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Abstract

The goal of this work is the efficient parallel execution
of loops with indirect array accesses, in order to be em-
bedded in a parallelizing compiler framework. In this kind
of loop pattern, dependences can not always be determined
at compile-time as, in many cases, they involve input data
that are only known at run-time and/or the access pattern is
too complex to be analyzed. In this paper we propose run-
time strategies for the parallelization of these loops. Our
approaches focus not only on extracting parallelism among
iterations of the loop, but also on exploiting data access lo-
cality to improve memory hierarchy behavior and, thus, the
overall program speedup. Two strategies are proposed: one
based on graph partitioning techniques and other based on
a block-cyclic distribution. Experimental results show that
both strategies are complementary and the choice of the best
alternative depends on some features of the loop pattern.

1. Introduction

The aim of this work is the parallelization of loops with
indirect array accesses, which commonly appear in scien-
tific and engineering applications: sparse matrix programs,
fluid flow and molecular dynamics simulations, finite ele-
ment codes... A generic case of such loop is shown in
Figure 1, where arrays �� and �� can take any integer
value. Any dependence can appear inside the loop: RAW
(true data dependence), WAW (output dependence) or WAR
(anti-dependence). On the one hand, if there are no loop-
carried dependences, we have a DOALL loop, which can
be easily parallelized to achieve the desired speedup. On
the other hand, DOACROSS loops have dependences across
iterations and they have to be executed in succession or, if
we want to extract some parallelism, synchronization pri-
mitives should be inserted at appropriate points in the code
to guarantee the order of accesses imposed by dependences.
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DO i = 1,N
...

... = A(I1(i)) op ...
...

A(I2(i)) = ...
...

ENDDO

Figure 1. Loop with indirect array accesses

There are, in the literature, a number of run-time approa-
ches for the parallelization of this kind of loops. All of them
focus on extracting the maximum degree of parallelism
from the loop and reducing the overhead of the run-time
analysis. Our approach not only maximizes parallelism, but
also increases data locality to better exploit memory hierar-
chy in order to improve code performance. The target com-
puter assumed throughout this paper is a CC-NUMA shared
memory machine. We intend to increase cache line reuse in
each processor and to reduce false sharing of cache lines,
which is an important factor of performance degradation in
CC-NUMA architectures.

Although for illustrative purposes the loop of Figure 1
(with one read and one write per iteration) will be used as
case study, our method is a generic approach that can also be
applied to loops with more than one indirect read access per
iteration. One particular case of our scope is the irregular
reduction pattern. However, as it frequently appears in real
codes and it presents special characteristics, it is better to
use efficient specific strategies for the parallel execution of
this kind of pattern, such as the ones described in [6][19].

The work is organized as follows: in Section 2 we review
other approaches for the parallelization of loops with indi-
rect array accesses, stressing similarities and differences be-
tween those strategies and our proposals. Next, we describe
in Section 3 our methods, based on an inspector-executor
strategy. In Section 4 the performance of the strategies are
analyzed and compared with another method through de-
tailed experimental results. Section 5 presents related work;
specifically, we focus on related research on data locality
exploitation and improvement in memory hierarchy perfor-
mance. Finally, concluding remarks are given in Section 6.



2. Previous works

The methods to parallelize this kind of loops can be ba-
sically classified into two major groups: speculative execu-
tion and inspector-executor strategies.

In the speculative execution methods [5] [16], the loop
is executed in parallel at the same time that dependences
are analyzed. If the analysis determines that the loop is not
parallel, the whole computation is rolled back and the loop
is executed serially. The main drawback of this strategy is
the associated overhead when the loop is not parallel.

In the inspector-executor strategy, the inspector deter-
mines data dependences at run-time, and the executor runs
loop iterations in parallel following the order fixed by the
dependences. One of the first inspector-executor approa-
ches was proposed by Zhu and Yew [23]: loop iterations are
divided into subsets called wavefronts, which contain itera-
tions that can be executed in parallel. This approach has two
limitations: first, inspector and executor are tightly coupled
and, thus, the inspector is not reused across invocations of
the same loop, even if the dependences do not change. Se-
cond, the execution of consecutive reads to the same array
entry is serialized (RAR). Midkiff and Padua [15] improve
this strategy by allowing concurrent reads of the same en-
try. Saltz et al. [18] propose an alternative solution but res-
tricted to the particular case of loops with no output depen-
dences. In this strategy, inspector and executor are uncou-
pled. Leung and Zahorjan [12] extend the previous work to
consider output dependences and propose different strate-
gies to parallelize the inspector.

