The superposition of the anomalous 

difference map with the 2Fo-Fc electron density map shows that the vanadium atoms are 

flanked by other atoms, which are likely the oxygens of orthovanadate (Figure 2.5A).  

The anomalous difference peaks assigned to vanadium atoms display distinct heights: the 

histidine-bound vanadium corresponds to the highest peak, with the other two having 

identically lower heights (Figure 2.5A). This may arise from different occupancies of the 

vanadium atoms, suggesting that different species of vanadate may simultaneously exist 

in the active site of different subpopulations of molecules. 

One of the chemical species compatible with the electron density map is a penta-

coordinated vanadate (VO4) bound to His11 Nɛ2 (Figure 2.5B). The interatomic distances 

within VO4 suggest that a double bond may exist between V and O1 or O2 (Figure 2.6A 

and D). When bound to histidine, this oxometalate displays trigonal bipyramidal geometry 

and is a well-known mimic of the much less stable phophohistidine intermediate (Davies, 

Staker et al. 2011, Crans, Tarlton et al. 2014). The VO4-histidine complex is stabilised by 

a complex network of hydrogen bonds with the side chains of Arg10, Asn17, Gln23, 

Arg60, Glu84 and His159, and backbone nitrogen of Gly160 (Figure 2.5B). These 

hydrogen bonds are likely involved in orientation and stabilisation of the substrate 

phosphoryl group during the phosphorylation and dephosphorylation of the catalytic 

histidine. 

The remaining electron density at the active site of MtuGpgP can be explained by the 

presence of a trivanadate glycerol ester. Vanadate may occur as a polymeric structure 

and its cleavage into monomeric species is usually referred as activation (Gordon 1991) 

since it increases vanadate ability to inhibit phosphatases. However, vanadate activation 

is not an irreversible reaction and vanadate can shift back to oligomeric forms, a process 

especially favoured at neutral to acidic pH (Davies and Hol 2004). The presence of a 

trimeric form of vanadate at the active site reveals its tendency to oligomerize in the 

slightly acidic crystallization condition. Also, trivanadate displays higher occupancy 

compared to VO4 (70%), which suggests a relatively higher ability to outcompete for the 
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active site compared to all the other vanadate species that may be present in the solution, 

including the monomeric species VO4. 

Moreover, vanadate esters can form readily in aqueous solution (Crans, Smee et al. 

2004). The trivanadate glycerol ester species proposed to be occupying the active site 

resulted from the reaction between vanadate and glycerol from the crystal cryo-protectant. 

Indeed, the derivatization of vanadate by glycerol is not without precedent and similar 

reactions were observed previously (Rath, Rajak et al. 1998, Davies, Interthal et al. 2002, 

Davies, Staker et al. 2011, Moise, Gallup et al. 2015). In the trivanadate glycerol ester 

(TVG1) molecule, the O1 and O3 atoms of glycerol (GOL) are bound to the V3 and V2 

atoms of trivanadate, respectively (Figure 2.6B). The interatomic distances suggest that 

double bonding is likely to occur between V1 and O1 or O2, V2 and O6, and V3 and O7 

(Figure 2.6B and D). In the active site, TVG1 V1 and V3 are covalently bound to His11 

Nɛ2 and Glu84 Oɛ, respectively (Figure 2.5C). All vanadium atoms are penta-coordinated 

in a trigonal bipyramidal geometry. The interactions with other active site residues are 

comparable to those observed for VO4, except for new water-mediated contacts with the 

side chain of Asn17 and the carbonyl group of Arg21. 

Finally, there is an electron density feature in the vicinity of the TVG1 that suggests the 

presence of a third molecular species at the active site (Figure 2.5C). This third species is 

identical to the previously described trivanadate glycerol ester (TVG1), except for that 

GOL O3 is not bound to V2, being replaced by an additional oxygen atom (Figure 2.5D 

and Figure 2.6C). This third species is here referred as TVG2. 

The glycerol moiety of TVG1 and TVG2 establishes additionally hydrophobic contacts with 

Leu87, Met22, and Trp109. During substrate dephosphorylation, these residues are likely 

to be involved in substrate orientation by creating a hydrophobic surface where the 

glucose ring may lay and be further stabilised by polar contacts with Arg123, His95 and 

Arg110 (Figure 2.5D). 
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Figure 2.5 – Active site content of MtuGpgP crystallized in the presence of sodium orthovanadate. 

A – The 2Fo-Fc electron density map (blue) contoured at 1σ and the anomalous difference map 

(pink) contoured at 5 σ highlight the three anomalous difference peaks assigned to vanadium 

atoms. Catalytic residues are labelled in red. B – Penta-coordinated orthovanadate (VO4) 

covalently bound to His11 and stabilised by a complex network of hydrogen bonds (dashed lines).  

C – Trivanadate glycerol (TVG1) covalently bound to His11 and Glu84 (labelled in red). Vanadium, 

oxygen and carbon atoms of TVG1 are in purple, red and yellow, respectively. Hydrogen bonds are 

represented by dashed lines. The 2Fo-Fc electron density map is contoured as in A. The dotted 

ellipse highlights the electron density feature that suggests the presence of the species in D.  D – 

Trivanadate glycerol (TVG2) covalently bound to His11 and Glu84 (labelled in red). The glycerol 

moiety is oriented by hydrophobic contacts with Met22, Leu87 and Trp109, and stabilised by a 

polar contact with His95. The atoms of TVG2 are coloured as in C. Catalytic residues are labelled 

as in A. The 2Fo-Fc electron density map is contoured as in A. 
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Figure 2.6 – Vanadate species present in the active site of MtuGpgP. A – Orthovanadate (VO4) 

covalently bound to His11 and displaying a trigonal bipyramidal geometry. B and C – Trivanadate 

glycerol ester species (B – TVG1; C – TVG2), obtained from the reaction between vanadate 

(wheat) and glycerol (brown), and covalently bound to His11 and Glu84. All vanadium atoms are 

penta-coordinated with trigonal bipyramidal geometry. D – Interatomic distances in VO4 and TVG 

molecules. The bond type was assigned based on interatomic distances (
a
). The vanadium-oxygen 

double bond in histidine-bonded vanadate can occur with atom O1 or O2 (
b
). 

 

In a previous work, the crystallographic structure of Bacillus stearothermophilus 

phosphatase (PhoE) in complex with trivanadate was reported (Rigden, Littlejohn et al. 

2003). This phosphatase displays 34% amino acid sequence identity with GpgP from M. 

tuberculosis and they share a conserved active site. As for MtuGpgP, the trivanadate 

present in the active site of PhoE is covalently bound to the catalytic residues His10 and 
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Glu83 (PhoE sequence numbering). However, trivanadate was modelled as V3O8 (ligand 

ID VN3), instead of V3O9
2-, with tetra-coordinated vanadium atoms. 

More recently, the structure of a recombinant MtbGpgP in complex with vanadate was 

reported (Zheng, Jiang et al. 2014). Bound vanadate was modelled as metavanadate 

(VO3
2-, ligand ID VO3) covalently bound to the catalytic histidine, and displaying a 

pyramidal geometry. There is also a coordinating water molecule opposed to the histidine, 

suggesting penta-coordination of the vanadium. Moreover, the V-O interatomic distances 

are significantly shorter (1.60 Å) than the distances to His Nɛ2 (2.00 Å) or the water 

molecule (2.25 Å). Given the covalent link to histidine, smaller differences in the 

interatomic distances would be expected.  

The structures of PhoE and MtbGpgP were determined at 2.0 and 2.3 Å resolution, 

respectively (Rigden, Littlejohn et al. 2003, Zheng, Jiang et al. 2014). The electron density 

maps (2Fo-Fc and Fo-Fc) of PhoE generated automatically in Coot (Emsley, Lohkamp et 

al. 2010) from PDB entry 1H2F and those of the MtbGpgP in complex with vanadate (PDB 

entry 4QIH) calculated with PHENIX (Adams, Afonine et al. 2010) after conversion of the 

structure factor file format from the PDB database (Berman, Westbrook et al. 2000) with 

the online SF-tool (http://sf-tool.wwpdb.org/), revealed difficult to interpret residual electron 

density, which may have impaired the correct identification of the ligands. The 

considerably higher resolution (1.49Å) of MtuGpgP-vanadate complex presented here 

allowed a better interpretation of the active site contents. In consequence, the vanadate-

enzyme interaction network can be described in more detail, helping to understand the 

inhibition of phosphatases by vanadate and also elucidating the molecular details of 

phosphoryl group binding and transfer through a reaction intermediate mimic.  

The currently accepted catalytic mechanism for histidine phosphatases involves primarily 

the phosphorylation of a histidine residue simultaneously to proton transfer from a 

glutamate residue to the substrate, followed by histidine dephosphorylation concomitantly 

to the nucleophilic attack of the phosphoryl group by a water molecule previously 

activated by the negatively charged glutamate (see chapter 1 section 1.3.1). In the 

MtuGpgP-vanadate complex, Glu84 is located at a hydrogen-bond distance to the 

negatively charged O4 of VO4, which suggests that it is likely to be protonated and 

hydrogen bound to VO4. During the phosphorylation of His11, Glu84 is at an adequate 

distance to donate a proton directly to the leaving GG. Moreover, the presence of 

trivanadate glycerol molecules covalently bound to Glu84 suggests that this amino acid 

residue may have performed a nucleophilic attack directly to the trivanadate glycerol. The 

presence of orthovanadate and trivanadate glycerol molecules in the active site of 
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MtuGpgP may highlight the ability of Glu84 to shift between protonated and ionized forms, 

suggesting that Glu84 may have a fundamental role in the dephosphorylation reaction. 

 

2.3.5. MtuGpgP in complex with vanadate and GG 

MtuGpgP was also crystallized in the presence of orthovanadate and of the reaction 

product, GG. The main goal was to obtain a ternary complex mimicking the enzyme-

substrate complex. This approach was inspired on a previous work (Davies, Staker et al. 

2011) in which the spontaneous generation of vanadate-3-phosphoglycerate from 

vanadate and 3-phosphoglycerate was observed. Vanadate-3-phosphoglycerate is an 

analogue of 2,3-bisphosphoglycerate, the intermediate of the reaction catalysed by the 

2,3-bisphosphoglycerate-depent PGM from Burkholderia pseudomallei. The vanadate-3-

phosphoglycerate was found covalently bound to the catalytic residue via vanadium atom, 

mimicking the 2,3-bisphosphoglycerate-enzyme intermediate. This transition-state mimic 

allowed the identification of key amino acid residues involves in substrate binding and 

catalysis. 

Although a similar result was expected for MtuGpgP, the substrate analogue glucosyl-3-

vanadate-glycerate was not found in the active site of MtuGpgP. Indeed, the active site of 

MtuGpgP co-crystallized with sodium orthovanadate and GG is occupied by VO4 

alternating with TVG molecules as observed for the MtuGpgP-vanadate complex. 

However, an additional electron density blob compatible with GG at an arginine and 

histidine rich region is present in each active site cleft (Figure 2.7A and B).  

The large electron density blob present at the entrance of the active site of molecule A 

(Figure 2.7A) is difficult to interpret, and is likely to result from different poses of GG. In 

molecule B the electron density blob is smaller and somewhat discontinuous suggesting 

that GG may have lower occupancy in this active site (Figure 2.7B). The different 

occupancy displayed by GG in the active site of molecule A and B is probably due to 

crystal packing constrains. Since the active site of molecule B is in a superopen state, the 

bonding network is probably weaker and thus GG is less frequently observed in this active 

site. In both cases, the electron density present in each cleft is within hydrogen bond 

distance of residues from molecules A and B, which highlights the interdependence of the 

two monomers of MtuGpgP for substrate binding. 

A GG molecule was modelled in the active site of molecule B (Figure 2.7B), establishing 

polar contacts with Arg106 and Arg110 of molecule B, and with Met1, Arg5 and Arg208 of 
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molecule A. Water mediated contacts are also present, involving the residues His95 of 

molecule B, and His195 and Asp210 of molecule A (Figure 2.7C). 

The electron density of GG and surrounding residues suggests a transient interaction, 

compatible with the inward movement of the substrate and the outward shuttling of the 

product from the catalytic pore. Since the glucose moiety seems to be poorly stabilised, 

the negatively charged phosphoryl group of the substrate likely plays an essential role in 

substrate binding and correct orientation. The phosphoryl group-containing substrate is 

likely to be first electrostatically attracted to the positively charged active site cleft. Then, 

transient polar contacts with the glucose moiety of the substrate may be established, 

holding the substrate and allowing its movement to the active site. In the active site, a 

complex network of hydrogen bonds with the phosphoryl group may be finally established, 

ensuring the correct orientation and stabilisation of the substrate necessary for the 

reaction. 
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Figure 2.7 – Structure of MtuGpgP in complex with GG. A and B – Active site clefts of the 

MtuGpgP dimer, highlighting the position of GG (orange) in the active site of molecule B. Molecule 

A (molA) and molecule B (molB) are coloured pale green and teal, respectively. The electron 

density 2Fo-Fc map (blue) was contoured at 1 σ. C – Polar contacts established between GG and 

MtuGpgP residues, revealing the contribution of both monomers for substrate binding. Polar 

contacts are represented as dashed lines. Water molecules (w) are labelled. Molecules A (molA) 

and B (molB) are coloured as in A and B. 
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2.4. Supplemental information 
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Supplemental figure S2.1 – X-ray diffraction patterns from MtuGpgP crystals. The data from the 

iodide-containing crystal (A) and from the higher-resolution diffracting crystal (B) were collected at 

a synchrotron radiation source using 1.55 or 0.98 Å wavelength X-rays, respectively. The 

diffraction patterns in A and B are the result of merging 20 and 5 consecutive 0.1º rotation images, 

respectively. The red circles correspond to the resolution limits indicated. 
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Supplemental figure S2.2 – Unit cell arrangement of MtuGpgP crystals. A – Unit cell content of 

MtuGpgP crystals belonging to space group P21 in two different orientations. The molecules of the 

two asymmetric units are coloured in different shades of blue. The origin of the Cartesian 

coordinate system is indicated as 0. The unit cell a, b and c-axes are indicated and are 97, 46, 

and 103 Å in length, respectively. The angle β (104º) is indicated. B – Unit cell content of 

MtuGpgP belonging to space group C2 in two different orientations. Molecules in the four 

asymmetric units are coloured blue, pale cyan, pale green and wheat. The origin of the Cartesian 

coordinate system is indicated as in A. The unit cell a, b and c-axes are indicated and are 99, 49, 

and 93 Å in length, respectively. The angle β (104º) is indicated. 

  



Chapter 2 

93 

 

Supplemental figure S2.3 – Theoretical scattering coefficients of iodide and vanadium as a 

function of X-ray energy. The theoretical values of fʺ (thick line) and fʹ (thin line) for iodide (red) and 

vanadium (blue) were traced over a range of energies from 5,004 eV (2.47 Å) to 16,000 eV (0.77 

Å). The plot was generated using the online tool X-ray Anomalous Scattering 

(http://skuld.bmsc.washington.edu/scatter/AS_index.html). The X-ray wavelengths used for data 

collection from the iodide-containing crystal (dashed line) and from all other MtuGpgP crystals 

(solid line) are indicated. The theoretical L-I absorption edge of iodide (5,188 eV, 2.39 Å) and K 

absorption edge of vanadium (5,465 eV, 2.27Å) are labelled. 
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Supplemental figure S2.4 – MtuGpgP three-dimensional structure coloured according to the 

atomic B-factor value. The segment Trp196-Ile205 of molecule A (molA) and molecule B (molB) 

displays different values of B-factor due to crystal packing constrains. In molecule A, the segment 

Trp196-Ile205 is stabilised by the neighbour molecule (symmetry operator -x, y, -z) displaying 

lower B-factor values, whereas in molecule B higher B-values are observed due to high mobility. 

Atoms were coloured from minimum to maximum B-factor values with a spectrum of colours from 

dark blue to red, respectively. 
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3.1. Introduction 

In a changing environment the basic requirements for bacterial growth are not always 

available. When exposed to growth-limiting stress, such as desiccation, temperature and 

pH variations, oxidative stress, antibiotics, and nutrient limitations, bacterial populations 

balance between cell death and decreased growth rates (Finkel 2006, Lipworth, 

Hammond et al. 2016). Some of the surviving cells can slow down or suspend their growth 

to a viable non-replicating state that can persist for months or years (Corper and Cohn 

1933). This process, known as dormancy, allows the viable population size to be 

maintained during the period of stress (Jones and Lennon 2010). Despite genetically 

identical to replicating bacteria, dormant cells are more tolerant to external stress, 

including heat and antibiotics (Dhar and McKinney 2007, Eldar and Elowitz 2010, Balazsi, 

van Oudenaarden et al. 2011). 

The dormancy state requires several structural modifications to maintain cell viability, 

including the accumulation of carbon stores (Hosaka and Yamashita 1984, Sillje, Paalman 

et al. 1999, Bourassa and Camilli 2009). Although the type of carbon source varies, the 

main goal seems to be common: to guarantee a rapidly mobilisable energy source to 

promote fast cell proliferation when the environmental conditions improve (Shi, Sutter et 

al. 2010), which is an advantage at the moment of outcompeting neighbouring organisms. 

In mycobacteria, the dormancy state seems to be associated to the accumulation of 

triacylglycerol (Daniel, Deb et al. 2004) and wax esters (Sirakova, Deb et al. 2012). 

However, it was demonstrated that mycobacteria accumulate GG under nitrogen-limiting 

conditions (Behrends, Williams et al. 2012, Alarico, Costa et al. 2014), which are able to 

induce dormancy in M. smegmatis (Shleeva, Mukamolova et al. 2004, Anuchin, Mulyukin 

et al. 2009). In vitro, GG prevented the loss of activity for a number of enzymes 

(Sawangwan, Goedl et al. 2010), suggesting that GG is also likely to contribute for protein 

stability in vivo during a slow-growing or non-replicating phase. In M. smegmatis and M. 

hassiacum, intracellular GG accumulated during nitrogen starvation is quickly depleted 

when nitrogen availability is restored, a reduction associated to the up-regulation of a 

gene coding for a glucosylglycerate hydrolase (GgH) (Alarico, Costa et al. 2014). Although 

no data are available on the role of GgH in bacterial survival, dormancy and infection, the 

high degree of conservation of GgH among rapid-growing mycobacteria and other 

unrelated phyla strongly suggests that the ability to produce this hydrolase is an evolutive 

advantage. Moreover, since it is up-regulated upon relief of the growing-limiting stress, 

GgH is likely to participate in the resuscitation phase of mycobacteria by hydrolysing GG 

into glucose and glycerate (Alarico, Costa et al. 2014) that can be quickly used for energy 
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production and for the synthesis of structural molecules necessary for fast bacterial 

proliferation. 

