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ABSTRAC 

By using imaging flow cytometry as a powerful statistical high-throughput technique we investigated 

the impact of degradation on the biological performance of trimethyl chitosan (TMC)-based 

nanoparticles (NPs). In order to achieve high transfection efficiencies, a precise balance between NP 

stability and degradation must occur. We altered the biodegradation rate of the TMC NPs by varying 

the degree of acetylation (DA) of the polymer (DA ranged from 4 to 21%), giving rise to NPs with 

different enzymatic degradation profiles. While this parameter did not affect NP size, charge or 

ability to protect plasmid DNA, NPs based on TMC with an intermediate DA (16%) showed the 

highest transfection efficiency. Subsequently, by means of a single quantitative technique, we were 

able to follow, for each tested formulation, major steps of the NP-mediated gene delivery process – 
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NP cell membrane association, internalization and intracellular trafficking, including plasmid DNA 

transport towards the nucleus. NP cytotoxicity was also possible to determine by quantification of 

cell apoptosis. Overall, the obtained data revealed that the biodegradation rate of these NPs affects 

their intracellular trafficking and, consequently, their efficiency to transfect cells. Thus, one can use 

the polymer DA to modulate the NPs towards attaining different degradation rates and tune their 

bioactivity according to the desired application. Furthermore, this novel technical approach revealed 

to be a valuable tool for the initial steps of nucleic acid vector design. 

Statement of Significance 

By changing the biodegradation rate of trimethyl chitosan-based nanoparticles (NPs) one was able 

to alter the NP ability to protect or efficiently release DNA and consequently, to modulate their 

intracellular dynamics. To address the influence of NP degradation rate in their transfection 

efficiency we took advantage of imaging flow cytometry, a high-throughput bioimaging technique, 

to unravel some critical aspects about NP formulation such as the distinction between internalized 

versus cell-associated/adsorbed NP, and even explore NP intracellular localization. Overall, our work 

provides novel information about the importance of vector degradation rate for gene delivery into 

cells, as a way to tune gene expression as a function of the desired application, and advances novel 

approaches to optimize nanoparticle formulation. 

Keywords:  Imaging flow cytometry; Nanoparticle degradation; Trimethyl chitosan; 

Nanoparticle intracellular trafficking;  Gene delivery;  Nanomedicine 

1. INTRODUCTION  

The remarkable advances in molecular medicine and biology observed within the last decades have 

led to the development of promising therapeutic tools to be applied in the regenerative medicine 

field. These include the generation of nucleic acid-based approaches to correct defective proteins or 

to induce the expression of therapeutic proteins in situ [1]. An efficient gene vector has to be safe and 

capable of mediating the expression of the gene of interest for a sustained period of time, in a 

sufficiently large population of cells, to produce the desired biological effect. Due to their safer 

profile, non-viral vectors have drawn significant attention for regenerative medicine applications [2]. 

Among these, cationic polymers have been extensively explored, both in vitro and in vivo, for nucleic 

acid delivery as a result of their cationic nature, which favours both the interaction with nucleic acids 

and cell membranes [3], [4]. 

Chitosan (CH) is a cationic polymer that has been widely explored as a gene delivery vector [5]. 

However, despite being biocompatible and biodegradable, its poor solubility in physiological 

conditions has limited its widespread application. More recently, a CH derivative – trimethyl chitosan 

(TMC) – has been proposed for its improved solubility in a wide pH range [6]. Due to the quaternized 

amine groups, TMC has fixed positive charges, which enables the establishment of electrostatic 

interactions between the polymer and the negatively charged nucleic acids even at physiological pH 

[7], [8]. Previously, we have shown that the degradation profile of CH influences the biological activity 

of the resulting DNA-CH nanoparticles (NPs), namely in terms of their efficiency to transfect cells. 

Moreover, we established that the enzymatic degradation of the CH-based NPs was correlated with 

the polymer degree of acetylation (DA) [9]. Consequently, we advanced that the modulation of the 
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NP degradation profile could be an advantageous tool for the development of unique gene delivery 

vectors, in which one can tune the release rate of a gene of interest. Remain to be established if 

degradation is also a key parameter in the context of TMC NP-mediated plasmid DNA (pDNA) 

delivery. 

In this study, we took advantage of imaging flow cytometry as a high throughput technique to 

evaluate the impact of the degradation rate of TMC-based NPs on their performance as a pDNA 

vector. The accurate quantification of NP cellular internalization, although critical for the clinical 

application of gene delivery systems, has been a challenge for many years [10], [11]. The accurate 

evaluation of NP uptake is difficult due to the strong adsorption of certain nanomaterials onto the 

cellular membranes. The most common methods used for NP internalization evaluation are flow 

cytometry or microscopy-based techniques, however, both of them have limitations. While the high 

throughput nature of traditional flow cytometry generates robust statistical data, it lacks spatial 

resolution, making the distinction between internalized from membrane-adsorbed NPs a challenge. 

Attempts to solve this problem have included the destruction of membrane-associated NPs followed 

by their removal through washes [13] or the measurement of fluorescence in the presence and 

absence of fluorescence quenchers with selective permeation characteristics [14], [15], among 

others. However, these methods are specific for certain types of NPs and/or fluorophores, making 

comparisons of data between studies difficult [11], [16]. Hence, “internalization” data can be 

misleading in terms of its impact on transfection efficiency. By combining both techniques, imaging 

flow cytometry provides an accurate high-throughput robust analysis tool of fluorescent signal 

intensities and spatial relationships between different structures and cellular features thus providing 

a reliable statistical quantification of NPs internalization [12], [13], [14]. Besides NP internalization 

kinetics, here we were capable to infer about NP intracellular behaviour through the quantification 

of the number of nanoparticle-loaded vesicles (NLV) per cell at different time-points. Moreover, we 

were able to evaluate the proximity of the internalized NPs to the cell nuclei, a parameter of great 

importance, as it can be associated to the NP transfection efficiency. In this way, with the use of a 

single technique, we assessed some of the most crucial parameters to the process of optimization of 

NP formulation. 

2. Materials and methods 

2.1. Polymers purification 

Trimethyl chitosan (TMC) derived from ultra-pure chitosan was supplied by Kytozyme (Belgium) (lot 

VIHA0013-157). TMC was purified by filtration and dialysis, as previously described [15]. The original 

chitosan (CH), also provided by Kytozyme (Belgium; lot VIHA0018-019), was purified by precipitation 

according to a previously established protocol [16]. 

2.2. TMC deacetylation and re-acetylation 

The purified TMC was deacetylated as previously described [17]. Briefly, the purified polymer was 

dissolved in a concentrated sodium hydroxide (NaOH) solution (47% w/v) and left to react for 2 h at 

110 °C under a silicon bath. Next, the solution was placed under an ice bath and HCl with the same 

molarity as NaOH (11 M) was added drop wise for neutralization. The resulting polymer was dialyzed 

for three days against deionized water and then freeze dried (Labconco, USA). TMC with a higher DA 

was obtained by re-acetylation of deacetylated TMC accordingly to a previously described procedure 
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[18]. The reaction was performed using acetic anhydride as acetylating agent and 1,2-propanediol as 

co-solvent. The molar ratio of acetic anhydride per free amine groups added was of 0.18 and was 

extrapolated from a graphic described elsewhere [18], considering 20% the aimed percentage of 

acetylation. The acetylated polymer was precipitated by addition of methanol/diethyl ether (2:1), 

recovered by centrifugation and washed three times with ethanol. Subsequently, the polymer was 

dialyzed and freeze dried as described above. 

