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Resumo 

Ao longo de décadas que a biologia da célula é estudada com o objectivo de compreender-se como 

esta se desenvolve, reproduz e morre. Quanto maior o nível de compreensão mais facilmente se 

consegue interferir no crescimento celular, divisão celular e na alteração de ADN, tendo tal 

conhecimento implicações no tratamento e cura de doenças. O cancro é uma anomalia celular que 

mata cerca de 9 milhões de pessoas todos os anos. É uma doença em constante investigação e 

crescimento pois a sua cura ainda não foi encontrada. Assim, o objetivo deste trabalho é mostrar a 

vantagem de usar modelos matemáticos adaptados à biologia animal como o intuito de complementar 

a investigação experimental. 

Este trabalho utiliza um software de crescimento e divisão celular baseado em métodos sem 

malha. O software utiliza um modelo matemático para o crescimento e proliferação tumoral 

combinado com o “Radial Point Interpolation Method” (RPIM). Este é um método sem malha que 

permite discretizar livremente o domínio do problema com apenas um conjunto de pontos.  

Este trabalho apresenta uma revisão bibliográfica sobre a incidência do cancro, a qual mostra: a 

necessidade de criação de novas metodologias de combate ao mesmo; como se desenvolve o cancro; 

tipos de cancro; os nutrientes essenciais ao seu crescimento; tipo de linha celular; crescimento celular 

e mecanismos essências para a compreensão do modelo. 

Neste trabalho são apresentados brevemente os três conceitos usais dos modelos matemáticos: 

modelos contínuos, discretos e híbridos. O modelo utilizado no âmbito da tese faz parte dos modelos 

discretos porque a análise discretiza uma célula e não uma população.  

O modelo de difusão e do método numérico são também apresentados. Aqui é explicado como o 

oxigénio e os nutrientes (glicose) entram na célula por diferença de concentrações; como é formulado 

o modelo baseado no RPIM e a criação de leis de crescimento essenciais à divisão celular.  

Na validação do modelo conclui-se quais os parâmetros melhores a serem inseridos no programa 

do RPIM de forma a torna-lo mais eficiente. 

Os resultados são apresentados mostram o crescimento da célula durante a interfase, a mudança 

de forma na mitose até à divisão em duas células filhas. Além disso, é apresentado o consumo de 

oxigénio e glucose durante um ciclo celular. Este trabalho é um bom exemplo da aplicação dos 

modelos matemáticos à medicina/biologia, mostrando ser executável, realista e útil.  
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Abstract 

During decades cell biology has been studied trying to understand how cells grow, reproduce and 

die. Increasing the level of knowledge allows to easily interfere with cell growth, division and DNA 

alteration to cure and treat diseases. Cancer is a cellular anomaly that kills annually almost 9 million 

people worldwide. Since it is a disease without a definitive cure, cancer is in constant research and 

development. 

So, the objective of this work is to show the advantage of mathematical models in the simulation 

of animal biology in order to complement experimental investigation. 

This work uses a meshless software to predict the cell growth and division. The software uses a 

mathematical model for tumour growth and proliferation combined with the Radial Point Interpolation 

Method (RPIM). This is a meshless method that allows to freely discretize the problem domain using 

only a set of nodes. 

This work presents a literature review about the incidence of cancer, exhibiting the importance 

of new methodologies to combat cancer, how cancer is developed, types of cancer, essential nutrients 

for cancer growth, type of cell line and the indispensable mechanisms for model understanding.   

In this work, the three usual classes of mathematical models are briefly presented: continuous, 

discrete and hybrid models. The model used in the scope of this thesis is a discrete model because 

the analysis discretizes a single cell and not a population. 

The diffusion model and the numerical method are also presented. Here it is explained how oxygen 

and nutrients (glucose) enter the cell by difference in concentrations, how the RPIM-based model is 

built and how the cellular growth laws (essential to cell division) are obtained. 

In model validation it is concluded which are the best parameters to use in RPIM programme, 

trying to make it more efficient and cost effective. 

The results show cellular growth during interphase, the shape change in mitosis and the formation 

of two daughter cells. Besides that, it is presented the oxygen and glucose consumption during one 

cellular cycle. This work is a good example of the application of mathematical models to medicine / 

biology, showing to be executable, realistic and useful. 
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Chapter 1 

Introduction 

Cancer is the main cause of death in developed countries and the second in developing countries 

[1]. The incidence of cancer is increasing in developed countries resulting of: population aging and 

growth; smoking; physical inactivity; and non-balanced diets [1].  

Presently, many researchers try to understand cancer’s biology and mechanisms. Along the years, 

different types of cancer were discovered and it was concluded that several kind of tissues can have 

cancer. Researchers rapidly understood the difficulty of stopping the proliferation of cancer cells.  

Due to the research activity, diagnostic tests and distinct treatments started to appear. Generally, 

the treatment depends on the diagnostic outcome: 

 Surgery 

 Chemotherapy 

 Hormone therapy 

 Targeted therapy 

 Radiation therapy 

The choice of the treatment depends largely on the type of cancer and the stage of the disease. 

It also depends on the health state of the patient, if the she/he wants to have children and/or other 

personal considerations [2]. 

Unfortunately, there is not a definitive cure for this disease, only diverse types of treatments that 

try to cure or delay the development of cancer. None of these treatments are really effective and 

they have side effects, in which patients become very fragile and limited. 

Thus, it is necessary to create more incisive diagnoses and effective treatment options capable 

to reduce the treatment period and its side effects. Hence, this thesis aims to test a computational 

biomechanical meshless tool for the cellular proliferation of cancer cells. The tested software uses 

the RPIM, which is a precise and flexible meshless numerical method. 
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Numerical Methods 

Similar to the Finite Element Method (FEM), meshless methods are discrete numerical methods 

that have been used on a large scale to solve problems from different scientific areas, such as 

mechanical engineering, astrophysics, fluid dynamics, economy and, more recently, biology. These 

phenomena are modelled by partial differential equations that need to be solved. However, those 

equations are frequently so complex that it is not possible to solve them using exact analytical 

techniques. Thus, discrete computational methods allow to obtain an approximate solution of the 

exact analytical solution [3]. 

 

1.1.1 -  Finite Element Method 

In numerical methods, FEM is the most popular because, as the literature shows, it can be applied 

to several science fields [4].  

The approximation of the solution is done by dividing the problem domain into discrete simpler 

parts, called elements. The set of all the elements create a mesh in which is generated a relation 

between the elements [5]. After discretization of the problem, the field function of the domain is 

interpolated within each element in terms of an assumed approximation function (shape function). 

Lastly, the global domain equation system can be obtained by assembling each element’s local 

equation system [5]. 

With the use of FEM in demanding computational mechanics fields, such as large deformations, 

complex geometries or fractures propagation, its limitations start to appear. These gaps are caused 

by building a mesh that hinders the treatment of discontinuities [6]. 

 

1.1.2 -  Meshless Method 

Meshless methods are an alternative approach to FEM, eliminating the necessity of the mesh. 

Meshless methods allow to discretize the problem domain using an unstructured nodal distribution 

and construct its interpolation functions using the concept of influence-domains instead of elements 

[6]. In addition, meshless methods allow to obtain more accurate variable fields (displacement, strain 

and stress fields).  

Meshless method appeared in 1980 with the Generalized Finite Differences, by the application of 

the Finite Difference method into an arbitrary irregular mesh [6]. This work was followed by the 

Smoothed Particle Hydrodynamics Approach (SPH) in 1988, which was applied to model boundless 

astrophysical phenomena and flow dynamics. Then, SPH was improved, allowing to develop the 

Reproduced Kernel Particle Method (RKPM) [7]. 

Using distinct approximation techniques, different set of methods are obtained, such as the 

Diffuse Element Method (DEM), which has been afterwards modified and enhanced to the well-known 

element-free Galerkin method (EFGM) [7], [8].  The EFGM is a very precise and stable method, applied 

to both solids and fluid mechanics. 
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Along the years, other methods were developed, such as Petrov-Galerkin method (MLPG) [9], 

defined with local weak forms [20]; the method of the finite spheres (FSM) [10], considered as a 

special case of the MLPG; the Finite Point Method (FPM) [11] and the Radial Basis Function Method 

(RBFM), which used radial basis functions to approximate the variable fields [12]. RBFM is a ‘truly’ 

meshless method because it did not require an integration mesh and it used a strong formulation. 

However, all these methods have drawback: they use approximation functions instead of interpolation 

functions. This causes a problem, because approximation functions lack the delta Kronecker property 

[13], hinder the imposition of essential and natural boundary conditions. 

Thus, to solve some of the limitations of approximation meshless methods, in the last years several 

meshless methods using interpolation functions were developed, such as Point Interpolation Method 

(PIM) [14], the Point Assembly Method [15], the Meshless Finite Element Method (MFEM) [16], the 

Natural Neighbour Finite Element Method (NNFEM) [17] or the Natural Element Method(NEM) [18]–

[20]. 

From all these methods, PIM is the most attractive method, given the simplicity of its shape 

functions construction [13]. Additionally, PIM possesses the delta Kronecker property, allowing 

essential boundary conditions to be easily imposed. In order to improve PIM, Gaussian and 

multiquadratic radial basis functions were included in the formulation, originating the Radial Point 

Interpolation Method (RPIM) [21], [22]. 

Afterwards, RPIM combined with the natural neighbour concept, allowed the development of the 

Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM constructs its 

interpolation functions with a similar process to the RPIM and uses the natural neighbour interpolant 

concept to define nodal connectivity and create a background integration mesh. With this method, 

the interpolation functions are based in mathematical concepts, such as the Voronoï diagrams  and 

the Delaunay tessellation [23].  

1.2 - Mechanical models applied to cancer cells proliferation 

The study of the mathematical models of cell biology using FEM began several years ago in the 

end of 20th century, although it was in the 21th century that this search line increase exponential [24].  

In the late 90's, a work focus on tumour brain, developed a model of primary brain tumours that 

was applicable to a wide range of tumour types occurring within a variety of locations [24]. 

In the year 2000, a model was created to understand how epithelia and other planar collections 

of viscous cells might deform during events such as embryo morphogenesis and wound healing [25]. 

Zeng et al created a model of prostate cancer to improve the performance of prostate needle biopsy 

[26]. In 2005, a model of angiogenesis was created to understand cell proliferation and the factors 

that promote both [27]. Tumour necrosis and tissue invasion were studied via adaptive finite-element 

[28]. 3D growth of brain tumours was simulated as well as the invasion of glioblastomas in the brain 

and its mechanical interaction with the invaded structures. The model was compared to two magnetic 

resonance images to validate the created model [29]. Peterson et al. created a model for cell 
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proliferation and angiogenesis for 1D, 2D and 3D geometry in order to perform accurate and efficient 

simulations with a continuum-based tumour [30]. Brain tumour was modulated with FEM to understand 

the growth of abnormal cell concentration in a human subject at different positions [31]. Anotida et 

al. used those actin filaments to show cell expansion, cell contraction, cell translation and cell 

relocation [32]. Another model was done to solve a variety of cell pattern formation problems using 

details of cell shape, cell growth and shrinkage, cell birth and death, cell division and fusion [33]. 

After one year, Dong et al. proposed a mechanism of cellular growth controlled by the variation of 

the total energy on the volume and surface of the cells. The surface of each cell is divided by 

triangular elements and the nodal displacements determine the variation of the cellular surface and 

of the volume only when cells grow [34]. 

More recently, a methodology for lung tumour displacement was created to test the movement 

of the tumour during the breathing process [35]. It was possible for Mellal et al. to create a model for 

removal of tumours. The model showed a new method to control the direction of the temperature 

diffusion during thermal ablation [36]. In the current year, a finite element scheme for cancer invasion 

model was proposed. The model incorporates proliferation and haptotaxis effect of cancer cells. The 

numerical scheme is validated with numerical results took from literature [37]. 

Concerning meshless methods, there are few works related with tumour growth. One example is 

the research work from Dehghan and Mohammadi, in which a RBF collocation technique and the 

generalized moving least squares procedure are combined with a time dependent reaction-diffusion 

equations to describe a four-species tumour growth model. The results showed the ability of these 

techniques for solving the two and three-dimensional tumour growth equations [38]. 

1.3 - Objectives 

Cancer cells have different characteristics and properties, comparing with healthy or normal ones, 

which allow the distinction between them. Those characteristics lead to specific mechanisms of 

growth, escaping death, getting nutrients and survival, which causes the cells to take hold of human 

organism, causing the death of many individuals.  

Thus, the main goal of this work is to test a previous developed mathematical model of tumour 

growth, with the objective (in a near future) of predicting cancer evolution in the human body or in 

vitro experiments. With these models it will be possible to test drug efficiency, create new treatments 

and combine experiments with in vitro experiments.  

1.4 - Thesis structure 

This document was divided in 8 standard chapters in order to present the work developed in the 

dissertation, starting with the present introduction section, in which the numerical methods state-of-

the-art and the objectives are presented. 
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The second chapter is about the literature review in order to introduce the topic. Here are 

presented the state-of-the-art concerning cell biology and cell cycle. 

The third chapter explains how changes in cell biology lead to cancer. 

The fourth chapter describes the types of mathematical models: discrete, continuum and hybrid 

models. 

The fifth chapter introduces all methodologies used in this work. Starting with the numerical 

method (RPIM), which is fully presented and described in detail, together with reaction-diffusion 

model. The fifth chapter finishes with the developed growth laws. 

The sixth chapter concerns the model validation, being useful to calibrate the several numerical 

parameters involved in the developed code. 

The seventh one demonstrates the numerical results of this work obtained with the RPIM and the 

results are analysed and discussed.  

This document ends with the eighth chapter in which conclusions and future works are presented. 
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Chapter 2 

Cell biology 

2.1 - Cell History 

In biological science, it is fundamental to understand the molecular biology of cells.  