The antibiotics currently in use for fighting mycobacterial infections mainly counter DNA 

replication or RNA, proteins or cell wall synthesis, indispensable functions for cell growth 

(Kohanski, Dwyer et al. 2010). Since these processes are almost suppressed in dormant 

cells, these are more likely to survive treatment with antibiotics. Indeed, dormant cells 

have been associated to post-treatment relapse and development of genetic resistance 

(Gomez and McKinney 2004, Levin and Rozen 2006). Targeting essential molecules for 

bacterial dormancy and resuscitation, such as potentially GgH, may be a viable path for 

an effective treatment (Lewis 2007, Rittershaus, Baek et al. 2013). 

M. hassiacum GgH (MhaGgH) belongs to the CAZy GH63 family of glycoside hydrolases 

(CAZy database, http://www.cazy.org) (Lombard, Golaconda Ramulu et al. 2014), for 

which only four of more than 1900 assigned members have been structurally 

characterized (Kurakata, Uechi et al. 2008, Barker and Rose 2013, Miyazaki, Ichikawa et 

al. 2015). Although MhaGgH displays only 36% sequence identity to the recently 

characterized MgH from Thermus thermophilus (Tt8MGH) (Miyazaki, Ichikawa et al. 

2015), it catalyses a similar reaction (Alarico, Empadinhas et al. 2013). 

In order to unveil its molecular mechanism of action, a thorough structural and functional 

characterization of MhaGgH was performed, elucidating the quaternary architecture of the 

enzyme and providing an atomic detail view of the determinants of substrate specificity. 
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3.2. Materials and methods 

3.2.1. Cloning and site-directed mutagenesis of the gaMhaGgH 

variants 

The gene encoding MhaGgH was amplified by PCR from a pET-30a-based construct 

(Alarico, Costa et al. 2014) with primers 5’-

TATACGTCTCACATGCCGCACGACCCGAGTTTCAC-3’ and 5’-

CGAATTCTTAGCCCAGCCAGTCGAGCACC-3’ containing recognition sequences for 

BsmBI and EcoRI enzymes (underlined), respectively, and cloned into the NcoI/EcoRI 

restriction sites of pETM11, originating the pETM11-MhaGgH expression vector (see 

Table 3.1 for details). 

The point mutants of MhaGgH were obtained by site-directed mutagenesis using 

pETM11-MhaGgH as template and primers 5’-

CACATGTGGAGTTGGGCCGCCGCGTTC-3’ and 5´-

GAACGCGGCGGCCCAACTCCACATGTG-3’ (originating pETM11-D43A), 5’-

GAGTCCGGGATGGCCAACTCG-3’ and 5’-CGAGTTGGCCATCCCGGACTC-3’ 

(originating pETM11-D182A), 5’-TCGTTCGCCGCGTACTACGAA-3’ and 5’-

TTCGTAGTACGCGGCGAACGA-3’ (originating pETM11-E419A), and 5’-

CGTTGGGCAGCATGCAGTTCTCCTGGACC-3’ and 5’-

GGTCCAGGAGAACTGCATGCTGCCCAACG-3’  (originating pETM11-Q434F). 

 

3.2.2. Expression and purification of MhaGgH-His6 and gaMhaGgH 

variants 

E. coli BL21 (DE3) cells transformed with pET30a-MhaGgH (Alarico, Costa et al. 2014), 

pETM11-MhaGgH, pETM11-D43A, pETM11-D182A, pETM11-E419A or pETM11-Q434F 

plasmids were grown in LB medium supplemented with 50 g mL-1 kanamycin at 28°C to 

an OD600 of 0.7-1.0. At this point, the temperature was decreased to 25°C and the 

expression induced with 0.5 mM IPTG. After overnight growth, the cells were harvested, 

resuspended in lysis buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 5 mM MgCl2, 1  μg 

mL-1 DNAse, 0.3 mg mL-1 lysozyme, 1 mM PMSF), and stirred gently on ice for 1 h. The 

protein extracts were clarified by centrifugation, supplemented with 20 mM imidazole, and 

loaded onto immobilized metal affinity columns (Agarose Bead Technologies) loaded with 

nickel and pre-equilibrated in buffer B (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM 
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imidazole). Bound MhaGgH variants were eluted with 100 mM imidazole in buffer B. For 

histidine tagless MhaGgH variants (named gaMhaGgH due to the presence of a Gly-Ala 

dipeptide at the N-terminus of the proteins at the end of the purification procedure), 

MhaGgH-containing fractions were pooled and the hexahistidine tag removed by digestion 

with tobacco etch virus (TEV) protease (1:5 molar ratio) at 4°C concomitantly to an 

overnight dialysis against dialysis buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 0.5 mM 

EDTA, 1 mM DTT). Untagged gaMhaGgH was separated from the hexahistidine tag, 

tagged MhaGgH and TEV protease by a second immobilized-metal affinity 

chromatography step (see above for experimental conditions). The flowthrough containing 

gaMhaGgH was concentrated on 10 kDa cut-off ultrafiltration devices (Millipore) and 

loaded onto a HiPrep 26/60 Sephacryl-200 HR (GE Healthcare) size exclusion column 

using 20 mM Tris-HCl pH 8.0, 400 mM NaCl (storage buffer) as mobile phase. Fractions 

containing gaMhaGgH were pooled and concentrated on a 10 kDa cut-off ultrafiltration 

device (Millipore). For the hexahistidine-tagged MhaGgH variant (MhaGgH-His6), 

MhaGgH-containing fractions from the immobilized-metal affinity chromatography were 

pooled, concentrated and loaded onto the HiPrep 26/60 Sephacryl-200 HR column using 

the same procedure as for gaMhaGgH variants. The size-exclusion chromatography 

fractions containing MhaGgH-His6 were pooled and concentrated as described for 

gaMhaGgH variants. The concentration of the purified proteins was estimated by 

measuring their absorbance at 280 nm. The protein solutions were flash-frozen in liquid 

nitrogen and kept at -80°C until needed. 

 

3.2.3. Expression and purification of selenomethionine-containing 

gaMhaGgH 

E. coli B834 (DE3) cells transformed with pETM11-MhaGgH were grown in 25 mL LB 

medium overnight at 37°C. Cells were collected and washed thrice with sterile deionized 

water and used to inoculate 1 L SelenoMethionine Medium (Molecular Dimensions). The 

culture was grown at 30°C until an OD600 of 0.7-0.8 before inducing expression with 0.5 

mM IPTG. After overnight growth, the cells were harvested, resuspended in lysis buffer, 

and incubated on ice with gentle agitation for 1 h. The protein extract was clarified by 

centrifugation, supplemented with 20 mM imidazole and 5 mM β-ME, and loaded onto an 

immobilized metal affinity column (Agarose Beads Technologies) loaded with nickel and 

pre-equilibrated with buffer B supplemented with 5 mM β-ME. Bound protein was eluted 

with 100 mM imidazole and 5 mM β-ME in buffer B. Fractions containing 



Chapter 3 

103 

 

selenomethionine-labelled gaMhaGgH (SeMet-gaMhaGgH) were pooled and dialysed in 

the presence of TEV protease (1:5 molar ratio) against 50 volumes of dialysis buffer for 2 

h at room temperature followed by an overnight incubation at 4°C. Untagged SeMet-

gaMhaGgH was separated from non-cleaved material and TEV protease by a second 

immobilized-metal affinity step under the same experimental conditions. The flowthrough 

containing the untagged protein was concentrated to 2.3 mg mL-1 in a 30 kDa cutoff 

ultrafiltration device (Millipore) with concomitant buffer exchange to storage buffer 

supplemented with 0.5 mM EDTA and 1 mM DTT. 

 

3.2.4. Analytical size-exclusion chromatography 

Analytical size-exclusion chromatography was performed on a Superdex 200 increase 

5/150 GL column (GE Healthcare) pre-equilibrated with storage buffer. The column was 

calibrated with blue dextran (2,000 kDa), ferritin (440 kDa), aldolase (158 kDa), 

conalbumin (75 kDa), ovalbumin (43 kDa) and ribonuclease A (13.7 kDa) standards. The 

Kav vs log MW was calculated with the equation 𝐾𝑎𝑣 =
𝑉𝑒− 𝑉0

𝑉𝑡−𝑉0
, where Ve is the elution 

volume of the protein, V0 is the void volume of the column and Vt is the column bed 

volume. 

 

3.2.5. Dynamic light scattering analysis 

Dynamic light scattering (DLS) analysis was performed on a Zetasizer Nano ZS DLS 

system (Malvern Instruments). Protein samples were centrifuged at 13,000xg and 4°C for 

20 min, loaded on a ZEN2112 cuvette, and three independent measurements recorded at 

20°C. All data were analysed using Zetasizer software 7.11 (Malvern Instruments). 

 

3.2.6. Differential scanning fluorimetry 

The melting temperature of all MhaGgH variants was determined by a thermal shift 

(Thermofluor) assay. Each protein sample (0.5 mg mL-1 final concentration) was 

centrifuged at 13,000xg and 4°C for 15 min, mixed with 5x SYPRO Orange (Life 

Technologies) in storage buffer, and loaded in white 96-well PCR plates (Bio-Rad), sealed 

with Optical-Quality Sealing Tape (Bio-Rad). The plate was heated from 25 to 95°C in 
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0.5°C steps with 30 s hold time per step on an iCycler iQ5 Multicolor Real-Time PCR 

Detection System (Bio-Rad) and the fluorescence was followed using a Cy3 dye filter (545 

nm excitation / 585 nm emission). The experiment was performed in triplicate. The melting 

curves were analysed using the CFX Manager software (Bio-Rad), and the melting 

temperature determined as the inflexion point of the melting curve. 

 

3.2.7. Chemical synthesis of GG, MG and GGlycolate 

The chemical synthesis of glucosylglycerate [GG, 2-O-(α-D-glucopyranosyl)-D-glycerate], 

mannosylglycerate [MG, 2 -O-(α-D-mannopyranosyl)-D-glycerate] and glucosylglycolate 

[GGlycolate, 2-O-(α-D-glucopyranosyl)-D-glycolate) were performed by Eva Lourenço and 

Rita Ventura (Bioorganic Chemistry Group, ITQB, Universidade Nova de Lisboa, Portugal) 

as previously described (Lourenço et al. 2009; Lourenço and Ventura, 2011). 

 

3.2.8. Substrate specificity of gaMhaGgH 

The activity of gaMhaGgH was evaluated in a 50 µL reaction mixture containing 2.75 µM 

enzyme, 20 mM GG, 25 mM sodium phosphate pH 6.0, 5 mM MgCl2, 100 mM KCl 

(standard reaction). The hydrolysis of GG was detected by thin layer chromatography 

(TLC) (Silica Gel 60, Merck) using a solvent system composed of 

chloroform/methanol/acetic acid/water (30:50:8:4, v/v/v/v) and the products stained as 

previously described (Alarico, Costa et al. 2014). Enzyme specificity was probed with 5 

mM and 20 mM MG, GGlycolate or glucosylglycerol [GGlycerol, 2-O-(α-D-glucopyranosyl-

D-glycerol; Bitop, Germany] as substrates (experimental conditions described above). All 

reactions were performed at 42°C and 50°C for 1h, 3h and overnight. Control reactions 

without enzyme were also performed. The reaction products were analysed by TLC as 

described above, except for the reactions containing GGlycerol in which the solvent 

system used was a chloroform/methanol/ammonia 25% (30:50:25, v/v/v) mixture. These 

experiments were performed by Susana Alarico (Molecular Mycobacteriology Group, CNC 

– Center for Neuroscience and Cell Biology, University of Coimbra, Portugal). 
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3.2.9. Catalytic activity analysis of gaMhaGgH mutants 

The activity of gaMhaGgH point mutants (D43A, D182A, E419A, Q434F) was evaluated 

with GG and MG in 50 µL reactions containing 2.75 µM enzyme and 10 or 20 mM GG or 

MG in 25 mM buffer (sodium phosphate pH 6.0, or sodium acetate pH 4.5 or pH 5.0, or 

Bis-Tris Propane (BTP) pH 7.0, or Tris-HCl pH 8.0), 5 or 10 mM MgCl2, in presence or 

absence of 100 mM KCl. Reactions were performed at 37°C, 42°C and 50°C for 1 h and 

overnight. Reaction mixtures with and without wild-type gaMhaGgH were used as controls. 

Substrate hydrolysis was evaluated by TLC, as described above. The experiments for the 

evaluation of Q434F mutant activity were performed by Susana Alarico (Molecular 

Mycobacteriology Group, CNC, University of Coimbra, Portugal). 

 

3.2.10. Biochemical and kinetic parameters of gaMhaGgH 

The effect of temperature, pH, metallic cations and salt concentration on gaMhaGgH 

activity and its half-life were evaluated by quantifying the glucose released upon GG 

hydrolysis by gaMhaGgH using the Glucose Oxidase Assay Kit (Sigma-Aldrich), as 

previously described (Alarico, Costa et al. 2014). The temperature profile of gaMhaGgH 

and MhaGgH-His6 variants was traced from 20 to 60°C using 20 mM GG, in 20 mM 

sodium phosphate pH 6.0, 100 mM KCl, 5 mM MgCl2 reaction buffer. The effect of pH on 

the activity of gaMhaGgH and MhaGgH-His6 was determined at 55 and 42°C, respectively, 

using 20 mM sodium acetate (pH 4.0-5.5) or 20 mM sodium phosphate (pH 5.8-7.0). For 

gaMhaGgH, the effect of pH was also analysed at 37°C using 20 mM sodium acetate (pH 

5.0-5.5), sodium phosphate (pH 6.0-8.0), Tris-HCl (7.0-9.0) or CAPSO (9.0-9.5) buffers. 

The pH values were adjusted using the conversion factor (pKa/T [°C]) of 0.002 for 

sodium acetate, -0.0028 for sodium phosphate and -0.031 for Tris-HCl (Good, Winget et 

al. 1966). The effect of metallic cations on gaMhaGgH activity was examined by adding 5 

mM chloride salts of Mg2+, Mn2+, Co2+, Ca2+, Fe2+, Zn2+ or Cu2+ to the standard reaction. 

Reactions without metallic cations or with 5 mM EDTA were performed as controls. The 

effect of KCl concentration on gaMhaGgH activity was tested from 40 to 250 mM KCl. The 

half-life of the enzymes was evaluated by incubating MhaGgH aliquots (25 µL of a 2.8 μg 

μL-1 protein solution in storage buffer) at 42°C (MhaGgH-His6) or 55°C (gaMhaGgH). 

Reaction aliquots were collected at different time points (up to 24h), cooled on ice, and the 

residual activity was quantified under the optimized reaction conditions. 
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Kinetic parameters of gaMhaGgH activity against GG and MG were determined by 

quantifying the release of glucose (as described above) or mannose using the K-MANGL 

01/05 assay kit (Megazyme), respectively. A constant concentration of the enzyme (2.75 

μM) was incubated with increasing concentrations of GG or MG in 20 mM sodium 

phosphate pH 6.0, 100 mM KCl, 5 mM MgCl2 at 50°C. Maximum velocity (Vmax) and half 

constant (K0.5) were calculated with Prism (GraphPad Software), using the allosteric 

sigmoidal equation. All experiments were performed in triplicate by Susana Alarico, 

(Molecular Mycobacteriology Group, CNC, University of Coimbra, Portugal). 

 

3.2.11. Crystallization of gaMhaGgH variants 

Initial crystallization conditions were screened at 20°C with commercial sparse-matrix 

crystallization screens. Sitting-drop vapour-diffusion experiments were set up in 96-well 

CrystalQuick plates (Greiner Bio-One) using a Cartesian PixSys 4200 crystallization robot 

(Genomic Solutions) at the High Throughput Crystallization Laboratory (HTX Lab) of the 

EMBL Grenoble Outstation (Grenoble, France). The drops consisted of equal volumes 

(100 nL) of gaMhaGgH (at 9.5 mg mL-1 in storage buffer) and crystallization solution and 

were equilibrated against an 88 µL reservoir. Three-dimensional wild-type gaMhaGgH 

crystals appeared in condition 95 of the Morpheus sparse-matrix screen (Molecular 

Dimensions) after one day. The crystals were optimized in-house using 24-well Cryschem 

M plates (Hampton Research) from drops composed of equal volumes (1 µL) of protein 

and precipitant solutions equilibrated against 300 µL of 0.1 M Tris-Bicine pH 8.5, 0.1 M 

amino acids (glutamate, alanine, glycine, lysine and serine at equal molar concentration) 

and 24-34% GOL_P4K (2:1 of (v/v) glycerol to (w/v) PEG 4,000) as precipitant. Crystals 

were obtained after 1 to 2 d, and those growing from less than 30% GOL_P4K were first 

transferred to a solution containing at least 30% GOL_P4K before flash-cooling in liquid 

nitrogen. Both SeMet-gaMhaGgH and the gaMhaGgH point mutants were crystallized in 

the same conditions, although wild-type gaMhaGgH macro-seeds were employed to 

promote crystal growth of the point mutants. The complexes of D182A with GG, MG and 

GGlycolate were obtained by soaking the crystals in mother liquor supplemented with 100 

mM of ligand for 2 h (GG or MG) or 25 min (GGlycolate) before flash-cooling in liquid 

nitrogen. The complexes of E419A with GG, MG, GGlycolate and GGlycerol were 

obtained by soaking the crystals in mother liquor supplemented with 100 mM of ligand for 

5 (GG), 50 (MG), 40 (GGlycolate) or 10 min (GGlycerol). Crystals of wild-type gaMhaGgH 

were also obtained in the absence of serine, by omitting this compound from the amino 

acid mixture of the crystallization buffer. An additional crystallization condition was 
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identified in-house, in 24-well plates at 20°C, yielding crystals within a day from drops 

containing equal volumes (1 µL) of protein (at 9.5 mg mL-1 in storage buffer) and 

precipitant solution, equilibrated against 300 µL of solution 22 (0.1 M ADA pH 6.5, 1.0 M 

ammonium sulfate) of the MembFac sparse-matrix screen (Hampton Research). Crystals 

of Q434F mutant were also obtained in this last crystallization condition, containing 0.4-

1.0 M ammonium sulfate. The gaMhaGgH and Q434F crystals were cryo-protected with 

Perfluoropolyether PFO-X175/08 (Hampton Research) or the crystallization condition 

supplemented with 30% (w/v) glucose, respectively, before being flash-cooled in liquid 

nitrogen.  