2.3. Polymer characterization 

Proton nuclear magnetic resonance (1H NMR) was performed to evaluate polymer degree of 

acetylation (DA) and TMC degree of quaternization (DQ). All polymer samples were dissolved in D2O 

(5 mg·ml−1) at 60 °C overnight and further analysed in a digital spectrometer (Bruker Advance III 400, 

UK) at room temperature (RT) with a total of 200 scans. The % DA was calculated according to 

Mourya et al. [6] and the % of DQ was calculated following the equation reported by Curti and 

Campana-Filho [19]. Gel permeation chromatography (GPC) was used to determine polymer 

molecular weight. The modular system employed was composed by an isocratic pump + autosampler 

+ vacuum degasser module (Viscotek GPC Max VE 2001 GPC solvent/sample module), a 

viscometer/right angle laser light scattering (RALLS) dual detector (T60 Viscotek), and a refractive 

index detector (K-5002 Knaeur) operating at the same wavelength as the RALLS detector (670 nm). 

Separations were performed in a set of PL aquagel-OH mixed columns. Measurements were 

performed in 0.33 M NaCH3COOH/0.28 M CH3COOH eluent at a flow rate of 1 ml·min−1. Sample 

concentration in a 0.1–0.2% (w/v) range and an injection volume of 100 μl were applied. Dextran and 

pullulan were used as broad and narrow standards, respectively. All measurements were performed 

in triplicate, at RT. 

Endotoxin levels of the purified polymer extracts were assessed using the Limulus Amebocyte Lysate 

Assay (QCL-1000, Cambrex Bio Science, USA), following the manufacturer instructions. 

2.4. Plasmid DNA 

The pDNA used encoded for the enhanced Green Fluorescent Protein and Luciferase (eGFP and Luc; 

pCMV-eGFPLuc, 6.7 kb, Invitrogen) genes. Plasmid was produced in a DH5α competent E. coli strain 

and purified using an EndoFree Plasmid Giga Kit following the manufacturer instructions (Qiagen, 

Germany). Plasmid concentration and purity were assessed by UV spectroscopy (Nanodrop 1000, 

Thermo Scientific, USA). Only plasmid solutions with an absorbance (260/280 nm) ratio comprised 

between 1.8 and 2.0 were used. 

2.5. Nanoparticle preparation 

TMC polymers were allowed to hydrate overnight in 5 mM HCl aqueous solution at a final 

concentration of 0.5% (w/v). Afterwards, 40 mM HEPES with 10% (w/v) glucose, pH 7.4 was added in 

order to attain a final solution at 0.25% (w/v) in 20 mM HEPES with 5% (w/v) glucose, pH 7.4. CH 

solutions were prepared in 5 mM acetate buffer, pH 5.5, as previously described [20]. Subsequently, 

solutions were filter sterilized and final polymer concentration was assessed by a colorimetric assay 

using Cibacron® Brilliant Red (Sigma-Aldrich, USA), as previous described [15]. NPs were prepared 

by mixing, while vortexing, equal volumes of pre-heated (55 °C for 10 min, Thermomixer®) pDNA 

solution (1 mg·ml−1) and either CH (0.1% (w/v)) or TMC solutions (0.25% (w/v)). CH- and TMC-based 
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NPs were allowed to stabilize for 15 min at RT before further use. NPs were prepared with 4 μg of 

pDNA at N/P molar ratios ranging from 1 to 18 to assess the best ratio regarding transfection 

efficiency in ND7/23 cells (Supplementary Fig. S1). The N/P ratio refers to the amount of positive 

moles from the polymer (N) (primary amine groups for CH and quaternized amine groups for TMC) 

to moles of pDNA phosphate groups (P). Since the TMC16 NPs presented a higher performance at the 

N/P ratio of 15, this ratio was chosen for all experiments throughout the study. 

2.6. Determination of average hydrodynamic size and zeta 
potential 

Nanoparticle hydrodynamic mean diameter and zeta potential were determined using a Zetasizer 

Nano Zs (Malvern Instruments, UK) following the manufacturer instructions. NPs were prepared as 

mentioned above and then diluted 6 times in Dulbecco’s Modified Eagle Medium (DMEM) with 

Glutamax™, 10% (v/v) heat inactivated (55 °C) foetal bovine serum (FBS) and 1% (v/v) 

penicillin/streptomycin, all supplied by Gibco (Thermo Fisher Scientific, USA), and left to stabilize for 

30 min prior to NP size and surface charge determination, using a high concentration cell (ZEN1010, 

Malvern Instruments, UK). CH and TMC-based NP size and surface charge were also measured in 5 

mM acetate buffer pH 5.5 and 20 mM HEPES buffer with 5% (w/v) glucose pH 7.4, respectively 

(Supplementary Table S1). Size measurements were performed at 25 °C at a 173° scattering angle in 

the automatic mode, and the mean hydrodynamic diameters were determined by cumulant analysis 

(Z-average mean). The calculated zeta potential of the NPs was determined by laser Doppler 

velocimetry (LDV) and phase analysis light scattering (M3-PALS) at 25 °C. The software used was 

DTS Nano version 7.11, supplied by the manufacturer (Malvern Instruments, UK). 

2.7. pDNA condensation efficiency and nanoparticle stability 

Plasmid DNA condensation efficiency was assessed through the SYBR Gold® (Life Technologies, 

Thermo Fisher Scientific, USA) exclusion assay. NPs were prepared with a pDNA concentration of 25 

ng·μl−1 (in a final volume of 100 μl). Afterwards, 20 μl of NPs were added to a black-walled 96-well 

plate (Greiner bio-one) containing 198 μl of either their buffer of preparation (testing their ability to 

condense pDNA after preparation) or in complete DMEM medium (to investigate NP stability in cell 

culture conditions). Finally, 2 μl of a 10,000× diluted (Tris-acetate-EDTA – TAE Buffer) SYBR® Gold 

solution was added to each well in order to reach a final volume of 200 μl. After 10 min incubation 

with continuous plate mixing, fluorescence was measured (λexc = 485 nm, λem = 540 nm). A pDNA 

standard curve was performed in each experiment, using a series of pDNA dilutions (Supplementary 

Fig. S2). The amount of free pDNA (not complexed with the polymer) for each well was calculated 

based on the equation obtained by the linear regression of the pDNA standard curve. Results are 

expressed as relative percentage of complexation where 100% means pDNA is totally complexed 

with polymer in NPs, and 0% means that all pDNA is free (not complexed with the polycation). 

Samples with the same mass ratio of polymer without DNA were used as control in order to subtract 

any polymer background fluorescence. 

2.8. Nanoparticle enzymatic degradation study 

Nanoparticle enzymatic degradation was assessed by an indirect method, previously set up by our 

team [9]. CH or TMC-based NPs were prepared with a fixed mass ratio, independently of the polymer 

DA, and incubated with lysozyme (from chicken egg white) in the presence of a fluorogenic substrate 
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–  4-methylumbelliferyl b-d-N,N′ ,N″ -triacetylchitotrioside (MU-[GlcNAc]3) (both from Sigma 

Aldrich, USA). The enzyme substrate was dissolved in CH3COONa (1 M, pH = 

5.5):H2O:dimethylformamide (1:1:1). The freshly prepared NPs, the lysozyme and the prepared 

fluorogenic substrate solution were added to a 96-well plate in order to obtain a final molar ratio of 

3.5:0.45:1.2 (lysozyme:substrate:NPs). After 1, 2, 4, 8 or 12 h of reaction at 37 ºC under 70 rpm, NaOH 

was added at a final concentration of 0.05 M to stop the reaction and the fluorescence resultant from 

substrate enzymatic degradation was measured (λexc = 360 nm; λem = 455 nm). Results are 

expressed as relative fluorescence percentage normalized to the positive control (maximum 

fluorescence emission by the fluorogenic substrate). 

To compare the degradation kinetics of the developed formulations, a non-linear fitting of the 

degradation data was performed by using the one phase decay equation model with the GraphPad 

Prism 6.0 software. By using this fitting model, we were able to infer about the rate constant of NPs 

degradation (k), expressed in reciprocal values of the X axis time units. Additionally, the degradation 

span (difference between initial time and plateau) was also computed and expressed as % of 

fluorescence. 