First, it is important to know that cells are divided into two groups of cells: prokaryotic cells ( 

Figure 2.1), which lack a nuclear envelope, and eukaryotic cells, (Figure 2.3) which have a nucleus 

with genetic material that is separated from the cytoplasm. Prokaryotic cells are normally smaller 

and simpler than eukaryotic cells, their genomes are less complex, and they do not have cytoplasm 

organelles or cytoskeleton. Despite these differences, the two types of cells have the same basic 

molecular mechanisms in their lives, which indicate that all cells are descendent from a single 

primordial ancestor [52], [53]. It is reported that life started at least 3.8 billion years ago, 

approximately 750 million years after Earth was formed [52], [53]. 

 

 
 

Figure 2.1 – Representation of a prokaryotic cell. 
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In eukaryotic cells, there are many compartments called organelles in which different metabolic 

activities occur, allowing these cells to function more efficiently [52], [53].  

Investigations about eukaryotic and prokaryotic cells showed that organelles of eukaryotes are 

cells living inside others, a process known as endosymbiosis [52], [53]. That means that eukaryotic 

organelles probably evolved from prokaryotic cells living inside the ancestors of eukaryotes [52], [53] 

(Figure 2.2). 

 

 
Figure 2.2 – Cells evolution. The current cells evolved from a prokaryotic ancestor [52]. 

 

In human cells, the organelle responsible for energy metabolism is the mitochondria, which 

generates most of the ATP (adenosine triphosphate) derived from the break-down of organic 

molecules. ATP is a molecule that stores energy that can be used in biological processes. The 

endoplasmic reticulum and the Golgi apparatus are responsible for sorting and protein transport 

destined for secretion, incorporation into the plasma membrane and into lysosomes. Besides this, 

they also synthesize lipids.  Endoplasmic reticulum extends from the nuclear membrane to the 

cytoplasm and from this organelle, proteins are transported within small membrane vesicles to the 

Golgi apparatus. Another component of these cells is the cytoskeleton, which is a network of protein 

filaments along the cytoplasm. It determines the cell shape and the general organization of the 

cytoplasm. Cytoskeleton is also responsible for the movements of the cell, such as contraction of 

muscle cells, for the intracellular transport, positioning of organelles and for movements of 

chromosomes in cell division [52], [53]. 
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Figure 2.3 - Animal cell structure. Animal cell are surrounded by a plasma membrane and 

within there are a nucleus, a cytoskeleton and many cytoplasmic organelles [52]. 

 

2.2 - The nucleus 

Nucleus is very important for store the cell’s genome and is the cell’s control centre, because it 

is there that occur DNA replication, transcription and RNA processing (Figure 2.4) [52], [53]. 

It is the nuclear envelope that separate the contents of the nucleus from the cytoplasm, providing 

the structural framework of the nucleus. This separating is very important to prevent the passage of 

molecules between the nucleus and the cytoplasm, allowing to maintain the specific biochemical of 

this compartment. The nuclear pore complexes are the only channels that exist in the nuclear 

membrane which enables the regulated exchange of molecules between the nucleus and the 

cytoplasm, including the traffic of proteins and RNAs. Molecules can travel through the nuclear pore 

complex by two different mechanisms. Depending on molecules size, small molecules and some 

protein (between 20 and 40 kD) pass freely through the pore in any direction by a process called 

diffusion. In contrast, macromolecules like most proteins and RNAs pass the by an active process in 

which macromolecules are recognized and selectively transported in a specific direction [52], [53].  

The export of RNAs (mRNAs, rRNAs and tRNAs) is a critical and fundamental step in gene 

expression. Its transport is made by an active process, as already mentioned, which is energy-

dependent process [52], [53]. 
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Figure 2.4 - Schematic of the nucleus structure [52]. 

 

The nucleus is surrounded by a nuclear envelope that consists in a complex structure of two 

concentric nuclear membranes, the inner and the outer nuclear membranes. These two membranes 

are very different and both important. The inner nuclear membrane transports specific proteins to 

the nucleus and the outer nuclear membrane is continuous with the endoplasmic reticulum, therefore 

its functionality is similar to the membranes of the endoplasmic reticulum and has ribosomes bound 

to its cytoplasm surface. The two membranes of the nucleus are connected by the nuclear pore 

complex [52], [53].  

The nuclear lamina is a fibrous meshwork, essential to provide structural support to the nucleus, 

forming a lamina matrix. Connecting to this mesh, there is chromatin that corresponds to an organized 

large loop of DNA [52], [53].  

Another nuclear body or component of the nucleus is the nucleolus. It is the place where rRNA 

transcription and processing occurs as well as aspects of ribosome assembly. Nucleolus is a ribosome 

production factory that is very important because cell require large number of ribosomes due to the 

protein synthesis [52], [53]. 

 

2.3 - The Composition of Cells 

Cells are composed essentially by water (70%) and other components like inorganic ions and 

carbon-containing. The interactions between water and other constituents of the cell are very 

important and this is possible because water is a polar molecule. A molecule is polar when it has a 

positive and a negative charge. In water, hydrogen atoms have a positive charge and the oxygen has 

a negative charge, and, because of that, water molecules can establish hydrogen bonds between them 

or between other polar molecules and can interact with ions. All these molecules that interact with 
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water are soluble in water (hydrophilic). On the other hand, nonpolar molecules are poorly soluble 

and cannot interact with water (hydrophobic) [52], [53]. 

The organic molecules are unique constituents of cells and most of these organic compounds 

belong to one of these classes: carbohydrates, lipids, proteins and nucleic acids. Proteins, nucleic 

acid and carbohydrates are macromolecules formed by the joining of amino acids, nucleotides and 

simple sugars, respectively [52], [53].  

Carbohydrates include simple sugars like glucose (major nutrients of cells) and polysaccharides 

that are storage forms of sugar and form structural components of the cell. Another important fact 

of carbohydrates is that they act as markers for a variety of cell recognition processes, adhesion of 

cells and transport of proteins [52], [53]. 

Lipids are the other major constituent of cells and they have three important functions in cells 

[52], [53]: 

 Providing an important form of energy storage; 

 Being the major components of cell membranes; 

 Playing an important role in cell signalling as steroid hormones and as messenger 

molecules.  

The simplest lipids are fatty acids (chains of hydrocarbon) and they can be divided in unsaturated 

fatty acids and in saturated fatty acids [52], [53]. 

Nucleic acids are the DNA and RNA that correspond to the principal informational molecules of 

the cell. Deoxyribonucleic acid (DNA) has a molecule that carries the genetic material, which is 

located in the nucleus in eukaryotic cells. Ribonucleic acid (RNA) participate in many cellular 

activities and according to the function RNA divided in [52], [53]:  

 Messenger RNA (mRNA) carries information from DNA to the ribosomes for production of 

protein; 

 Ribosomal RNA and transfer DNA have the function of protein synthesis. 

Both DNA and RNA are polymers of nucleotides: adenine, guanine, cytosine, but DNA also has 

thymine and RNA has uracil. DNA is formed by a double-stranded molecule consisting of two 

polynucleotide chains in opposite directions. In contrast, RNA is formed by a single-stranded molecule 

[52], [53].  

Each cell has several thousand different proteins which perform a big variety of functions. 

Concerning macromolecules, proteins are the most diverse and they have functions like [52], [53]: 

 Serving as structural components of cells and tissues; 

 Acting in the transport and storage of small molecules; 

 Acting as defender against infections; 

 Passing information between cells; 

 Acting as enzymes. 
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2.4 - Cell Cycle 

The study of cancer started a long time ago. Ward researched in many texts of ancient Greece, 

Egypt and Rome and he showed that the early physicians were capable of making a correct diagnosis 

and performing a therapy [54]. 

Interestingly, the research about cancer, its causes and cure, has not only helped cancer study 

but also a much wider area of medical knowledge, leading to discoveries about cell biology [55]. 

The most fundamental characteristic of cells and all living organisms is their self-reproduction. In 

cell cycle each parental cell divides into two daughter cells in the end of the cycle (Figure 2.5). These 

new cells can grow and also divide into two, giving rise to a new cell population formed by many cells 

that grow and divide themselves [52], [56]. So, consecutive cell cycles (where cell grow and divide) 

results in the development of a single fertilized egg into the approximately 1014cells that represent 

the human body [52], [56].  

The division of cells must be carefully regulated and coordinated with both cell growth and DNA 

replication to ensure the formation of intact genomes in all cells. However, there are defects in cell 

cycle regulation that cause abnormal proliferation of cancer cells, and, because of that, studies of 

the cell cycle and cancer have become closely interconnected [52], [56].  

The main processes in cell cycle are: cell growth, DNA replication, distribution of the duplicated 

chromosomes to daughter cells and cell division. Cell growth is a continuous process and DNA is 

synthesized during one phase of the cell cycle [52], [56].  

A typical eukaryotic cell cycle can be observed in human cells culture, which divides 

approximately every 24 hours. Interphase and mitosis are the two parts that form the cell cycle. 

Mitosis is the nuclear division and it means that in this phase occur the separation of daughter 

chromosomes and cell division. From 24 hours of cell cycle, only one hour is spent in mitosis; the rest 

of time is spent in interphase that corresponds to the period between two mitoses. During interphase, 

the cell grows, DNA is replicated and chromosomes are decondensed in the nucleus. All processes in 

this phase prepare cells to division (mitosis). During interphase, the growth is constant and the size 

in the end of interphase is twice the size in the beginning of the same phase. Although growth is a 

continuous process, there are checkpoints events that allow to divide interphase in three phases: G1, 

S and G2 [52], [56]. 
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(a) (b) 
Figure 2.5 – a) Cell duplication (Mitosis) in five steps. It occurs to healthy and cancer cells, 

but in cancer cell it happen more times than in healthy cells[2]. b) Representation of four phases: 
G1, S, G2 and M [2]. 

 

When mitosis ends, G1 phase (gap 1) is the following phase, which corresponds to the interval 

between mitosis and initiation of DNA replication. Here the cell is metabolically active and grows 

continuously. In S phase (synthesis) occurs DNA replication which is followed by the G2 phase (gap 2) 

where cell continues to grow and proteins are synthesized in preparation for mitosis [52], [56].  

Depending on cells type, cell cycle phases have different durations. For a typical proliferating 

human cell with a total cycle time of 24 hours, the G1 is about 11 hours, S phase about 8 hours, G2 

phase about 4 hours and mitosis only 1 hour. However, other types of cells like budding yeasts can 

complete cell cycle in 90 minutes. In contrast, embryo cell cycle completes a cycle in 30 minutes, 

because cells do not grow and instead divide into progressively smaller cells. So, there is no G1 or G2 

phase, only S phase and mitoses [52], [56] (Figure 2.6). 

 

 
Figure 2.6 - Embryo cell cycle[52]. 

 

In adult animals, some cells stop dividing like nerve cells, and many other cells divide only 

occasionally to replace cells that have been lost because of injury or cell death as skin fibroblasts or 

liver cells. These types of cells exit G1 to enter a quiescent stage called G0, where cells remain 

metabolically active (low metabolism) but no proliferative unless they receive some specific 
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extracellular signals (Figure 2.7a). Other reason for cells to enter in G0 is when growth factors are 

not available [52], [56].  

Cell proliferation is regulated by several signals that act to inhibit cell cycle progression, like 

nutrients, growth factors and controllers of cell cycle. These controllers are called cell cycle 

checkpoints and they goal is to prevent the entrance into the next phase of the cell cycle until the 

events of the previous phase have been completed. There are four checkpoints [52], [56](Figure 2.7b): 

 In G1 phase to check if DNA is damaged; 

 In S phase to check if there is unreplicated or damaged DNA; 

 In the end of G2 phase to check the same in S phase; 

 In the end of M phase to check if there is chromosome misalignment. 

If one of these errors occurs during the cell cycle, the cell is arrested in the corresponding phase 

to allow the error repair before the cell enters the next phase. 

 

  

(a) (b) 

Figure 2.7 – (a) Cell reenter in G1 phase due to the addition of growth factors. (b) Place of 
checkpoints on the cell cycle. 

 

2.5 - Aerobic Respiration 

Respiration is essential because all live cells of the body need oxygen and release carbon dioxide. 

Oxygen is obtained by pulmonary respiration and distributed along the cells, which is used in the final 

phase of a series of reactions in aerobic respiration. In this process, the energy is extracted from food 

molecules [57]. In human diet, glucose is the main carbohydrate, which is a sugar that is in the blood 

to insure all cells have energy. Glucose is so fundamental that it is present in all tissues. For example, 

it is an exclusive energy supply of red blood cells and brain [52], [58]. 

Aerobic respiration is divided in three phases [57]: 

 Glycolysis is the anaerobic phase where glucose is broken in two pyruvic acid molecules by 

a process denominated oxidation (loss of electrons). In this step carbon dioxide and two 
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ATP molecules are released. Pyruvic acid enters in mitochondria where it reacts with 

coenzyme A to form acetyl-coenzyme A. 

 Cycle of Krebs is a cycle where acetyl-coenzyme A reacts with oxaloacetate to originate 

citric acid. This is degraded by many enzymes to originate oxaloacetate. This molecule 

reacts with acetyl-coenzyme A and so on. During these reactions, many products are 

formed. Per glucose molecule 6 NADH2 (nicotinamide adenine dinucleotide) molecules, 2 

FADH2 (flavin adenine dinucleotide) molecules, 2 ATP molecules and 4 CO2 molecules are 

produced. 

 The NADH2 and FADH2 are used in the breath chair or chemiosmosis. For each NADH2 

molecule in reaction with oxygen, ADP and phosphate occur the formation of 3 ATP 

molecules; for each FADH2 molecule in reaction with the same compounds, originate 2 ATP 

molecules. 

 

 
 

Figure 2.8 – Aerobic respiration steps inside and outside the mitochondria. 