 

3.2.12. Data collection and processing 

Diffraction data were collected from cryo-cooled (100 K) single crystals at beamlines ID23-

2 (Flot, Mairs et al. 2010), ID29 (de Sanctis, Beteva et al. 2012), ID30A-1 (Bowler, Nurizzo 

et al. 2015, Svensson, Malbet-Monaco et al. 2015), ID30A-3 (Theveneau, Baker et al. 

2013) and ID30B (Mueller-Dieckmann, Bowler et al. 2015) of the European Synchrotron 

Radiation Facility (ESRF, Grenoble, France) and PROXIMA-2A (Duran, Le Couster et al. 

2013) of the French National Synchrotron Source (SOLEIL, Gif-sur-Yvette, France) (see 

Table 3.2 for details). All data sets were automatically processed by the Grenoble 

Automatic Data ProcEssing pipeline (Monaco, Gordon et al. 2013), except those collected 

at ID30B-3 and PROXIMA-2A beamlines, which were processed with XDS (Kabsch 2010) 

and reduced with utilities from the CCP4 program suite (Winn, Ballard et al. 2011). The 

data sets from the selenomethionine-substituted crystals were scaled with XSCALE 

(Kabsch 2010). X-ray diffraction data collection and processing statistics are summarized 

in Table 3.2. 

 

3.2.13. Structure determination, model building and refinement 

The structure of gaMhaGgH was solved by two-wavelength anomalous diffraction using 

the anomalous signal of a selenium-substituted gaMhaGgH crystal with the 

SHELXC/SHELXD/SHELXE pipeline (Sheldrick 2010) and the HKL2MAP GUI (Pape and 

Schneider 2004). Automated model building was subsequently performed with 

ARP/wARP (Langer, Cohen et al. 2008). The refined coordinates were used as search 

model to solve the structure of all other gaMhaGgH variants and complexes by molecular 

replacement using PHASER (McCoy, Grosse-Kunstleve et al. 2007). Alternating cycles of 
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model building with Coot (Emsley, Lohkamp et al. 2010) and refinement with PHENIX 

(Adams, Afonine et al. 2010) were performed until model completion. Refined coordinates 

and structure factors were deposited at the Protein Data Bank (Berman, Westbrook et al. 

2000) under the PDB accession codes indicated in Table 3.3. Refinement statistics are 

summarized in Table 3.3. 

 

3.2.14. Analysis of crystallographic structures 

The crystallographic models were superposed with Coot (Emsley, Lohkamp et al. 2010) 

and the secondary structure elements were identified with DSSP (Kabsch and Sander 

1983, Touw, Baakman et al. 2015). The interface area between the monomers was 

determined using PISA (Krissinel and Henrick 2007). The molecular surface electrostatic 

potential was calculated with APBS (Baker, Sept et al. 2001) using the AMBER force field 

(Cornell, Cieplak et al. 1995). Figures depicting molecular models were created using 

PyMOL (Schrödinger). 

 

3.2.15. SAXS measurement and analysis 

SAXS measurements were performed at beamline BM29 (Pernot, Round et al. 2013) of 

the ESRF (Grenoble, France) with radiation of 0.9919 Å wavelength on a Pilatus 1M 

detector (Dectris). Protein was loaded onto a Superdex 200 3.2/300 GL (GE Healthcare) 

column and eluted with storage buffer. Measurements (1 Hz data collection rate) were 

performed on the column eluate at 4°C over a scattering vector (s = 4πsinΘ/λ) range of 

0.033-4.933 nm-1. Data were processed and analyzed with the ATSAS package 

(Petoukhov, Franke et al. 2012). A Guinier plot was calculated using PRIMUS QT 

(Konarev, Volkov et al. 2003). The theoretical scattering curve from the crystallographic 

model was fitted to the experimental scattering curve with CRYSOL (Svergun, Barberato 

et al. 1995). 

 

3.2.16. MST analysis 

Interactions between catalytically inactive D182A or E419A gaMhaGgH mutants and GG 

or MG were assessed by microscale thermophoresis (MST) on a Monolith NT.115 

instrument (NanoTemper Technologies). Purified proteins were labelled using the 
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Monolith NT™ Protein Labelling Kit RED-NHS (NanoTemper Technologies) according to 

the manufacturer’s instructions after buffer exchange to 50 mM HEPES pH 7.8, 300 mM 

NaCl, 0.05% Tween


-20 (labelling buffer). Labelled proteins were separated from the 

free dye on a gravity flow column using 50 mM Tris-HCl pH 7.8, 150 mM NaCl, 10 mM 

MgCl2, 0.05% Tween


-20 (MST buffer) as mobile phase. Protein concentration was 

estimated by measuring the absorbance at 280 nm. A constant concentration of labelled 

protein [160 nM, diluted 1:25 in 100 mM Tris-HCl pH 8.0, 400 mM NaCl (MST assay 

buffer)] was incubated with increasing concentrations of substrate (6.10 μM - 200 mM) in 

MST assay buffer in a 10 μL reaction volume. Measurements were performed at room 

temperature on Monolith™ NT.115 MST Premium Coated Capillaries (NanoTemper 

Technologies) with 50% LED power and 40% MST power. Three and two independent 

experiments were performed for D182A and E419A, respectively. Data were analysed 

and images were prepared using PALMIST (Scheuermann, Padrick et al. 2016).  
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3.3. Results and discussion 

3.3.1. MhaGgH production and crystallization 

MhaGgH variants were expressed in E. coli and purified to homogeneity by a combination 

of immobilized metal-affinity and size exclusion chromatography. Initially, the 

crystallization experiments were performed using the MhaGgH-His6 construct, containing 

a C-terminal hexahistidine tag linked to the native MhaGgH sequence (Table 3.1), and for 

which biochemical characterization was previously performed (Alarico, Costa et al. 2014). 

The initial crystallization trials were performed at EMBL Grenoble Outstation HTX Lab 

(France). Spherulites were obtained in drops composed of 2.5 to 10% PEG (3,350, 5,000, 

6,000, 8,000 or MME 5,000) and buffered from pH 8.0 to 9.5 with 100 mM Tris-HCl, bicine 

or CHES.  The quality of the crystals was subsequently improved to thin individual crystal 

plates by adjusting the crystallization solution composition (precipitant type and 

concentration, buffer type and pH and additives) and vapour-diffusion rate (oil barrier, 

protein-to-precipitant drop ratio and drop-to-reservoir ratio) and by micro [cat whisker, 

Seed BeadTM Kit (Hampton research)] and macroseeding. Similar results were also 

obtained by microseed matrix screening (Ireton and Stoddard 2004) (Figure 3.1A), 

however none of the crystals tested diffracted X-rays to high resolution. 

Since the C-terminal tag could be interfering with crystallization, a new construct was 

produced. The new construct contained a N-terminal hexahistidine tag separated from the 

native MhaGgH sequence by a TEV recognition site that allowed proteolytic tag removal 

(Table 3.1). The TEV protease cleavage resulted in an additional Gly-Ala dipeptide N-

terminal to the native MhaGgH amino acid sequence and therefore this construct was 

named gaMhaGgH. Initial crystallization conditions were identified using extensive 

sampling of commercial sparse-matrix crystallization screens at HTX Lab (France). Three-

dimensional crystals were obtained in condition 95 of the Morpheus sparse-matrix screen 

(Molecular Dimensions) within 1 day. These crystals were reproduced in-house (Figure 

3.1B).  
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Table 3.1 – Macromolecule production information. 

 MhaGgH-His6 gaMhaGgH 

Source organism M. hassiacum DSM 44199  

Expression vector pET30a pETM11 

Complete amino-acid 
sequence of the 
construct produced

a
 

MPHDPSFTPTQLAARAAYLLRGNDL

GTMTTAAPLLYPHMWSWDAAFVAIG

LAPLSVERAVVELDTLLSAQWRNGM

IPHIVFANGVDGYFPGPARWATATL

ADNAPRNRLTSGITQPPVHAIAVQR

ILEHARTRGRSTRAVAEAFLDRRWG

DLMRWHRWLAECRDRNERGRITLYH

GWESGMDNSPRWDSAYANVVPGKLP

EYQRADNVIITDPSQRPSDGEYDRY

LWLLEEMKAVRYDDERLPSVMSFQV

EDVFFSAIFSVACQVLAEIGEDYKR

PHADVKDLYLWAERFRAGVVETTDQ

RTGAARDFDVLAEKWLVTETAAQFA

PLLCGGLPHDRERALLKLLEGPRFC

GHPDLKYGLIPSTSPVSRDFRPREY

WRGPVWPVLTWLFSWCFARRGWAER

ARLLRQEGLRQASDGSFAEYYEPFT

GEPLGSMQQSWTAAAVLDWLGKLAA

ALEHHHHHH 

MKHHHHHHPMSDYDIPTTENLYFQG

AMPHDPSFTPTQLAARAAYLLRGND

LGTMTTAAPLLYPHMWSWDAAFVAI

GLAPLSVERAVVELDTLLSAQWRNG

MIPHIVFANGVDGYFPGPARWATAT

LADNAPRNRLTSGITQPPVHAIAVQ

RILEHARTRGRSTRAVAEAFLDRRW

GDLMRWHRWLAECRDRNERGRITLY

HGWESGMDNSPRWDSAYANVVPGKL

PEYQRADNVIITDPSQRPSDGEYDR

YLWLLEEMKAVRYDDERLPSVMSFQ

VEDVFFSAIFSVACQVLAEIGEDYK

RPHADVKDLYLWAERFRAGVVETTD

QRTGAARDFDVLAEKWLVTETAAQF

APLLCGGLPHDRERALLKLLEGPRF

CGHPDLKYGLIPSTSPVSRDFRPRE

YWRGPVWPVLTWLFSWCFARRGWAE

RARLLRQEGLRQASDGSFAEYYEPF

TGEPLGSMQQSWTAAAVLDWLG 

No of amino acids 459 472 (tagged), 448 (untagged) 

Theoretical molecular 
weigth (Da) 

52,288 53,895 (tagged), 50,897 
(untagged) 

Mutants produced None D43A, D182A, E419A, Q434F 

a
 The residues removed by TEV protease cleavage are italicized. The sequence of native MhaGgH 

is underlined. 

 

In order to solve the phase problem selenomethionine-containing gaMhaGgH was also 

produced. This variant was considerable less soluble than the unlabelled protein under 

the same experimental conditions. Therefore, SeMet-gaMhaGgH could only be 

concentrated to a fourfold lower concentration than the unlabelled material. Under 

crystallization conditions similar to the wild-type enzyme, two SeMet-gaMhaGgH crystals 

were obtained after four months (Figure 3.1C). The slower crystallogenesis of selenium-

labelled gaMhaGgH is most likely due to the lower sample concentration. 

Point mutants of active site residues potentially involved in catalysis and/or substrate 

binding were also produced (Table 3.1). These mutants (D43A, D182A, E419A, Q434F) 

were produced and crystallized in condition identical to the wild-type gaMhaGgH, albeit 

with the addition of wild-type seeds to promote crystal growth (Figure 3.1E to G). The 

crystals of mutant Q434F grew at a significantly slower rate and reached a considerable 

smaller size than the other mutants. 
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Three-dimensional crystals of gaMhaGgH were also obtained in-house within 1 day in 

another crystallization condition containing 0.1 M ADA pH 6.5, 1.0 M ammonium sulfate 

(Figure 3.1D). Due to the difficulty in crystallizing the Q434F mutant, the ability of this 

condition to promote Q434F crystal growth was also tested. Crystals of Q434F were easily 

obtained without requiring the addition of wild-type crystal seeds to promote crystal growth 

(Figure 3.1H).  

 

Figure 3.1 – Crystals from MhaGgH variants. A – Crystals of MhaGgH-His6 obtained by microseed 

matrix screening. B – gaMhaGgH crystal grown from a mixture of Tris-Bicine, amino acids and 

GOL_P4K. C – SeMet-gaMhaGgH crystal obtained in the same crystallization condition as in B. D 

– gaMhaGgH crystal obtained from the ammonium sulfate containing crystallization solution. E to G 

– Crystals of the gaMhaGgH point mutants D43A (E), D182A (F) and E419A (G) obtained by 

macroseeding from the same crystallization condition as in B. H – Crystals from mutant Q434F 

obtained in the same crystallization condition as in D. The scale bars represent a length of 0.2 mm.  

 

3.3.2. Overall structure of gaMhaGgH 

The X-ray diffraction from cryo-protected crystals was measured at synchrotron radiation 

sources (Table 3.2; Supplemental figure S3.1). Two diffraction data sets were recorded 

from a single SeMet-gaMhaGgH crystal at wavelengths corresponding to the peak and the 

inflexion point of the K absorption edge of selenium (Supplemental figure S3.2). The 

crystal belonged to the monoclinic space group P21 and diffracted X-rays to 2.0 Å 

(Supplemental figure S3.3A). The collected data sets were used to solved the phase 
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problem by two-wavelength anomalous diffraction phasing with the 

SHELXC/SHELXD/SHELXE pipeline (Sheldrick 2010) and the HKL2MAP GUI (Pape and 

Schneider 2004). SHELXD identified 27 of the 36 (nine per molecule) selenium atoms 

present in the asymmetric unit (CCall = 23.6%; CCweak = 17.8%), corresponding to SeMet 

residues 153, 232, 246 and 432 of all molecules, as well as SeMet residue 28 of 

molecules B and C, SeMet residue 39 of molecules A, B and C, and SeMet residues 75 

and 181 of molecules A, B and D. Experimental phasing with density modification using 

SHELXE resulted in excellent electron-density maps, with a final FOM of 0.652 and a 

pseudo-free CC of 71.3%. The autotracing function of SHELXE produced a 1,411-residue 

poly-Ala model (CC for partial structure against native data = 36.1%). Subsequent 

automated model building with ARP/wARP (Langer, Cohen et al. 2008) using the 

SHELXE-derived phases resulted in an initial model with 1,677 (out of 1,792) residues 

built and sequenced. The crystallographic model of gaMhaGgH was further improved 

through alternating cycles of manual building with Coot (Emsley, Lohkamp et al. 2010) 

and refinement with PHENIX (Adams, Afonine et al. 2010). The asymmetric unit contains 

four gaMhaGgH monomers, corresponding to a Matthews coefficient of 3.07 Å3 Da-1 and a 

solvent content of 59.9%.  

Refined coordinates of the SeMet-gaMhaGgH model were used to solve the phase 

problem of a higher-resolution data set (1.68 Å) collected from a native gaMhaGgH 

crystal. Although crystallizing in identical conditions, the unlabelled gaMhaGgH crystals 

belong to space group P21212 (Supplemental figure S3.3B). The crystal contains two 

molecules in the asymmetric unit, corresponding to a Matthews coefficient of 2.95 Å3 Da-1 

and a solvent content of 58.3%. The crystallographic structure was improved by 

alternating cycles of manual model building with Coot (Emsley, Lohkamp et al. 2010) and 

refinement with PHENIX (Adams, Afonine et al. 2010). The structure solution and 

refinement statistics are summarized in table 3.3. 

 

 



Chapter 3 

114 

 

Table 3.2 – Data collection and processing statistics
a
 (continued on next page). 

Crystal 
SeMet gaMhaGgH gaMhaGgH 

SER-GOL 
gaMhaGgH 
w/o Serine 

gaMhaGgH 
Apo 

D43A 
SER-GOL 

D182A 
SER-GOL 

E419A 
SER-GOL Peak Inflexion point 

Synchrotron 
radiation facility 

ESRF ESRF ESRF ESRF ESRF ESRF ESRF 

Beamline ID29 ID30B ID30A-3 ID29 ID30A-1 ID30A-3 ID30A-1 

Detector Dectris PILATUS3 6M 
Dectris 

PILATUS 6M 
Dectris 

EIGER X 4M 
Dectris 

PILATUS3 6M 
Dectris 

PILATUS3 2M 
Dectris 

EIGER X 4M 
Dectris 

PILATUS3 2M 
Wavelength (Å) 0.97909 0.97924 0.97265 0.96770 0.96863 0.96598 0.96770 0.96600 
Frames 1,500 1,500 2,400 1,200 1,300 2,180 2,500 640 
Rotation (°) 0.1 0.1 0.05 0.1 0.05 0.05 0.05 0.2 
Space group P21 P21212 P21212 P6222 P21212 P21212 P21212 

Unit cell 
parameters 

a=90.8 Å; b=86.1 
Å; c=159.7 Å; 

=93.0° 

a=90.9 Å; b=86.3 
Å; c=159.7 Å; 

=93.0° 

a=86.0 Å; b=158.8 
Å; c=87.8 Å 

a=85.9 Å; b=159.3 
Å; c=91.2 Å 

a=b=167.0 Å; 
c=243.3 Å 

a=85.9 Å; b=159.1 
Å; c=88.2 Å 

a=86.3 Å; b=158.1 
Å; c=87.7 Å 

a=86.2 Å; b=159.4 
Å; c=88.4 Å 

Resolution range 
(Å) 

57.4 – 2.04 
(2.07 – 2.04) 

58.6 – 2.06 
(2.09 – 2.06) 

48.6 – 1.68 
(1.74 – 1.68) 

40.3 – 2.00 
(2.04 – 2.00) 

49.9 – 2.54 
(2.63 – 2.54) 

48.7 – 1.78 
(1.85 – 1.78) 

42.2 – 1.75 
(1.78 – 1.75) 

48.8 – 2.07 
(2.14 – 2.07) 

Reflections 
(measured/unique) 

428,683/151,619 419,987/148,763 595,791/135,623 390,265/84,736 474,316/66,272 460,425/114,314 581,967/119,738 338,529/73,877 

Completeness (%) 96.5 (82.1) 97.4 (87.6) 99.0 (98.4) 99.6 (99.8) 99.8 (99.7) 98.9 (93.5) 98.8 (99.3) 98.9 (92.6) 
Multiplicity 2.8 (2.8) 2.8 (2.7) 4.4 (4.5) 4.6 (4.8) 7.2 (7.3) 4.0 (4.0) 4.9 (5.0) 4.6 (4.0) 
Anomalous 
completeness 

68.3 (53.3) 85.0 (71.9)       

Anomalous 
multiplicity 

1.2 (1.7) 1.3 (1.5)       

Rmerge
b 

0.105 (0.637) 0.105 (0.561) 0.047 (0.860) 0.084 (1.276) 0.109 (1.165) 0.057 (0.824) 0.070 (0.987) 0.094 (1.032) 
Rmeas

c 
0.128 (0.776) 0.129 (0.690) 0.053 (0.972) 0.094 (1.426) 0.117 (1.254) 0.066 (0.954) 0.079 (1.102) 0.106 (1.176) 