2.9. Cell culture 

For the in vitro assays, a sensorial neuron cell line model was used. The ND7/23 (mouse 

neuroblastoma (N18 tg 2) × rat dorsal root ganglion neuron hybrid) cell line was obtained from 

ECACC. The cells were routinely cultured in complete DMEM medium (with serum and antibiotics) 

and maintained at 37 °C in a 5% CO2 humidified incubator. Cells were routinely tested for 

mycoplasma by standard PCR. 

2.10. Transfection studies 

ND7/23 cells were seeded into 24-well plates at a cell density of 2 × 104 viable cells per cm2, 24 h prior 

to incubation with NPs. TMC-based NPs were prepared at N/P ratio of 15 with 2 μg of pDNA per cm2 

and suspended in complete DMEM medium (with serum and antibiotics), in a 1:6 dilution prior to 

addition to cells. NPs based on poly(ethylene imine) with 25 kDA (Sigma-Aldrich) were prepared at 

N/P ratio of 3 using the same amount of pDNA as the TMC-based NPs. Lipofectamine® 2000 

(ThermoFisher Scientific) was used according to the manufacturer instructions. 24 h post-incubation 

the cell media was removed, and 1 ml of fresh complete DMEM medium was added to each well. Cells 

were incubated for an additional 48 h period, with daily renewing of the culture media. In the 

transfection studies using chloroquine (CQ), a final concentration of 100 μM of the reagent was used. 

CQ was added to cells 20 h post NP incubation to promote endolysosomal escape of NPs. Four hours 

after addition of CQ to cells, cell medium was replaced with fresh medium and cells were incubated 

for an additional 48 h period, with daily renewing of the culture media. At the defined time point (72 

h post-incubation with NPs), cells were trypsinized and processed for flow cytometry for eGFP 

expression determination. Twenty thousand gated events were taken for each replicate and analysed 

using FACS Calibur flow cytometer (BD Biosciences). The resulting data was analysed using FlowJo 

software (version 10, FLOWJO, LLC). Untreated cells were used as negative control. 

2.11. Nanoparticles internalization and intracellular localization 
studies by imaging flow cytometry 
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Cells were seeded into 6-well TCPS plates (Greiner bio-one) at a cell density of 2 × 104 cells per cm2 

24 h prior to incubation with NPs in complete DMEM medium, as previously described. pDNA was 

labelled with YOYO®-1 (Invitrogen) as indicated by the manufacturer. CH or TMC-based NPs were 

prepared at N/P ratio of 15 with 2 μg of pDNA per cm2 and incubated with cells from 0.5 h to 24 h, at 

37 °C. Afterwards, cells were trypsinized, fixed with 4% paraformaldehyde (PFA) and centrifuged to 

obtain a pellet of about 105 cells in 50 μl. Cell images were acquired using an ImageStreamX 

multispectral imaging flow cytometer (Amnis, EDM Millipore, Darmstadt, Germany), collecting 

10,000 events per sample at 40× magnification. A 488 nm wavelength laser was used to excite 

YOYO®-1 and DRAQ5™. The fluorescence images were collected using the 480–560 nm and 660–

745 nm spectral detection channels, respectively. For double stained cells, single stained controls 

were used to compensate fluorescence between channel images on a pixel-by-pixel basis. Cell images 

were analysed using IDEAS® image-analysis software version 6.0 (Amnis, EDM Millipore, Germany). 

To discriminate internalized versus membrane-associated NPs, a mask representing the whole cell 

was defined by the bright-field image, and an internal mask (cytoplasm) was defined by eroding the 

whole cell mask by 5 pixels (each pixel being equivalent to 0.5 μm). The external region was 

determined by dilating the mask by 2 pixels and subtracting the internal mask (cytoplasm), which 

results in the mask for the cell membrane. Comparison of the fluorescence detected inside the 

internal mask with the whole cell fluorescence enabled the determination of the internalization score 

(IS). These values were calculated using the IDEAS® software, as previously described [12]. 

The number of nanoparticle-loaded vesicles (NLV) per cell was determined using images acquired 

with the Extended Depth of Field [21]. To determine the number of NLV per cell, a mask was created 

in order to identify the fluorescence intensity peaks at least 4-fold greater than the background. The 

number of individual vesicles in a cell was enumerated using the Spot Count feature from IDEAS® 

software, and plotted in frequency histograms. 

To assess NLV proximity to the nuclear vicinity, the degree of pixel intensity correlation between the 

labelled pDNA and nuclear DNA of each cell was analysed. For this purpose, cells were incubated with 

DRAQ5™ (6.25 μM) (BioStatus, UK) prior to acquisition on the imaging flow cytometer. Nuclear 

proximity was also evaluated from 0.5 h to 24 h. To measure the presence of YOYO®-1 in the nuclear 

vicinity, the Similarity feature of IDEAS® software was used [22]. In order to identify the pixels from 

nucleus, a nuclear mask was created by the user taking into account the fluorescent intensity of 

DRAQ5™ in its respective detection channel. Gating for nuclear localization events was decided 

based on visual inspection of histogram bins; the translocation gate was the same for each sample 

within an experiment. 

2.12. Transmission electron microscopy 

Cells were seeded as previously described for internalization studies. pDNA and TMC were labelled 

with FluoroNangold™ and Quantum Dots (QDs), respectively. pDNA was biotinylated with Label IT® 

Biotin Labelling Kit (Mirus Bio, USA) according to the manufacturer’s instructions. Subsequently, 

biotinylated pDNA was reacted with Streptavidin-FluoroNanogold™ (Nanoprobes, USA) according 

to the manufacturer’s instructions. TMC was conjugated with QD705 bearing a carboxylic via EDC 

(Sigma-Aldrich, USA) as coupling agent. Briefly, TMC solution (10 mg·ml−1 in PBS) was activated by 

adding EDC at the mole ratio of 567:1 (EDC:TMC). Afterwards, carboxyl-QD705 solution (Life 

Technologies, USA) (final concentration of 0.09 μM) was slowly added to the activated TMC and 

stirred for 2 h at RT in the dark. Unconjugated QDs were removed by centrifugation at 10,000 rpm 
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for 10 min using an ultrafiltration filter tube (MWCO: 30 kDa, Millipore, USA). The purified TMC-QD 

solution was stocked at 4 °C until further use. 

2.13. Apoptosis analysis by imaging flow cytometry 

ND7/23 cells were seeded in 6-well plates, as previously described. After 24 h, cells were incubated 

with CH or TMC-based NPs at N/P ratio of 15 in the presence of complete DMEM medium (with serum 

and antibiotics). Twenty-four hours later, cells were fixed with 4% PFA, washed three times with PBS 

and incubated with fluorescent DNA-binding dye DRAQ5™ and imaged on the ImageStreamX 

system, collecting 10,000 events per sample at 40× magnification. A 488 nm wavelength laser was 

used to excite DRAQ5™ and the fluorescence images were collected using the 660–740 nm spectral 

detection channel. Apoptotic cells were identified using two standard image-based features from the 

IDEAS® software: Area and Spot Small Total. Untreated cells were used as negative control. 

2.14. Cell metabolic activity assay 

To determine cell viability, a resazurin-based assay was used [23]. After 4 h of incubation at 37 °C, 200 

μl of medium was transferred to a black-walled 96-well plate (Greiner bio-one) and fluorescence was 

measured (λexc = 530 nm, λem = 590 nm). Cell viability was assessed 72 h after incubation of NPs with 

cells. Results are expressed as percentage of metabolic activity of treated cells relative to untreated 

cells. 

2.15. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6.0. Results are presented as mean ± 

standard deviation (SD) of at least three independent experiments. The D’Agostino-Pearson 

omnibus test was used to confirm the Gaussian distribution of data. Afterwards, one or two-way 

ANOVA with different post-tests for multiple comparison analysis were used as mentioned in each 

figure. Results were considered statistically significant when p < 0.05. 