 

2.6 - Growth law 

Determining the growth of single cells along cell cycle is a big challenge of contemporary cell 

biology. Cell size is a characteristic of cell physiology and pathology and because of that is important 

to understand how cell growth is regulated [21],[22]. In the past, it was assumed that the growth rate 

might be constant, leading to a linear increase in size, which does not imply the regulation required 

to maintain homeostasis [60]–[63]. Nowadays, it is known that growth rate is exponential [60]–[63]. 



36   

 

There are many techniques that prove the relationship between growth rate and cell cycle phases 

and show the exponential growth. For example, Amit Tzur et al. calculate the dependence of growth 

rate with time using a method based on asynchronous population at steady state proposed by Collins 

and Richmond in 1962 [64], Figure 2.9(a). Other methodology was proposed by Ran Kafri et al. called 

ERA where authors calculated the dynamics of cell growth and cell cycle progression [59], Figure 

2.9(b). Mustafa Mir et al. developed a new methodology in their laboratory called spatial light 

interference microscopy (SLIM), which combined with fluorescence imaging became a special method 

to study the cell cycle-dependent growth [60], Figure 2.9(c). All authors show that cell growth is 

exponential. 

 

 

(a) 

 

(b) 
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(c) 

 
Figure 2.9 – (a) Measurements were done in cells from hour 0 to 24 to obtain the size 

distribution along 2.5 cycles [61]. (b)  Measures of cells growth during cell cycle 
progression using ERA [59]. (c) Dry mass quantity during cell cycle. 

 

2.7 - Cell Senescence 

Cell division is limited even in ideal conditions of growth, so every cell has an intrinsically limited 

proliferation lifespan. When cells stop to divide, they enter in a quiescent state denominated 

senescence which is caused by a progressive cut of chromosome telomeres with each cell cycle. The 

replication process is incomplete and telomeres will shorten at each cell division [65], [66]. Telomeres 

are DNA sequences that are repeated at the ends of chromosomes [67]  

Figure 2.10). The only way that prevents this event is by telomerase, which is an enzyme that 

adds the telomere at the chromosome end during cell division. However, most mammalian somatic 

tissues do not have telomerase and, therefore, cells enter in senescence. Because of that it was 

proposed that reduction of the telomeres could be a “clock” for cell division [67]. 
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Figure 2.10 - Chromosomes lose their telomeres with each cell division until they stop to 
divide. 

 

2.8 - Cell Death and Cell Renewal: Apoptosis and Necrosis 

As previously mentioned, animal development begins with the rapid proliferation of embryonic 

cells, which then differentiate to produce many specialized types of cells that constitute adult tissues 

and organs.  

Cells can die due to some unpredictable traumatic events, such as exposure to toxic chemicals 

and ultraviolet rays or as a result of normal physiological process of programmed cell death, which is 

proceeded by a series of cellular changes known as apoptosis [52], [53] (Figure 2.11).  

Apoptosis is also responsible to maintain constant the cell number in tissues and provides a 

defence mechanism by which damaged and dangerous cells can be eliminated. An example is DNA 

damage that induces programmed cell death and it may eliminate cells carrying potentially harmful 

mutations, which may lead to the development of cancer. Abnormalities of cell death are related 

with a variety of illnesses, including cancer, neurodegenerative disorders like Parkinson’s and 

Alzheimer’s disease and autoimmune disease. Therefore, programmed cell death plays a fundamental 

role in regulating the associations between cells in tissues. Apoptosis consists in a set of events that 

occur in order and it is regulated by specific genes [52], [68]:  

 Cellular shrinkage; 

 Condensation of the nuclear chromatin; 

 Rupture of the cortex and bleb formation; 

 DNA fragmentation; 

 Cytoplasmic vacuolisation; 

 Cell lysis.  
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All components of the cell are encapsulated in autophagosomes and they travel through the 

cytoplasm until they find a lysosome to merge with it, forming an autolysosome. Then the components 

inside are degraded [52], [53]. 

For a long period, necrosis was considered to be a cell death that occurs only by accident in 

response to physicochemical aggressions. However, new research show the existence of multiple 

pathways of regulated necrosis, which is a cell death process controlled genetically and results in 

cellular leakage characterized by cytoplasmic granulation and organelle and/or cellular swelling [68], 

[69] (Figure 2.11). The cell membrane rupture and the components (not functional) of the cells are 

released into cytoplasm, causing inflammatory reactions in neighbouring tissues in order to eliminate 

death tissues and to perform tissue reparation. The digestion is made in cytoplasm by two processes: 

autolyse (destruction by the action of enzymes of the cell itself) and heterolysis (enzymes derivated 

from leukocytes or white blood cell) [52], [53]. 

Necrosis can be caused by microorganisms, virus, chemical agents and others or may occur when 

apoptosis is blocked [68].  

Another difference between the two process of death is the intracellular ATP levels: high ATP 

levels enable apoptosis and low ATP levels favour necrosis [70]. 

 

 
Figure 2.11 - Main differences between apoptosis and necrosis. 
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Chapter 3 

Cancer 

Cancer is a result of defects in the regulatory mechanisms that govern normal cell behaviour. 

Processes such as proliferation, differentiation and survival of individual cells are carefully regulated 

in multicellular organisms to maintain the organism healthy. However, this regulation is lost in cancer 

cells, which grow and divide uncontrolled and can spread throughout the body and interfere with the 

function of normal tissues and organs (Figure 3.1). These problems in cancer cells are the result of 

accumulated abnormalities in cell regulatory systems and it is why it is possible to distinguish cancer 

from normal cells. In cell cycle, cancer cells divide faster, because checkpoints have problems, so 

they continue to divide when they should not [52], [53]. For example, there are several problems in 

genes that promote proliferation (oncogenes), apoptosis (tumor suppressor genes) and, furthermore,  

regulatory signals may be ignored by these cells. These changes can be inherited from the individual’s 

parents or they can appear during the individual’s lifetime, as a result of errors that occur when cells 

divide or due to DNA damage. DNA damage can be caused by environmental exposures like chemicals 

in tobacco smoke and radiation (ultraviolet rays from the sun) [2], [71]. 

Therefore, in cancer cells the normal process of growing and dying is malfunctioning and that is 

why cells become more and more abnormal, old or damaged instead of dying [2], [72]. Cells 

proliferate and avoid death, changing their microenvironment to favour their survival, which may 

lead to migration and metastasize in regions far from the primary tumour (process called metastatic 

cancer). It may kill the host due to physical obstruction or organ malfunction. Additional mutations 

and epigenetic changes within an abnormal cell population may also cause a different subgroup of 

cells that differ in their characteristics. Cells proliferate out of control and form microscopic nodules, 

however, they do not have access to the vascular network. So, they receive nutrients and growth 

factors via diffusion through the healthy tissue. Most cancerous tumours form solid tumours, which 

are masses of tissues. However, some cancers (such as blood cancer) generally do not form solid 

tumours [2], [72], [73]. 
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Cancer cells have a specific characteristic that helps them to proliferate ad eternum. They 

reactivate telomerase that prevents cells to enter in senescence and maintains cancer cells viability 

[74], because telomerase prevents DNA damage activation responses and cell arrest (cell cycle stop) 

[75], [76].  

There are other important differences between healthy and cancer cells [2], [52]: 

 Healthy cells are specialized, which means that cells mature into very distinct cell types with 

specific functions. Cancer cells are less specialized, because they are blocked at an early 

stage of differentiation, which is consistent with their continued active proliferation; 

 Cancer cells ignore signals to stop dividing or to begin apoptosis; 

 Cancer cells can influence healthy cells, molecules and blood vessels that surround and feed 

a tumour. For example, cancer cells can induce healthy cells to form blood vessels that will 

supply tumours with oxygen and nutrients and remove waste products from tumours. 

 Cancer cells can also evade the immune system, organs, tissues and specialized cells, such as 

cells that protect the body from infections. They are also able to hide themselves from the 

immune system, and avoid destruction. 

 Cancer cells are less adhesive due to few cell surface adhesion molecules, which allows them 

to invade and metastasize. 

 

 

 
Figure 3.1 - In culture, normal cells proliferate until they reach a finite cell density at which 

point cells stop to divide and enter in G0 (quiescent). However, tumour cells continue to 
proliferate independent of the number of cells [52]. 

 

3.1 - Socioeconomic 

Cancer is the main cause of death in developed countries and the second one in developing 

countries [1]. The incidence of cancer is increasing in developed countries resulting of: aging and 

growth population; smoking; physical inactivity; and non-balanced diets [1]. These facts are proven 
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in a report on worldwide cancer rates by the World Health Organization’s International Agency for 

Research on Cancer [39] which shows that North America leads the world in the rate of cancers 

diagnosed, followed by Western Europe, Australia and New Zealand. Other study published in 

Australian Institute of Health and Welfare (1999) demonstrates that it is expected that one in three 

men and one in four women will be directly affected by cancer in the first 75 years of life [40]. 

Currently it is estimated that 29% of male and 25% of female die due to cancer[40] 

In the United Kingdom, for example, cancer is the cause of one in four deaths and 160,000 people 

die because of this disease every year [40]. 

However, cancer not only affects individuals but also their families and the economy. In 2015 a 

study showed that over half of people who are adults under the age of 65 will be diagnosed with 

cancer at some point in their lifetime [41]. 

Nowadays, many investigations conclude that both cancer incidence and cancer mortality are 

related to socio-economic status. The incidence of most cancer types is higher among people from 

more deprived areas than least deprived groups [42] (Figure 3.2). 

 
Figure 3.2 – Cancer mortality rates by deprivation quintle[42]. 

 

Depending on age and gender, different types of cancer can appear. For example, leukaemia, 

brain tumours and lymphomas are the most common in children, while in women appear more 

frequently cancer of the ovaries, uterus and cervix and in men cancer of the testis. However, breast, 

lung, bowel and prostate cancers are the most common in adults over the age of 50 and they 

correspond to more than half the cancer incidence [40]. Cancer incidence has increased over the 

years due to population ageing, since cancer is more common among older age groups [40]. 

Cancer has a huge impact on people’s lives, not only physically but also emotionally. Physically, 

treatments can result in fatigue, nausea, constipation, diarrhoea, hair loss, infection, scarring and 

weight loss [42]. Emotionally because diagnosis is often faced with shock, followed by fear, sadness, 

while other people feel anger and bitterness, or loneliness and isolation [42].  

 

As Figure 3.3 shows, cancer affects the economy of a country due to many reasons. 

First, there are many patients who die because of it and this removes many productive workers 

from the job market [43].  
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Second, there are the consequences of non-fatal cancers. When people are diagnosed with cancer, 

they leave their jobs because of treatments and recuperation. The majority of these people do not 

return to work or work in part time, because of the after effects of cancer and cancer treatments. 

Patients live with pain, fatigue, mental health problems and also health problems as a result of 

chemotherapy or radiation therapy [43]. These changes may reduce a cancer survivor’s economic 

productivity, which makes the patient's life difficult [42]. 

Third, the direct medical costs (total of all health care costs) by the Agency for Healthcare 

Research and Quality for cancer is approximately [44]: 

 50 % for hospital outpatient or doctor office visits; 

 35% for inpatient hospital stays; 

 11% for prescription drugs.  

Besides the effect on the country, most patients suffer economic problems in their lives because 

of their physical conditions and medical treatment. As already mentioned, patients do not work or 

work less, so they earn less money but need more money for treatments [43]. Also, uninsured patients 

and those from ethnic minorities are more likely to discover cancer at a later stage, when treatment 

can be more extensive, more costly and less successful [44]. 

 
 

 

 

Figure 3.3 – Answer for the question if cancer (physical condition and treatment) lead to 
financial problems [44]. 

 

Many factors can influence the incidence of cancer which explains why some individuals have and 

others don’t. Excluding the biology effect, Simpson and Brown showed that racial and social 

inequalities may affect the lifestyle choices which can lead to overweight, lack of breastfeeding, poor 

diet and lack of exercise. All these life options can increase the probability of cancer appear in these 

people [45]. 

Depending on race and financial situation, people have better living conditions have the possibility 

to detect cancer in an early stage and have more treatments available. However, a study showed that 



45 

 

women with higher income and education levels have a higher risk to have breast cancer because of 

their life style [46]–[48] (Figure 3.4): 

 Have their first child at a later age; 

 Use menopausal hormone therapy; 

 Have fewer children; 

 Drink alcohol. 

 

 

 
Figure 3.4 – Incidence of breast cancer by race 2006-2010 [1]. 

 

A very important help for patients with cancer and their families is a psychological support during 

all treatment and recuperation. This is essential to minimize the high rates of psychopathological 

disorders that make the recovery process very difficult.  According to many scientific articles, it was 

verified that besides contributing to increase life quality of patients, it also helps in [49], [50]: 

 Decreasing in clinical recovery time; 

 Better control perception of cancer; 

 Decreasing somatizations (effect of transferring to the body a psychological problem); 

 Bigger indices of fight cancer; 

 Decreasing in polymedication; 

 Decreased rates of depressive and anxious disorders.  

All these factors can increase the survival time of the patient by stimulating the immune system 

function. Therefore, psychological support can be a strong therapeutic ally of extreme importance.  

This support is also fundamental for families of patients with cancer. For example, when a parent 

of a child has cancer, the child will feel alone and sad, because the parent won’t be able to give 

appropriate attention to the child. Children do not understand some behaviours and attitudes that 

need to be explained to the children by someone qualified [51]. 

 



46   

 

3.2 - Types of Cancer 

The abnormal proliferation characteristic in cancer exists in different kinds of cells in the body, 

so there are more than a hundred different types of cancer (Table 3.1) [52], [53]. They differ in their 

behaviour and response to treatment. The principal question in cancer pathology is if tumour is 

malignant or benign. The first are cancerous tumours, which means they can spread into or invade 

nearby normal tissues. Then as tumours grow, some cancer cells can break off and travel to distant 

places in the body through the blood or the lymph system (which contains a collection of vessels that 

carry fluid and immune system cells) and form new tumours far from the original tumour. Benign 

tumours do not spread to distant body sites, nor invade normal tissues, but they can be quite large. 