Rp.i.m.
d 

0.072 (0.438) 0.074 (0.397) 0.025 (0.444) 0.042 (0.622) 0.043 (0.459) 0.032 (0.472) 0.035 (0.480) 0.048 (0.551) 
Half-set correlation 
CC1/2 

0.990 (0.659) 0.990 (0.657) 0.999 (0.637) 0.998 (0.559) 0.998 (0.673) 0.999 (0.529) 0.998 (0.579) 0.997 (0.625) 

Half-set 
anomalous 
correlation CCAnom 

0.355 (-0.028) 0.166 (0.018)       

Mean (I)/ (I) 7.6 (1.6) 7.1 (1.8) 16.4 (1.7) 12.1 (1.2) 11.9 (1.8) 13.0 (1.7) 11.6 (1.6) 10.0 (1.3) 

Protomers per 
asymmetric unit 

4 4 2 2 2 2 2 2 

Matthews 
coefficient (Å

3
Da

-1
) 

3.07 3.08 2.95 3.07 4.82 2.97 2.94 2.99 

Solvent content 
(%) 

59.9 60.1 58.3 59.9 74.5 58.6 58.2 58.9 

Average mosaicity 0.17 0.20 0.04 0.17 0.08 0.10 0.06 0.23 
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Table 3.2 – Data collection and processing statistics
a
 (continued from previous page). 

a 
Values in parenthesis correspond to the outermost resolution shell. 

b 𝑅𝑚𝑒𝑟𝑔𝑒 =  ∑  ∑  |𝐼𝑖(ℎ𝑘𝑙) −  〈𝐼ℎ𝑘𝑙〉|𝑖 ℎ𝑘𝑙   ∑ ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖 ℎ𝑘𝑙 ⁄ , where 𝐼𝑖(ℎ𝑘𝑙) is the observed intensity and 〈𝐼ℎ𝑘𝑙〉 is the average intensity of multiple observations of symmetry-related reflections. 

c
 𝑅𝑚𝑒𝑎𝑠 = ∑ √

𝑛

𝑛−1ℎ𝑘𝑙 ∑ |𝐼𝑖(ℎ𝑘𝑙) − 〈𝐼ℎ𝑘𝑙〉|𝑛
𝑖=1 ∑ ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖ℎ𝑘𝑙⁄ , where 𝐼𝑖(ℎ𝑘𝑙)  is the observed intensity and 〈𝐼ℎ𝑘𝑙〉 is the average intensity of multiple observations of symmetry-related reflections. 

d
 𝑅𝑝.𝑖.𝑚. = ∑ √

1

𝑛−1
 ∑  |𝐼𝑖(ℎ𝑘𝑙) − 〈𝐼ℎ𝑘𝑙〉| 𝑛

𝑖=1ℎ𝑘𝑙  ∑  ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖 ℎ𝑘𝑙⁄ , where 𝐼𝑖(ℎ𝑘𝑙) is the observed intensity and 〈𝐼ℎ𝑘𝑙〉  is the average intensity of multiple observations of symmetry-related reflections. 

Crystal 
D182A 

GG 
D182A 

MG 
D182A 

GGlycolate 
E419A 

GG 
E419A 

MG 
E419A 

GGlycolate 
E419A 

GGycerol 
Q434F 

SER-GOL 
Q434F 

Apo 

Synchrotron 
radiation facility 

ESRF ESRF ESRF ESRF ESRF SOLEIL ESRF ESRF ESRF 

Beamline ID30A-1 ID30A-1 ID23-2 ID30A-1 ID30B PROXIMA 2 ID30A-3 ID30A-3 ID30A-3 

Detector 
Dectris 

PILATUS3 2M 
Dectris 

PILATUS3 2M 
Dectris 

PILATUS3 2M 
Dectris 

PILATUS3 2M 
Dectris 

PILATUS 6M 
Dectris 

EIGER X 9M 
Dectris 

EIGER X 4M 
Dectris 

EIGER X 4M 
Dectris 

EIGER X 4M 
Wavelength (Å) 0.96600 0.96600 0.87290 0.96599 0.97625 0.98011 0.96770 0.96770 0.96770 
Frames 3,200 900 3,200 2,500 3,600 1,800 2,200 3,600 3,600 
Rotation (°) 0.05 0.2 0.05 0.05 0.05 0.1 0.05 0.1 0.05 
Space group P21212 P21212 P21212 P21212 P21212 P21212 P21212 P21212 P6222 

Unit cell parameters 
a=85.3 Å; 
b=159.6 Å; 
c=91.0 Å 

a=85.3 Å; 
b=159.6 Å; 
c=91.2 Å 

a=86.2 Å; 
b=158.9 Å; 
c=88.0 Å 

a=86.1 Å; 
b=159.1 Å; 
c=88.4 Å 

a=87.8 Å; 
b=158.2 Å; 
c=87.6 Å 

a=86.9 Å; 
b=157.7 Å; 
c=87.6 Å 

a=86.9 Å; 
b=158.8 Å; 
c=87.7 Å 

a=85.6 Å; 
b=158.8 Å; 
c=88.3 Å 

a=b=169.2 Å; 
c=241.8 Å 

Resolution range 
(Å) 

49.1 – 1.71 
(1.77 – 1.71) 

49.1 – 1.79 
(1.85 – 1.79) 

48.7 – 1.93 
(2.00 – 1.93) 

48.7 – 2.17 
(2.25 – 2.17) 

48.8 – 2.06 
(2.13 – 2.06) 

45.1 – 2.06 
(2.10 – 2.06) 

45.3 – 2.05 
(2.09 – 2.05) 

48.6 – 2.32 
(2.40 – 2.32) 

47.9 – 2.60 
(2.67 – 2.60) 

Reflections 
(measured/unique) 

801,298/133,666 780,685/117,039 547,439/91,224 301,215/64,817 475,955/74,395 500,266/75,133 322,372/76,309 712,653/52,533 1,280,221/62,925 

Completeness (%) 99.5 (99.0) 99.4 (95.9) 99.8 (98.7) 99.8 (99.5) 98.0 (89.3) 100.0 (100.0) 99.4 (100.0) 99.3 (93.5) 99.5 (100.0) 
Multiplicity 6.0 (6.1) 6.7 (6.5) 6.0 (6.2) 4.6 (4.5) 6.4 (6.0) 6.7 (6.9) 4.2 (4.4) 13.6/10.4 20.3 (21.0) 
Anomalous 
completeness 

         

Anomalous 
multiplicity 

         

Rmerge
b 

0.070 (1.081) 0.074 (1.052) 0.126 (1.227) 0.091 (0.790) 0.086 (0.979) 0.124 (1.410) 0.091 (0.901) 0.115 (1.492) 0.123 (1.923) 
Rmeas

c 
0.077 (1.183) 0.080 (1.141) 0.139 (1.340) 0.102 (0.897) 0.094 (1.069) 0.135 (1.526) 0.104 (1.027) 0.119 (1.568) 0.126 (1.969) 

Rp.i.m.
d 

0.031 (0.474) 0.031 (0.436) 0.056 (0.533) 0.047 (0.417) 0.037 (0.423) 0.052 (0.579) 0.049 (0.488) 0.032 (0.471) 0.028 (0.425) 
Half-set correlation 
CC1/2 

0.999 (0.659) 0.999 (0.660) 0.994 (0.560) 0.998 (0.642) 0.998 (0.715) 0.997 (0.575) 0.997 (0.552) 0.999 (0.536) 0.999 (0.805) 

Half-set anomalous 
correlation CCAnom 

         

Mean (I)/ (I) 13.8 (1.8) 16.5 (1.7) 8.8 (1.5) 11.3 (1.8) 12.1 (1.5) 8.2 (1.3) 9.4 (1.6) 15.4 (1.6) 18.5 (2.0) 

Protomers per 
asymmetric unit 

2 2 2 2 2 2 2 2 2 

Matthews 
coefficient (Å

3
Da

-1
) 

3.05 3.06 2.97 2.98 3.00 2.96 2.98 2.95 4.91 

Solvent content (%) 59.7 59.8 58.6 58.8 59.0 58.4 58.8 58.3 75.0 
Average mosaicity 0.07 0.13 0.05 0.10 0.09 0.14 0.09 0.15 0.08 
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Table 3.3 – Structure solution and refinement statistics (continued on next page). 

Crystal SeMet gaMhaGgH 
gaMhaGgH 
SER-GOL 

gaMhaGgH 
w/o Serine 

gaMhaGgH 
Apo 

D43A 
SER-GOL 

D182A 
SER-GOL 

E419A 
SER-GOL 

PDB code 5OHZ 5OI0 5OHC  5OIV 5OI1 5OIE 

Resolution range (Å) 57.4 – 2.04 48.6 – 1.68 40.3 – 2.00 49.9 – 2.54 45.4 – 1.78  40.0 – 1.75 48.8 – 2.07 

Rfactor
a
/Free Rfactor

b
 

(%) 
19.9/24.5 14.6/17.2 16.7/21.0 16.8/20.8 14.9/17.9 14.6/17.2 16.7/20.8 

Unique reflections 
(working/test set) 

255,146/12,657 135,565/6,808 84,685/4,330 66,186/3,360 114,235/5,735 119,673/5,953 73,714/3,718 

Completeness 
(working/test) (%) 

82.5/4.96 98.8/5.02 99.4/5.11 99.6/5.08 98.8/5.02 98.7/4.97 98.6/5.04 

Wilson B-factor (Å
2
) 28.4 25.1 33.4 53.0 29.3 26.0 39.9 

Total number of 
atoms 

15,955 8,595 8,115 7,607 8,365 8,421 7,767 

B-factor (Å
2
)        

Overall 36.1 33.4 39.1 60.0 38.1 34.2 49.4 

Protein 35.5 31.7 38.2 60.0 36.7 32.7 48.9 

Ligands 46.2 48.4 54.6  56.5 48.5 71.8 

Waters 41.3 47.3 47.2 60.8 50.4 47.8 54.3 

RMSD        

Bond lengths (Å) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

Bonds angles () 1.099 1.031 0.993 1.101 1.009 1.019 1.004 

DPI (Å) 0.164 0.073 0.130 0.180 0.086 0.080 0.140 

Polypeptide length 

A: 443 
(Asp4 – Gly446) 

B/D: 442 
(Pro5 – Gly446) 

C: 444 
(His3 – Gly446) 

445 
(Pro2 – Gly446) 

445 
(Pro2 – Gly446) 

A: 443 
(Asp4 – Gly446) 

B: 448  
(Gly-1 – Gly446) 

445 
(Pro2 – Gly446) 

445 
(Pro2 – Gly446) 

445 
(Pro2 – Gly446) 

Polypeptide gaps 0 0 0 0 0 0 0 

Water molecules 1,289 838 705 365 761 776 420 

Ligands SER, GOL SER, GOL GOL  SER, GOL SER, GOL SER, GOL 
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Table 3.3 – Structure solution and refinement statistics (continued from previous page). 

Crystal 
D182A 

GG 
D182A 

MG 
D182A 

GGlycolate 
E419A 

GG 
E419A 

MG 
E419A 

GGlycolate 
E419A 

GGlycerol 
Q434F 

SER-GOL 
Q434F 

Apo 

PDB code 5OIW 5OJ4 5ONZ 5OJU 5OJV 5OO2 5ONT   

Resolution range 
(Å) 

45.9 – 1.71 49.1 – 1.79 48.7 – 1.93 45.5 – 2.17 48.8 – 2.06 41.9 – 2.06 45.3 – 2.05 41.3 – 2.32 46.6 – 2.60 

Rfactor
c
/Free Rfactor

d
 

(%) 
14.6/16.8 14.4/17.3 14.9/18.5 15.6/19.8 15.5/19.4 16.2/20.2 15.4/19.5 15.3/20.3 18.2/22.1 

Unique reflections 
(working/test set) 

133,615/6,717 116,974/5,861 91,157/4,566 64,760/3,281 74,327/3,733 75,046/3,625 76,246/3,909 52,473/2,595 62,782/3,089 

Completeness 
(working/test) (%) 

99.3/5.03 99.4/5.01 99.7/5.01 99.7/5.07 97.8/5.02 99.9/4.83 99.2/5.13 99.3/4.95 99.4/4.92 

Wilson B-factor 
(Å

2
) 

24.9 25.6 28.3 35.7 39.5 39.7 33.7 50.8 60.4 

Total number of 
atoms 

8,376 8,421 8,283 7,817 7,840 7,868 7,944 7,503 7,473 

B-factor (Å
2
)          

Overall 33.8 33.5 36.3 44.0 44.3 52.7 44.0 60.0 65.4 

Protein 32.1 31.8 34.9 43.6 43.6 52.3 43.3 59.8 65.3 

Ligands 49.2 48.5 49.1 56.2 55.8 64.3 53.7 81.1  

Waters 45.9 46.5 48.6 47.8 53.0 57.0 51.3 62.2 68.5 

RMSD          

Bond lengths 
(Å) 

0.010 0.010 0.010 0.009 0.009 0.010 0.010 0.009 0.010 

Bonds angles () 1.025 0.986 0.984 1.005 0.985 1.030 1.011 0.974 1.139 

DPI (Å) 0.072 0.083 0.108 0.150 0.130 0.135 0.129 0.1787 0.1987 

Polypeptide length 
445 

(Pro2 – Gly446) 
445 

(Pro2 – Gly446) 
445  

(Pro2 – Gly446) 
445  

(Pro2 – Gly446) 
445  

(Pro2 – Gly446) 
445  

(Pro2 – Gly446) 

A: 440  
(Pro2 – Gly446) 

B: 437  
(Pro2 – Gly446) 

445 
(Pro2 – Gly446) 

A: 440 
(Asp4 – Gly446) 

B: 438 
(Pro5 – Gly446 

Polypeptide gaps 0 0 0 0 0 0 

2 
(A: Asp206 – 

Ile210; 
B: Gln203 – 

Ile210) 

0 

2 
(A: Tyr202 – 

Asp206;  
B: Arg204 – 

Asn207) 

Water molecules 847 846 677 419 463 426 566 255 280 

Ligands 9WN 2M8 GOL, SER, 9YW 9WN GOL, SER, 2M8 GOL, SER, 9YW A0K GOL, SER  
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The two macromolecules present in the asymmetric unit (hereby termed molecule A and 

molecule B) were modelled from residue Pro2 to Gly446. The overall globular MhaGgH 

monomer (Figure 3.2) is composed of two domains: an (α/α)6-barrel domain that in MhaGgH 

encompasses helices α2, α4, α6, α8, α10 and α12 in the inner layer and α1, α3, α5, α7, α9 

and α11 in the outer layer, and a more flexible cap domain that constrains access to the 

active site of the enzyme and can in turn be divided into two subdomains, termed A’-region 

(residues 163 to 252) and B’-region (residues 68 to 118). Five mobile loops are also 

noteworthy: loop-A (between α1 and β1, residues 23-38), loop-B (between B’β1 and B’α1a, 

residues 81-91), loop-C (between A’ α2b and A’α3, residues 193-205), loop-D (between α9 

and α10, residues 346-381) and loop-E (between β6 and α12, residues 430-434).  

MhaGgH displays 68% secondary structure identity with the single structurally characterized 

mannosylglycerate hydrolase (Thermus thermophilus HB8 MgH, Tt8MGH; PDB accession 

codes 4WVA, 4WVB and 4WVC) (Miyazaki, Ichikawa et al. 2015), despite the much lower 

36% sequence identity (calculated with PDBeFold (http://www.ebi.ac.uk/msd-srv/ssm) 

(Krissinel and Henrick 2004)). So far, only other three MgH enzymes have been 

biochemically characterized: the orthologues from Selaginella moellendorffii (Nobre, 

Empadinhas et al. 2013), from T. thermophilus HB27 (99% amino acid sequence identity to 

Tt8MgH), and from Rubrobacter radiotolerans (Alarico, Empadinhas et al. 2013). Despite 

relatively low overall amino acid sequence conservation, substrate interacting residues are 

highly conserved among all characterized MgH enzymes (Supplemental figure S3.4). 
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Figure 3.2 – Three-dimensional structure of MhaGgH. A – Topology diagram of gaMhaGgH with 

helices (α1 to α12, A’α1 to A’α6, and B’α1), strands (β1 to β5, A’β1 to A’β2, and B’β2) and mobile 

loops (Loop-A to Loop-E) represented as salmon cylinders, blue arrows and yellow ovals, respectively. 

Catalytic residues are labelled in red. The A’ and B’ regions are highlighted in pink and blue, 

respectively. B – Overall structure of the gaMhaGgH monomer (carton representation). Rotation of the 

top view 90° around x-axis originates the bottom view. The (α/α)6 domain is coloured mauve, and A’ 

and B’-regions are coloured salmon and blue, respectively. The N and C-termini are indicated in 

yellow. 
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3.3.3. Quaternary structure of gaMhaGgH 

The molecular size of gaMhaGgH in solution was evaluated by size exclusion 

chromatography and DLS (Figure 3.3A and B). Despite its theoretical molecular weight of 

50.9 kDa, the gaMhaGgH variant displayed an apparent molecular weight of 178.65 kDa, 

corresponding to approximately 3.5 times the expected mass of the monomer and 

compatible with a trimeric or a tetrameric organization. On the other hand, the MhaGgH-His6 

variant displayed an apparent molecular weight of 92.64 kDa, only 1.8-fold higher than the 

molecular weight of the monomer and compatible with a dimer (Figure 3.3A). The DLS 

analysis of the MhaGgH-His6 and gaMhaGgH variants reveals an increase in the hydration 

radius from 5.75 to 7.34 nm, also supporting a difference in the oligomeric organization of the 

two variants (Figure 3.3B). Moreover, DLS analysis also revealed a lower polydispersity 

index for the gaMhaGgH solution, indicating higher homogeneity. 

The thermal stability of MhaGgH-His6 and gaMhaGgH was evaluated by differential scanning 

fluorimetry. Both variants produced a typical denaturation curve with a clear and sharp 

temperature transition, allowing the straightforward estimation of the Tm from the inflexion 

point of the melting curve. The gaMhaGgH variant displayed significantly higher thermal 

stability (Tm = 62ºC) than MhaGgH-His6 (Tm = 56ºC) in the experimental conditions used 

(Figure 3.3D).  