3. Results 

3.1. Polymer characterization 

In order to investigate the influence of polymer DA on the degradation profile of the TMC-based NPs, 

the original purified TMC was deacetylated and then re-acetylated. The unmodified CH (starting 

material for the TMC synthesis) was used as control. The results obtained from the polymer 

characterization are presented in Table 1. As expected, the original TMC polymer presented a DA 

value similar to the unmodified CH, which was 16%. After TMC chemical modification, a final DA 

value of 4% was achieved for the deacetylated polymer, whereas for the re-acetylated polymer, a 

value around 21% was attained. 

The average number molecular weight (Mn) of the purified materials was found to be 43.3 ± 5.5 kDa 

for TMC16 and 37.3 ± 5.9 kDa for CH16. The selection of this Mn was based on previous studies that 

have shown that chitosan’s with an intermediate Mn are better suited for pDNA gene delivery, as 

chitosan-based polymers with molecular weight ⩾17 kDa form more compact NPs and better protect 

pDNA from endonuclease degradation; on the other hand, a Mn value above 50 kDa has shown to 
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hinder the release of pDNA from the polymer matrix [24]. GPC analysis confirmed that the applied 

reaction conditions for TMC modification did not lead to the hydrolysis of the polymeric chains, as no 

statistically significant differences were found between the deacetylated and re-acetylated polymer 

(TMC21) and the original one (TMC16). Endotoxin levels from the polymer extracts were found to be 

<0.1 EU·ml−1, respecting the US Department of Health and Human Services guidelines for 

implantable devices [25]. 

3.2. Nanoparticle physicochemical characterization 

The physicochemical properties of CH or TMC-based NPs were evaluated in terms of hydrodynamic 

average size, polydispersity index (PdI), surface charge (zeta potential) and pDNA condensation 

efficiency. For the as prepared NPs, no significant differences were observed in terms of size, PdI and 

surface charge (see Supplementary Table S1), with all NPs presenting average sizes below 205 nm, 

low PdI values (<0.2) and positive surface charges (⩾ +15 mV). To mimic cell culture conditions, NP 

average size, PdI and surface charge were evaluated after a 6-fold dilution in complete DMEM 

medium (pH 7.4). Under these conditions, all the produced TMC-based NPs remained stable, 

presenting sizes below 191 nm, independently of the polymer DA (Table 2). On the contrary, CH16 

NPs presented a significantly higher average hydrodynamic size (∼400 nm) and PdI (greater than 

0.5). TMC-based NPs also maintained their positive surface charge with zeta-potential values above 

+10 mV, whereas CH16 NPs surface charge was close to neutrality (−0.9 mV). Moreover, the intensity 

versus size profile obtained before (acetate or HEPES buffer) and after NPs dilution in DMEM medium 

with serum clearly showed that CH NPs do not present the same colloidal stability as TMC-based NPs 

in cell culture conditions (Fig. 1). In the case of TMC-based NPs, no significant differences were seen 

in the size profiles before and after NPs dilution in medium with serum (Fig. 1b). On the contrary, in 

the case of CH NPs an increase of the maximum intensity peak width and a shift toward increased 

sizes was seen, with the appearance of small peaks between 1,000 and 10,000 nm, which indicates 

the presence of polymer agglomerates (Fig. 1a). 

We next assessed the efficiency of CH16 and TMC-based polymers to condense pDNA by incubating 

the NPs in the presence of a nucleic acid intercalating dye (SYBR® Gold, Invitrogen). To the best of 

our knowledge, this is the first time that SYBR® Gold is used as a quantitative measurement for the 

assessment of the NPs ability to condense nucleic acids. The obtained results show that once 

prepared, all polymers were able to complex approximately 90% of the pDNA (Supplementary Table 

S2). However, after incubation in complete DMEM medium CH16 NPs release about half of the initially 

complexed pDNA. Contrariwise, TMC-based NPs remain stable and maintain all the originally 

complexed pDNA (Table 2). 

3.3. Nanoparticle enzymatic degradation and transfection 
efficiency 

To evaluate the biodegradation of TMC-based NPs, a lysozyme-based assay previously setup by our 

team was used in which the competition for lysozyme between a fluorogenic substrate (MU-

[GlcNAc]3) and the NPs under investigation is explored [9]. First, we compared the biodegradation 

profile of TMC16 and CH16 NPs (prepared with the same polymer mass). As depicted in Fig. 2a, after 

incubation of NPs in the presence of MU-[GlcNAc]3 for a 12-h period, a decrease in the fluorescence 

intensity is observed for both formulations. At the time point of 2 h, a statistically significant 

fluorescence reduction is observed in the case of TMC16 NPs, however, after this time period no 
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statistical differences were observed between the two polymeric NPs. This data indicates that while 

TMC16 NPs degrade to the same extent as the CH16 NPs, the former degrade at a slightly higher rate 

in the initial hours of reaction, indicating that the complexation of the polymer with the NAs does not 

alter the biodegradation behaviour of the polymers. These results were also corroborated by fitting 

the data with the exponential decay equation model (Fig. 2c). Using this model, a significant lower 

degradation rate (k) for CH16 NPs was determined, when compared to TMC16 NPs. However, the 

degradation span is similar between both formulations. Afterwards, we evaluated the influence of 

polymer DA on TMC-based NP biodegradation. Enzymatic degradation of TMC NPs with different 

DA was also evaluated for a 12 h incubation period with lysozyme (Fig. 2b). As previously reported 

for CH NPs [9], TMC-based NP enzymatic degradation is influenced by the polymer DA. A positive 

correlation between polymer DA and NP degradation rate as well as degradation span was observed 

(Fig. 2c). Among the tested TMC-based polymers, TMC4 NPs were the ones that degraded at a slower 

rate and to the lowest extent, while TMC21 showed the opposite results. Furthermore, with the time 

course of the degradation study a plateau value was reached for all formulations. This effect is 

probably related to the fact that at least 3–4 acetylated units are required in the hexameric binding 

pocket for lysozyme to allow enzymatic cleavage [26]. Since these domains are destroyed through 

cleavage of the glycosidic bond [26], [27], degradation by lysozyme occurs till a certain molecular 

weight depending on the DA of the polymer [28]. 

Unlike other polymeric vectors that have endosomal buffering capacity and act as proton sponges, 

in the case of chitosan-based vectors their buffering capacity is limited and their degradation 

products (oligo- and monosaccharides) are the entities responsible for the increase in osmolarity, 

which results in water influx and subsequent swelling and rupture of vesicular membranes [29], [30]. 

Since chitosan degradation strongly influences the ability of chitosan-based vectors to release pDNA, 

we next evaluated the impact of TMC-based NPs degradation rate on their biological performance as 

gene transfer vectors (Fig. 2d). Among TMC polymers, TMC16 presented a statistically significant 

higher percentage of transfected cells (Fig. 2d). TMC4 and TMC21 showed to be less efficient, 

transfecting only 3% and 8% of cells, respectively. The transfection activity was also determined as 

the eGFP fluorescence level fold increase relative to untreated cells (Supplementary Fig. S4). 

Similarly, the TMC16 NP formulation was the one to mediate the highest eGFP expression. 

Poly(ethylene imine) (PEI) with 25 kDa (Sigma-Aldrich) and Lipofectamine® 2000 (ThermoFisher 

Scientific), both well-known and widely used commercial available transfecting agents, were used as 

positive controls (Fig. 2d). We did not observe any significant difference when comparing the 

transfection efficiency of TMC16 with PEI (both polymeric NPs). On the contrary, the use of 

Lipofectamine® 2000 resulted in a ∼1.5-fold change in the percentage of transfected cells, when 

comparing to TMC16 NPs. Nonetheless, the use of this lipid-based commercial agent resulted in a 

statistically significant increase in cellular toxicity (Supplementary Fig. S5). The percentage of ND7/23 

cells transfected using naked pDNA (without any vector) was virtually zero (data not shown), 

presenting similar values to those of the negative control (untreated cells). 