These proposals exploit iteration-level parallelism. A
different approach can be found in [2], where finer grain
parallelism (operation-level) is exploited also using an
inspector-executor method called CYT algorithm. Depen-
dences are analyzed in the inspector phase; if the indirection
arrays do not change between invocations of the loop, then
the inspector can be reused. In the executor stage, iterations
are cyclically distributed among the processors, and each
processor goes on with the execution as dependences are
fulfilled. Operation-level synchronizations are performed to
guarantee a correct execution order. The advantage of this
algorithm is the extraction of a higher degree of parallelism.

The goal of all these inspector-executor approaches is
to maximize parallelism and minimize the overhead of the
analysis phase. A comparison between strategies based on
iteration-level and operation-level parallelism is presented
in [21]. The strategies were evaluated for loops with diffe-
rent structures, memory access patterns and computational
workloads. This work shows experimentally that operation-
level methods outperform iteration-level methods.

This paper describes two new operation-level algo-
rithms: Local-CYT (LCYT from now on) and Low Over-
head LCYT (LO-LCYT). They are based on the approach

developed in [2], but they use different iteration distribution
schemes to exploit data locality. The effectiveness of our al-
gorithms is assessed on an SGI Origin 2000 and the results
are compared with those obtained with the CYT proposal.

3. LCYT algorithms

Our methods are split in two phases: inspector, where
memory accesses are analyzed and an iteration distribution
is performed accordingly; and executor, where the assigned
iterations are executed in parallel. Both phases are indepen-
dent, which allows to reuse the dependence information of
the inspector if the same loop is executed several times.

3.1. LCYT inspector phase

In this stage memory access and data dependence infor-
mation is collected. The access information, which deter-
mines the iteration partition approach, is stored in a graph
structure. Dependence information is stored in a table called
Ticket Table [2]. The inspector phase consists of three parts:

1. Construction of a graph representing memory acce-
sses. It is a non-directed weighted graph; both nodes and
graph edges are weighted. Each node represents � con-
secutive elements of array �, � being the number of ele-
ments of � that fit in a cache line. The weight of each node
is the number of iterations that access that node for write.
Moreover, each node is assigned a table which contains the
indices of those iterations. The edges join nodes that are
accessed in the same iteration. Each edge has a weight that
corresponds to the number of times that the pair of nodes is
accessed in an iteration.

2. Graph partitioning. The graph partitioning will result
in a node distribution (and, therefore, an iteration distribu-
tion) among processors. Our aim is to partition the graph
so that a good node balance is achieved and the number
of edges being cut is minimum. Node balance results in
load balance and cut minimization involves a decrease in
the number of cache invalidations, as well as an increase in
cache line reuse. Besides, as each node represents a cache
line with consecutive elements of �, false sharing is eli-
minated. We have used the pmetis program [10] from the
METIS software package to distribute the nodes among the
processors according to the objectives described above. The
pmetis partitioning algorithm is based on multilevel recur-
sive bisection. The algorithm consists of three stages: in
the first stage the size of the graph is reduced by collapsing
nodes and edges (coarsening). Next, the smaller graph is
partitioned. In the third stage the partition is successively
projected back towards the original graph (uncoarsening).

3. Creation of a Ticket Table containing data dependence
information: it is a table ���, � being the number of loop
iterations, and � the number of accesses per iteration to the
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Figure 2. Example of LCYT graph partitioning

target array. In the loop of Figure 1 � � � because array
� has one write and one read access. The table stores the
number of times each array entry is accessed. So, for the
loop of Figure 1, ����	�
� �� represents the number of
accesses to element �����
�� from the first up to the 
��

iteration. The creation of the Ticket Table is independent
of the graph construction and partitioning, and thus these
stages can be performed in parallel.