Altogether, these results suggest that the hexahistidine tag present at the C-terminus of the 

MhaGgH-His6 variant affects protein stability probably by interfering with protein 

oligomerization.  
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Figure 3.3 – Biophysical characterization of MhaGgH variants. A – Analytical size-exclusion 

chromatography of MhaGgH-His6 (dotted line) and gaMhaGgH (solid line) variants. The standards 

used for column calibration (see Material and Methods) are indicated as downward black triangles. B – 

Analysis of MhaGgH-His6 (dotted line) and gaMhaGgH (solid line) by DLS. The gaMhaGgH sample 

displayed a larger hydrodynamic radius (RH = 7.34 nm) and lower polydispersity index (PdI = 0.092) 

than the MhaGgH-His6 variant (RH = 5.75 nm; PdI = 0.201). C – Superposition of the experimental 

small X-ray scattering (SAXS) data and the theoretical SAXS curve calculated from the tetrameric 

crystallographic model of MhaGgH. D – Melting temperature of MhaGgH variants determined by 

differential scanning fluorimetry, highlighting the lower stability of the MhaGgH-His6 variant. 

 

In the crystals, gaMhaGgH is arranged as a dimer of dimers with approximate dimensions 85 

x 80 x 65 Å3 (Figure 3.4). The total surface area of each monomer is 17,298 Å2. All 

monomers of the tetramer share an interface with each other. The largest interface area 

(900 Å2) occurs between molecules A and C (interface A:C), and molecules B and D, and is 

maintained by 14 (A:C) and 12 (B:D) hydrogen bonds. The interface area between the A:B 

and C:D dimers is 478 Å2, and includes 10 salt bridges. The interface between molecules A 

and D and molecules B and C is the smallest one with an area of 261 Å2, involving a single 
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hydrogen bond. The total interface area per monomer is approximately 1,636 Å2 (9.5% of the 

total surface area). No covalent bonds are found at the intermonomer interfaces 

(Supplemental table S3.1) (PISA analysis) (Krissinel and Henrick 2007).  

 

 

 

 

Figure 3.4 – Quaternary structure of gaMhaGgH. The monomers (cartoon representation) are 

coloured in green (molecule A), wheat (molecule B), cyan (molecule C) and blue (molecule D). The 

interfaces A:B or A:C are indicated. The active site is highlighlited in salmon. The α-helices are 

numbered. The approximate dimensions of the homotetramer are indicated. 

 

The evaluation of gaMhaGgH dimensions in solution was also performed by SAXS. A Guinier 

analysis of the SAXS data was performed with PRIMUS QT (Konarev, Volkov et al. 2003), 

allowing the direct estimation of a radius of gyration of 41.9 Å, which is similar to the 

approximate dimensions of the crystallographic model (Figure 3.4). Also, a theoretical SAXS 

curve was generated from the atomic structure data and fitted to the experimental scattering 

curves with CRYSOL (Svergun, Barberato et al. 1995), revealing a good agreement between  

the SAXS data and the crystallographic model (Figure 3.3C).  

The structural analysis of the gaMhaGgH tetramer revealed that the C-termini of molecules A 

and C, and of molecules B and D (Figure 3.5) are hydrogen bound. The C-terminus of each 

molecule adopts two different conformations (Figure 3.5B and C), the most frequent of which 

(52% occupancy in the highest resolution structure) (Figure 3.5B) is the only conformation 

observed in lower resolution models. In this conformation, the carboxyl group of Gly446 is 
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stabilised by two hydrogen bonds with the side chains of Thr8 and Thr10, located at helix α1 

of the neighbour molecule. Interestingly, these two threonine residues are separated by a 

proline (Pro9), which confers rigidity to this segment. Water-mediated contacts are also 

present, involving His129, Leu442, Asp443, and Gln11. The other conformation of the C-

terminus is illustrated in figure 3.5C, with Gly446 establishing polar contacts with the side 

chain of Gln11 and the main chain of Leu442. Additionally, the carbonyl group of Leu445 is 

hydrogen bonded to the side chain of Thr10. A glycerol molecule is likely to contribute to the 

stabilisation of this alternative conformation by interacting with Gly446 (Figure 3.5C). 

However, in glycerol-free crystals (Figure 3.1D) the C-terminus of GgH seems to adopt a 

single conformation similar to the conformation less frequently found in glycerol-containing 

crystals (Figure 3.5C and D). While the latter is stabilised by polar contacts with the glycerol 

molecule, in glycerol-free crystals the C-terminus is stabilised by a hydrogen bond with 

His129. 

The biophysical analysis of the MhaGgH-His6 variant pointed towards the formation of a 

dimer in solution, suggesting that the hexahistidine C-terminal tag interferes with tetramer 

formation by avoiding the interaction between dimers. Indeed, the space available at the 

centre of the tetramer is too small to accommodate four tags of 13 amino acids each (Table 

3.1). Thus, the hexahistidine tags are likely to physically impair the contact between dimers. 

Also, the C-terminal tag may affect the hydrogen bond network between the C-terminus and 

helix α1 occurring between molecules A and C, and molecules B and D (Figure 3.5). 

However, the largest intermonomer contact area in the gaMhaGgH tetramer is found 

between these molecules, doubling the contact area observed between A-B or C-D dimers, 

and in which other interactions are also present (Supplemental table S3.1). Therefore, it is 

more likely that the MhaGgH-His6 variant oligomerizes forming dimers equivalent to those 

corresponding to molecules A and C (or B and D) in the gaMhaGgH structure.  
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Figure 3.5 – Contribution of the C-terminus for oligomerization. A – Interface between monomers B 

(wheat) and D (blue), highlighting the polar contacts between the C-terminus of one monomer and 

helix α1 of the neighbouring monomer. The two alternative conformations of the C-terminus of 

molecules B and D are coloured in different shades of yellow and blue, respectively (inset). Hydrogen 

bonds are represented by dashed lines. B – Network of polar contacts at the C-terminus, with Gly446 

stabilised by polar contacts with Thr8 and Thr10 of the neighbour monomer. Hydrogen bonds are 

represented by dashed lines. C – Alternative conformation of the C-terminus, stabilised by an 

intramolecular hydrogen bond between Leu442 and Gly446, and by intermolecular contacts between 

Leu445 and Thr10, and Gly446 and Glu11. A glycerol (GOL) molecule (salmon) is at hydrogen 

bonding distance of Gly446 and may contribute for the alternative conformation of the C-terminus. 

Hydrogen bonds are represented as in B. D – C-terminus of GgH in glycerol-free crystals, stabilised by 

intramolecular hydrogen bonds with His129, Leu442 and Asp443 and by intermolecular contacts 

between Leu445 and Thr8 and Thr10. Hydrogen bonds are represented as in B. 
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3.3.4. Biochemical characterization of MhaGgH variants  

The biochemical characterization of the MhaGgH-His6 variant was performed previously 

(Alarico, Costa et al. 2014). Unlike its bacterial homologues from T. thermophilus HB27 and 

R. radiotolerans, which display identical activity against GG and MG (Alarico, Empadinhas et 

al. 2013), MhaGgH-His6 seems to be more efficient for GG than MG. Since the quaternary 

structure was affected by the presence of the hexahistidine tag, a new biochemical 

characterization was performed for the untagged variant. 

The activity of gaMhaGgH against GG and MG was first evaluated by TLC (Figure 3.6), 

confirming the ability of this enzyme to hydrolyse both substrates. Despite lower efficiency for 

MG, the gaMhaGgH variant was able to produce more mannose compared to the MhaGgH-

His6 variant for a given reaction time. The increased production of mannose is probably 

associated to the higher stability of gaMhaGgH.  

 

 

 

 

 

 

 

Figure 3.6 - Hydrolysis of GG and MG by MhaGgH variants. The different MhaGgH variants were 

incubated with GG (A) or MG (B) and their ability to hydrolyse the substrate was evaluated by TLC. 

Both MhaGgH-His6 and gaMhaGgH variants were able to hydrolyse GG and MG, however a lower 

residual substrate amount was detected for the gaMhaGgH variant. None of the point mutants 

(D182A, E419A and D43A) produced a detectable amount of glucose or mannose. 

 

Under the conditions tested, gaMhaGgH displays maximum activity at 55°C (Figure 3.7A), 

which is 13°C higher than the previously reported value for MhaGgH-His6 variant (42°C) 

(Alarico, Costa et al. 2014), in agreement with the optimal temperature of growth of M. 

hassiacum (50°C) (Tiago, Maranha et al. 2012). The higher optimal temperature of activity of 
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gaMhaGgH variant reflects its higher thermal stability (Figure 3.3D), which in turns explains 

its longer half-life (Figure 3.7B).  

 

Figure 3.7 – Effect of temperature on the activity of gaMhaGgH and MhaGgH-His6. A – The 

temperature profile was determined between 20 and 60°C. The optimal temperature of activity for 

gaMhaGgH (55°C) is significantly higher than that of MhaGgH-His6 (42°C) (Alarico, Costa et al. 2014). 

B – Time-dependent activity profile of gaMhaGgH (55°C) and MhaGgH-His6 (42°C), highlighting the 

higher resistance of the gaMhaGgH variant to thermal inactivation. (Experiments performed by 

Susana Alarico, Molecular Mycobacteriology Group, CNC, University of Coimbra, Portugal). 

 

At the optimal temperature of activity, the gaMhaGgH variant displayed maximum activity at 

pH 6.0, which is very similar to the value reported for the MhaGgH-His6 variant (pH 5.8) 

(Alarico, Costa et al. 2014). As also observed for the MhaGgH-His6 variant, the activity of 

gaMhaGgH seems to be slightly increased by the presence of divalent cations, especially by 

Mg2+ (25% increase). The activity of gaMhaGgH was maximal in the presence of 100 mM 

KCl, which allowed optimizing the buffer composition for the downstream biochemical 

analysis of gaMhaGgH activity.  

The kinetics parameters for gaMhaGgH were determined at 50°C (Supplemental figure 

S3.5A and C). A more adequate fitting of the experimental data into an allosteric sigmoidal 

curve was observed for both MhaGgH-His6 and gaMhaGgH variants, with a Hill coefficient 

higher than 1, which supports the hypothesis of positive cooperativity (Table 3.4). Moreover, 

the calculated Hill coefficient was higher for the gaMhaGgH variant than for MhaGgH-His6, 

suggesting a higher cooperative effect in the tetramer compared to the dimer.  

The kinetic values found for the hydrolysis of GG and MG by gaMhaGgH reflect an 

approximately 10-fold higher hydrolysis efficiency for GG. However, the kinetic curve 

obtained for MG is incomplete, resulting in a large standard-deviation for the value of Khalf, 
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and a larger range of MG concentrations would have to be tested. Nevertheless, the different 

efficiency for both substrates is clear. Additionally, an activity curve was also measured at 

37°C and pH 8.0, where the reaction is slower (Supplemental figure S3.6B). The sigmoidal 

character of this curve is more evident, supporting the fitting of the data to an allosteric 

kinetic model.   

 

Table 3.4 – Kinetic parameters of GG and MG hydrolysis at 50°C. Experimental data were analyzed 

using the allosteric kinetic model. The higher h value for the gaMhaGgH variant suggested an 

increased cooperative effect. A lower affinity for MG is expected due to the higher estimated Khalf 

value. 

Kinetic parameters 
GG MG 

MhaGgH-His6 gaMhaGgH gaMhaGgH 

Vmax (μmol/min mg protein) 9.34 ± 0.58 3.60 ± 0.18 3.09 ± 0.66 

Khalf (mM) 6.53 ± 0.76 9.36 ± 0.69 84.18 ± 30.27 

h 1.44 ± 0.15 1.77 ± 0.20 1.29 ± 0.23 

R2 0.993 0.974 0.990 

 
 

3.3.5. Open and closed: mobility as an essential feature for substrate 

binding and hydrolysis 

In the orthorhombic crystals, the gaMhaGgH molecules adopt a closed conformation, 

concomitant to the presence of two ligands – a molecule of glycerol and a molecule of L-

serine, components of the crystallization buffer – at the active site (gaMhaGgH-SER-GOL). 

The glycerol molecule occupies subsite -1 and serine subsite +1 of the active site, inducing 

the closed state of gaMhaGgH and rendering them inaccessible to the solvent. Interestingly, 

the enzyme crystallized in the absence of serine also adopts a similar conformation, with 

subsite +1 occupied by water molecules (Supplemental figure S3.6). 

In an alternative crystallization condition, gaMhaGgH crystallized in space group P6222, with 

two protomers in the asymmetric unit (Supplemental figure S3.7). These two molecules 

correspond to dimer A-C and were modelled from Asp4 (molecule A) or Gly-1 (molecule C) 

to Gly446. The active site of gaMhaGgH contains only solvent (hence the name gaMhaGgH-

Apo) and adopts an open conformation. 

In the open conformation, the active site is accessible to the exterior through a negatively 

charged tunnel (Figure 3.8A). The tunnel is lined by the side chains of Gln115, Asp212, 

Gln215, Asp43, Ser214, Gln434, Tyr88 and the carbonyl groups of Trp177 and Gly180. 
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Interestingly, the putative catalytic residues, Asp182 and Glu419, are pointing away from the 

active site cavity. Asp182 is stabilised by polar contacts with the side chains of Tyr191 and 

Tyr225 and with the carbonyl group of Arg216 through a water molecule (Supplemental 

figure S3.8). The side chain of Glu419 is hydrogen bonded to the side chain of Ser435 and 

the amide nitrogens of Met432 and Thr437 (Supplemental figure S3.8). 

When serine and glycerol molecules occupy the active site, the cavity completely closes to 

the solvent (Figure 3.8B). The ligands are stabilised and oriented mainly by hydrogen bonds 

with the binding site residues, and the putative catalytic residues are facing the lumen of the 

active site cavity. 

The two structures of gaMhaGgH, corresponding to open and closed conformations, reveal 

the structural modifications occurring upon substrate binding (Figure 3.9). The active site is 

surrounded by mobile loops that allow active site exposure and guarantee a polar surface for 

substrate binding and accommodation. Indeed, several residues involved in substrate 

binding are present in these loops, including Tyr36 (loop A), His78, Tyr88 (loop B), Tyr375, 

Trp376 (loop D) and Gln434 (loop E). The access to the active site is also restricted by a 

flexible cap that also contains important residues for substrate binding (Gly180, Arg216 and 

Tyr222) as well as the putative catalytic residue Asp182. Substrate binding contributes for 

the formation of an additional helix in this cap (residues 206-209) that is absent in the open 

conformation.  
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Figure 3.8 – Open and closed conformations of MhaGgH. A and B – Surface electrostatic potential 

(contoured from -8kT/e (red) to 8kT/e (blue)) of the MhaGgH monomer in open (A) and closed (B) 

conformations. In the open conformation, an opening leading to an acidic cavity is observed on the 

surface of the molecule (dashed ellipse), which is absent in the closed conformation state. C and D – 

Cross section of MhaGgH monomer in open (C) and closed (D) conformation.  In the open state, a 

negatively charged tunnel (arrow) connects the active site cavity to the exterior of the molecule. In the 

closed state, the active site cavity (marked with an asterisk) becomes inaccessible to solvent. 

Substrate-binding residues are highlighted in yellow. The molecular surface was coloured by 

electrostatic potential as in A and B. 
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Figure 3.9 – Conformational changes in gaMhaGgH induced by substrate binding. Open (lighter hues) 

and closed (darker hues) states of monomeric gaMhaGgH are shown. The A’-region (flexible 

segment), and loops A, B, D and E are coloured salmon, blue, yellow, green and brown, respectively. 

Some of the substrate-interacting residues present in the highlighted regions [Tyr36 (loop A), Tyr88 

(loop B), Arg216, Tyr222 (A’-region), Tyr375, Trp376 (loop D) and Gln434 (loop E)] are represented as 

sticks. 

 

A particularly significant modification is observed in the segment Arg21-Ala31 (loop A) 

(Figure 3.9). In the open conformation, this loop displays higher mobility and covers the 

segment Ser431-Ser435 that contains the substrate-interacting residue Gln434. In the closed 

conformation, Gln434 faces the active site and binds to the substrate, while Gln433 moves 

outward (6Å), forcing the segment Arg21-Ala31 to move away from its initial position. 

Moreover, upon substrate binding this segment is stabilised by polar contacts with the 

substrate via Tyr36 and with helices α3 and α12.  

In the open conformation structure, the segment Arg21-Ala31 is localized close to a 

symmetry axis relating molecules A and C. The electron density map in this region suggests 

the presence of alternative conformations. Therefore, it is possible that this segment interacts 

with the equivalent region of the neighbour molecule, and thus impacts enzyme activity. 
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3.3.6. Molecular details of substrate and substrate-analogue binding 

3.3.6.1. Inactive point mutants of gaMhaGgH 

In order to understand the molecular determinants underlying substrate binding and 

specificity, crystals of wild-type gaMhaGgH were also obtained in the presence of its 

substrates (GG and MG), substrate analogues (GGlycerol and GGlycerate) and products of 

reaction (glucose, mannose and glycerate) or soaked into the crystallization condition 

containing these compounds. However, none of these ligands could be found in the active 

site of wild-type gaMhaGgH crystals. To avoid substrate hydrolysis during crystallization or 

soaking, three catalytically inactive point mutants were produced. The mutations were 

performed based on sequence alignment with other characterized MgHs and on the 

gaMhaGgH-SER-GOL ternary complex structure. Two putative catalytic residues (Asp182 

and Glu419) and one substrate holder residue (Asp43) were identified (Suplemental figure 

S3.4) and replaced by alanine to produce three point mutants (D43A, D182A and E419A).  

The gaMhaGgH point mutants were produced using the protocol developed for wild-type 

gaMhaGgH. The solubility of the mutants was very similar to that of the wild-type enzyme, 

except for the D182A mutant which was considerably less soluble. The thermal stability of 

these mutants was evaluated by differential scanning fluorimetry (Figure 3.3D) and no 

significant difference was observed, except for mutant D43A that displayed a 3°C lower Tm 

than wild-type gaMhaGgH. 

The ability of the mutants to hydrolyse GG and MG was analysed by TLC (Figure 3.6). In the 

conditions tested, none of the mutants produced detectable amounts of glucose or mannose 

and thus were considered inactive.  

 

3.3.6.2. Inactive point mutants in complex with substrates 

The inactive point mutants produced were crystallized in the same condition as wild-type 

gaMhaGgH. Since the mutants were less crystallogenic, macroseeds of wild-type 

gaMhaGgH were used to accelerate crystallization. Crystals of the mutants were soaked into 

crystallization buffer containing GG or MG to yield binary complexes.  

The crystals obtained belong to space group P21212, diffract to 1.75-2.1 Å and contain 2 

molecules per asymmetric unit, corresponding to dimer A-B of the tetramer (Table 3.2). 