3.4. Nanoparticle internalization profile and kinetics 

To understand the extent of the impact of biodegradation on transfection efficiency we further 

proceeded with the study of the intracellular trafficking pathway of the developed NPs. By using 

imaging flow cytometry instead of conventional flow cytometry we aimed at gaining quantitative 

information on the number of cells with internalized NPs as a function of time, as well as on the NA 

cargo present in each cell treated with different NP formulations. For this purpose, pDNA was 
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fluorescently labelled with YOYO®-1 (Invitrogen). For the distinction between the percentage of cells 

with internalized NPs (cytoplasm) versus the ones that were YOYO®-1 positive (cytoplasm and 

membrane-associated NPs), a mask representing the whole cell was defined by the bright-field 

image, and an internal mask was set by eroding the whole cell mask by 5 pixels (2.5 μm) in order to 

eliminate the fluorescent signal resulting from membrane-associated NPs (Fig. 3a). 

The results from the uptake studies (Fig. 3b) showed considerable differences between CH- and TMC-

based NPs. Moreover, it showed significantly differences between the percentage of YOYO®-1 

positive cells (white bars) and the percentage of cells with internalized pDNA (patterned bars) for all 

formulations. In the case of TMC-based NPs, as early as 0.5 h after NP incubation, more than 80% of 

cells were positive for YOYO®-1, a value that kept unaltered with time. However, by discriminating 

the cells with labelled pDNA in the cell cytoplasm, one can find that the amount of pDNA internalized 

steadily increased over time. At 0.5 h, already 40% of cells internalized NPs, a value that significantly 

increased to more than 80% after 24 h of contact. The similar internalization behaviour observed 

among TMC NPs is not unexpected since no significant differences were observed in terms of size or 

surface charge between NP formulations. The internalization process of CH-based NPs was found to 

be less efficient. Independently of the time point, the percentage of YOYO®-1 positive cells was lower 

and, even after a 24 h incubation period the total amount of cells which effectively internalized pDNA 

was only 35% of the total cell population. This behaviour can possibly be ascribed to differences on 

NP net charge. At physiological pH, CH NPs present a charge close to neutrality (Table 2), which may 

hamper the process of NP cell association and internalization. Moreover, these NPs presented higher 

average sizes and lower colloidal stability in relation to the TMC-based NPs, which might also 

negatively influence the internalization process. 

The internalization score (IS), defined as the ratio of fluorescence intensity inside the cell to the total 

fluorescence intensity of the cell [31], was also calculated. A positive value of IS corresponds to a cell 

with mostly internalized NPs, whereas a negative IS value corresponds to a cell with mostly 

membrane-associated NPs. The mean values of IS for CH and TMC-based NPs along the 24 h 

internalization study are presented in Fig. 3c. From 1 h of incubation onwards, statistically significant 

different IS values were found for CH16 and TMC-based NPs. In the case of CH16 NPs, only after 8 h of 

incubation with cells was reached a positive IS value, while cells treated with TMC-based NPs present 

positive IS values after 2 h of contact. No significant differences were observed among the TMC-

based NPs tested, indicating that the polymer DA did not altered the kinetics of the internalization 

process. 

Overall these results further corroborate that CH NPs are not as efficiently internalized by the cells as 

TMC NPs, indicating that CH16 NPs are not only internalized by a lower number of cells but also at a 

lower rate. 

3.5. Cellular distribution of nanoparticle-loaded vesicles 

An additional advantage of using imaging flow cytometry is the possibility to quantify the number of 

nanoparticle-containing vesicles per cell, as well as to localize molecules of interest in intracellular 

compartments or its vicinity. Although imaging flow cytometry lacks resolution for single NP 

identification, it enables the detection of NP clusters within individual vesicles (endosomes or 

lysosomes) inside the cell, the so-called nanoparticle-loaded vesicles (NLV) [32]. Masking of the cell 

images allowed cluster identification (representative images in Fig. 4a) and transformation of the 
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intensity histograms to NLV count distributions (Fig. 4b). By following this parameter as a function 

of time, we were able to gain further insights on NP distribution and intracellular trafficking after 

internalization. 

Three groups with low (Fig. 4c), medium (Fig. 4d) or high (Fig. 4e) number of NLV were gated among 

the cells that internalized NPs. The obtained results reveal that for TMC NPs, already after 1 h of 

incubation, a high percentage of cells (greater than 40%) had a high number of NLV (greater than 11 

per cell) (Fig. 4e). Contrariwise, in the case of CH NPs, the percentage of cells with high NLV was 

significantly lower (∼20%). Moreover, while in the case of TMC NPs the percentage of cells with high 

number of NLV is decreasing with time, suggesting that these NPs are being released from the 

vesicles where they are entrapped, in the case of CH this percentage is increasing along the 24 h 

study. 

Regarding the TMC-based NPs, it was observed an increase in the percentage of cells with low 

number of NLV and a decrease in the percentage of cells with high number of NLV. However, the 

observed variations were different among TMC polymers (Fig. 4f). The percentage of cells with 

medium number of NLV increased in the case of TMC4 and TMC21 NPs, whereas for TMC16 NPs it 

remains constant. After 24 h, more than 50% of cells incubated with TMC16 NPs presented a low 

number (<4) of NLV, whereas for the other formulations the majority of cells had between 5 and 10 

NLV per cell. These results suggest that TMC16 NPs are somehow being more efficiently released 

from the endolysosomal compartment, which may explain their higher transfection efficiency. To 

further confirm this hypothesis and infer about the amount of NPs localized in endo- or lysosomes, a 

transfection assay in the presence of chroloquine (CQ), a well-known disruptor of the endolysosomal 

vesicles, was performed (Supplementary Fig. S6). After NPs incubation with cells for 20 h, CQ was 

added in a final concentration of 100 μM for a total period of 4 h. The obtained results confirm that 

both TMC4 and TMC21 NP formulations end up entrapped in the endocytic compartment, as their 

incubation in the presence of CQ resulted in a ∼4-fold increase in their cell transfection efficiency. 

TMC16 NPs also suffered from an increase in transfection efficiency after CQ incubation, although this 

increment was only of 0.8-fold. Moreover, no significant differences were found in the transfection 

efficiency of TMC16 versus TMC21 NPs after incubation with CQ, which clearly indicates that the 

previous observed differences arise from TMC21 less effective escape from the endolysosomal 

pathway. This difference may result from the different degradation rates of the developed NPs, being 

an intermediate rate of degradation necessary for an increased protection of pDNA during the 

endolysossomal pathway and/or a more efficient escape of the NPs from the endocytic vesicles. 

To validate the assumption that the NPs under study are trafficked through the endolysosomal 

compartment, transmission electron microscopy of the cells incubated for 4 h with TMC-based NPs 

was performed (Supplementary Fig. S7). 

3.6. Nanoparticle-loaded vesicles localization in the nuclear 
vicinity 

The percentage of cells with NLV in the vicinity of the cell nucleus was determined from 0.5 to 24 h 

incubation with NP formulations prepared with YOYO®-1 labelled pDNA and subsequent staining of 

cell nuclei with DRAQ5™ (Fig. 5a). The similarity feature of the IDEAS® software was applied in the 

quantification of the extent of pDNA nuclear translocation. This allows the quantification of the 

correlation between two spectrally distinct images of a single cell and is derived from the Pearson’s 
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correlation coefficient of the pixels intensities of the image pair [22]. The similarity score was 

calculated for cells both positive for YOYO®-1 and DRAQ5™ (Fig. 5b). The positive region on YOYO®-

1/DRAQ5™ similarity histograms represents the region of images that correlate positively (Fig. 5c). 

