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Abstract 
Chronic pain afflicts a large number of patients worldwide and opioids represent 

the most commonly used drugs to treat this maladaptative pain. The chronic treatment 

with opioids may induce, paradoxically, an increase of pain also known as opioid-

induced hyperalgesia (OIH). OIH has been reported both in clinical studies and in several 

animal models of pain, however its mechanisms are still poorly understood. One of the 

mechanisms thought to be involved in OIH is mediated by descending facilitation. The 

dorsal reticular nucleus (DRt) is a medullary area that exerts a unique role in descending 

facilitation and its activity is modulated by opioids. The studies included in the present 

thesis aimed at determining whether chronic morphine administration induces OIH in 

the spared nerve injury (SNI) model of chronic neuropathic pain and evaluate the 

involvement of the DRt in the mediation of OIH.  

To determine the effects of chronic morphine administration, two to three 

weeks after SNI induction, the animals were implanted with osmotic mini-pumps filled 

with morphine (45 μg.μl-1.h-1) or saline, which released their content continuously for 7 

days. Evoked pain was tested before and at 2, 4 and 7 days after the mini-pump 

implantation by the von-Frey, pin-prick and acetone tests which evaluate mechanical 

allodynia, mechanical hyperalgesia and cold allodynia, respectively. We show for the 

first time, that chronic morphine administration induces OIH in animals suffering from 

neuropathic pain. Spontaneous pain was also assessed using the conditioned place 

preference test (CPP). In animals chronically treated with morphine, the acute 

administration of morphine failed to induce CPP, unlike in control animals, which 

indicates a loss of the analgesic effect of morphine.  

To study the involvement of DRt in the mediation of OIH, we performed a 

lentiviral-mediated knock-down of the expression of the µ-opioid receptor (MOR) at the 

DRt. For that, the animals were injected with lentiviral vectors and implanted with 

osmotic mini-pumps containing saline or morphine (45 μg.μl-1.h-1). The animals were 

tested before and at 2, 4 and 7 days after the stereotaxic injections and mini-pump 

implantation by the evoked pain tests mentioned above. The knock-down of MOR in 

control animals showed an increase of pain behaviours, confirming thus the inhibitory 

effects of the opioidergic modulation at the DRt. In animals chronically treated with 
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morphine, the knock-down of MOR prevented the development of OIH. This indicates 

that chronic morphine exposure induces plastic changes at the DRt that result in 

increased DRt facilitation. We also studied the expression of glial markers, at the DRt, by 

immunohistochemistry. We show that chronic morphine treatment induces an increase 

in the expression of microglia (Iba-1) and astrocyte (GFAP) markers.  

Our results indicate that chronic morphine exposure induces OIH in a model of 

chronic neuropathic pain and that the DRt is involved in the mediation of OIH. The 

mechanisms underlying an increase of the DRt facilitation during chronic morphine 

exposure are likely triggered by MOR activation. Given the increase in the expression of 

glial markers, it would be very interesting to explore the involvement of these cells in 

pain transmission from the DRt, during opioid-induced hyperalgesia.  
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Introduction 

1 PAIN 

1.1 PAIN DEFINITION 

According to the International Association for the study of Pain (IASP), pain can be 

defined as an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage or described in terms of such damage [1]. Experiencing pain is 

a warning sign of imminent or actual tissue damage, causing coordinated reflex and 

behavioural responses to minimize negative outcomes. When the tissue is affected, a 

profound but reversible hypersensitivity in the inflamed and surrounding area is 

established by a set of excitability changes in the peripheral nervous system (PNS) and 

in the central nervous system (CNS) leading to wound repair by avoiding contact with 

the damaged part, until healing has occurred [2, 3].  

Pain is definitely not a static process. When pain is unrelieved, a set of plastic 

changes happens in the neural structure and some of those changes are so drastic that 

pain, specially chronic pain, cannot be considered just a symptom but, instead, it should 

be seen as a disease itself [4, 5]. Chronic pain offers no biological advantage and causes 

suffering and distress [2, 3]. This maladaptive pain afflicts 20% of the adult population 

in Europe [2, 5] and 30% in Portugal [6]. Many other diseases can be the triggering point 

of chronic pain, including autoimmune diseases (e.g., multiple sclerosis), metabolic 

diseases (e.g., diabetes), infections (e.g., shingles and the sequel, postherpetic 