Figure 2 shows an example of the three steps of the ins-
pector for � � ��, an array � of 16 elements, a cache line
size of 2 elements and two array accesses per loop iteration
(� � �). The figure shows the mapping of array entries
in nodes, the generation of the graph using access infor-
mation, and the graph partitioning for two processors. The
corresponding Ticket Table is also depicted.

The graph partitioning is the most costly part of the
LCYT inspector. This overhead strongly depends on the
number of nodes (����, � being the number of entries
of array �) and can be reduced by increasing the number of
cache lines of � elements per node (and thus reducing the
number of nodes) at the expense of load imbalance.

3.2. LO-LCYT inspector phase

We propose an inspector with lower overhead, named
LO-LCYT, that considers a simpler iteration partitioning to
optimize memory accesses (although not as good as LCYT).
Unlike LCYT, only write accesses are considered for the ite-
ration distribution. The graph construction and partitioning
stages of LCYT are then replaced by the following proce-
dure in LO-LCYT. Array � is split into blocks of � � �

consecutive elements of �, � being the number of cache
lines considered in the block. Blocks are cyclically assigned
and each processor executes the iterations that access the
elements of its blocks for write; that is, the iteration distri-
bution is driven by a block-cyclic assignment of array �.
The number of iterations assigned to each block are not
taken into account for the distribution of blocks; neverthe-
less, in general, the cyclic distribution provides a good ba-
lance. This balance is worse as � increases but, in contrast,
data locality is better exploited. The value of � is chosen as
a tradeoff between both parameters. The LO-LCYT inspec-
tor overhead depends on the number of iterations � and,
in general, it is lower than the LCYT partitioning overhead,
except for those cases in which � �� � . As in LCYT, the
iteration partitioning and the Ticket Table can be calculated
in parallel because they are independent tasks.

3.3. Executor phase

The executor is the same for both algorithms and uses
the dependence information recorded in the Ticket Table
to execute, in each processor, the iterations assigned in the
inspector phase. An array reference can be performed if
and only if the preceding references are finished. The exe-
cutor uses a shared variable (Ready) to count the number
of times each entry of � is accessed. In the course of the
executor, before accessing the ��� entry of � in the 
�� ite-
ration for read (� � �) or write (� � �), it is checked if
�������� � ����	�
� ��. If not, the processor will wait
until the condition is fulfilled and just then, the access is
performed and �������� is incremented by one. All array
accesses are performed in parallel except for the depen-
dences specified in the Ticket Table. Iterations with depen-
dences can be partially overlapped because we consider de-
pendences between accesses instead of between iterations.

RAR occurrences are serialized, which introduces pseu-
do-dependences among truly concurrent iterations. Xu and
Chaudhary [22] have proposed an improvement to the CYT
algorithm that allows concurrent reads of the same array
entry. The inclusion of this improvement in our LCYT pro-
posals would be straightforward.

4. Performance evaluation

In this section, the CYT, LCYT and LO-LCYT strategies
are compared experimentally. We begin with a description
of the experimental conditions in Section 4.1. Our primary
concern is to quantitatively assess the improvement in the
executor stage by taking into account the access locality.
Thus, in Section 4.2 we mainly focus on the executor eva-
luation in terms of the comparison of performance, cache
line reuse, false sharing and load balancing. The effect of
the inspector overhead on the results is also discussed.



REAL A(M)
DO i = 1,N

tmp1 = A(INDEX(i*2-1))
A(INDEX(i*2)) = tmp2
DO j = 1,W

dummy loop simulating useful work
ENDDO

ENDDO

Figure 3. Experimental workload

4.1. Experimental conditions

The parallel performance of the irregular loop is mainly
characterized by three parameters: loop size, workload cost
and access pattern. In order to evaluate their influence on
performance, we use the loop pattern shown in Figure 3, fo-
llowing the same approach taken by other authors [2] [22];
� represents the problem size, the computational cost of the
loop is simulated by the parameter � and the access pattern
is determined by array ���	� and the size of array �.