Using this analytical approach, we were able to assess the variations regarding the localization in the 

nuclear vicinity of the NPs under study. Over the 24 h study, one observed for all tested NPs a steady 

increase in the number of cells with NLV localized in the perinuclear region (data not shown), 

supporting the described movement of the endocytic vesicles towards the microtubule-organizing 

centre close to the cell nucleus [33]. After 24 h of incubation, cells treated with CH16 NPs presented 

the lower extent of NLV in the nuclear vicinity (Fig. 5d). Since at this time point around 35% of cells 

that internalized CH16 NPs have a high number of NLV, these results indicate that only one third of 

these NLV are being transported to the nuclear vicinity. The remaining NLV could be either in the 

transport pathway towards the nuclei vicinity or being recycled to the cell membrane [34]. In the case 

of TMC-based NPs, the data indicates that NLV localization in the nuclear region was maximum for 

the TMC16 NPs, more than 30% of internalized pDNA being in the nuclear vicinity, although no 

significant differences were found between the polymers with the highest DA (TMC16 and TMC21). 

Bishop and co-workers have also reported an approximately percentage of pDNA nuclear association 

between 10 and 40, depending on the amount of time that the cells (gliobastoma cells derived from 

human primary brain cancer) were exposed to the NPs [35]. Also, the NLV quantification in the 

nuclear vicinity corroborate the transfection efficiency data, since the NPs that mediate the arrival of 

higher amount of NA to the nuclear vicinity are also the most efficient to transfect cells. 

3.7. Nanoparticle cytotoxicity 

Another important consideration to take into account when designing a non-viral gene delivery 

vector concerns their safety profile. Taking advantage of the nuclear labelling with DRAQ5™, we 

were also able to evaluate cell apoptosis 24 h post-incubation with the NPs by imaging flow 

cytometry (Fig. 6). A consistent distinguishing feature of the apoptotic process is nuclear 

condensation and DNA fragmentation. Apoptotic nuclei stained with fluorescent DNA intercalating 

dyes typically produce small, fragmented, highly textured nuclear images (Fig. 6a). Because of this 

characteristic morphology, apoptotic nuclei are ideally suited for analysis with this technique [36], 

[37]. 

CH16 NPs had a negligible effect on cell apoptosis (no statistical differences were observed in relation 

to untreated cells). For the cells treated with the TMC-based NPs, a significant increase in cell 

apoptosis was observed, TMC4 NPs being the ones causing the highest detrimental effect, although 

it only affected approximately 20% of cells (Fig. 6b). 

The results from imaging flow cytometry are in accordance with the data obtained from the cytotoxic 

evaluation based on the determination of metabolic activity by a resazurin-based method 

(Supplementary Fig. S5). The metabolic activity of the cells was measured 72 h after transfection and 

the most detrimental effect corresponded to a 29% decrease in cell viability for cells treated with 

TMC4 NPs. This effect may be a consequence of the higher amount of positively charged moieties 

present in this polymer or due to an increased NP accumulation inside the cells, since these NPs have 

also the lowest biodegradation capacity. 

4. Discussion 
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The presented data disclose important information regarding how NP extracellular and intracellular 

stability impacts the overall transfection process. When it comes to the design of non-viral gene 

delivery vehicles, a high number of extra- and intracellular obstacles must be overcome, and 

therefore it is particularly important to coordinate various functionalities of the polymeric vehicles in 

order to enhance their transfection efficiency. In a recent study, Bishop et al. have described cellular 

uptake as the limiting barrier for efficient non-viral vectors gene delivery [35], and therefore the 

formation of stable and small sized NPs is imperative to assure pDNA protection and colloidal 

stability in the extracellular environment and allow an efficient cellular binding and uptake [38]. The 

results obtained in this study support previous findings showing that TMC-based NPs present higher 

stability and pDNA condensation capacity at physiological conditions, compared to CH NPs [39], 

both important factors for the multistep process of gene transfection. 

Nonetheless, these parameters are not sufficient to meet all the premises necessary for the design of 

efficient gene delivery vectors. One of the most important requirements for gene transfer consists in 

the arrival of therapeutically relevant amount of intact pDNA to the nucleus of a target cell. If NP 

release from NLV and subsequent pDNA unpacking occurs too slowly or are impaired, the latter will 

not be accessible to the transcriptional machinery and will eventually be lost or diluted in processes 

like exocytosis or mitosis. On the contrary, if release occurs too promptly, or if the polyplex is not 

stable enough to resist endonuclease access, the pDNA will became susceptible to degradation prior 

reaching its final cellular target [35], [40]. Therefore, an ideal vector would provide total protection 

of complexed pDNA from degradation prior to releasing it efficiently near or within the nucleus of a 

target cell. On the other hand, many of the polymeric features that contribute to pDNA protection 

also hamper its release once NPs are inside the cell, the polymer ability to protect and efficiently 

release pDNA being inversely related. Various strategies have been tried to design vectors able to 

trigger pDNA release at the right time and space but, to the best of our knowledge, little attention 

has been paid to the contribution of vector degradation to this process. From our point of view, pDNA 

availability is highly dependent on NPs disassemble and, consequently, polymer degradation. TMC 

biodegradation has been described in solution by Verheul and co-workers [41], who found that TMC 

degradation by lysozyme is also positively correlated with the polymer DA. However, to the best of 

our knowledge, the biodegradation of a TMC-based nanoparticulate system was never assessed 

before. In fact, the extrapolation to NP biodegradation is not straightforward, since when the 

polymer is complexed with nucleic acids the exposure of acetylated groups may not favour/allow the 

degradation mediated by enzymes. To address this question, we altered the biodegradation rate of 

the TMC NPs by deacetylation and re-acetylation of the polymer, giving rise to NPs with different 

enzymatic degradation profiles, while not affecting the NP size, charge or ability to protect pDNA. 

This proved to have an impact on the intracellular dynamics, which resulted in a significantly different 

transfection ability of the proposed NPs. 

Taken together, these results suggest that biodegradation is a key feature for the overall transfection 

process and that a polymer with an intermediate DA is necessary to assure a compromise between 

NP stability and NA release intracellularly. These data are in accordance with previous reports that 

state that chitosan-based polyplexes with an optimal pDNA binding strength allow for efficient 

intracellular unpacking. On the contrary, excessively stable polyplexes release pDNA more slowly and 

less efficiently resulting in decreased levels of transgene expression [42]. To understand the extent 

of the impact on transfection efficiency of the polymer DA variations and, consequently, 

biodegradation, we further proceeded with the study of the intracellular trafficking pathway of the 

developed NPs. By using imaging flow cytometry instead of conventional flow cytometry we aimed 
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at gaining quantitative information on the number of cells with internalized NPs as a function of time, 

as well as on the NA cargo present in each cell treated with different NP formulations. Furthermore, 

with the use of a single technique, we were able to assess in vitro the major parameters necessary for 

an efficient gene delivery system, from cellular uptake to pDNA transport towards nuclear vicinity, 

including vector toxicity. This technique was found to be a great tool for the initial steps of vector 

design and optimization. Moreover, due to its high-throughput nature, it allowed to accurately 

disclose otherwise imperceptible differences between formulations. To the best of our knowledge, 

this was the first time that imaging flow cytometry was used to infer about NP trafficking through 

the endocytic pathway, by means of the quantification of the NLV per cell, without the use of 

additional intracellular markers. The quantification of the percentage of cells with DNA in the nuclear 

vicinity by imaging flow cytometry was also a novel experimental approach explored by us. 

5. Conclusion 

In sum, our work provides novel information about the importance of vector degradation rate for 

gene delivery into cells as a way to tune gene expression in function of the desired application, and 

advances novel approaches to optimize nanoparticle formulation. 

Taking advantage of imaging flow cytometry, a high-throughput technique with unique features that 

combines the statistical strength of flow cytometry with image acquisition of every event, we were 

able to unravel some critical aspects for NP formulation and contribute to the design of more efficient 

nucleic acid delivery vectors. 