An example is the common skin wart.  When they are removed, they usually do not grow again whereas 

malignant tumours sometimes do [2], [52], [73]. 

 

 
Table 3.1 – Most popular types of cancer in United States [44]. 

Cancer site Cases per year Deaths per year 

Prostate 232.100 (16.9%) 30.400 (5.3%) 

Breast 212.900 (15.5%) 40.900 (7.2%) 

Lung 172.600 (12.6%) 163.500 (28.7%) 

Colon/rectum 145.300 (10.6%) 56.300 (9.9%) 

Lymphomas 63.700 (4.6%) 20.600 (3.6%) 

Bladder 63.200 (4.6%) 13.200 (2.3%) 

Skin (melanoma) 59.600 (4.3%) 7800 (1.4%) 

Uterus 51.200 (3.7%) 11.000 (1.9%) 

Kidney 36.200 (2.6%) 12.700 (2.2%) 

Leukemias 34.800 (2.5%) 22.600 (40.%) 

Pancreas 32.200 (2.3%) 31.800 (5.6%) 

Subtotal 1103.800 (80.4%) 410.800 (72.1%) 

All sites 1373.000 (100%) 570.000 (100%) 
 

 

 

Malignant and benign tumours are classified according to where they appear, this means, type of 

cells and organ. For example, erythroid leukemias arise from precursors of erythrocytes or red blood 

cells and fibrosarcomas from fibroblasts [52], [53]. 

Most cancers can be classified into three main groups: carcinomas, sarcomas and leukemias or 

lymphomas. Carcinomas are malignancies of epithelial cells and represent approximately 90% of 

human cancers; sarcomas are rare in humans and are solid tumours of connective tissues like muscle, 

bone, cartilage and fibrous tissue. Leukemias and lymphomas correspond approximately 7% of human 
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malignancies and appear in blood-forming cells (leukemia) and in immune system cells (lymphoma) 

[52], [53]. 

 

3.3 - The development of Cancer 

Tumour clonality, which is the development of tumours from single cells that proliferate 

abnormally, is one of the fundamental features of cancer [52] (Figure 3.5).  

At the cellular level, cancer involves processes like mutation and selection of cells with 

progressively increasing capacity for proliferation, invasion, metastasis and survival. So, the first step 

is tumour initiation that results from a genetic alteration leading to abnormal proliferation of cells, 

forming a population of clones. Tumour progression continues with mutations that occur within cells 

of the tumour population, conferring selective advantage to the cell, such as rapid growth. In this 

step, there is a process called clonal selection where some clones from tumour cells have 

characteristics that confer advantage in relation to the other tumour cells, so they grow faster, have 

better proprieties of metastasis and invasion. Therefore, tumours become more rapid-growing and 

increasingly malignant [52].  
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Figure 3.5 -  Evolution and progression of a tumour [52]. 
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3.4 - Tumours Growth 

The aspects that tumor growth involve are [77]:  

 Rapid cancer cell proliferation that lead to tumor solid formation; 

 Metabolic activity in which cells consume nutrients like oxygen and glucose and result 

byproducts; 

 Mechanical interactions between tumor mass, the extracellular matrix (ECM) and surrounding 

tissues; 

 Formation of new tumor colonies due to cell migration. 

The number of tumour cells increase in the nodules and their accumulation may cause acute and 

chronic lack of oxygen, which leads to hypoxia, and lack of nutrients, such as glucose leading to 

hypoglycemia, and accretion of metabolites, such as lactic acid that leads to acidosis [78]–[81]. Due 

to these effects, cells under stressful conditions may induce angiogenesis by release of pro-angiogenic 

growth factors, such as vascular endothelial growth factor (VEGF) (Figure 3.6). When this happens, 

the tumour can grow larger and, as a consequence, the neo capillaries can be used to send cancer 

cells to the blood flow, leading to the formation of a tumour in another part of the body (metastasis) 

[52], [53]. 

The tumor-induced microvasculature exacerbates hypoxia, hypoglycemia and acidosis, because, 

unlike the normal vasculature, the new blood vessels tend to be highly disorganized and poorly 

functional [82], [83], leading to an unequal distribution of oxygen and nutrients [84], [85]. These 

conditions increase the risk of cancer spreading through the body [86]–[90] and can select for 

apoptosis-resistant tumour cells, which induces the formation of blood vessels, increasing invasiveness 

[78], [91]–[98]. 

 
 

Figure 3.6 - VEGF is secreted by cells deprived of nutrients, leading to the formation of 
new capillaries, improving blood suplly. 
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3.5 - Causes of Cancer 

Carcinogen is the name given to substances that cause cancer. The development of malignancy is 

a complex multistep process but there are many factors that may affect the probability that cancer 

will develop like radiation, chemicals and viruses [52], [53]. 

Some agents such as radiation and some chemical carcinogens (unbalanced diets, drugs and 

environmental substances) act by damaging DNA and inducing mutations. Some examples are solar 

ultraviolet radiation, related with skin cancer, carcinogenic chemicals in tobacco smoke related with 

lung cancer and aflatoxin that is a potent liver carcinogen [52], [53]. 

Another way to contribute to cancer development is stimulating cell proliferation instead of 

mutation induction. This stimulation is made by tumour promoters that facilitate the proliferation of 

cell population during early stages of tumour development. Examples are hormones and some viruses 

[52], [53].  

Unfortunately, there is not a definitive cure for this disease, only diverse types of treatment that 

try to cure or delay cancer development. So, they have a significant potential to enhance quality of 

life and increase life-expectancies. Nevertheless, none of these treatments are really effective and 

they have side effects. There are many types of treatments that could be used depending on the 

diagnostic tests. It could be recommended one or more treatment options, such as [52], [53]: 

 Surgery 

 Chemotherapy 

 Hormone therapy 

 Targeted therapy 

 Radiation therapy 

The choice of treatment depends largely on the type of cancer and the stage of the disease, and 

on the patient’s health, if the patient wants to have children and/or other personal considerations 

[2]. 

Dynamics between molecular- and tissue-scale in a tumor can have unexpected effects on invasion 

and outcome of therapy. Invasion is a problem to resection (surgery for partial or total extraction of 

an organ) and treatment, because it can be very difficult to define optimal mass removal due to the 

complexity to estimate the tumor margin and invasion potential. An example of an unexpected effect 

in outcome of therapy is the anti-angiogenic therapy that should lead to tumor regression [99]–[102]. 

However, it may also exacerbate hypoxia [103] and cause tumour fragmentation, cancer cell migration 

and tissue invasion [104]–[109],[110]–[118]. 

 

3.6 - Selection of Cell Line 

In cell culture it is important to use cells or tissues that are similar to reality, so spheroids, which 

are spherical aggregates of tumour cells that are identical to the nodules on solid tumors [119]–[121], 



51 

 

can be developed in the lab [122]. Spheroids can develop central necrosis, like tumour nodules, so 

they can be a useful model which provides information about the metabolites penetration on tissues 

and how they influence cell death [119]. 

There are three phases that describe these biological structures. First phase is characterized by 

the aggregation of single cells, creating small agglomerates that grow quasi-exponentially [121], 

[123]. This growth continues until a specific volume. At this point of the spheroid growth, cells are in 

different stage of the cell cycle, resulting in an accumulation of G1-like cells at the centre and 

periphery cells proliferate [121], [122], [124], [125]. This difference leads to a progressive reduction 

of the growth rate that lead to a second phase of growth [121], which is characterized by a linear 

expansion of the spheroid diameter with time [126], [127]. In last phase, as the spheroid grows and 

becomes larger, its growth progressively slows down until it reaches a maximum diameter [125], 

[128]. This special growth of the spheroids is a consequence of the diffusion and consumption of 

nutrients, such as oxygen and glucose, as well as growth factors [129], [130] and inhibitory factors 

produced by live or dead cells [130], [131]. All these steps belong to the avascular growth phase 

(Figure 3.7), after which comes the tumor vascular growth phase. It is in the vascular growth phase 

that the tumour invade other tissues and depend on their ability to create new blood vessels [132]. 

Other characteristic of malignant growth of spheroids is their tissue structure disorganization, 

abnormal blood vessel development and insufficient vascular supply. Because of that, these cancer 

cells have physical, chemical and nutritional stresses [133].  

Like all tumours, spheroid metabolism and proliferation are dependent on oxygen and glucose 

concentration and pH, so cells stop growing when exposed to extreme hypoxia [134]–[136], glucose 

deprivation [137], and low pH levels [138]. 

Glucose deprivation in cells is associated with quiescence, synthesis of stress proteins, decreasing 

glucose metabolism and increasing oxygen consumption rates [137], [139]–[142]. In the same way 

when oxygen concentration decreases, glucose consumption rate increases. In necrotic region the 

concentration of oxygen can be zero [143]–[145].  

Thus, for this numerical study it was selected one of the most used tumour spheroid in cancer 

research - the multicellular tumour spheroids of the EMT6/Ro mouse mammary tumour cell line [146]. 

For the EMT6/Ro cell line, the normal culture conditions are: culture medium is BME (basal medium 

Eagle) with 5,5 mM of glucose [146].  
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Figure 3.7 - Division of a spheroid according to its healthy state due to availability of oxygen 

and nutrients. From the periphery to the centre, the concentration of oxygen and nutrients 
available decreases and consequently cell's ability to proliferate decreases also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

Mathematical models 

Nowadays, in cancer research, it is usual to use new techniques from molecular biology that are 

capable to produce information very important. However, to improve these discoveries it is essential 

to use mathematical models that provide approximated insights of critical parameters controlling the 

system dynamics [147].  

Mathematical models have the potential to explain the causes of solid tumour invasion and 

metastasis and can help to understand the experimental and clinical observations. In vitro 

experiences take a long time and involve complex numerous experiments. Alternatively, 

mathematical models, which describe different aspects of solid tumour growth, have the advantage 

to prevent excessive experimentation and provide biologists with complementary information about 

the mechanisms that may control the development of solid tumors [148]. Besides that, modelling and 

simulation have also the goal to minimize patient suffering and maximize treatment effectiveness by 

the development of individualized therapy protocols. For these reasons, experimentalists and 

clinicians are becoming increasingly interested in mathematical modelling as a good counterpart, 

recognizing that medical techniques and experimental approaches are often unable to resolve 

problems alone [149]. 

To concretize these goals is important to know that there are more than 100 types of cancer, each 

with many subtypes, and all cancers develop a common set of basic characteristics [149]:  

 Self-sufficiency in growth signals; 

 Insensitivity to anti-growth signals; 

 Evasion of apoptosis; 

 Limitless replicative potential; 

 Sustained angiogenesis; 

 Tissue invasion and metastasis. 
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There are many mathematical models to study the various phases of cancer progression [132], 

[150]–[173] and they are divided based on how the tumour tissue is represented: discrete cell-based 

models and continuum models. Both approaches provide important contributes to cancer-related 

processes, so the complexity of cancer and the interactions among the cell- and tissue-level can be 

described using a continuum-discrete (hybrid) approach, relating the molecular and cellular scales to 

the tumour scale [58], [169], [174].  

 

4.1 - Discrete Model  

Discrete modelling has been particularly useful in recent years in studies of carcinogenesis, 

genetic instability, natural selection and interactions of individual cells with each other and the 

microenvironment, because individual cells are tracked and updated according to a specific set of 

biophysical rules [175]. With this models, it is also possible to study biological cell characteristics of 

a specific population, like response to therapy and in studies of immunology. Discrete models are 

divided in two types: lattice-based and lattice-free. The first describes the dynamics of discrete 

tumour cells as automata on a grid whose states are controlled by a set of deterministic or 

probabilistic rules [175]. Lattice-free describes the actions of discrete cells in arbitrary locations and 

their interactions [175]. The disadvantage is the computational cost that increases with the number 

of cells modelled, limiting these methods in the spatial and temporal scales. For example, it is not 

possible to use discrete approach when the spheroid tumour of 1 mm3 contains several thousand of 

cells [175]. 

Nevertheless, the literature describes discrete models that include a discrete-continuum approach 

related with substrate concentration like oxygen and glucose. In these models, the species 

concentrations are described using continuum approach and cell components are assumed as discrete 

[152], [154], [155], [176]–[183]. 

 

 

4.2 - Continuum Model 

Continuum methods are used in larger scale systems, because they treat tumours as a collection 

of cells, where densities and volume fractions of cells are described. Individual cells and some 

components are not tracked and variables of the model might contain cell volume fractions and cell 

substrate concentrations such as oxygen, nutrient and growth factors. Comparing with discrete 

modelling, continuum model parameters may be easier to obtain, analyze, control and can be more 

accessible through laboratory experimentation. Therefore, these models are indicated at the tissue 

scale where gross tumour behaviour might be quantified. However, these models are not appropriate 

for modelling individual cells and discrete events. An example of the importance of these methods is 
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when studying the effect of genetic, cellular and microenvironment characteristics on overall tumour 

behaviour.  

Traditional works normally use ordinary differential equations to model tumours as a 

homogeneous population and partial differential equation restricted to a spherical geometry [130], 

[184]. When the model aims to simulate avascular tumours, growth is modelled as a function of cell 

substrate concentration, normally oxygen [175]. Many recent models incorporate cell movement, 

through diffusion [185]–[192], convection [54], [193]–[196] and chemo/haptotaxis [189], [195]. Many 

interactions with the microenvironment like nutrients limitations or inhibitory factor to growth [197]–

[201] and models with strong cell-cell interactions [202], [203] were also studied. 