Examples of this loop pattern appear in the solution of
sparse linear systems (e.g. routines ����, ����� and ������ of
the Sparskit library [17]), where the loop size and the access
pattern depend on the sparse coefficient matrix. These sys-
tems are solved in a wide variety of codes: linear pro-
gramming applications, process simulation, finite element
and finite difference applications, optimization problems...
Therefore, we have used in our experiments as indirection
arrays the patterns of sparse matrices that appear in real
codes. These matrices were extracted from the Harwell-
Boeing (HB) collection [4]. We have also considered syn-
thetic access patterns to cover a wider range of cases. The
patterns (5 HB and 4 synthetic) are characterized in Table 1,
where � � � is the size of the indirection array ���	�
and � is the size of array �. The parameter �� (Critical
Path, � � �� � � ) is the length of the longest dependence
chain in the loop and gives an estimate of how parallel the
loop is (if �� � � the loop is fully parallel; if �� � � it
is fully serial). The rightmost column of Table 1 normalizes
�� with respect to the number of iterations � .

Two kinds of synthetic patterns were considered: uni-
form and non-uniform. The uniform pattern assumes all
array elements have the same probability of being accessed.
It is denoted as xxx U in Table 1, xxx being the size of array
���	� . The non-uniform pattern (denoted as xxx 90 10)
was generated so that 90% of references are only to 10% of
array elements. This pattern reflects hot spots in memory
accesses and results in longer dependence chains. In all
synthetic patterns, � � ��� .

The target machine is an SGI Origin 2000 with R10K at
250 MHz. The R10K has a 2-level cache hierarchy with L1
instruction and data caches of 32KB each, and L2 unified
cache of 4MB (L2 cache line of 128 bytes). The tests were
written in Fortran+OpenMP directives (MIPSpro compiler

Table 1. Benchmark matrices
Matrix ��� � �� �� � �����

gemat1 47368 4929 4938 20.85
gemat12 33110 4929 49 0.30
mbeacxc 49920 496 487 1.95
beaflw 53402 507 500 1.87

psmigr 2 540022 3140 2626 0.97
25600 U 25600 25600 9 0.07

25600 90 10 25600 25600 45 0.35
51200 U 51200 51200 11 0.04

51200 90 10 51200 51200 46 0.18

with -O3 optimization level), and executed in single-user
mode. All data structures were cache aligned. In our ex-
periments, the cost per iteration, � , of loop 
 of Figure 3
can be modeled as � �� � � � � ���� � �� � � � ms. �
depends on the application; typical values range from 5 to
30 using HB matrices for the loop patterns of the aforemen-
tioned Sparskit routines that solve sparse linear systems.

4.2. Experimental results

Figure 4 shows the reduction in the execution times by
applying the LCYT and LO-LCYT algorithms as compared
to the CYT method for some of the matrices. LCYT(�)
means that each node represents � cache lines of � ele-
ments; LO-LCYT(�) takes blocks of size � cache lines.
As expected, LCYT partitioning is better for a finer node
definition (that is, only one line per node). Regarding LO-
LCYT, the best results are obtained, in general, for blocks
of two lines, being a tradeoff between load balancing and
memory reuse. It can also be observed that, as the LCYT
partitioning analyzes not only write accesses, but also read
accesses, it improves the results of the LO-LCYT method.

The largest reductions are obtained in loops with small
computational cost per iteration (� ) because, in this kind of
loops, memory accesses to array � have a greater influence
on the overall execution time. As � increases, the improve-
ment falls (it can even be negative) because load balancing
and waiting times become critical factors for performance.

We define the load balancing parameter for � processors
as ��� � ��� � 
 ����, � � ��� � �, where � is the
number of iterations and 
 ��� the maximum number of
iterations assigned to one processor. As CYT distributes ite-
rations cyclically, load is always balanced. Table 2 presents
��� values for �=8 using the different algorithms. In ge-
neral, load balancing obtained for our test matrices is very
good, except for those ones with small � . For instance, the
size of array � is over 500 elements for matrices ����!�!
and ���"�#, which results in a small number of nodes (in
LCYT) and blocks (in LO-LCYT) and, therefore, it is diffi-
cult to obtain an optimal distribution.