Ultimately, the development of an efficient non-viral gene delivery vector will depend on the 

combination of intelligent material design with innovative imaging techniques, which would 

facilitate the rational design of these formulations. 
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Fig. 1. Stability of CH- and TMC-based nanoparticles in different media. Size distribution of (a) CH or 
(b) TMC NPs in their respective preparation buffer and after dilution (1:6) in complete DMEM 
medium. The graphic of TMC4 NPs (b) is representative of all the different TMC NPs tested. The 
profile of DMEM with serum and no NPs (control) is presented in order to discriminate protein-related 
aggregates. 

 

 

Fig. 2. Effect of polymer DA on NPs biodegradation and transfection efficiency. Extent of MU-
[GlcNAc]3 hydrolysis after incubation with lysozyme in the presence of (a) CH16 or TMC16 NPs or (b) 
TMC-based NPs, for a period of 12 h. The results are expressed as relative fluorescence of the 
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substrate cleavage by lysozyme without the NPs (positive control). A student’s t-test was used to 
determine the statistical difference between CH16 and TMC16. Two-way ANOVA analysis of variance 
with Tukey’s post-test was used for comparisons between all TMC-based NPs. Statistical differences 
are presented as: no symbol p > 0.05; #p < 0.05 when comparing CH16 to TMC16; *p < 0.05 and **p < 
0.01, ***p < 0.001 when comparing TMC16 and TMC4 with TMC21 NPs, respectively. (c) Table with the 
degradation rate (k) and degradation span (% of fluorescence) of all NP formulations, obtained 
through the fitting of the degradation data with the one phase decay equation model (grey line in a 
and b). (d) The transfection efficiency of TMC-based NPs was evaluated 72 h post-transfection. The 
percentage of cells expressing eGFP was assessed by flow cytometry. Poly(ethylene imine) (PEI) and 
Lipofectamine® 2000 (Lipo) were used as positive controls. Each bar represents the mean of four 
independent experiments ± SD. One-way ANOVA analysis of variance with Tukey’s post-test was 
used for comparisons between conditions. Statistical differences are presented as: *p < 0.05, **p < 
0.01 and ***p < 0.001 for comparisons between TMC-based NPs; ns = p > 0.05 and ##p < 0.01 when 
comparing TMC16 with PEI or Lipo, respectively. 

 

 

Fig. 3. Evaluation of nanoparticle internalization kinetics. (a) Examples of images captured by 
ImageStreamX in bright-field, YOYO®-1 (green) and their overlays (scale bars: 10 μm). Masks (cyan 
blue) were created to fit the whole cell (1), cell cytoplasm (2) and membrane (3 = 1–2). YOYO®-1 
images are represented with the cell cytoplasm mask, to distinguish internalized versus membrane 
associated NPs. (b) Percentage of ND7/23 cells positive for YOYO®-1 after incubation with CH or 
TMC-based NPs from 0.5 to 24 h. The difference between cells with associated NPs (white bars) and 
cells that had internalized NPs (patterned bars) is shown. (c) The internalization score (IS) – ratio 
between the fluorescence intensity inside cell to the fluorescence intensity of the entire cell – was 
also evaluated from 0.5 to 24 h, as a function of NPs internalization kinetics. Representative images 
of cells with NPs (green) in the extra- or intracellular compartment (scale bar: 10 μm). All data was 
acquired from at least three independent experiments ± SD. Two-way ANOVA analysis of variance 
with Bonferroni’s post-test was used for comparisons between polymers. Statistical differences are 
presented as: no symbol p > 0.05; *p < 0.05, **p < 0.01 and ***p < 0.001. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Quantification of the number of nanoparticle-loaded vesicles (NLV) per cell as a function of 
time of incubation. (a) Example of cells acquired from imaging flow cytometry (bright-field) with 
increasing number of NLV (YOYO-1® – green; scale bar: 10 μm). (b) Histogram of NLV frequency 
obtained from IDEAS® software analysis with the gated regions of interest. The percentage of cells 
that internalized NPs with low (c), medium (d), and high (e) number of NLV were considered. (f) Table 
summarizing the distribution of the number of NLV per cell depending on the NPs tested along the 
24 h. The fold-increase or decrease along the study (value from 24 h/value from 1 h) is shown. Each 
bar represents the mean of at least three independent experiments ± SD. Two-way ANOVA analysis 
of variance with Bonferroni’s post-test was used for comparisons between polymers. Statistical 
differences are present as: no symbol p > 0.05, *p < 0.05, *p < 0.01 and ***p < 0.001, when comparing 
TMC16 to other TMC polymers; #p < 0.05, ##p < 0.01 and ###p < 0.001 when comparing TMC16 with 
CH16. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 5. Determination of the percentage of cells with nanoparticle-loaded vesicles (NLV) present in 
the nuclear vicinity. (a) Representative images acquired by imaging flow cytometry. The fluorescence 
images collected using the 480–560 nm (YOYO®-1 – green) and 660–740 nm (DRAQ5™ – red) 
spectral detection channels and their composite images are showed (scale bars: 10 μm). (b) Cells 
positive for both fluorescent dyes were selected; (c) Histogram of frequency of the similarity feature 
from IDEAS® software. Cells with similar YOYO®-1/DRAQ5™ image pairs were gated; (d) Percentage 
of cells with NLV localized in the nuclear vicinity 24 h post-incubation with CH or TMC-based NPs. 
Each bar represents the mean of at least three independent experiments ± SD. Two-way ANOVA 
analysis of variance with Bonferroni’s post-test was used for comparisons between polymers. 
Statistical differences are present as: no symbol p > 0.05, *p < 0.05, when comparing TMC16 to other 
TMC polymers; #p < 0.05 when comparing TMC16 with CH16. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

 

 

Fig. 6. ND7/23 cell apoptosis upon incubation with CH- or TMC-based nanoparticles. (a) Gated 
regions of non-apoptotic and apoptotic cells and their representative images: bright-field and nuclear 
region (DRAQ5™ fluorescent red) (scale bars: 10 μm); (b) Percentage of apoptotic cells relative to 
negative control (untreated cells) after 24 h incubation with CH- or TMC-based nanoparticles. Each 
bar represents the mean of three independent experiments ± SD. One-way ANOVA analysis of 
variance with Bonferronis’s Multiple Comparison post-test. Statistical differences are present as: no 
symbol p > 0.05; ***p < 0.001 when comparing to other TMC NPs; ##p < 0.01 and ###p < 0.01 when 
comparing to CH16 NPs. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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Table 1. Polymer characteristics in terms of molecular weight, degree of acetylation (DA) and degree 
of quaternization (DQ). 

Polymer Mna (×103 g·mol−1) Mwa (×103 g·mol−1) Mw/Mna DAb (%) DQb (%) 

CH16 37.3 ± 5.9 55.5 ± 7.4 1.49 16.1 ± 0.2 – 

TMC4 – – – 3.5 ± 0.2 29.7 ± 3.2 

TMC16 43.3 ± 5.0 71.3 ± 8.9 1.65 15.7 ± 0.9 30.1 ± 4.6 

TMC21 44.7 ± 9.1 68.9 ± 6.1 1.54 20.6 ± 0.5 32.4 ± 3.9 

All polymers were purified and characterized. 

 

aAverage number (Mn) and average weight (Mw) molecular weight, as well as the polymer 

polydispersity index (Mw/Mn) were determined by gel permeation chromatography (n = 3 ± standard 

deviation (SD)). 

bDegree of N-acetylation (DA) and quaternization (DQ) were assessed by 1H NMR (n = 3 ± SD) (1H 

NMR spectra in Supplementary Fig. S3). 
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Table 2. Physicochemical characterization of CH- and TMC-based nanoparticles at physiological 

conditions. 