 

4.3 - Hybrid Model 

Hybrid model combines both continuum and discrete models in order to link the subcellular- and 

cellular-scales to the tumour scales and provide a more realistic model. This means that substances 

such as oxygen, nutrient, growth factors, drug and certain tissue features can be described as 

continuum fields in the tumour microenvironment, while individual discrete elements such as cells 

and parts of cells evolve in response to local conditions such as substance concentration. The 

advantage of this method is the potential to combine the best features of both discrete and continuum 

models. 

In the literature it is possible to find two research works of hybrid model [58], [204] showing a 

new approach to tumour modelling using simultaneously continuum and discrete approaches. For 

discrete cell a lattice-free model is used. The parameters used for discrete cells were: chemotaxis 

(cell motion in consequence of a chemical stimulus), haptotaxis (directional mobility or growth cells 

like proliferation and migration) and two cells cannot be in the same position in space. Continuum 

volume fractions induce velocity and cell fight against the continuum description for nutrients [58], 

[204].  
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Chapter 5 

Methods 

This chapter describes physical phenomenon under study and the numerical technique used by 

the software tested in this work. 

5.1 - Meshless Method: RPIM 

The nodal discretization can be regular or irregular, which has a direct effect on the numerical 

analysis outcome because, generally, an irregular discretization has a lower accuracy. However, when 

it is predictable that some location will generate higher stress, that location should be enriched with 

a higher number of nodes. So, as a good practice, one should only increase the nodal densities in 

domain areas in which higher stresses are expected [205] (Figure 5.1).  

 

 

(a) (b) (c) 
 

Figure 5.1 – (a) Problem domain with the essential and natural boundaries applied. (b) Regular 
nodal discretization. (c) Irregular nodal discretization. 

 

After discretization, it is necessary to obtain the nodal connectivity. In FEM, to obtain the nodal 

connectivity it is used the element mesh, in which the nodes belonging to the same element interact 

directly between themselves and the boundary nodes interact with the boundary nodes of nearby 
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elements. In meshless methods the connectivity is provided by the overlapping of influence-domains, 

when it comes to RPIM. 

The next step is the numerical integration. A background integration mesh is constructed, which 

can be nodal dependent or independent. Using nodal dependent mesh, it is necessary to implement 

a stabilization method in order to achieve accurate results although this increases the computational 

cost [206]–[208]. However, the only information required by this method is the spatial location of the 

nodes. Finally, it is possible to obtain the field variables under study by using either approximation 

or interpolation shape functions. In RPIM, the interpolation shape function is based on the combination 

of radial basis functions with polynomial basis functions. 

 

5.1.1 -   Influence-domain and nodal connectivity 

Regarding the nodal connectivity, influence-domains can have a fixed or variable size. Variable 

size influence-domains ensure that every node’s influence-domain contains the same number of 

nodes, allowing the shape functions to have the same degree of complexity in the entire domain. The 

literature recommends using between n=[9, 16] nodes inside the influence-domain for two-

dimensional (2D) problems [8], [9], [14], [21]. The density of the nodal discretization does not 

influence the number of nodes inside the influence-domain [205] (Figure 5.2).  

 

 

(a) (b) 
 

Figure 5.2 – (a) Fixed size circular influence-domain. (b) Variable size circular influence-
domain. 

 

5.1.2 -  Numerical integration 

The integro-differential equations governing the studied problem are integrated using the  

Gauss-Legendre integration scheme. A background mesh can be constructed using quadrilateral or 

triangular integration cells, as seen in  

Figure 5.3 a) and b), or using a background cell-mesh, larger than the problem domain, which is filled 

with integration points, as shown in  
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Figure 5.3 c). However, the integration points outside the problem domain have to be eliminated 

from the computation.  

 

 

  

 

(a)                                           (b)                                              (c) 
 

Figure 5.3 – a. Quadrilateral integration cell background mesh with 1 integration point. b. 
Triangular integration cell background mesh with 1 integration point. c. Quadrilateral grid 
background mesh with 2x2 integration points. 

 

 

As it is possible to see in  

Figure 5.3, the integration cells of the background mesh can be triangular (b) or quadrilateral (a 

and c) and inside of each one, integration points are distributed as shown in Figure 5.4. 

 

 

(a) 

 

(b) 
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Figure 5.4 – (a) Transformation of the initial quadrilateral integration cell into an isoparametric square shape 

and application of the 2x2 quadrature point rule followed by the return to the initial quadrilateral shape. (b) 

Transformation of the initial triangle integration cell into an isoparametric triangle shape and application of 

the 3-point quadrature point rule followed by the return to the initial triangle. 

The isoparametric integration points have different location and weights if the element is 

triangular or quadrilateral, as you can see in the following Table 5.1 and Table 5.2. 

 

Table 5.1 – Integration points coordinates and weights for triangular integration cells [209]. 

 

Points ƺ η Weight Representation 

a 
1

3
 

1

3
 

1

2
 

 

a 
1

6
 

1

6
 

1

6
 

 

b 
2

3
 

1

6
 

1

6
 

c 
1

6
 

2

3
 

1

6
 

a 
1

3
 

1

3
 −

27

96
 

 

b 
1

5
 

1

5
 

25

96
 

c 
3

5
 

1

5
 

25

96
 

d 
1

5
 

3

5
 

25

96
 

 

 

 
Table 5.2 – Integration points coordinates and weights for quadrilateral integration cells’ [209]. 

Points ƺ η Weight Representation 

a 0 0 4 

 

a −
1

√3
 −

1

√3
 1 

b +
1

√3
 −

1

√3
 1 
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c −
1

√3
 +

1

√3
 1 

 

d +
1

√3
 +

1

√3
 1 

a −√
3

5
 −√

3

5
 

25

81
 

 

b 0 −√
3

5
 

40

81
 

c +√
3

5
 −√

3

5
 

25

81
 

d −√
3

5
 0 

40

81
 

e 0 0 
64

81
 

f +√
3

5
 0 

40

81
 

g −√
3

5
 +√

3

5
 

25

81
 

h 0 +√
3

5
 

40

81
 

i +√
3

5
 +√

3

5
 

25

81
 

 

 

 

Now the Cartesian coordinates of the integration points can be obtained using known 

isoparametric interpolations functions. 

𝑥 = ∑ 𝑁𝑖

𝑚

𝑖=1

(𝜉, 𝜂).𝑥𝑖 

 

𝑦 = ∑ 𝑁𝑖

𝑚

𝑖=1

(𝜉, 𝜂).𝑦𝑖 

 

 

 

(5.1) 

in which, m is the number of nodes defining the element and 𝑥𝑖 and 𝑦𝑖 are the Cartesian 

coordinates of the integration cells nodes. 

 

For triangles 

𝑁1 (𝜉, 𝜂) = 1 − 𝜉 − 𝜂 

𝑁2 (𝜉, 𝜂) = 𝜂 

𝑁3 (𝜉, 𝜂) = 𝜉 

 

 

(5.2) 

For quadrilaterals: 

𝑁1 (𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 − 𝜂) 
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𝑁2 (𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 + 𝜂) 

𝑁3 (𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 + 𝜂) 

𝑁4 (𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 − 𝜂) 

 

 

 

 

(5.3) 

The integration weight belonging to the integration point is obtained by multiplying the 

isoparametric weight, of the integration point with the inverse of the Jacobian matrix determinant 

of the respective integration cell. 

[𝑱] =

(

 
 

𝝏𝐱

𝝏𝝃

𝝏𝒙

𝝏𝜼
𝝏𝒚

𝝏𝝃

𝝏𝒚

𝝏𝜼
)

 
 

 

 

 

(5.4) 

The differential equation integration is done using, 

∫ ∫ 𝑓(𝑥)𝑑𝑥𝑑𝑦
1

−1

1

−1

= ∑∑𝜔𝑖𝜔𝑗𝑓(𝑥)

𝑚

𝑖=1

𝑚

𝑖=1

 
 

(5.5) 

 

where wi and wjis the weight in each direction of the integration point x. 

 

 

5.1.3 -  Shape functions  

Shape functions used by RPIM are based on a combination of radial basis functions with 

polynomial functions [21], [22]. One of the major advantages of both these method’s shape functions 

is that they possess the Kronecker delta property, meaning that they are interpolating shape 

functions. 

Considering a function 𝑢(𝒙𝐼), defined in a certain influence-domain and discretized by a set of 

𝑛  distinct nodes. At an interest point 𝒙𝐼, the function 𝑢(𝒙𝐼) can be defined as, 

𝑢(𝒙𝑰) =  ∑ 𝑅𝑖

𝑛

𝑖=1
(𝒙𝑰)𝑎𝑖(𝒙𝑰) + ∑ 𝑝𝑗

𝑚

𝑗=1
(𝒙𝑰)𝑏𝑖(𝒙𝑰) = 𝑹𝑇(𝒙𝑰) 𝒂 + 𝒑𝑇(𝒙𝑰)𝒃 

 

 

(5.6) 

which can be written as: 

𝑢(𝒙𝑰) =  ∑ 𝑅𝑖

𝑛

𝑖=1
(𝒙𝑰)𝑎𝑖(𝒙𝑰) + ∑ 𝑝𝑗

𝑚

𝑗=1
(𝒙𝑰)𝑏𝑖(𝒙𝑰) = {𝑹𝑇(𝑥𝐼) , 𝒑

𝑇(𝑥𝐼)} {
𝒂
𝒃
} 

 

(5.7) 

where 𝑅𝑖(𝒙𝐼) is the radial basis function (RBF), 𝑝𝑗(𝒙𝐼) is the polynomial basis function, 𝑛 is the number 

of nodes inside the influence-domain of the interest point 𝒙𝐼 and 𝑎𝑖(𝒙𝑰) and 𝑏𝑗(𝒙𝐼) are non-constant 

coefficients of 𝑅𝑖(𝒙𝐼) and 𝑝𝑗(𝒙𝐼) respectively. Thus, these vectors can be represented as, 

 

𝒂𝑇(𝒙𝑰) = [𝑎1(𝒙𝑰), 𝑎2(𝒙𝑰), … , 𝑎𝑛(𝒙𝑰)] 

𝒃𝑇(𝒙𝑰) = [𝑏1(𝒙𝑰), 𝑏2(𝒙𝑰),… , 𝑏𝑚(𝒙𝑰)] 

𝑹𝑇(𝒙𝑰) = [𝑅1(𝒙𝑰), 𝑅2(𝒙𝑰),… , 𝑅𝑛(𝒙𝑰)] 
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𝒑𝑇(𝒙𝑰) = [𝑝1(𝒙𝑰), 𝑝2(𝒙𝑰),… , 𝑝𝑚(𝒙𝑰)]   (5.8) 

The RBF use has the following general form: 

𝑅𝑖𝑗 = (𝑟𝑖𝑗
2 + 𝑐2)

𝑝
 
 

 

(5.9) 

where 𝑐 and 𝑝 are shape parameters which, accordingly to the literature, should be considered as 

𝑐=0.0001 and 𝑝=0.9999 in order to maximize the method’s performance [205] and 𝑟𝑖𝑗 is the Euclidian 

norm between the integration point 𝒙𝐼 and a certain node 𝒙𝑗, 

𝑟𝑖𝑗 = √(𝑥𝑖−𝑥𝑗) 
2 + (𝑦𝑖−𝑦𝑗) 

2 
  (5.10) 

The polynomial basis functions used have the following monomial terms, 

𝒑𝑇(𝒙𝑰) = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, … ]   (5.11) 

This leads to the following possible polynomial bases, for the 2D problem, 

 

𝑵𝒖𝒍𝒍 𝒃𝒂𝒔𝒊𝒔 − 𝒙𝑻 = {𝑥, 𝑦};  𝒑𝑻(𝒙) = {0};   𝑚 = 0 

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒃𝒂𝒔𝒊𝒔 − 𝒙𝑻 = {𝑥, 𝑦}; 𝒑𝑻(𝒙) = {1};   𝑚 = 1 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑏𝑎𝑠𝑖𝑠 − 𝒙𝑻 = {𝑥, 𝑦};  𝒑𝑇(𝒙) = {1, 𝑥, 𝑦};   𝑚 = 3 

𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑏𝑎𝑠𝑖𝑠 − 𝒙𝑻 = {𝑥, 𝑦};  𝒑𝑇(𝒙) = {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2};   𝑚 = 6 

 

 

  (5.12) 

 

 
          

The polynomial term must however satisfy the following requirement, in order to guarantee a unique 

approximation, 

∑ 𝑝𝒋

𝒏

𝒊=𝟏

(𝒙𝒊)𝑎𝑖 = 0,        𝑗 = 1,2,… ,𝑚 
  (5.13) 

The function can be written in matrix form, 

[
𝑹 𝒑

𝒑𝑻 𝟎
] {

𝒂
𝒃
} = {

𝒖𝒔

𝟎
} = 𝑮 {

𝒂
𝒃
} 

 

  (5.14) 

And solving the equation: 

{
𝒂
𝒃
} = 𝑮−𝟏 {

𝒖𝒔

𝟎
}  

  (5.15) 

Finally, the shape function is expressed as: 

𝒖(𝐱𝑰) = {𝑹𝑻(𝒙𝑰), 𝒑
𝑻 (𝒙𝑰)} 𝑮

−𝟏 {
𝒖𝒔

𝟎
} = 𝝋(𝒙𝑰)𝒖𝒔 

 

  (5.16) 

in which 𝝋(𝒙𝑰) is the shape function vector defined by 

𝝋(𝒙𝑰) = {𝑹𝑻(𝒙𝑰),𝒑
𝑻  (𝒙𝑰)} 𝑮

−𝟏 = [𝝋𝟏(𝒙𝑰),𝝋𝟐(𝒙𝑰),… ,𝝋𝒏(𝒙𝑰)]   (5.17) 

RPIM shape functions are interpolating, since they respect the Kronecker delta property, 

𝝋𝒊(𝒙𝒋) =  {
𝟏,
𝟎,

 
𝒊 = 𝒋, 𝒋 = 𝟏, 𝟐,… ,𝒏
𝒊 ≠ 𝒋, 𝒋 = 𝟏, 𝟐,… ,𝒏

 
   (5.18) 

 

which means they pass through every single node within the influence-domain, in opposition to 

approximation shape functions. Thus, interpolation shape functions permit to easily impose the 
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essential and natural boundary conditions, using direct imposition methods, reducing the 

computational cost. 