Analysis of the active site of mutants D182A and E419A revealed the presence of residual 
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electron density, compatible with the substrates (Figure 3.10). However, for mutant D43A 

none of the substrates was found in the active site, independently on the soaking time, 

reflecting the important contribution of Asp43 for substrate binding. This residue is a 

substrate holder and establishes two hydrogen bonds with the glucose or mannose moiety of 

the substrate (Figure 3.11). 
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Figure 3.10 – Substrates and substrate analogues of MhaGgH. The substrate GG (A) and MG (B), 

and the substrate analogues GGlycerol (C) and GGlycolate (D) were soaked into the crystals of 

mutants D182A (middle) and E419A (right) to yield binary complexes. Chemical representation of the 

ligands is on the left. The oxygen atom numbering is indicated. The D182A-GGlycerol complex could 

not be obtained. The 2Fo-Fc electron density maps (blue) are contoured at 1 σ. 

 

The gaMhaGgH D182A and E419A mutants in complex with each substrate were modelled 

from Pro2 to Gly446. No significant differences were observed in the active site of the 

D182A-GG and E419A-GG complexes (RMSD=0.177 Å, for 14 aligned atoms). In both 
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cases, the glucose and the glycerate moieties of GG occupy subsites -1 and +1 of the active 

site, respectively. The glucose moiety is stabilised mainly by hydrogen bonds with the side 

chains of residues Trp42, Asp43, Gln115, Asp182, Tyr375, Trp376 and Gln434 and with the 

carbonyl group of Gly180 (Figure 3.11A). The glucose moiety is also oriented by hydrophobic 

contacts with Tyr36, Trp40, Trp376, Trp436 and Trp381, and also interacts with Glu419 

through a water-mediated contact. The glycerate moiety of the substrate is stabilised by 

hydrogen bonds with Trp40, Tyr88, Asp 182, Arg216 and Tyr375. In the E419A mutant, the 

Tyr36-to-glycerate distance is decreased (from 3.75 to 3.00 Å), suggesting that in this mutant 

Tyr36 may also establish a polar contact with the glycerate moiety. Water-mediated contacts 

with the side chains of Tyr222 and Trp177 also contribute for substrate binding, as do 

hydrophobic contacts with Trp177. In the case of mutant D182A, a water molecule is 

occupying the space of Asp182 side chain (w4 in Figure 3.11A), whereas in E419A the 

contacts established by Glu419 are mimicked by two water molecules. The substrate-

interacting residues in the GG-mutants complexes are organized in a very similar way to that 

observed for the gaMhaGgH-SER-GOL (RMSD=0.191 Å, for 14 aligned atoms). The serine 

and glycerol molecules present in the active site of the gaMhaGgH-SER-GOL structure 

partially mimic a substrate, with serine superposing nicely to the glycerate moiety and the 

glycerol establishing the two hydrogen bonds with the substrate holder residue (Asp43) 

(Figure 3.11B). In the high resolution structure of wild-type gaMhaGgH, it is clear that bound 

serine can adopt more than one conformation. The conformation more frequently found (57% 

occupancy) is the one that better superposes to the glycerate moiety in the other complexes. 

Altogether, these results suggest that the GG-mutants and gaMhaGgH-SER-GOL complexes 

are likely to represent the substrate-binding mode of GG for active gaMhaGgH.  

The active site of both mutants is also very similar when MG is present (RMSD=0.106 Å, for 

10 aligned atoms) (Figure 3.11C). However, a better superposition is observed for the active 

sites containing GG, independently on the catalytic residue mutated. On the other hand, the 

worse superposition of the active sites containing MG, suggests that each active site 

undergoes a distinct rearrangement to accommodate this substrate. Due to the lower 

plasticity of the active site of wild-type gaMhaGgH, the binding of MG may be energetically 

more demanding than GG. Nevertheless, a similar hydrogen bonding network seems to be 

established for both substrates (Figure 3.11A and C), with the most significant difference 

observed for atom O15 of the substrate. In the MG-E419A mutant, O15 loses the hydrogen 

bond with Asp182 and Tyr375, and becomes at hydrogen bonding distance of the putative 

nucleophilic water (Figure 3.11C). 

In the active site, the glycosidic oxygen of both substrates is within hydrogen bonding 

distance of the catalytic residue Asp182, and Glu419 establishes a water-mediated contact 
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with substrates. The distances between the catalytic residues and substrates, and the 

presence of a single water mediating the Glu419-substrate contact suggest that MhaGgH is 

likely to hydrolyse GG and MG using an inverting mechanism that requires Asp182, Glu419 

and a water molecule, as acid, base and nucleophile, respectively (Figure 3.11D). During 

hydrolysis, the negatively charged Glu419 is likely to activate the water molecule that 

performs a nucleophilic attack on the anomeric carbon, while Asp182 donates a proton to the 

leaving glycerate. Inversion of the anomeric configuration of the glucose is expected. In a 

previous work, hydrolysis of MG by an inverting mechanism was confirmed for the 

homologous MgHs enzymes from T. thermophilus HB27 and R. radiotolerans (Alarico, 

Empadinhas et al. 2013). The ratio between α and β configurations of the mannose produced 

during MG hydrolysis was determined by NMR and found to be higher than the standard α:β-

equilibrium ratio of the mannose anomers in solution. Since the α:β-equilibrium ratio of 

glucose (ΔGºα→β = -0.35 kcal/mol) is reached faster than for mannose (ΔGºα→β = 0.45 

kcal/mol), the possible shift occurring upon hydrolysis may be difficult  to detect (Miljković 

2010). 
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Figure 3.11 – The active site of gaMhaGgH variants in complex with substrates. A – Superposition of 

the active site region of gaMhaGgH mutants D182A and E419A in complex with GG. The position of 

GG (dark or light orange for D182A or E419A, respectively) in the active site of D182A (light blue) and 

E419A (wheat) is stabilised mainly by direct hydrogen bonds or by water-mediated contacts (dashed 

lines) with the side chains of the labelled residues. The polar contacts between GG and mutant D182A 

residues are represented by black dashed lines, while the alternative contacts observed in mutant 

E419A are coloured grey. Water molecules (labelled w1 to w4) of mutants D182A or E419A are 

represented by red or salmon spheres, respectively.  Catalytic residues (D182 and E419) are 

highlighted in red. B – Superposition of the active site region of the gaMhaGgH D182A-GG complex 

(light blue with ligand in orange) to that of the gaMhaGgH-SER-GOL ternary complex (wheat). The 

ligands serine (cyan) and glycerol (yellow) mimic the substrate, allowing closure and stabilisation of 

the active site as observed for substrate-mutant complexes. The serine molecule may adopt two 

positions (coloured in different shades of cyan), with the darker shade of cyan indicating the more 

frequent position. Hydrogen bonds between glycerol or serine (dark cyan) and the residues of the 

active site are represented by dashed lines. C – Superposition of the active site region of gaMhaGgH 
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mutants D182A and E419A in complex with MG. The hydrogen bonding network involved in stabilising 

MG in the active site of the gaMhaGgH variants is similar to that observed for GG (interacting residues 

are shown as in A). The newly established contacts are represented by dashed lines. Water molecules 

are coloured as in A, highlighting the absence of w2 and nucleophilic water (wn) in the E419A-MG 

complex. D – Active site region of gaMhaGgH in complex with GG. The position of GG (orange) 

relative to the catalytic residues and the nucleophilic water are shown. The proposed mechanism of 

hydrolysis is illustrated by the arrows. 

 
 

3.3.6.2.1. Binding affinity of the substrates GG and MG 

The difference in hydrolysis efficiency of MhaGgH for GG and MG may be a consequence of 

different binding affinities. Thus, the binding affinities of the substrates were also analysed. 

Given the limited availability of the synthetic substrates, the binding affinities of the 

substrates were evaluated by MST at the Structural Biology & Genomics platform of the 

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (Strasbourg, France), 

to which access was provided by Instruct (www.structuralbiology.eu).  

Determining the binding affinity of a substrate to its processing enzyme by MST may be 

complicated by the formation of the reaction products. Measurements performed on an 

ongoing enzymatic reaction can yield hard to interpret results, arising from all possible 

complexation states: from free enzyme to enzyme-substrate and enzyme-product 

complexes. In order to circumvent this problem, the two mutants for the catalytic residues 

were used. As demonstrated by TLC, D182A and E419A are catalytically inactive against GG 

and MG, but still able to bind to the substrates, as indicated by the three-dimensional 

structures of mutant-substrate complexes. Also, the analysis of both mutants can allow the 

identification of the individual contribution of the residues for substrate binding.  

The determination of binding affinities in a Monolith NT.115 equipment requires proteins to 

be labelled. The MhaGgH mutants were labelled with N-hydroxysuccinimide-ester dye that 

reacts efficiently with primary amines, forming highly stable dye-protein conjugates. Primary 

amines are found in lysines, which are usually solvent accessible and therefore suitable for 

labelling reactions, and at the protein N-terminus. Recombinant gaMhaGgH contains seven 

lysine residues per monomer and all are at the molecule surface and accessible to the 

solvent. Moreover, the N-terminus is disordered in the three-dimensional structures, 

suggesting that it is also prone to be labelled. Altogether, thirty two amines per gaMhaGgH 

molecule are likely to be labelled.  
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The binding affinity of the mutants for the substrates was evaluated based on changes in the 

thermophoresis (particle movement in a temperature gradient) of fluorescently labelled-

proteins in presence of different substrate concentrations. Because low affinity was 

expected, the substrate concentration was increased to the highest achievable value with the 

existing stock solution.  

Three independent measurements were performed for mutant D182A, whereas for E419A 

only two measurements were possible in the allocated time slot for the equipment. The 

D182A mutant displayed higher affinity for both substrates than variant E419A (Figure 3.12). 

This difference is likely related to mutated residue position and the corresponding 

interactions. Asp182 is localized deeply in the active site, establishing contacts almost 

exclusively with the substrate. Mutation of this residue does not affect the position of the 

other substrate-interacting residues. On the other hand, Glu419 is localized in a mobile 

segment and stabilised by polar contacts with the backbone amine of Ser431, the side chain 

of Tyr36 and through a solvent molecule with Arg216 and Tyr420. These interactions are 

important for active site closure and substrate-enzyme complex stabilisation. The substitution 

of Glu419 for an alanine is accompanied by the loss of this network of polar contacts and 

thus substrate binding is severely affected. 
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Figure 3.12 – Effect of GG and MG in the thermophoretic movement of catalytically inactive 

gaMhaGgH mutants. The binding affinities of D182A (A and B) and E419A (C and D) for GG (A and C) 

or MG (B and D) were analysed by microscale thermophoresis. The thermophoresis of the fluorescent 

protein in presence of different substrate concentrations (increasing concentrations are coloured blue 

to red) through a temperature gradient was detected and quantified (upper graphic). The microscopic 

temperature gradient is induced by turning on (dashed line) and off (dotted line) an infrared laser. The 

fluorescence average before (light blue area) and after heating (light pink area) was calculated and 

plotted against substrate to yield the dose-response curve (lower graphic). Sigmoid curves were 

obtained for the titration of D182A with GG (A) or MG (B), which allows the determination of the 

binding affinity of the interaction. The binding curve obtained for E419A with GG (C) or MG (D) lacks 

the plateau of the high ligand dose and the binding affinity cannot be determined. 
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Table 3.5 – Dissociation constant for GG and MG. 

 KD GG (mM) KD MG (mM) 

D182A 15.33  1.53 0.35  0.13 

E419A  80  300 

 

The gaMhaGgH D182A mutant displayed an approximately 100-fold lower KD for MG (0.35 

mM) than for GG (15 mM) (Table 3.5). Structurally, the active site of mutant D182A 

containing MG or GG is similar (RMSD=0.065 Å, for 12 aligned atoms). The hydrogen bonds 

observed between MG and residues Tyr36, Trp40, Trp42, Asp43, Tyr88, Gln115, Arg216, 

Tyr222 and Gln434 are also present in the GG-mutant complex with identical distances 

(Figure 3.13A). The major differences in the active site of the complexes are induced by the 

position of the substrate O15 atom. Atom O15 of GG establishes a larger number of contacts 

compared to the same atom in MG. In GG, O15 is hydrogen bonded to Tyr375, Trp376 and 

water molecule w4, while in MG O15 loses all but the interaction with Trp376 and establishes 

a new polar contact with the nucleophilic water. Although conserved, the distance between 

O15 and Trp376 is 0.2 Å longer in the MG-mutant complex (DPIGG-D182A complex=0.072 Å; 

DPIMG-D182A complex=0.083 Å). In consequence, other structural modifications in the active site 

are also observed. In the MG-D182A complex, Tyr375 is bonded to water w4, inducing a 

1.1 Å shift in Tyr375 position compared to the GG-D182A complex. Also, a 0.3 Å inward 

movement of the segment Arg371-Arg377 is noticed. The loss of the hydrogen bonding with 

water w4 in the MG complex is also accompanied by a 0.9 Å backward movement of the 

Ala182 α-carbon. While in GG-D182A complex the carbonyl group of Ala182 is bonded to 

Tyr191 by a water mediated contact, in the MG-D182A complex the backward movement of 

the Ala182 allows formation of a direct hydrogen bond with Tyr191.  
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Figure 3.13 – Active site of gaMhaGgH D182A and E419A mutants in complex with GG or MG. A – 

Superposition of the active site of mutant D182A in complex with GG (orange with residues in wheat) 

or MG (blue with residues in light blue). The hydrogen bonds between the active site residues and GG 

or MG are represented as black or grey dashed lines, respectively. B – Superposition of the active site 

of mutant E419A in complex with GG (orange with residues in wheat) or MG (blue with residues in 

light blue). The hydrogen bonds are represented as in A. 

 

The gaMhaGgH E419A mutant displayed a considerable lower affinity for both substrates 

compared to the D182A mutant. Despite using the same substrate concentration range as for 

D182A, the plateau corresponding to the substrate-mutant complex was not reached and 

higher substrate concentrations would be necessary. Since a typical sigmoidal binding curve 

was not obtained, the KD values of GG or MG binding to E419A could not be determined. 

Nevertheless, the shape of the binding curve suggests higher affinity for GG than for MG 

(Figure 3.12C and D). The data obtained suggest that E419A-GG and E419A-MG 

interactions are likely to have KD values higher than 80 and 300 mM, respectively (Table 3.5). 

This difference in affinity is also reflected in the lower occupancy of MG in the active site of 

the E419A mutant. Despite MG being present in both molecules of the asymmetric unit, in 

one of them its occupancy refined to a value of 42%, co-existing with glycerol and serine in 

the remaining molecules.  

Structurally, the active site of E419A in complex with GG or MG is identical (RMSD=0.08 Å, 

for 12 aligned atoms), with the active site residues occupying similar positions (Figure 

3.13B). However, the superposition of GG and MG is clearly worse than for mutant D182A-

substrate complexes. The hydrogen bonds with Tyr36, Asp43, Trp40, Trp42, Tyr88, Arg216, 

Tyr222 and Gln115 are present for both substrates. The most significant changes are 
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induced by atom O15 of the substrate. In the case of the E419A-GG complex, O15 is able to 

establish polar contacts with Asp182, Tyr375 and Trp376, whereas in the E419A-MG 

complex the hydrogen bond to Trp376 is the only one preserved, with an increase of 0.3 Å 

in length. In contrast to the E419A-GG complex, the nucleophilic water is absent when MG is 

in the active site of the E419A mutant. Thus, residues Asp182, Tyr375 and Trp376 are 

involved in the specific recognition of glucose moiety of GG. Since all these residues are 

preserved in the E419A mutant, it is more likely to reflect the different binding affinity of wild-

type gaMhaGgH for GG and MG.  

In mutant D182A, the substrates are identically oriented because Ala182 can shift 0.9 Å 

allowing the movement of Tyr375. In mutant E418A, the position of Tyr375 is not allowed to 

change due to the presence of the side chain of Asp182. This residue is stabilised by water-

mediated contacts with Gln115 and Trp177 in the E419A-GG complex, while in the E419A-

MG complex the water mediating the contact to Trp177 is absent, and Asp182 is directly 

bound to the glycosidic oxygen of MG. In the E419A-MG complex, MG O18 is shifted 0.4 Å, 

impairing hydrogen bonding to Gln434 and the nucleophilic water. Indeed, the nucleophilic 

water is absent in the MG-E419A complex and Gln434 adopts two conformations (50% 

occupancy each). Since Glu419 contributes for Gln434 orientation through hydrophobic 

contacts, its absence allows Gln434 to establish new water-mediated contacts with the 

amide of Ser431.  

A Cremer-Pople analysis (Cremer-Pople parameter calculator, http://enzyme13.bt.a.u-

tokyo.ac.jp/CP/) was also performed for the cyclic moiety of GG and MG present in the active 

site of the mutants. Independently of the substrate or mutant, the moieties of glucose or 

mannose adopt a 4C1 chair conformation with an α-anomeric configuration. 

 

3.3.6.3. Inactive mutants in complex with substrate analogues 

The activity of gaMhaGgH was also tested against the substrate analogues GGlycerol and 

GGlycolate. These compounds are composed of glucose and glycerol or glycolate moieties. 

Despite their similarity to GG, gaMhaGgH was unable to hydrolyse these compounds 

(Supplemental figure S3.9). In order to clarify the molecular determinants impairing the 

hydrolysis of these compounds, GGlycerol and GGlycolate were soaked into crystals of wild-

type gaMhaGgH, and of mutants D182A and E419A.  

Only the structure of the E419A mutant in complex with both substrate analogues and that of 

D182A in complex with GGlycolate could be obtained (Figure 3.10). Similar to the substrate-
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mutant complexes, these structures were obtained from crystals belonging to space group 

P21212 that diffract to between 1.9 and 2.1 Å and contain 2 molecules in the asymmetric unit 

Table 3.3). The structures of E419A-GGlycolate, E419A-GGlycerol and D182A-GGlycolate 

complexes were modelled from Pro2 to Gly446. 

Comparing the active site of E419A in complex with GGlycolate or GG (RMSD=0.357 Å, for 

13 aligned atoms), no significant differences are observed in the residues interacting with the 

glucose moiety (Figure 3.14A). In the E419A-GGlycolate complex, the polar contacts with 

Tyr36, Arg216, Tyr222 and Tyr375 are absent. Therefore, the Glu201-Ser218 segment has 

higher mobility, resulting in a poorly defined electron density map in this region. In molecule 

B, the segment Gln203-Ile210 was modelled from residual electron density and the 

occupancy of the side chains of these residues was set to zero. In the E419A-GGlycolate 

complex, the glycolate moiety is stabilised by hydrogen bonds to Trp40 and Tyr88, and by a 

water-mediated contact with Gln115 and Trp177. Interestingly, the catalytic water is absent in 

the E419A-GGlycolate complex. Although GGlycolate is present in the active site of both 

molecules of the asymmetric unit, in molecule A it displays an occupancy of 36%, 

alternating with serine and glycerol. As described before, the presence of these compounds 

in the active site contributes for active site closure by mimicking the substrate. In this 

molecule, the residues known to interact with the substrate can be nicely superposed to the 

E419A-GG complex. Due to the high occupancy of the serine and glycerol over the 

GGlycolate, the active site arrangement may not represent a realistic model of GGlycolate 

binding. Indeed, important contacts for the stabilisation of the closed state, such as substrate 

binding to Arg216 and Tyr375, are absent when GGlycolate is present. 