Polymer 
Hydrodynamic 

sizea (d·nm) 

Polydispersity 

indexa (PdI) 

Zeta-

potentialb 

(mV) 

pDNA condensation 

efficiencyc (%) 

CH16 397 ± 67## 0.560 ± 0.24## −0.9 ± 1.5### 45.7 ± 3.7### 

TMC4 184 ± 30 0.219 ± 0.15 +11.2 ± 2.3 94.9 ± 2.9 

TMC16 191 ± 22 0.238 ± 0.04 +10.8 ± 1.2 93.6 ± 0.3 

TMC21 188 ± 16 0.221 ± 0.11 +10.1 ± 2.0 90.1 ± 1.2 

All NPs were prepared at N/P ratio of 15. Average size, polydispersity index, zeta-potential and pDNA 

condensation efficiency of CH- and TMC-based NPs. 

 

aNP average hydrodynamic sizes and PdI were measured by dynamic light scattering (n = 3 ± SD). 

bMean surface charge of NPs based on zeta-potential measurements. 

Both size and surface charge measurements were performed in complete DMEM medium (with 10% 

(v/v) FBS), pH 7.4 (n = 3 ± SD). 

cPercentage of pDNA condensed into NPs after incubation in complete DMEM medium assessed by 

SYBR® Gold (n = 3 ± SD). Statistical differences are presented as: ##p < 0.01 and ###p < 0.001 for 

CH16 vs other TMC NPs. 

  

https://www.sciencedirect.com/science/article/pii/S1742706116305104?via%3Dihub#tblfn3
https://www.sciencedirect.com/science/article/pii/S1742706116305104?via%3Dihub#tblfn3
https://www.sciencedirect.com/science/article/pii/S1742706116305104?via%3Dihub#tblfn4
https://www.sciencedirect.com/science/article/pii/S1742706116305104?via%3Dihub#tblfn5
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Supplementary Figures S1–S7 and Table S1–S2. 

 

 

Figure S1. Transfection efficiency of TMC16 nanoparticles assessed in ND7/23 cells. The 

transfection efficiency of TMC16 NPs prepared at N/P ratios ranging from 1 to 18 was evaluated 72 h 

post-transfection. The percentage of viable cells expressing eGFP was assessed by flow cytometry. 

Each bar represents the mean of three independent experiments ± SD. 

 

Table S1. CH-and TMC-based nanoparticles average size, polydispersity index and zeta potential 

after preparation. 

 

 

 

 

 

All NPs were prepared at N/P ratio of 15. aNanoparticle average hydrodynamic sizes, PdI and mean 

zeta potential based on dynamic light scattering measurements were performed after NPs 

preparation in 5 mM acetate buffer, pH 5.5 (CH NPs) or 20 mM HEPES buffered solution with 5% (w/v) 

glucose, pH 7.4 (TMC NPs) (n=3 ± SD). No statistical differences were found between all tested NPs. 
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Figure S2. Plasmid DNA quantification by means of a SYBR® Gold based assay. (A) Representative 

plasmid DNA  (pDNA)  standard curve obtained  after  pDNA  consecutive dilutions. The line obtained 

through linear regression of the data is represented in the graphic in black, as well as the R square 

and the linear equation. (B) Table with the spectroscopy data obtained after incubating pDNA with 

SYBR® Gold for 10 min and measuring the emitted fluorescence. RFU = Relative fluorescence units. 

 

 

 

 

 

 



 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 

Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 

publications, please visit http://repositorio-aberto.up.pt/  

 

A
0

1
/0

0
 

 

 

 

 

 

 

 

Figure S3. 1H-NMR spectra of the original (TMC16), deacetylated (TMC4) and reacetylated (TMC21) 

trimethyl chitosans (400 MHz, in D2O). Signal A corresponds to the acetyl group (N-Ac) of TMC. 

The degree of acetylation (DA) for TMC polymers was determined by integration of appropriate 

signals: A (N-Ac), B (N-Me2) and C (N-Me3) in the 1H NMR spectra, and calculated following the 

equation reported by Curti and Campana-Filho (S. P. J Macromol Sci Pure 2006, A43, (3), 555-572). 

 

Table S2. Nanoparticle pDNA condensation efficiency. 

 

 

 

 

 

 

aAll NPs were prepared at N/P ratio of 15. The percentage of pDNA condensed into NPs was assessed 

by SYBR® Gold after NP preparation and incubation for 10 min in 5 mM acetate buffer, pH 5.5 (for CH 
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NPs) or 20 mM HEPES buffered solution with 5% (w/v) glucose, pH 7.4 (for TMC NPs) (n=3 ± SD). No 

statistical differences were found between all tested NPs. 

 

 

 

 

 

 

 

 

 

Figure S4. Effect of polymer DA on eGFP fluorescent levels after ND7/23 cells transfection with TMC-

based nanoparticles. Fluorescent levels of eGFP were analyzed 72 h post-incubation of cells with  

TMC-based NPs. Untreated cells were used as control. eGFP fluorescence levels were evaluated in 

the FL1 channel and a total of twenty thousand gated events were collected. The results are 

expressed as eGFP signal fold increase, following the ratio: (eGFP geometric mean of treated cells –

eGFP geometric mean of untreated cells)/eGFP geometric mean of untreated cells. Each bar 

represents the mean ± SD of four independent experiments. One-way ANOVA analysis of variance 

with Bonferroni’s post-test was used for comparisons between polymers. Statistical differences are 

presented as: no symbol p>0.05, *p<0.05 and **p<0.01. 
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Figure S5. Cellular cytotoxicity upon incubation with CH16 or TMC-based nanoparticles. Cellular 

viability was assessed 72 h after ND7/23 cells incubation with NPs by the resazurin reduction method. 

Results are expressed as percentage relative to untreated cells. Each bar represents the mean of three 

independent experiments ± SD. One-way ANOVA analysis of variance with Bonferronis’s Multiple  

Comparison post-test was performed. Statistical differences are present as: no symbol p>0.05; 

*p<0.05 when comparing to other TMC NPs; ##p<0.01 when comparing to CH16 NPs; φφ<0.01 and 
φφφ<0.001 when comparing PEI and Lipo with TMC16, respectively. 

 

Figure S6. Comparison between transfection efficiency of TMC-based NPs assessed in ND7 cells 

untreated or treated with chloroquine. Chloroquine (CQ) was added at a final concentration of 100 

μM to cells after a 20-hour period of incubation with NPs. After 4 hours, cell medium was exchanged 

with fresh one. Cells were further incubated for an additional 48-hour period, before being processed 

for flow cytometry. Results from cell transfection in the presence (black bars) or absence (white bars) 

of chloroquine are shown. Each bar represents the mean of at least three independent experiments 

± SD. The positive effect of CQ in the transfection efficiency of the respective NPs is indicated by the 



 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 

Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 

publications, please visit http://repositorio-aberto.up.pt/  

 

A
0

1
/0

0
 

fold change in the number of transfected cells above each bar. Two-way ANOVA analysis of variance 

with Tukey’s multiple comparison post-test was performed. Statistical differences between cells 

incubated with NPs and CQ (black bars) are presented as: no symbol p>0.05, ***p<0.001. 

 

Figure S7. Ultrastructural analysis of TMC16 NPs intracellular trafficking assessed by transmission 

electron microscopy. Electron micrographs of ND7/23 cells incubated with TMC16-QDs/pDNA-gold 

labelled NPs for 4 h confirm the internalization of NPs via the endocytic pathway, mainly in the form 

of intracellular clusters within vesicles. (a) ND7/23 cells fixed and imaged without contrast agent to 

avoid artifacts (control). Arrows indicate the presence of the labeled NPs in endocytic organelles. (b-

d) After incubation with NPs, ND7/23 cells were fixed and treated with contrast agent to enhance cell 

intracellular features. The labeled NPs were found in the extracellular matrix attached to the plasma 

membrane (b), inside early endocytic vesicles (b-c), in the multivesicular lysosomes (Lys) (c) and in 

the nuclear vicinity (d). PM: Plasma membrane; EE: Early endosomes; LE: Late endosomes; Lys: 

Lysosomes. Scale bars: (a) 1 μm; (b) 100 nm; (c-d) 200 nm. 