 

5.2 - Reaction-diffusion model 

Diffusion is a transfer phenomenon that can describe the distribution of a chemical species in 

equal concentrations in space over time [210], [211]. 

 

Chemical species can be chemically dissolved in a solvent or one component in a gas mixture 

(oxygen in air). Diffusion occurs when the initial concentration of the species is different in distinct 

domain locations, its mean that if one region possesses a larger species’ concentration than another 

region, mass transfer will occur until an uniform concentration between two regions is achieved [210], 

[211]. 

The thermal motion of molecules is the force that allows diffusion, because at temperatures above 

zero, molecules are always in movement. This happens due to their kinetic energy and when 

molecules collide with each other, their motion become randomized [210], [211].  

 

5.2.1 -   Oxygen and Glucose Diffusion on Human Body 

Oxygen and glucose are moving and changing direction in human vessels causing diffusion to the 

cells because of the statistics of this movement [210], [211].  

This kind of situation occurs also in experiments with cells in vitro, in which the cells are in a 

specialized plate with medium at specific oxygen concentration (CO2 ) and glucose concentration (CGL 

). The image below shows an example of different concentration between a cell (circle) and the 

medium (around circle) (Figure 5.5). It is in the medium that the concentration is higher and, after 

some time, diffusion leads to a uniform concentration between them [210], [211]. 

  

(a) (b) 
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Figure 5.5 – (a) The cell (circle) in yellow represents low concentration and the medium in 
blue represents high concentration. (b) Due to diffusion, the concentration will be the same in 
circle and surround medium. 

 

Next image shows with arrows the initial concentration (size of the arrow) and the direction of 

the molecules. As their motion is random, oxygen and glucose move equally in all directions from any 

region [210], [211] (Figure 5.6).  

 

 
Figure 5.6 – The arrows show the directions that molecules can take and the initial 

concentration in both sites. 

 

When the concentration is the same in the two regions, it mean that the number of molecules 

that are moving in opposite directions is the same. However, in the boundary, where the 

concentration is different, there will be more molecules moving from the medium to the cell. This 

happen because there are more molecules in the medium than in the cell [210], [211] (Figure 5.7).  

 
Figure 5.7 - Preferential movement of the molecules in the boundary between the cell and 

the medium. There are more molecules pass from the medium to the cell than the other way 
around.  
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Once the concentration is equal, the molecules are still moving but now the number of molecules 

that cross the boundary are the same. If the conditions are maintained, there is no statistical driving 

force and molecules do not accumulate in any region [210], [211]. 

 

It is possible to describe the diffusion phenomenon using continuous partial differential equations. 

This effect was elucidated by Albert Einstein in 1905 [212]. The partial differential equations used to 

model diffusion problems can include Fick’s law (convection-diffusion equation) or methods more 

complex when it is used concentrated mixtures such Maxwell-Stefan diffusion [210], [211]. 

The velocity of diffusion varies between molecules depending on the diffusion coefficient that is 

specific for each molecule. Diffusion coefficient is the rate of the diffusion process [210], [211]. 

It is possible to obtain a steady-state diffusion where the concentration is different between two 

regions, as in the example of the cell and the medium. This happens when there is a constant supply 

of material and a steady concentration will be attained but not a uniform concentration [210], [211]. 

 

5.2.2 -   Diffusion Coefficient and Fick’s Laws 

Diffusion flux is given by Fick´s first law depending on the diffusion coefficient, which is the 

property translating the interaction of the solute with the solvent. It is similar to the property of 

thermal diffusivity that occurs in heat transfer [210], [211]: 

 

𝑁𝑖 = −𝐷𝑖∇𝑐𝑖 
(5.19) 

 

Where 𝑖 is a specie, 𝑁𝑖 is the molar flux (mol m-2 s-1), 𝐷𝑖 is the diffusion coefficient (m2 s-1), 𝑐𝑖 is 

the concentration (mol m-3) and ∇ is the gradient operator [210], [211]. 

So, 

𝐷𝑖 ≡
|𝑁𝑖|

|∇𝑐𝑖|
 

(5.20) 

 

 

Additionally, based in the continuity equation for mass [210], [211]: 

 
𝜕𝑐𝑖

𝜕𝑡
+ ∇ ∙ 𝑁𝑖 = 0 

(5.21) 

 

It is possible derive Fick’s second law [210], [211]: 

 
𝜕𝑐𝑖

𝜕𝑡
= 𝐷𝑖∇

2𝑐𝑖 
(5.22) 
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From this, it is possible to conclude that 𝐷𝑖 is a constant, only true for diluted solutions. This is 

normally assumed for diffusion in solids, chemicals diffusion in diluted solution (water or other liquid 

solvents) and diffusion of diluted species in the gas phases (oxygen in air) [210], [211]. 

Diffusion of molecules dissolved in liquids is slower than dissolved in a gas, so diffusion in liquids 

is dominated by convection. The units of diffusion coefficient are area per time (m2 s-1) in SI units 

[210], [211].  

Analysis of Fick’s second law show that, in diffusive processes, there is a relation between the 

elapsed time and the square of the length in which diffusion takes place [210], [211]. 
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5.3 - Algorithm scheme 

 
Figure 5.8 – General representation of the algorithm used by the RPIM software tested in 

this work. 
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Figure 5.9 - General representation of the algorithm for the simulation of the cell division. This 

algorithm is contained into the block “Cell division” of the general algorithm presented in figure 

6.8. 

 

The algorithm represented in Figure 5.8, shows all steps of the tested RPIM software.  

First, the user has to input all information required by the code (‘input data’ block Figure 5.8), 

such as: Domain dimensions; Divisions along xx and yy; Cell size (diameter and area); Number of 

maximum iterations; Cell and medium properties: diffusion coefficients and CO2 and CGL 

In this work, it was consistently considered the following dimensions: 1000 µm x 1000 µm by the 

xx and yy axes. For the cell it was considered a diameter of 100 µm, corresponding to a typical size. 

The cell and medium properties are shown in a Table 5.3. 

 
Table 5.3 – Cell and medium properties used in the mathematical model [146] 

 Local 
Diffusion coefficient 

(µm /s) 

Concentration 

(mol/µm2) 

Oxygen Cell        2000 3.5x10-16 
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 Medium        3030 3.5x10-16 

Glucose Cell         500 2.75x10-14 

 Medium         925 2.75x10-14 

 

 

From the ‘input data’ data in Figure 5.8, the software builds the nodal mesh, sets the material 

properties and identifies the boundary values. Regarding the mechanical properties of the 

homogenized medium, it was considered 1 Pa for the elasticity modulus and 0.45 for coefficient of 

Poisson. 

Boundary values describe the natural boundary and the essential boundary. In the essential 

boundary the software applies a periodic boundary condition (double mirror) in all edges. 

 

 
Figure 5.10 – Scheme of the cell and medium domain and the periodic boundary condition. Molecules of oxygen 
and glucose can movement from one boundary τu

(+) to τu
(-) and vice versa.  

 

The background integration mesh is obtained using square integration cells coming from a regular 

lattice. The linear dimension of the edges of the square integration cells is double of the medium 

nodal distance. Inside each integration cell, Gauss-Legendre quadrature points are distributed.  

Afterwards, it is possible to define the material domain, which identifies the medium domain and 

the cell domain (material domain box). The influence domain is built using the nodal mesh and the 

integration points. The used software possesses a routine that generates the domain of influence for 

each integration point. Then, another routine build the shape functions. 

Using all this information, the software enters into an iterative loop assuming fictitious time step 

iterations. 

During each iteration, the diffusion matrix for oxygen and for glucose is obtained, the consumption 

of oxyen ( qO2 ) and glucose ( qGL ) is calculated and the oxygen and glucose at the boundary domain 

is imposed. In the end, the software allows to obtain the CO2 and CGL field. Then, using the structural 

mechanics block (Figure 5.8), the internal pressure due to the volume variation is determined and 

the consequent new nodal configuration is obtained. 
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As cell grows, if its volume is larger than the double of the initial volume, the software enters to 

cell division block, represented in Figure 5.9. Here, the cell is prevented from growing. The used RPIM 

software selects two points in opposite position and move them in opposition directions in order to 

meet each other. When two points are in the same position, cell is divided in two daughter cells and 

the program stops. 

 

5.4 - Discrete Equation System 

In this work two distinct phenomena are applied: the mechanics for solids and structures and the 

chemical diffusion in homogeneous medium [213]. Thus, both formulations should be represented as 

discrete equation systems, in order to obtain a final numerical solution, as the algorithm in Figure 

5.8. 

 

5.4.1 -  Chemical diffusion  

The chemical diffusion can be numerically simulated as a field problem. The approach used to 

derive meshless methods equations in chemical diffusion problems is a general approach to solve 

partial differential equations using the meshless methods [213]. The general form of system equations 

of 2D linear steady state field problems can be given by the following general form of the Helmholtz 

equation,  

𝐷𝑥

𝜕2𝜙

𝜕𝑥2
+ 𝐷𝑦

𝜕2𝜙

𝜕𝑦2
− 𝑔𝜙 + 𝑄 = 0 

(5.23) 

 

Being 𝜙 the field and 𝐷𝑥  , 𝐷𝑦  ,  𝑔 and 𝑄 constants whose physical meaning is different for different 

problems. In this work, 𝐷𝑥  and 𝐷𝑦  will represent the diffusion coefficients along dimension 𝑥 and 𝑦, 

respectively, 𝑔 will be the matrix of chemical diffusibility but in this work will be neglected (𝑔 = 0) 

since there are not convection effects and 𝑄 will be concentration of the studied substance. Using 

the weighted residual approach it is possible to formulate the meshless system equations from 

equation [213]:  

[𝑲𝐷 + 𝑲𝑔]𝚽 − 𝒒 = 𝟎 
(5.24) 

where,  

𝑲𝐷 = ∫ 𝑩𝑮
𝑻𝑫𝑩𝑮𝑑𝐴

𝐴

 
 

(5.25) 

Being,  

𝑩𝑮 = [

𝜕𝝋

𝜕𝑥
𝜕𝝋

𝜕𝑦

] =

[
 
 
 
𝜕𝜑

1

𝜕𝑥

𝜕𝜑
2

𝜕𝑥
⋯

𝜕𝜑
𝑛

𝜕𝑥
𝜕𝜑

1

𝜕𝑦

𝜕𝜑
2

𝜕𝑦
⋯

𝜕𝜑
𝑛

𝜕𝑦 ]
 
 
 
 

 

(5.26) 

and  
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𝑫 = [
𝐷𝑥 0
0 𝐷𝑦

] 
 

(5.27) 

Additionally,  

𝑲𝑔 = ∫ 𝑔𝝋𝑇𝝋𝑑𝐴
𝐴

 
(5.28) 

and 

𝒒 = ∫ 𝑄𝝋𝑇𝑑𝐴
𝐴

 

 

(5.29) 

 

Thus, solving equation (5.24) assuming 𝐷𝑥  and 𝐷𝑦  as the oxygen and glucose diffusion coefficient, 

respectively and 𝑄 as the species consumption, will allow to obtain the final medium species 

concentration 𝚽.  

 

5.4.2 -  Solid mechanics  

Consider a closed domain Ω bonded by Γ. The equilibrium equations are expressed by: ∇𝝈 + 𝒃 =

0, where ∇ is the gradient vector, 𝝈 the Cauchy stress tensor and 𝒃 the set of external forces applied 

to the body. Applying the Galerkin weak form, the following expression is obtained,  

𝟎 = ∫ 𝛿𝜺𝑇𝝈𝑑Ω
Ω

− ∫ 𝛿𝒖𝑇𝒃𝑑Ω
Ω

− ∫ 𝛿𝒖𝑇𝒕𝑑Γ
Γ

 
 

(5.30) 

where 𝒕 is the vector of external forces applied to the natural boundary Γ, 𝜺 is the strain vector and 

𝒖 is the displacement field vector. The strain vector for the 2D case can be represented as,  

𝜺 = 𝑳𝒖 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

[
𝑢
𝑣
] =

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥]
 
 
 
 
 
 

 

 

 

(5.31) 

In this work only small deformations and elasto-static assumptions are considered. Therefore, 

with the Hooke Law it is possible to obtain the stress field 𝝈 = 𝑪𝜺, being 𝑪 the material constitutive 

matrix, which can be obtained inverting the compliance elasticity matrix,  

𝑪𝑝𝑙𝑎𝑛𝑒
𝑠𝑡𝑟𝑒𝑠𝑠

=

[
 
 
 
 
 
 

1

𝐸11

−
𝜐21

𝐸22

0

−
𝜐12

𝐸11

1

𝐸22

0

0 0
1

𝐺12 ]
 
 
 
 
 
 
−1

 

 

 

(5.32) 

or 
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𝑪𝑝𝑙𝑎𝑛𝑒
𝑠𝑡𝑟𝑎𝑖𝑛

=

[
 
 
 
 
 
 

1 − 𝜐31𝜐13

𝐸11

−
𝜐21 + 𝜐31𝜐23

𝐸22

0

−
𝜐12 + 𝜐32𝜐13

𝐸11

1 − 𝜐32𝜐23

𝐸22

0

0 0
1

𝐺12 ]
 
 
 
 
 
 
−1

 

 

 

(5.33) 

being 𝐸𝑖𝑗  the elasticity modulus, 𝜐𝑖𝑗 material Poisson coefficient and 𝐺𝑖𝑗 the distortion modulus in 

material direction 𝑖 and 𝑗. Equation (5.30) leads to,  

𝑲𝑼 − 𝒇𝑏 − 𝒇𝑡 = 𝟎 
(5.34) 

Being,  

𝑲 = ∫ 𝑩𝑇𝑪𝑩𝑑Ω
Ω

 
 

(5.35) 

Which is very similar with equation (5.24). However, in this case 𝐷 is given by equation (5.32) or 

equation (5.33) and the deformation matrix 𝑩 is obtained with,  

𝑩 =

[
 
 
 
 
 
 
𝜕𝜑

1

𝜕𝑥
0

𝜕𝜑
2

𝜕𝑥
0 ⋯

𝜕𝜑
𝑛

𝜕𝑥
0

0
𝜕𝜑

1

𝜕𝑦
0

𝜕𝜑
2

𝜕𝑦
⋯ 0

𝜕𝜑
𝑛

𝜕𝑦
𝜕𝜑

1

𝜕𝑦

𝜕𝜑
1

𝜕𝑥

𝜕𝜑
2

𝜕𝑦

𝜕𝜑
2

𝜕𝑥
⋯

𝜕𝜑
𝑛

𝜕𝑦

𝜕𝜑
𝑛

𝜕𝑥 ]
 
 
 
 
 
 

 

 

 

 

(5.36) 

Regarding the force vectors,  

𝒇𝑏 = ∫ 𝑯𝒃𝑑Ω
Ω

    𝑎𝑛𝑑    𝒇𝑡 = ∫ 𝑯𝒕𝑑Γ
Γ

 
(5.37) 

Being 𝒃 = {𝑏𝑥 𝑏𝑦}𝑇 and 𝒕 = {𝑡𝑥 𝑡𝑦}𝑇. Matrix 𝑯 is defined as,  

𝑯 = [
𝜑

1
0 𝜑

2
0 ⋯ 𝜑

𝑛
0

0 𝜑
1

0 𝜑
2

⋯ 0 𝜑
𝑛

] 
 

(5.38) 

Solving the equation system represented in equation (5.34), it is possible to obtain the displacement 

field, allowing to update the new domain of the cell. 