In the case of mutant D182A, GGlycolate is present in the active sites of both molecules in 

the asymmetric unit, although with partial occupancy. In molecule A, GGlycolate seems to 

adopt two different positions (33 and 23% occupancy), whereas in molecule B a single 

conformation is present (44% occupancy) (Figure 3.14B), in both cases alternating with 

serine and glycerol molecules. In mutant D182A, GGlycolate can adopt an identical position 

to that in mutant E419A, with the glycolate moiety establishing contacts with Trp40, Tyr88, 

Gln115 and Trp177. Nevertheless, in this mutant GGlycolate seems to preferentially adopt a 

different position, stabilised by hydrogen bonds to Tyr88, Arg216, Tyr222 and Tyr375. Also, 

the glycosidic oxygen is likely to establish a polar contact with water molecule w4, 

contributing for GGlycolate stabilisation. The presence of Glu419 contributes for orienting 

GGlycolate into the most frequent position through hydrogen bonding with Tyr36 and Arg216. 

The correct positioning of Arg216 also orients Tyr375 to face the active site. In mutant 

D182A, the most frequent conformation of GGlycolate is a close mimic of the gaMhaGgH 

substrate.  



Chapter 3 

144 

 

Figure 3.14 – Alternative gaMhaGgH ligands: GGlycolate and GGlycerol. A – Superposition of the 

active site region of gaMhaGgH mutant E419A in complex with GGlycolate (ligand and interacting 

residues are in green and wheat, respectively) and with GG (ligand and interacting residues are in 

orange and light blue, respectively). The grey dashed lines represent the contacts between mutant 

E419A residues and GG that are absent in the E419A-GGlycerol complex. Black dashed lines 

represent newly established contacts. B – Superposition of the active site region of gaMhaGgH mutant 

D182A in complex with GGlycolate (ligand and interacting residues are in green and wheat, 

respectively) and with GG (interacting residues are in light blue; GG is not shown). The bound 

GGlycolate molecule adopts two conformations (dark and light green) with the most frequent one 

coloured dark green. Polar contacts are represented as grey or black dashed lines depending on 

GGlycolate conformation. C – Superposition of the active site region of mutant E419A in complex with 

GGlycerol (ligand and interacting residues are in dark red and wheat, respectively) and with GG 

(ligand and interacting residues are in orange and light blue, respectively). The hydrogen bonds 

between mutant E419A and GG absent in the E419A-GGlycerol complex are represented by grey 

dashed lines. The new contacts are represented by black dashed lines. 
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In the structure of the E419-GGlycerol complex, segments Asp206-Ile210 of molecule A and 

Gln203-Ile210 of molecule B were not modelled, due to the absence of interpretable electron 

density in these regions. GGlycerol was found in both molecules of the asymmetric unit, 

seemingly with full occupancy. The residues of subsite -1 are in a similar position to that 

found in the E419A-GG complex, establishing identical contacts with the glucose moiety 

(Figure 3.14C). A single exception is observed for the position of Gln434 that can adopt two 

different conformations in the E419A-GGlycerol complex. The most significant differences 

are in subsite +1. The absence of one oxygen atom in the glycerol moiety compared to 

glycerate affects hydrogen bonding to Tyr36, Arg216, and Tyr375. Since Arg216 is not 

stabilised by contacts with the substrate, the hydrogen bond between Arg216 and Asp206 is 

also lost, resulting in higher mobility of the segment Glu201-Ser218. The glycerol moiety of 

GGlycerol is poorly stabilised by polar contacts with Tyr88, and with Asp182 and Tyr222 by 

water-mediated contacts. Nevertheless, the hydrogen bonds with Trp40, and Gln115 through 

a water molecule are still conserved in the reducing end of GGlycerol. 

Several contacts are absent in the E419A-GGlycerol complex, especially those implicated in 

active site closure. The replacement of Asp182 by an alanine in the D182A mutant 

represents an additional lost bond that is likely to contribute for the reduction of GGlycerol 

binding. Moreover, the loss of a hydrogen bond with Tyr375 may destabilise several 

interactions necessary to properly orient the substrate and the catalytic residue Glu419 in the 

D182A mutant. Indeed, serine and glycerol were always found in the active site of the D182A 

mutant, regardless of the GGlycerol concentration used (up to 100mM) or the time of 

soaking. The ternary complex of D182A, serine and glycerol is likely more stable than the 

D182A-GGlycerol complex. 

Despite all attempts to obtain the structure of the wild-type gaMhaGgH in complex with these 

substrate analogues, the active site of gaMhaGgH was always occupied by serine and 

glycerol. In the mutants, replacement of the catalytic residues by a small alanine allowed the 

rearrangement of the active site to accommodate the substrates, GG and MG, and likely the 

substrate analogues, GGlycerol and GGlycolate. Since a lower plasticity of the active site of 

wild-type gaMhaGgH is expected, the ligands that can be accepted are more limited. 

Substrate binding in MhaGgH is a well-coordinated event that involves flexible loops and 

highly conserved residues. This enzyme evolved to harbour specific substrates, especially 

GG. The presence of glycerol and serine in the active site of wild-type gaMhaGgH indicates 

a higher affinity for these molecules than for the substrate analogues. 
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3.3.7. Modulation of MhaGgH substrate specificity: an attempt 

The structure of a MhaGgH homologue from T. thermophilus HB8 (Tt8MGH) was published 

recently (Miyazaki, Ichikawa et al. 2015). Although no biochemical study was performed for 

Tt8MGH, an enzyme with 99% amino acid sequence identity (Tt27MGH) was previously 

characterized (Alarico, Empadinhas et al. 2013). Tt27MGH is able to hydrolyse GG and MG 

with comparable efficiency. The high degree of amino acid sequence conservation between 

Tt8MGH and Tt27MGH suggests that the enzymatic activity is also conserved. Thus, the 

differences in MhaGgH and Tt27MGH active sites are likely to be responsible for the 

discrepancy in substrate preference. 

A single substitution in the substrate-interacting residues is present in Tt8MGH and 

MhaGgH. While in MhaGgH position 434 (MhaGgH numbering) is occupied by a glutamine, 

in Tt8MGH this residue is a phenylalanine (Supplemental figure S3.4). As described above, 

residue Gln434 is localized in subsite -1 of the MhaGgH active site that hosts the glucose or 

mannose moiety of GG or MG, respectively. Therefore, it is likely that this substitution might 

contribute for substrate preference.  

In order to evaluate the impact of the substitution of Gln434 for a phenylalanine in substrate 

hydrolysis by gaMhaGgH, a Q434F mutant was produced. The thermal stability of the Q434F 

mutant was evaluated and no significant differences were observed compared to the wild-

type variant, suggesting that the mutation is unlikely to affect the protein folding and stability 

(Figure 3.3D). 

The impact of the glutamine-to-phenylalanine substitution in gaMhaGgH activity was also 

analysed. Under the conditions tested, the mutant displayed considerable lower activity than 

wild-type gaMhaGgH (Supplemental figure S3.10). Also, no alteration in substrate preference 

was noticed, and apparently mutant Q434F is still more efficient hydrolysing GG than MG. 

The Q434F mutant was crystallized in the same experimental conditions as gaMhaGgH and 

both open and closed conformations were obtained. While the crystals containing the 

enzyme in open conformation were easily obtained, the crystals of the closed conformation 

were only obtained by cross-seeding with wild-type crystal seeds. Moreover, the crystals of 

closed Q434F displayed a slower and poorer growth compared to the other mutants. X-ray 

diffraction data were collected from both types of crystals and the structures were solved by 

molecular replacement using the SeMet-gaMhaGgH coordinates as search model. 

The active site residues of the gaMhaGgH Q434F mutant display an arrangement similar to 

that of wild-type gaMhaGgH or mutant D182A in complex with GG (Figure 3.15A). However, 



Chapter 3 

147 

 

a severe alteration is observed in the position of Trp436 (Figure 3.15B). This residue, 

together with Trp42, Trp381 and Trp376, contributes for substrate orientation through 

hydrophobic contacts. The movement of Trp436 alters the hydrophobic surface that 

accommodates the glucose ring, affecting substrate binding. Moreover, since the crystals 

corresponding to the closed conformation of the enzyme were difficult to grow, it is likely that 

replacement of Gln434 by a phenylalanine affects active site closure. 

The position of the active site residues of Tt8MGH in complex with glucose (PDB accession 

code: 4WVB) is also comparable to that of gaMhaGgH Q434F (Figure 3.15C). However, 

when analysing the neighbourhood of Trp436 in wild-type gaMhaGgH, it becomes clear why 

there is not a phenylalanine in position 434 of gaMhaGgH (Figure 3.15D). In Tt8MGH, 

Glu393, Ile356 and Ser411 residues are all connected by a water-mediated hydrogen 

bonding network. Also, Trp410 is in an adequate position to establish an additional hydrogen 

bond with the same water molecule (labelled w in Figure 3.15D). In gaMhaGgH, a similar 

interaction is observed, with the catalytic Glu419 hydrogen bound via a water molecule to 

Thr437 and Val383. However, the substitution of isoleucine for a less flexible proline in 

gaMhaGgH forces the following residue (Val383) to interact with the water molecule. In 

consequence, Trp436 is repelled by the approximation of Val383 and moves towards 

Gln434. This movement is allowed due to the presence of glutamine, less bulky than 

phenylalanine. When residue 434 is replaced by a phenylalanine in gaMhaGgH, Trp436 is 

pushed away from both Phe434 and Val383. This movement also impacts the neighbouring 

residues, such as Phe46, slightly affecting their position. 

In MhaGgH, the substitution of a glutamine for a phenylalanine represents a dramatic 

change. Besides their chemical differences, the residue size has also an impact in the 

restricted space of the closed active site of MhaGgH. When Gln434 is replaced by a 

phenylalanine, it interferes with the active site arrangement and/or substrate binding and 

orientation, and ultimately enzyme function. During evolution several amino acid substitutions 

are likely to occur. While some modifications are structural and biochemically well tolerated, 

others require additional substitutions to minimize their impact. In MhaGgH, Gln434 is well 

tolerated due to the presence of proline and valine at positions 382 and 383, respectively. 

These three residues, located on both sides of Trp436, contribute to positioning its side chain 

appropriately for substrate binding. Concomitant replacement of the residues at positions 382 

and 383 by isoleucine and asparagine, respectively, would result in a triple mutant more 

likely to succeed as a mimic of the active site of the Tt8MGH enzyme. 
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Figure 3.15 – Active site of gaMhaGgH Q434F mutant. A – Superposition of the active site region of 

wild-type gaMhaGgH and mutants Q434F and D182A. The active site of Q343F (salmon) and 

gaMhaGgH (wheat) is occupied by serine (cyan) and glycerol (yellow), while that of D182A (light blue) 

has GG (orange). B – Superposition of the active site region of the Q434F (salmon) and D182A (light 

blue) mutants in complex with GG (orange), highlighting the hydrophobic surface where the glucose 

ring of the substrate is accommodated. Some of the hydrogen bonds between GG and the D182A 

mutant are represented as black dashed lines, whereas the hydrogen bond that is absent upon 

replacement of Glu434 for phenylalanine is coloured grey. The position of Trp436 is severely affected 

by the amino acid substitution, as indicated by the arrow. Proteins are coloured as in A. C – 

Superposition of the active site region of gaMhaGgH Q434F and Tt8MGH in complex with glucose 

(dark green) (PDB accession code: 4WVB). The active site content of mutant Q434F is coloured as in 

A. The residues of gaMhaGgH Q434F and Tt8MGH are represented by wheat and pale green sticks, 

respectively. D – Superposition of the Trp436 neighbourhood in Tt8MGH (pale green), gaMhaGgH 

(pale cyan) and Q434F (wheat). The hydrogen bonds in Tt8MGH, gaMhaGgH and Q434F are 

coloured green, teal and wheat, respectively. 
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3.4. Supplemental information 
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Supplemental figure S3.1 – Diffraction patterns from gaMhaGgH crystals. A and B – Diffraction 

patterns from SeMet-gaMhaGgH (A) and gaMhaGgH (B) crystals belonging to space groups P21 and 

P21212, respectively. C – Diffraction pattern from a gaMhaGgH crystal belonging to the hexagonal 

space group P6222. Each diffraction pattern was obtained by merging five consecutive 0.1° rotation 

images. The resolution limits corresponding to the circumscribed red circles are indicated. 
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Supplemental figure S3.2 – Theoretical scattering factors of selenium. The theoretical values of f′′ 

(thick line) and f′ (thin line) for selenium were plotted over a range of energies, from 5,004 eV (2.47 Å) 

to 20,000 eV (0.62 Å). The plot was generated using the online tool X-ray Anomalous Scattering 

(http://skuld.bmsc.washington.edu/scatter/AS_index.html). The theoretical K absorption edge of 

selenium (12,658 eV, 0.97Å) is labelled. 
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Supplemental figure S3.3 – Unit cell arrangement of monoclinic and orthorhombic gaMhaGgH 

crystals. The unit cells of gaMhaGgH crystals belonging to space group P21 (A) or P21212 (B) are 

represented in two different orientations. The origin of the Cartesian coordinate system is indicated as 

0. The unit cell a, b and c-axes are indicated and are 90 Å (A) or 86 Å (B), 86 Å (A) or 159 Å (B), 

and 159 Å (A) or 88 Å (B) in length, respectively. The angle β (93º) of the monoclinic crystal unit 

cell is indicated. The molecules of the asymmetric unit are shown in blue, while the symmetry 

equivalent molecules are cyan, wheat or green. 
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Supplemental figure S3.4 – Amino acid sequence alignment of characterized 

mannosylglycerate/glucosylglycerate hydrolases. Amino acid sequences of Mycobacterium hassiacum 

GgH (GenBank: EKF25940.1) and of MgH enzymes from Rubrobacter radiotolerans (GenBank: 

AFC76324.1), Selaginella moellendorffii (GenBank: XP_002961898.1), Thermus thermophilus HB27 

(GenBank: WP_011173059.1) and T. thermophilus HB8 (GenBank: WP_011228344.1) were aligned 

with Clustal Omega (Sievers, Wilm et al. 2011). Secondary structure elements of M. hassiacum GgH 

and T. thermophilus HB8 MgH were identified with DSSP (Kabsch and Sander 1983) and are 
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indicated above and below the alignment, respectively. Residues are coloured from white to red 

according to increasing conservation. Catalytic residues are indicated by black triangles and other 

substrate-interacting residues by black circles. Figure prepared with ALINE (Bond and Schuttelkopf 

2009). 
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Supplemental table S3.1 – Analysis of the quaternary structure of gaMhaGgH. The total surface and 

total interface areas of each monomer (upper table) and the inter-monomer area and interactions 

(lower table) were determined using PISA (Krissinel and Henrick 2007). 

 
 

Monomer 
Total 

surface 
area (Å

2
) 

Total 
interface 

area 
(Å

2
) 

A 17,378 1,637 
B 17,218 1,633 
C 17,381 1,639 
D 17,216 1,633 

Average 17,298 1,636 

 

Interface 
Interface 
area (Å

2
) 

Interface interaction 

Hydrogen 
bonds 

Salt 
bridges 

A:B 477 0 10 
C:D 478 0 10 
A:C 900 14 0 
B:D 895 12 0 
A:D 260 1 0 
B:C 261 1 0 
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Supplemental figure S3.5 – Kinetic curves of GG and MG hydrolysis by gaMhaGgH. The sigmoidal 

shape of the experimental curve suggests that a cooperative effect between the tetramer subunits 

may exist. A – Kinetic curve obtained at 50°C and pH 6.0 using GG as substrate. B – Kinetic curve 

obtained at 37°C and pH 8.0 using GG as substrate. C – Kinetic curve of MG hydrolysis obtained at 

50°C and pH 6.0. (Experiments performed by Susana Alarico, Molecular Mycobacteriology Group, 

CNC, University of Coimbra, Portugal) 
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Supplemental figure S3.6 – Active site of gaMhaGgH. A – Active site of gaMhaGgH crystallized in a 

condition containing serine and glycerol. Subsites -1 and +1 are occupied by glycerol (yellow) and L-

serine (cyan) molecules (gaMhaGgH-SER-GOL complex), respectively. L-serine adopts two different 

conformations (different shades of cyan) in the active site. Serine and glycerol are stabilised by direct 

and water-mediated polar contacts (dashed lines) with the active site residues. The catalytic residues 

are highlighted in red. The nucleophilic water (nw) is indicated. The 2Fo-Fc electron density map is 

contoured at 1 σ.  B – Active site of gaMhaGgH crystallized in the absence of serine in the 

crystallization condition. Three water molecules (coloured crimson) replace the serine molecule 

present in A. The position of the substrate-binding residues is similar to that in the gaMhaGgH-SER-

GOL complex. The catalytic residues and the nucleophilic water are indicated as in A. The 2Fo-Fc 

electron density map is contoured as in A. 
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Supplemental figure S3.7 – Unit cell arrangement of hexagonal gaMhaGgH crystals. The unit cell of 

the gaMhaGgH crystals belonging to space group P6222 is represented in two different orientations. 

The origin of the Cartesian coordinate system is indicated as 0. The unit cell a, b and c-axes are 

indicated and are 167, 167 and 243 Å in length, respectively. The molecules of the asymmetric 

unit are shown in blue, while the symmetry equivalent molecules are cyan, wheat, green or salmon. 
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Supplemental figure S3.8 – Active site of gaMhaGgH in open state. The catalytic residues (yellow 

sticks) are facing away from the active site cavity (salmon spheres), stabilised by direct hydrogen 

bonds and by water (w)-mediated contacts with the neighbour residues (dashed lines). Upon substrate 

binding, the catalytic residues (teal sticks) turn towards the active site cavity, establishing new polar 

contacts (not represented). 
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Supplemental figure S3.9 – Analysis of GGlycolate and GGlycerol hydrolysis by gaMhaGgH. The 

ability of gaMhaGgH to hydrolyse GGlycolate (A) and GGlycerol (B) was evaluated by TLC. A – 

Different concentrations of GGlycolate were incubated with gaMhaGgH at 50°C for 2 h. Glucose 

production was not detected for any of the concentrations tested. B – The gaMhaGgH was 

incubated with GGlycerol for 10 min, 1h and 3h at 50°C. The production of glucose from GGlycerol 

was not observed. (Experiments performed by Susana Alarico, Molecular Mycobacteriology Group, 

CNC, University of Coimbra, Portugal) 
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Supplemental figure S3.10 – Analysis of GG and MG hydrolysis by gaMhaGgH mutant Q434F. 