The reduction in the execution times illustrated in Figu-
re 4 is a consequence of the improvement in data locality
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Figure 4. Percentage of reduction in execution times on 8 processors for some test matrices

Table 2. Load balancing of LCYT/LO-LCYT
LCYT(�) LO-LCYT(�)

�=1 �=2 �=4 �=1 �=2 �=4
gemat1 .971 .912 .854 .948 .941 .920
gemat12 .985 .918 .822 .956 .953 .922
mbeacxc .639 .550 .331 .555 .643 .336
beaflw .582 .553 .332 .568 .644 .338

psmigr 2 .919 .853 .768 .797 .711 .699
25600 U .997 .988 .956 .972 .973 .958

25600 90 10 .982 .981 .947 .913 .925 .926
51200 U .997 .992 .977 .968 .983 .975

51200 90 10 .998 .983 .985 .909 .963 .953

of our approaches. We used the R10K event counters to
measure L1 and L2 cache misses, as well as the number
of L2 invalidations. Figure 5 shows the results (normalized
with respect to the CYT algorithm) for each matrix on 8 pro-
cessors using LCYT(1) and LO-LCYT(2). The reduction in
the number of cache misses and invalidations is very signi-
ficant, mainly for the HB matrices, since � �� � in these
matrices, and thus the probability of reuse is higher. The
best memory hierarchy optimization achieved by gemat12
results in the highest reduction in execution time.

Figure 6 shows the executor speedups on 8 processors
for different workloads using the CYT, LCYT(1) and LO-
LCYT(2) algorithms. In general, LCYT has a better be-
havior, although LO-LCYT achieves acceptable results in
almost all cases. Our proposals work better for loops with
low � because in this case memory hierarchy performance
has a greater influence on the overall execution time. The
maximum achievable speedup is limited by the degree of

parallelism of the loop. Loops with long dependence chains
prevent parallelism. The CYT algorithm obtains the best
speedups for the synthetic matrices, which have a shorter
�� ; and the worst speedup is for gemat1, which has the
longest �� of the test suite of Table 1. Although matrix
gemat12 has a short �� , the speedup achieved by CYT is
very low. Note that the critical path is only an estimate of
parallelism degree and speedup is strongly influenced by the
iteration distribution among processors, so that the number
of waits is minimized. Moreover, speedup increases with
� because the executor overhead becomes negligible.

In order to represent the impact of the inspector over-
head, Figure 7 shows, for an HB and a synthetic matrix, the
overall execution time of the algorithms CYT, LCYT(1) and
LO-LCYT(2), given by � � �� � ��� � �� ms, where ��

and �� are the inspector and executor times, respectively,
and ��� is the number of times the inspector is reused in
the code (from 1 to 100 times in our experiments). In many
applications, the loop to be parallelized is contained in one
or more sequential loops. In this case, if access patterns to
array � do not change across iterations, the inspector can
be reused (e.g. iterative sparse linear system solvers).

The overall execution times of LCYT and LO-LCYT are
always lower than those of CYT for the HB matrix and the
difference increases as � diminishes. LCYT achieves the
best results in gemat12 for all parameter combinations be-
cause � is relatively small and it results in a low graph
partitioning cost. Regarding the synthetic matrix, as � is
much higher, the LCYT inspector overhead is more signi-
ficant and, therefore, this algorithm is only advantageous
as compared with CYT if the inspector is reused a certain
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Figure 5. Cache behavior of the three strategies
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Figure 6. Speedups on 8 processors for different workloads

number of times (from ���=20 for �=30, and ���=26 for
�=70). As in this case the inspector overhead of LO-
LCYT is less, LCYT performance is better from ���=49
for �=30, and ���=64 for �=70. Below that threshold,
the best overall performance is achieved by LO-LCYT.

Matrices gemat12 and 51200 U represent the behavior of
the HB and the synthetic test matrices, respectively. Table 3
shows the overall behavior of all test matrices for different
� . It contains the number of iterations (���) from which
the overall execution times of LCYT and LO-LCYT (LO in
the table) are lower than those of CYT. If this number is �,
it means that the execution time is always lower, and it is
not necessary to reuse the inspector to improve the results.
This is the case for the HB matrices using both LCYT and
LO-LCYT and for the synthetic matrices using LO-LCYT
(except for �=70). The entry with a dash means that the

overall execution time is never improved because the execu-
tor time of CYT is lower (the only case is matrix psmigr 2
using LCYT for � �70). The number in parentheses in the
LCYT columns is the value of ��� from which LCYT out-
performs LO-LCYT. The results show that LCYT is better
than LO-LCYT for most HB matrices, but for the synthetic
matrices LCYT is better only if the inspector is reused be-
cause, as � � �� , the graph partitioning cost is high.