 

 

5.5 - Developed growth law  

 

Based on the experimental observation described in chapter 2, section 2.7, a set of expressions 

were developed to simulate the cell growth. It was developed and tested a linear law and, in addition, 

several other exponential laws. To create the expressions to obtain the volume (𝑉𝑓) of the cell in the 

end of each iteration, the follow parameters were used: initial volume (𝑉𝑖) of the cell of 100 µm, 
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division time (𝑡𝑑- time that cell take from initializing cell division until originating two cells) of 16 

hours and the time corresponding to each iteration (𝑡𝑖). Thus, using these three parameters, the 

following expression were created:  

𝑉𝑓 = 𝑉𝑖 ∙ (1 +
𝑡𝑖
𝑡𝑑

) 
 

(5.39) 

𝑉𝑓 = 𝑉𝑖 ∙ [2 ∙
𝑒

𝑡𝑖
𝑡𝑑

𝑒
− (

2

𝑒
− 1) ∙ (1 −

𝑡𝑖
𝑡𝑑

)] 

 

 

(5.40) 

 

𝑉𝑓 = 𝑉𝑖 ∙ [2 ∙
𝑒

𝑡𝑖
𝑡𝑑

𝑒
− (

2

𝑒
− 1) ∙ (1 −

𝑡𝑖
𝑡𝑑

)]

𝑛

∙
1

2𝑛
∙
𝑡𝑖
𝑡𝑑

∙ 𝑉𝑖 

 

 

(5.41) 

 

Equation (5.39) is a linear law, meaning that the cell grows in the same way during its whole cell 

cycle. Equation (5.40) is an exponential law, meaning that the cell grows slower in G1 and faster in 

G2 (phases of cell cycle). However, the deceleration that occur in G1 and the peak growth in G2 were 

not sufficiently represented by equation (5.40). Therefore, the equation (5.41) was developed, which 

allows to choose the inclination of the curve with parameter 𝑛. It was tested 𝑛 = 2, 3, 5 e 10. All 

curves were compared with literature data referred in chapter 2, section 2.7. After normalizing the 

𝑡𝑖 (division between actual time and total time) and 𝑉𝑓 (𝑣̃ - division between actual volume and 𝑉𝑖) 

the following graphs were builted. Figure 5.11 (a), (c) and (e) show the relation between data from 

literature and linear and exponential curves. Figure 5.11 (b), (d) and (f) show the relation between 

data from literature and exponential curves with different 𝑛. In order to have quantitative 

comparisons, it was calculated an average (𝜀)̅ between the difference of the two volumes (volumes 

from the literature data, 𝑣̃ 𝑖
 𝑟𝑒𝑓 , and experimental volumes, 𝑣̃ 𝑖

 𝑒𝑥𝑝
). 

𝜀̅ =
∑ |𝑣̃ 𝑖

 𝑟𝑒𝑓
− 𝑣̃ 𝑖

 𝑒𝑥𝑝
|

𝑛𝑡
𝑖=1

𝑛𝑡

 

Being 𝑛𝑡 the total of compared values. Thus, for each time 𝑡𝑖 of the experimental data, it was reported 

the corresponding volume 𝑣̃ 𝑖
 𝑟𝑒𝑓

 . Then, time 𝑡𝑖 was inserted in expression (5.39) or (5.40) or (5.41), 

the theoretical volume for that time 𝑡𝑖 was obtained, 𝑣̃ 𝑖
 𝑒𝑥𝑝

). 

 

The information obtained from this calculus is in  

Table 5.4, which presents the average difference between the values obtained with experimental 

observation (coming from three distinct experimental observations) and the corresponding values 

coming from the developed theoretical expressions.   
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Figure 5.11 - Comparison between data from literature and new ones formed with growth laws created in 
this work. 

 

 

Table 5.4 – Comparison between each growth laws created in this work (first line) and growth laws from 
literature (first column). “MM, 2009” corresponds to Mustafa Mir et al. 2011, “AT 2009” corresponds to Amit 
Tzur 2009 and “RK, 2013” corresponds to “R.Kafri 2013” 

 Linear Exp Exp(n=2) Exp(n=3) Exp(n=5) Exp(n=10) 

  AT, 2009 0.1603 0.0675 0.0242 0.0653 0.1305 0.2102 

  MM, 2011 0.2315 0.1376 0.0643 0.0437 0.0965 0.1901 

   RK, 2013 0.1934 0.0984 0.0679 0.0899 0.1396 0.2103 

 

 

Analysing the graphs and the table, the growth laws more appropriate are Exp(n=2) and Exp(n=3) 

because they produce the smallest average difference in relation to the experimental observations. 

Therefore, in this work, the cell was forced to grow following equation (5.41) with n=2. 
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Chapter 6 

Model Validation 

In order to validate the available RPIM software it is necessary to verify the adequacy of several 

numerical parameters. The optimization of such parameters will allow to reduce the computational 

cost without losing accuracy. Thus, in this section it was studied: the influence of the size of the time 

scale (𝑡𝑠); the convergence of the used numerical approach; the optimal number of nodes inside the 

influence domain; and the optimal Gauss-Legendre quadrature scheme (background integration 

mesh). 

 

6.1 - Time scale 

 

Time scale is a term created to define the time corresponding to each iteration of the used 

software. It is used to calculate the 𝑡𝑖 in section 5.5 (developed growth law), using the following 

expression:  𝑡𝑖 = 𝑡𝑠 ∙ 𝑛𝑖𝑡, where 𝑡𝑖 is the time corresponding to each iteration, 𝑡𝑠 is the time scale and 

𝑛𝑖𝑡 is the corresponding iteration. When the value of 𝑡𝑠 is modified, 𝑡𝑖 is also changed. From the 

expression, increasing 𝑡𝑠 the time corresponding to each iteration will be higher and the total number 

of iteration will be smaller.  

In order to understand how results vary according to time scale, several time scales was chosen: 

1, 2, 6, 10, 20, 60, 100, 200, 600, 1000, 2000 and 6000 seconds per each iteration. For example, the 

time scale 100 seconds means that each iteration corresponds to 100 seconds.  

The analysis was performed using a regular nodal discretization with 1089 for the problem domain, 

an integration scheme of 2x2 per integration cell and 17 nodes in each influence domain. 

It was verified that time scales of 1, 2 and 6 seconds lead to an inadmissible computational cost. 

The overall computational time was beyond acceptable (more than 24 hours, which is larger than the 

real division time: 16 hours). Furthermore, the time scales 10, 20 and 60 presented heavy 
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computational cost, which would increase the overall validation process. Therefore, the analyses 

considering time scales of 1, 2, 6, 10, 20 and 60 seconds were abandoned. 

The time scale of 100 seconds is the lowest time scale value that allows to perform completely 

the analysis from the beginning (single cell) up to the complete cell division (two daughter cells). 

So, it was compared all time scales with 100 seconds through the expressions:  Δ𝑡𝑠.𝑂2 =
𝐶𝑂2(𝑡𝑠)−𝐶𝑂2(100)

𝐶𝑂2(100)
 and  Δ𝑡𝑠.𝐺𝐿 =

𝐶𝐺𝐿(𝑡𝑠)−𝐶𝐺𝐿(100)

𝐶𝐺𝐿(100)
 where  Δ𝑡𝑠.𝑂2 and  Δ𝑡𝑠.𝐺𝐿  are relative differences between the 

concentrations of oxygen or glucose, (𝐶𝑂2(𝑡𝑠) , 𝐶𝐺𝐿(𝑡𝑠)), obtained with an analysis using time scale, 

𝑡𝑠 , and the same concentrations, (𝐶𝑂2(100), 𝐶𝐺𝐿(100)), obtained for an analysis performed with the time 

scale of 100 seconds, 𝑡100. Figure 6.2 shows the results of these comparisons for oxygen in (a) and for 

glucose in (b). If the results of higher time scales are similar to the results of time scale 100, it will 

be possible to perform the analysis with higher time scales, obtaining the same results as time scale 

𝑡𝑠=100 . Therefore, reducing significantly the computational cost. In fact, differences between them 

are all insignificant, and it was chosen the time scale of 2000 seconds that have a difference of 6.0x10-

8 to oxygen and -1.0x10-8 to glucose.  

In Table 6.1 and Figure 6.1 are shown the computational costs in seconds for each time scale 

(Table 6.1) and in minutes for a complete analysis (Figure 6.1). The ‘computational cost’ is the time 

that the analysis takes to complete a full cell cycle. As already mentioned, time scale is the time 

chosen for each iteration of the used software; real iteration time is the time that in fact one iteration 

take to be complete. Analysis time is the total time of the program obtained by multiplication of real 

time iteration and the number of iterations. Therefore, it is possible to observe that with larger time 

scales, the used software requires less time to finish the analysis.   

 

Table 6.1 – Computational costs between different time scales (time in each iteration). 
 

Time scale (s) Real iteration time (s) Analysis time (min) 

100 9.30 163.37 

200 9 79.05 

600 8.80 25.81 

1000 8.50 15.02 

2000 8.30 7.33 

6000 8.20 2.50 
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Figure 6.1 – Computational costs between each time scale chosen in logarithmic scale. 
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(b) 
Figure 6.2 – Time scale of 100 seconds comparing with 200, 600, 1000, 2000 and 6000 seconds. (a)  Δ𝑂2 

and (b)  Δ𝐺𝐿.  

6.2 - Convergence study 

 

The study performed in this section will allow to understand if the methodology produces a 

convergent solution, according with the variation of the number of nodes discretizing the problem 

domain. The methodology is convergent if the obtained solution tends to the same value when the 

nodal mesh is increased in density (following a quadratic rule).   

The number of nodes is related to the number of divisions along x and y in the problem domain. 

Therefore, 16x16 divisions will generate 289 (17x17) nodes discretizing the problem domain. So, 

increasing the number of divisions, the number of nodes will be higher. Based on that, it was decided 

to test a number of divisions of 16x16 - 289 nodes, 32x32 - 1089 nodes and 64x64 - 4225 nodes.  

Nodal mesh is regular along the problem domain as shown in Figure 6.3. 
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(a) 16x16 

 

(b) 32x32 

 

(c) 64x64 
Figure 6.3 – Nodal discretization of a regular mesh. (a) 16x16 - 289 nodes, (b) 32x32 - 1089 nodes and (c) 64x64 
- 4225 nodes. 
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The analysis was performed using a time scale of 600 seconds, an integration scheme of 2x2 and 

17 nodes in each influence domain.   

Since the developed cell growth algorithm is iterative, and therefore, nonlinear, it is important 

to understand the performance of the code during the analysis. Therefore, for each nodal 

discretization (289, 1089 and 4225 nodes) it was captured the CO2 and CGL in distinct time steps, 

corresponding to 5, 10, 15, 20 and 25 hours. The results for CO2 and CGL are presented in  Figure 6.4(a) 

and Figure 6.4(b), respectively and the results are obtained using the expressions: 𝛥𝑗.𝑂2 =
𝐶𝑂2(𝑗)−𝐶𝑂2(𝑖)

𝐶𝑂2(𝑖)
 

and 𝛥𝑗.𝐺𝐿 =
𝐶𝐺𝐿(𝑗)−𝐶𝐺𝐿(𝑖)

𝐶𝐺𝐿(𝑖)
, where 𝛥𝑗.𝑂2 and 𝛥𝑗.𝐺𝐿  correspond to the relative difference between the 

concentrations of oxygen and glucose obtained in iteration j (𝐶𝑂2(𝑗), 𝐶𝐺𝐿(𝑗)) and the initial 

concentrations (𝐶𝑂2(𝑖), 𝐶𝐺𝑙(𝑖)). Figure 6.4 show the obtained values of 𝛥𝑗.𝑂2 and 𝛥𝑗.𝐺𝐿   (captured in 

distinct iterative steps j) for distinct nodal meshes. It is possible to visualise that the solution tends 

to a hypothetic convergent final value, which will be very close to the value obtained with the nodal 

mesh of 4225 nodes. Regardless the iteration step (time step) in which the solution is captured, the 

corresponding convergence path is perceptible. Thus, it is understandable that, using nodal meshes 

with a total number of nodes higher than 4225 will allow to produce results very close to the final 

converged solution. 
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(b) 
Figure 6.4 – Convergence study to decide the best number of nodes to use. The values were obtained 

in the end of 5, 10, 15, 20 and 25 hours. (a)  𝛥𝐶𝑠.𝑂2 and (b) 𝛥𝐶𝑠.𝐺𝐿 . Both axis are in logaritimic scale. 