neuralgia), vascular diseases (e.g., stroke), trauma and cancer. Although many diseases 

may be the culprit, it seems that, in order to initiate chronic pain, the leading lesion must 

directly involve the nociceptive pathways [7]. Regarding treatment, there have been 

some progresses, but chronic pain remains resilient to treatment. The use of non-

steroidal anti-inflammatory agents (e.g., aspirin) and opioids (e.g., morphine) is the most 

usual treatment, but these drugs are associated with adverse dose-limiting side-effects, 

dependence and tolerance. The lack of effective treatment with controlled side effects 

reflects how poorly the molecular pathophysiology underlying these pain states is 

understood [8]. 
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Chronic pain may be inflammatory, neuropathic or functional and all forms share 

some common characteristics [4]. When tissue injury happens, the most likely pain to 

rise is inflammatory pain, occurring mainly after trauma, surgery or during chronic 

inflammatory diseases, having damaged and inflammatory cells recruited to the injured 

tissue in order to release activators of peripheral nociceptors [4, 9]. Neuropathic pain is 

defined by IASP as pain arising as a direct consequence of a lesion or disease affecting 

the somatosensory system [1], in other words, it is classified as a combination of 

spontaneous pain and hypersensitivity with pathological changes in the PNS or in the 

CNS [4]. Functional pain is a relatively new concept and is defined as pain sensitivity 

caused by an abnormal processing or function of the CNS response to normal stimuli 

and may occur in fibromyalgia and irritable bowel syndrome [4].  

1.2 PAIN TRANSMISSION 

Primary afferent neurons innervate cutaneous tissues, bone, muscle, connective 

tissues, vessels and viscera and nociception occurs when these neurons are activated by 

noxious stimuli [4, 10]. These sensory neurons can be distinguished in several fibers 

based on anatomical, neurochemical and functional attributes. C-fibers are 

characterized as small-diameter, unmyelinated fibers and they conduct action 

potentials slowly; Aδ-fibers have medium-diameter and are thinly myelinated, 

conducing action potentials quickly; heavily myelinated Aβ-fibers have a larger diameter 

[4, 10]. C- and Aδ-fibers are able to encode noxious mechanical, thermal and chemical 

stimuli and, for this reason, are considered the main nociceptive afferents signalling pain 

[4, 7, 10]. Primary afferent neurons (Figure 1 – item 1) convert the stimuli into electrical 

activity in the peripheral terminals, causing depolarization of the neuronal membrane. 

If the stimuli is translated into a sufficiently strong electrical signal, voltage gated sodium 

channels will be activated and the signal will be transmitted into central terminals of 

nociceptors, in the spinal cord. Subsequently, these signals are conveyed by second 

order neurons, which constitute the ascending pathways (Figure 1 – item 2), to the 

thalamus and brainstem where the information is evaluated resulting in an appropriate 

response, conveyed by descending pathways (Figure 1 – item 3) to the spinal dorsal horn 

(Figure 1 – item 4) [4, 11].  
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More recently, attention has focused on spinal cord projections to the parabrachial 

region of the dorsolateral pons, because the output of this region provides for a rapid 

connection with the amygdala (AMY), a region generally considered to process 

information relevant to the aversive properties of pain experience. From these 

brainstem and thalamic loci, information reaches cortical structures. [13]. There is no 

single brain area essential for pain. Rather, pain results from activation of a distributed 

group of structures, some of which are more associated with the sensory-discriminative 

properties, such as the somatosensory cortex, and others with the emotional aspects, 

such as the anterior cingulate gyrus and insular cortex. Imaging studies demonstrated 

activation of prefrontal cortical areas, as well as regions not generally associated with 

pain processing, such as the basal ganglia and cerebellum, but the contribution of the 

activation of these areas to pain perception is not clear [10]. 

Figure 1: Transmission of nociceptive information. Nociceptive information is conveyed by primary afferent neurons 
(1) from the periphery to the spinal cord and then reaches the brainstem through ascending pathways (2) constituted 
by second order neurons. In the brain the nociceptive information is evaluated and an appropriate response is 
generated and conveyed by the descending pathway (3) to the dorsal horn of spinal cord (4). Adapted from Argoff, C 
[12].   
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1.3  DESCENDING PAIN 

1.3.1 The endogenous pain control system 

The endogenous pain control system is a complex web of brain areas responsible 

for the regulation of pain transmission at the spinal cord. Its role in pain inhibition is long 

known but, more recently, it has also been associated with pain facilitation [14, 15].  