The ability of the Q434F mutant to hydrolyse GG and MG was evaluated by TLC. Wild-type 

gaMhaGgH and Q434F mutant (2.7 μM) were incubated with 20 mM GG or MG at different 

temperatures for 1 h. A considerable lower production of glucose or mannose was observed for 

mutant Q434F (marked with asterisk) compared to the wild-type enzyme (marked with a double 

asterisk). (Experiments performed by Susana Alarico, Molecular Mycobacteriology Group, CNC, 

University of Coimbra, Portugal) 

 



 

163 

 

 

 

 

 

 

Chapter 4 

General discussion and conclusion  
  



 

164 

 

 
 

 

 

 

 



Chapter 4 

165 

 

Mycobacteria constitute a large and diverse group of organisms. Although most of them 

are environmental, many of these ubiquitous bacteria are opportunistic pathogens 

capable of causing infections in humans, especially in immunocompromised or 

immunosuppressed individuals. Moreover, mycobacteria also comprehend highly 

aggressive species, including the causative agents of tuberculosis. Currently, tuberculosis 

is one of the top 10 causes of death worldwide and the leading cause of death by a single 

infectious agent. Mycobacteria in general display high resilience against stress conditions, 

including antibiotics and disinfectant action. Thus, the treatment of mycobacterial 

infections is usually challenging and demands long duration multidrug therapy. Worse, the 

emergence of multidrug and extensively drug-resistant strains limits the ability to control 

mycobacterial infections. Altogether, the increasing drug resistance of mycobacteria and 

the long duration required for the treatment urges for the development of new, shorter and 

more efficient anti-mycobacterial therapies. 

Polymethylated polysaccharides are unique carbohydrates found exclusively in 

mycobacteria and related genera, including Nocardia and Streptomyces. Although these 

molecules were discovered more than 50 years ago, their physiological role and 

biosynthesis are still not fully understood. PMPSs are subdivided into 3-O-methylmannose 

polysaccharides and 6-O-methylglucose lipopolysaccharides. MGLPs are the only type of 

PMPSs common to all mycobacteria examined thus far and to a few other members of the 

Actinobacteria phylum. The genes proposed to participate in MGLPs biosynthesis are 

highly conserved among mycobacteria, and several of them were considered essential for 

mycobacterial in vitro growth, highlighting their contribution for survival and their potential 

as drug targets. 

In this thesis, two mycobacterial enzymes are structurally characterized: glucosyl-3-

phosphoglycerate phosphatase and glucosylglycerate hydrolase. GpgP and GgH are 

involved in the metabolism of glucosylglycerate, one of the earlier intermediates of 

MGLPs. While GpgP catalyses the dephosphorylation of glucosyl-3-phosphoglycerate 

producing GG (Chapter 2), GgH converts the later to glucose and glycerate (Chapter 3). 

Although the structure of a recombinant M. tuberculosis GpgP was recently reported 

(Zheng, Jiang et al. 2014), the structure described in this thesis was determined at a 

considerable higher resolution (1.5 Å), allowing a better interpretation of the active site 

content.   

The mycobacterial GpgP was first annotated as a phosphoglycerate mutase due to its 

sequence similarities to other enzymes of this type. However, biochemical analysis of a 

recombinant M. tuberculosis GpgP revealed that it displays a phosphatase activity – 
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preferentially on GPG – and only residual phosphoglycerate mutase activity, leading to its 

reclassification as glucosyl-3-phosphoglycerate phosphatase (Mendes, Maranha et al. 

2011). 

MtuGpgP is a homodimeric protein, composed of central β-strands flanked on both sides 

by α-helices. The electrostatic surface of MtuGpgP reveals two positively charged clefts, 

clearly shaped by both monomers, where the active sites are located. The contribution of 

both monomers for the active site clefts suggests that the dimer is likely the minimal 

functional unit, which was underscored by the inability of individual monomers to 

dephosphorylate a synthetic substrate (Zheng, Jiang et al. 2014).  

The substrate binding mode of MtuGpgP was elucidated by the structure of its complex 

with vanadate (Figure 2.5). The large electron density blob found in the active site of 

MtuGpgP co-crystallized with vanadate can be explained by the presence of three 

chemical species: a vanadate ion and two trivanadate glycerol esters. Vanadate was 

found covalently linked to the catalytic histidine and stabilised through a network of polar 

contacts with neighbour residues, including three highly conserved amino acids: two 

arginines (Arg10 and Arg60) and one histidine (His159). The vanadate-histidine complex 

is a mimic of the phosphohistidine transiently formed during the course of the reaction, 

which allowed the identification of the residues implicated in substrate binding and 

catalysis. 

The trivanadate glycerol esters described here are novel. These molecules highlighted the 

presence of a hydrophobic surface, lined by residues Met22, Leu87, and Trp109, that is 

likely to contribute for accommodating the glucose ring of the substrate. This surface is 

surrounded by polar residues (His95, Arg110 and Arg123) that may participate in glucose 

stabilisation through polar contacts.  

In the vanadate-MtuGpgP structure, the proton donor Glu84 is located within hydrogen 

bonding distance of the oxygen that is protonated during the phosphorylation of the 

catalytic histidine, suggesting that it is likely to donate a proton directly to the leaving 

group. In the trivanadate-glycerol-MtuGpgP complex, the distance between the vanadium 

atom V3 of trivanadate and Glu84 is compatible with a covalent bond, which suggests that 

Glu84 may have performed a nucleophilic attack directly to the vanadate. The structures 

of MtuGpgP in complex with vanadate and trivanadate glycerol suggest that Glu84 is able 

to shift between protonated and ionized forms as expected. 

The structure of MtuGpgP in complex with vanadate and GG was also obtained (Figure 

2.7). The ternary complex suggests that GG may establish transient interactions with the 
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residues lining the active site cleft, which are likely to facilitate the inward and outward 

movement of substrate and of product, respectively. The substrate binding mode of 

MtuGpgP could be better clarified by the structure of wild-type and/or catalytic inactive 

MtuGpgP in complex with the substrate GPG. Catalytic inactive MtuGpgP could likely be 

obtained by replacing Glu84 and/or His11 by alanine. Indeed, a catalytically inactive 

mutant of MtuGpgP was successfully generated by replacing His11 by an alanine (data 

not shown). Crystals of wild-type and catalytically inactive MtuGpgP were soaked into the 

crystallization condition containing substrate GPG or synthetic substrate PNPP. However, 

none of the ligands were found in the active site of the macromolecules. Different times of 

soaking and higher concentrations of ligands should be used in the future. 

MtuGpgP contains a C-terminal hexahistidine tag linked to the native M. tuberculosis 

GpgP sequence by a seven amino acid residue linker. In the higher-resolution structure, 

the linker and the hexahistidine tag are organized into an α-helix. Although the molecules 

in the asymmetric unit have different crystallographic contacts, the C-terminal helices are 

in equivalent positions. In the iodide-containing crystal, the different crystal packing results 

in an increased space between macromolecules at this region, allowing the engineered C-

terminal tail to have higher mobility, as suggested by the absence of electron density map 

that limits the C-terminal modelling from the end of native GpgP sequence. 

Although scarce, there are reports pointing to contribution of the C-terminus for the 

mutase activity. Removal of the C-terminal region led to a markedly decreased mutase 

activity for the Saccharomyces cerevisiae phosphoglycerate mutase (S. cerevisiae 

PGAM) (Walter, Nairn et al. 1999). Also, the C-terminal tail of S. cerevisiae PGAM 

showed higher resistance to proteolysis in presence of the cofactor 2,3-

bisphosphoglycerate, suggesting the participation of the C-terminal in substrate binding. 

The crystallographic study of the cofactor-dependent phosphoglycerate mutase from 

Escherichia coli showed that the C-terminal region displayed higher mobility in the apo 

form of the enzyme, while in phosphohistidine-activated and vanadate-inactivated forms 

the C-terminal was found to interact with the residues implicated in substrate binding 

(Bond, White et al. 2001, Bond, White et al. 2002). A similar observation was made for the 

cofactor-dependent phosphoglycerate mutase from Bacillus stearothermophilus (PhoE): 

its C-terminus could only be modelled for the phosphate and vanadate complexes 

(Rigden, Littlejohn et al. 2003). The interaction of the C-terminal with the substrate-binding 

residues is thus likely to offer additional stabilisation of the active conformation of the 

catalytic core. 
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Since the C-terminal tail of mutases can have variable length and no evident sequence 

pattern, it is not possible to predict protein function based on the C-terminal sequence 

alone. The overall structure of B. stearothermophilus PhoE, E.coli PGM and MtuGpgP is 

similar, with the C-terminal tails displaying different length but occupying similar positions. 

The amino acid segment of MtuGpgP preceding the engineered tag seems to be 

unstructured and mobile, as supported by the iodide-containing structure, and thus 

suitable to interact with the active site residues. Therefore, it would be interesting to 

evaluate the impact of the engineered C-terminal tag in mycobacterial GpgP activity. 

Although more challenging to purify, it would be more reliable to evaluate the activity of a 

tag-free GpgP protein. On the other hand, the production of a recombinant GpgP 

containing an additional Gly-Ala dipeptide at the N-terminus using a similar strategy as for 

GgH, would facilitate the purification step. Also, due to the localization of the N-terminus in 

dimeric GpgP, the engineered N-terminal dipeptide would be unlikely to affect enzyme 

activity. 

The biochemical and structural characterization of a recombinant GgH from M. hassiacum 

was reported in Chapter 3. GgH seems to be restricted to rapid-growing mycobacteria. 

The subdivision of mycobacteria into slow and rapid-growing mycobacteria is based on 

their growth rate, which reflects their phylogenetic divergency (Tortoli, Fedrizzi et al. 

2017). Interestingly, when comparing the growth rate with pathogenicity, the highly 

pathogenic bacteria (such as M. tuberculosis and M. leprae) are in the slow-growing 

group, while non-pathogenic species (such as M. phei and M. thermoresistible) are among 

the rapid-growing mycobacteria. However, the link between virulence and growth rate is 

narrow and a number of RGM have also been associated to human infections, especially 

in immunosusceptible individuals,  with M. abscessus, M. chelonae and M. fortuitum 

(formerly known as M. ranae) as the most common infectious agents (Brown-Elliott and 

Philley 2017). Alarmingly, RGM are not susceptible to the first-line anti-TB drugs and drug 

therapeutic regimens are selected based on their unique in vitro susceptibility patterns 

(Nunes-Costa, Alarico et al. 2016, Akram and Bhimji 2017, Brown-Elliott and Philley 

2017). The treatment of rapid-growing mycobacterial infections is becoming a 

considerable clinical challenge for which the therapeutic solutions are scarce 

(Kasperbauer and De Groote 2015). 

GgH from M. hassiacum was proposed to be involved in the decrease of intracellular GG, 

accumulated during mycobacterial growth under nitrogen-limiting conditions, by catalysing 

its hydrolysis to glucose and glycerate (Alarico, Costa et al. 2014). Although considered a 

compatible solute accumulated in diverse organisms to avoid the loss of water in high 
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salinity environments,  the  accumulation of GG in mycobacteria was shown to be 

independent of osmotic stress (Behrends, Williams et al. 2012). The accumulation of GG 

was exclusively linked to nitrogen starvation and, so far, no data is available regarding GG 

accumulation in other growth-limiting conditions.  

Under stress, bacteria prepare themselves to enter a hibernation-like state known as 

dormancy that allows cells to keep viable until improvement of the environmental 

conditions (Rittershaus, Baek et al. 2013). In growth-limiting conditions, cells accumulate 

carbon stores to use as a rapidly mobilisable source of energy to promote cell growth and 

division and outcompete the neighbouring microorganisms. In agreement, the growth 

curve of M. hassiacum (Alarico, Costa et al. 2014) shows a small jump of growth after the 

addition of nitrogen to the medium, concomitant with the decrease of intracellular GG 

content. In M. tuberculosis, the dormancy state seems to the accompanied by the 

accumulation of triacylglycerol (Daniel, Deb et al. 2004) and wax esters (Sirakova, Deb et 

al. 2012). Since slow-growing mycobacteria, such as M. tuberculosis, seem to lack a GgH 

ortholog-encoding gene, it is likely that SGM and RGM have developed different 

strategies to survive to growth-limiting conditions. In order to clarify if RGM accumulate 

GG as a general response to stress, it would be fundamental to evaluate the accumulation 

of GG by other RGM and in different growth-limiting conditions, including in the absence 

of other nutrients, at lower oxygen levels, and at lower or higher pH and temperature. 

The dormancy state is associated to a high relapse rate of a number of infections, 

including tuberculosis (Lewis 2007, Lipworth, Hammond et al. 2016). The drugs currently 

in use are mostly directed to cell growth and division. Since these functions are almost 

supressed in dormant cells, they are more likely to survive the treatment. Thus, targeting 

functions linked to dormancy and resuscitation would likely result in a more efficient 

treatment (Cano-Muniz, Anthony et al. 2018). GgH is likely involved in cell resuscitation of 

RGM by promoting the rapid mobilisation of energy upon relief of growing-limiting stress 

and thus a promising target for the development of new anti-RGM drugs. However, 

physiological evidence on GgH role in rapid-growing mycobacterial survival, dormancy 

and pathogenesis is still needed. 

GgH from M. hassiacum was produced recombinantly with a C-terminal hexahistidine tag 

(Alarico, Costa et al. 2014). Although active, this recombinant protein did not crystallize 

into three-dimensional crystals. Under the hypothesis that the C-terminal tag could be 

affecting crystallization, a new construct was produced containing a N-terminal 

hexahistidine tag separated from the native M. hassiacum GgH sequence by a TEV 

cleavage peptide sequence. Removal of the N-terminal tag by proteolytic cleavage 
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resulted in a protein with a Gly-Ala dipeptide N-terminal to the native GgH sequence at the 

end of the purification procedure. Size-exclusion chromatography and dynamic light 

scattering analysis of both constructs suggested a change in the oligomeric state from the 

C-terminal tagged GgH (MhaGgH-His6) to the untagged protein (gaMhaGgH), 

accompanied by the increase in both protein solution homogeneity and melting 

temperature. Unlike MhaGgH-His6, the gaMhaGgH variant yielded crystals able to diffract 

X-rays to high resolution that allowed its structure to be determined. 

M. hassiacum GgH is a homotetrametic protein, composed of a dimer of dimers (Figure 

3.4). Each monomer contains the (α/α)6-barrel domain typical of the family 63 of glycoside 

hydrolases (GH63), to which GgH belongs. The (α/α)6-barrel domain is covered by a cap 

domain that can be subdivided into A’ and B’-regions. The active site is localized between 

the (α/α)6 and cap domains and opens to the solvent through a negatively charged tunnel. 

The active site of  GgH displays a typical topology of monosaccharidases (Davies and 

Henrissat 1995). Upon substrate binding, the active site becomes inaccessible to the 

solvent, in a closed like state. The open and closed state of GgH is determined by the 

well-coordinated movement of several mobile loops that contain some of the substrate-

interacting residues. 

The biochemical data showed that GgH was able to hydrolyse in vitro GG and MG, with 

higher efficiency for the former. The difference in hydrolysis efficiency of GgH for GG and 

MG may result from distinct binding affinities. Since active GgH would lead to the release 

of reaction products and difficult result interpretation, catalytic inactive point mutants, 

gaMhaGgH D182A and E419A, were used to evaluate the binding affinity of GgH for the 

substrates. The gaMhaGgH E419A mutant loses Glu419-mediated polar contacts 

necessary to stabilise the closed state of the enzyme. Although displaying lower affinity for 

both substrates, this mutant is likely the most adequate to evaluate the molecular 

determinants of GG and MG binding specificities. The α-D-glucose and α-D-mannose 

differ in the stereochemistry at the C2 position; while the C2 hydroxyl group in α-D-glucose 

is equatorial, in α-D-mannose it is axial. The glucose and mannose moieties of the 

substrates are recognized by subsite -1. The C2 hydroxyl group of the glucose moiety of 

GG establishes polar contacts with Asp182, Tyr375 and Trp376, while that of the 

mannose moiety of MG is only hydrogen bonded to Trp376. Thus, these residues are 

involved in specific recognition of the non-reducing end of GG and likely in the higher 

efficiency of GgH to hydrolyse this substrate.  

The contribution of subsite +1 to substrate recognition was also evaluated by using the 

substrate analogues glucosylglycerol and glucosylglycolate that differ from the substrate 
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GG in the reducing end moiety. In vitro, GgH seems to be unable to hydrolyse any of 

these compounds, and the structure of active GgH in complex with GGlycerol or 

GGlycolate could not be obtained in the experimental conditions used. However, the 

structures of the catalytically inactive mutants in complex with these substrate analogues 

were determined, revealing the important contribution of the reducing end of the substrate 

for active site closure. Also, since these compounds were found in the active site of 

catalytically inactive mutants concomitantly with glycerol and serine from the 

crystallization solution, the affinity of gaMhaGgH D182A and E419A for GGlycerol and 

GGlycolate is likely lower than for those molecules. 

In M. hassiacum GgH, substrate binding is a well-coordinated event, involving highly 

conserved residues and a complex hydrogen bond network. During evolution, the active 

site of GgH was optimized to harbour specific substrates, such as GG. The presence of 

MG in M. hassiacum cells was not reported so far. Assuming that M. hassiacum is unable 

to produce MG, the ability of GgH to hydrolase this compound can be just a vestigial 

function from an ancestor enzyme. On the other hand, since cells are able to interchange 

molecules with the exterior using different strategies – from passive diffusion to active 

transport of specific molecules – it is also possible that M. hassiacum possesses 

adequate machinery for capturing MG from the exterior as a possible source of carbon 

and energy, and uses GgH for its hydrolysis. 

Although the MGLP biosynthetic pathway is becoming clearer, there are still steps in 

MGLP maturation that need to be explored. Several genes were proposed to participate in 

MGLP biosynthesis based on their genomic neighbourhood and encoded protein 

sequence similarity to other characterized enzymes. However, not only physiological 

evidence on their contribution for MGLP production is still missing, as their specific 

function needs to be confirmed. Nevertheless, the results presented in this thesis 

contribute for a better comprehension of the biochemistry of the mycobacterial enzymes, 

GpgP and GgH, involved in the metabolism of GG, one of the earlier intermediates in 

MGLP biosynthesis and an important carbon store of rapid-growing mycobacteria. 
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