 

 

6.3 - Influence domain study 

The study performed in this subsection aims to obtain the optimal number of node inside each 

influence domain. In order to determine the optimal number of nodes inside the influence domain, 

several analysis should be performed, each one using a distinct value for the number of nodes inside 

of each influence domain. Then, the solution of each analysis should be compared with a reference 

solution and a polynomial functions should be adjusted to the obtained scattered data. The minimum 

of those functions represents the optimal number of nodes inside each influence domain. 

Therefore, in this work, several number of nodes in each influence domain was tested, from 3 to 

27. The analysis was performed using a time scale of 600 seconds, an integration scheme of 2x2 and 

1089 nodes discretizing the problem domain. 

The oxygen and glucose concentrations in the middle of the computational analysis, Figure 6.5, 

and again in the end of the analysis, Figure 6.6 were reported. Figure 6.5 and Figure 6.6 show that 

both concentrations vary according to the number of nodes inside each influence domain, showing 

some peaks until 16 nodes. Thus, for this range values, this instability does not allow to decide with 

confidence the best value for the number of nodes inside the influence domain. However, it is possible 

to visualize that after 16 nodes de solutions tend to stabilize, showing very small variations with the 

variation of the number of nodes inside each influence domain. 

Therefore, 17 nodes were selected as the optimal number of nodes inside each influence domain. 

Notice that from this value beyond the solution does not experience large variations. In addition, 
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since the increase of the influence domain size increases the computational cost, it is preferable to 

use the lowest possible number of nodes inside the influence domain. 

 

 

(a) 

 
 

(b) 
Figure 6.5 - Comparison between the number of nodes in the influence domain in the 

middle of the program, relatively to oxygen in (a) and to glucose in (b). 
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(a) 

 

 
 

(b) 
Figure 6.6 – Comparison between the number of nodes of the influence domain in the last iteration, 
relatively to oxygen in (a) and to glucose in (b). 
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6.4 - Integration scheme 

In this subsection the integration scheme was analysed. Thus, square integration cells were 

obtained from a background lattice, in which each edge of the squares is equal to the double of the 

average nodal distance. Inside of each integration cell, it is possible to distribute integration points 

following the Gauss-Legendre quadrature scheme, as already mentioned in Chapter 5. 

Here, four integration schemes were tested for each integration cell: 1x1, 2x2, 3x3 or 4x4. 

Theoretically, increasing the number of integration points inside each integration cell will lead to 

an increase in accuracy of the solution. However, it will also increase the computational cost. 

Therefore, it is necessary to find an optimal integration scheme, capable to deliver an accurate 

solution within an acceptable computational cost. 

The analysis was performed using 1089 nodes discretizing the domain problem, a time scale of 

600 seconds and 17 nodes in each influence domain. 

Then, the integration scheme of 4x4 with all others was compared with the following expressions: 

𝛥𝐼𝑠.𝑂2 =
𝐶𝑂2(𝐼𝑠)−𝐶𝑂2(𝑖)

𝐶𝑂2(𝑖)
 and 𝛥𝐼𝑠.𝐺𝐿 =

𝐶𝐺𝐿(𝐼𝑠)−𝐶𝐺𝐿(𝑖)

𝐶𝐺𝐿(𝑖)
 , where 𝛥𝐼𝑠.𝑂2, 𝛥𝐼𝑠.𝐺𝐿  represent the relative difference 

between the final oxygen and glucose concentrations obtained for each integration scheme, 

𝐶𝑂2(𝐼𝑠), 𝐶𝐺𝐿(𝐼𝑠)  , and (𝐶𝑂2(𝑖), 𝐶𝐺𝐿(𝑖)) are the final concentrations of oxygen and glucose for the 4x4 

integration scheme. Figure 6.7 presents the results of the previous expressions, in which it is possible 

to visualize that the quadrature scheme of 1x1 produces results very distant from the ones obtained 

with an integration scheme of 4x4 (the difference value is approximately 1.0), while using integration 

scheme of 2x2 and 3x3 it is possible to obtain lower differences (approximately 1.0x10-6). Therefore, 

a quadrature scheme of 2x2 for further analysis was selected.  
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(a) 

 
 

(b) 
Figure 6.7 – Comparison between integration scheme of 4x4 and 1x1, 2x2 and 3x3. (a) 𝛥𝐼𝑠.𝑂2 and (b) 𝛥𝐼𝑠.𝐺𝐿. 

 

6.5 - Gradient mesh 

Considering a nodal discretization of 4225 nodes (64x64 divisions) permits to obtain accurate 

results, however it also represents a very high computational cost. Therefore, it is necessary to find 

an alternative discretization procedure to reduce the computational cost and, at the same time, 

maintain or increase the accuracy of the solution. 

Since the cell will be placed at the centre of the domain, it is suggested that this centre region is 

discretized with a higher density, and then, in neighbouring regions, the discretization density will 

smoothly start to reduce. Thus, the gradient nodal distribution presented in Figure 6.8 is proposed.  
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Figure 6.8 – Gradient mesh increasing the number of divisions in the centre and consequently the number of 
nodes. 

 

In order to understand the efficiency of using a gradient mesh, some comparison studies were 

performed, in which the solutions obtained with the previously presented regular nodal distributions 

are compared with the proposed gradient mesh. The following parameters in Table 6.2 were defined: 

domain size (µm), thickness (µm), number of division/number of nodes in the problem domain, 

number of nodes in the influence domain, quadrature scheme and time of each iteration. 

 

 
Table 6.2 – Parameters analysed to compare regular and gradient mesh. 

Mesh 
Domain 

size (µm) 

Thickness 

(µm) 

Nº nodes 

inf.domain 

Quadrature 

scheme 
Time scale (s) 

Nº nodes 

discretizing 

the problem 

domain 

Regular 1000x1000 5000 17 2 2000 
1089|4225| 

16641 

Gradient 1000x1000 5000 7 2 2000 2040 

 

Thus, using the parameters in Table 6.2 the variation of volume along time for each analysis was 

obtained. In order to present clearly the results, the volume was normalized following the expression: 

the cell’s volume at each iteration is divided by the initial volume of the cell.  
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(a) 

 

 
 

(b) 
Figure 6.9 – Comparison between different meshes: (a) only between different regular meshes; (b) between 
the best divisions using regular mesh with gradient mesh. 

 

Figure 6.9 (a) compares the volume variation obtained with distinct regular nodal distributions 

and Figure 6.9 (b) compare a regular mesh using 128x128 divisions with the proposed gradient mesh. 

Here, it is possible to conclude that both have a similar increase of cell volume and so the gradient 

mesh is the best option because this gradient mesh decreases the time consumption and the 

computational costs, maintaining the good results. The computational costs used in this comparison 

are presented in the Figure 6.10. 
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Figure 6.10 – Computational costs between the number of nodes in logarithmic scale. 

 

As it is possible to see, regular mesh using 128x128 divisions (16641 nodes) take too much time 

to be conclude: 2 hours. A gradient mesh using only 2040 nodes give the same results of regular 

mesh using 128x128 divisions, but take 5.5 minutes, which show that a gradient mesh is a big 

advantage.   
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Chapter 7 

Results and Discussion 

In this section, it is possible to visualize the results of the study of tumour growth and cell cycle 

using the RPIM software. 

Several tests were performed with the objective of showing the performance of the used software.  

Since the literature shows that cell growth is exponential, the used software allows to select the type 

of growth using the expressions previously presented. All results showed a cell cycle duration in an 

acceptable range of hours, less than 20 hours [214][215] which demonstrate cell cycle in cancer cells 

is faster than healthy ones.  

As previously described, mitosis correspond to 5% of the entire cell cycle. Thus, to capture the 

mitosis progression with high accuracy, the time steps during mitosis were reduced by 20%. This way, 

it is possible to study the cell growth using a time scale of 2000s and when the cell starts the mitosis, 

the time scale is reduced to 400s. The model validation, the results were obtained using the 

parameters summarized in the following Table 7.1. Only 7 nodes were used in influence domain 

instead of 17, because 7 nodes are enough in gradient mesh. 

  
Table 7.1 - Parameters chosen for final analysis. 

Mesh 
Domain 

size (µm) 

Thickness 

(µm) 

Number of nodes 

discretizing the 

problem domain 

Nº nodes 

inf.domain 

Quadrature 

scheme 

Time scale 

(s) 

Gradient 1000x1000 5000 2040 7 2 2000 

 

In Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4 are presented the CO2 and CGL in the medium 

during cell cycle: interphase and mitosis. The colours represent the concentration: oxygen descreased 

from 3.5e-16 to 3.4996e-17 [mol/cm3] and glucose 2.75e-14 to 2.7499e-14 [mol/cm3]. 

Figure 7.5 shows the decrease of CO2 and CGL [mol/cm3] in the medium along time from the 

initiation of program until the cell divides in two daughter cells.  
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In Figure 7.6 and Figure 7.7 is observed the cell growth and cell division until it originate two 

independent cells. 

 

  

(a) (b) 

 
 

 

(c) (d) 
Figure 7.1 – Variation of oxygen during interphase of cell cycle, corresponding to (a) 33 minutes, (b) 5 hours, 
(c) 9 hours and (d) 14 hours of cell cycle. 

 

  

(a) (b) 
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(c) (d) 
Figure 7.2 – Variation of oxygen during mitosis phase of cell cycle, corresponding to (a) 15 hours, (b) 16 hours, 

(c) 17 hours and (d) 18 hours of cell cycle. 

 

 

  

(a) (b) 

 
 

 

(c) (d) 
Figure 7.3 – Variation of glucose during interphase of cell cycle, corresponding to (a) 33 minutes, (b) 5 hours, 
(c) 9 hours and (d) 14 hours of cell cycle. 
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(a) (b) 

 
 

 

(c) (d) 
Figure 7.4 – Variation of glucose during mitosis phase of cell cycle, corresponding to (a) 15 hours, (b) 16 hours, 
(c) 17 hours and (d) 18 hours of cell cycle. 
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(b) 

Figure 7.5 - (b)Oxygen and (c) glucose concentrations during cell cycle. 

 

 

From the results, it is possible to visualize that the oxygen and glucose concentration decrease at 

the same rate. These results corroborate the consumption rates described in the literature [146] and 

both concentrations can be used for a higher number of cells as occur in vitro experiences.  
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Figure 7.6 – Cellular growth during interphase at (a) 33 minutes, (b) 5 hours, (c) 9 hours and (d) 14 hours of 
cell cycle. 

 

  

(a) (b) 

 
 

 

(c) (d) 
Figure 7.7 – Cellular growth during mitosis phase at (a) 15 hours, (b) 16 hours, (c) 17 hours and (d) 18 hours of 
cell cycle. 

 

The final iteration of the program shows the two cells in different colours (green and red) with 

the nodal mesh reorganized (Figure 7.8). 

 

 
Figure 7.8 – After cell cycle, one cell result in two daughter cells (green and red). 
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Figure 7.9 – Growth cell during all cell cycle using the exponential law. Both time and volume were normalized; 

 

In Figure 7.6 and Figure 7.7 it was possible to isolate interphase from mitosis in cell cycle. In the 

used software it is possible to understand when interphase stops and when mitosis starts, and, besides 

that, it was possible to visualize the shape changes during interphase (growth) and mitosis (elongation 

and division in two cells). It was also possible to finish the cell cycle and obtain two daughter cells. 

In Figure 7.9 is represented the growth law obtained with the program and is the same that was 

validated before.  

 The repetition of the dividing process will allow in the near future to predict the cellular division 

of multiple cell at the same time and, thus, predict the evolution of a cell population. 

The time it takes for the cell to reach twice the initial size corroborates the literature that claims 

that cancer cells can divide in less than 24 hours, depending on type of cancer cell [52], [56]. Here, 

cancer cells take 20 hours to divide with an exponential growth, which is less than 24 hours.  
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Chapter 8 

Conclusions and Future Works 

Mathematical models are useful to complement the experimental investigation, with the 

possibility to obtain better results. They are a recent area of investigation connecting medicine to 

biology.  

In this work, it was presented a review of the information concerning cancer and mathematical 

models.  

After understanding the cell biology, the cell cycle and the cell death, the candidate used the 

“RPIM software for cellular growth and division”, and performed several validation tests, like time 

scale, convergence test, influence domain study and integration scheme. All tests are important 

because a new methodology was used in this work and the results of model validation showed a robust 

and convergence methodology. Besides that, the creation of a gradient mesh in domain of interest 

showed that is possible decrease the computational costs but maintain good results and lastly, a new 

growth law was achieved simulated what really happen in in vitro experiments.  

The results showed that the “RPIM software for cellular growth and division” is a numerical tool 

that can be adapted to biological sciences and can help and complement biological and healthy 

problems. In the future, it will be necessary to create a relationship between the mathematical model 

and in vitro experiments, in order to decrease the time and costs experiences, as well as justify and 

understand why some event occur in vitro.  

So, it is very important to continue improving “RPIM software for cellular growth and division” by 

creating a cancer nodule and understand what happens to cells at low or no concentrations of oxygen 

and nutrients like glucose. It is also important to test these cells with drugs and understand how they 

react. All this tasks are possible to be done applying mathematical models as this work shows. 
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