5. Related work

Cache misses are becoming increasingly costly due to
the widening gap between processor and memory perfor-
mance. Therefore, it is a primary goal to increase the per-
formance of each memory hierarchy level. Much research
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Figure 7. Overall execution times on 8 processors for some benchmark matrices

Table 3. Threshold��� for outperforming CYT
�=30 �=50 �=70

LCYT LO LCYT LO LCYT LO
gemat1 1 (2) 1 1 (1) 1 1 (2) 1
gemat12 1 (1) 1 1 (1) 1 1 (1) 1
mbeacxc 1 (1) 1 1 (1) 1 1 (1) 1
beaflw 1 (1) 1 1 (1) 1 1 (1) 2

psmigr 2 1 (1) 1 1 (-) 1 - (-) 1
25600 U 18 (49) 1 21 (49) 1 31 (56) 2
25600 90 17 (48) 1 23 (56) 1 46 (75) 3
51200 U 20 (49) 1 22 (56) 1 26 (64) 1
51200 90 18 (47) 1 22 (56) 1 33 (71) 2

has been devoted to enhancing data locality of dense arrays
with regular access patterns, by means of loop and/or data
transformations [9] [13] [20]. Regarding irregular codes,
there are different proposals to improve locality of sequen-
tial codes on uniprocessors. Al-Furaih and Ranka [1] fo-
cus on data reordering using METIS [10] and BFS (Breadth
First Search). Ding and Kennedy [3] propose two transfor-
mations: one reorders data accesses to improve temporal lo-
cality (locality grouping) and the other reorders data layout
to enhance spatial reuse (dynamic data packing). They also
assess the performance improvement of applying a combi-
nation of both techniques. Mellor-Crummey et al [14] use
space-filling curves to reorder data and/or computation.

There is much less research on the improvement of lo-
cality on multiprocessors, an important issue on NUMA
systems. Han and Tseng evaluate in [7] the effect on the
parallel execution of codes of uniprocessor techniques that
improve locality, focusing on reduction operations. In [11]

Leung and Zahorjan treat locality in the specific context of
the parallel execution of a loop with no output dependences.
Their strategy is based on array reordering to improve spa-
tial locality. A recent proposal also based on data reorde-
ring using space-filling curves to enhance spatial locality
of irregular codes on shared memory systems can be found
in [8]. Our LCYT proposals, in contrast, are based on loop
restructuring and their primary objective is to exploit both
spatial and temporal locality, as well as avoid false sharing
of data. Moreover, our strategies can be applied to any loop
that follows the general pattern represented in Figure 1.

6. Conclusions

Kernels of grand challenge applications that use irregular
structures make poor use of memory hierarchy on multipro-
cessors and performance degrades as a result. As techniques
to enhance memory performance have become increasingly
important, we have proposed two methods (LCYT and LO-
LCYT) to parallelize loops with indirect array accesses
using run-time support. Compared to existing research on
irregular codes, our algorithms are designed not only to en-
hance parallelism, but also data locality, improving tempo-
ral and spatial locality and eliminating false sharing.

Experimental results show the effectiveness of both
methods, which reduce the number of cache misses and in-
validations. It results in a significant reduction in the exe-
cution times of the executor (except for high workloads),
LCYT being the method that achieves the best results in this
phase. The main drawback of LCYT is the overhead of the
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graph partitioning when the size of the indirectly accessed
array is not much less than the number of loop iterations. In
these cases, the method is only advantageous if the inspec-
tor is reused in the code and thus the overhead is partially
amortized. This is not the case of LO-LCYT, which obtains
good results in almost all circumstances. We can conclude
that, excepting very high workloads, the best overall results
are achieved by the proposals LCYT or LO-LCYT depen-
ding on the input code, as shown in Figure 8.

Our techniques are in the domain of automatic para-
llelization and the final goal is to include the algorithms in a
parallelizing compiler. Thus, the compiler would select the
best strategy according to the loop and matrix parameters,
following the decision diagram of Figure 8. The parameter
thresholds should be empirically determined.
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