The mesencephalic periaqueductal grey (PAG) and the rostral ventromedial medulla 

(RVM) have been extensively described as important role payers in pain modulation 

(Figure 2) [16]. The PAG is directly connected with the hypothalamus and limbic 

forebrain structures, including the amygdala, and also receives direct 

spinomesencephalic input. This area is also connected with several brainstem areas, 

including the RVM, and largely exerts modulatory nociceptive transmission to the spinal 

cord, using the RVM as a relay (Figure 2 and 4) [11, 15]. 

The RVM can be considered the output of the midline pain-modulation system. This 

area is constituted by the nucleus raphe magnus and adjacent reticular formation and 

projects to the superficial layers of dorsal horn laminae and to deep dorsal horn (Figure 

2 and 4) [15]. In the RVM, there are distinct populations of neurons classified as ON- and 

OFF-cells, which exert facilitatory and inhibitory effects of nociception, respectively. 

OFF- and ON-cells project to the dorsal horn and µ-agonists affect these two types of 

cells by direct inhibition of ON-cells and by disinhibition of OFF-cells [11, 17-19].  
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Figure 2: Schematic representation of the pain modularity circuitry. Primary afferent neurons convey nociceptive 

inputs to the spinal dorsal horn. From the dorsal horn there are ascending projections (labelled in red) targeting the 

thalamus, the DRt, the RVM and the PAG. The thalamus is connected to some cortical sites and to the amygdala. 

Descending pain modulation is mediated through projections (labelled in green) from these cortical areas to the PAG, 

which communicates with the RVM and the LC, and send descending projections to the spinal dorsal horn. Areas 

labelled “i–iv” in the small diagram correspond to labelled details of the larger diagram. Abbreviations – DRt – dorsal 

reticular nucleus; LC- locus coeruleus. Adapted from Ossipov et al [14]. 

1.3.2 The dorsal reticular nucleus  

The dorsal reticular nucleus (DRt) deserves special attention since this area will be 

the focus of the present thesis.  

The DRt is located in the most caudal portion of the medullary dorsolateral reticular 

formation, more specifically, in the dorsolateral quadrant of the medulla oblongata [20]. 

It is located medially to the spinal trigeminal nucleus, pars caudalis (Sp5C), laterally to 
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the nucleus tractus solitaries (NTS), ventral to the nucleus cuneate (Cu) and dorsal to the 

ventral reticular nucleus (VRt) [21] (Figure 3).  

Figure 3: Diagram of a coronal section of the caudal medulla oblongata. Abbreviations: DRt-Dorsal reticular nucleus; 
Cu-Nucleus cuneate; NTS-Nucleus tractus solitaries; Sp5C-Spinal trigeminal nucleus, pars caudalis; VLM-Caudal 
ventromedial medulla; VRt-Ventral reticular nucleus. Adapted from Paxinos and Watson [22]. 

The DRt receives bilateral projections from the spinal cord laminae I, IV–VII and X, 

with a clear ipsilateral predominance of those originated in the dorsal horn and the 

connections between lamina I and the DRt are characterized by excitatory synaptic 

contacts at both sites, which indicates that this reciprocal connection exerts excitatory 

actions at both spinal and DRt levels functioning thus as a reverberating system that 

leads to signal amplification [23]. This area has connections with brainstem areas such 

the ventrolateral medulla (VLM), PAG, RVM, locus coeruleus and the A5 and A7 

noradrenergic cell groups [16, 23, 24]. The DRt also projects to the medial thalamus and 

the limbic system, which suggests an integration of the DRt activity with the emotional 

aspects of pain processing [16, 24]. Additionally, the DRt is connected with the 

extrapyramidal and orofacial motor system, which suggests an involvement of the DRt 

in motor reactions associated with pain [24]. 
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 DRt neurons are exclusively activated by cutaneous or visceral noxious stimulation 

conveyed by Aδ- and C-fibers from the entire body [16, 25]. Glutamate administration 

in the DRt induces a long-lasting increase in the responsiveness of spinal nociceptive 

neurons [26], while lidocaine administration in the DRt results in the suppression of 

responsiveness [23]. At the behavioural level, the DRt was shown to be involved in pain 

facilitation both in acute and chronic pain models [27-29]. Recently, it was found that 

the facilitatory effects of the DRt, during chronic neuropathic pain, were mediated by 

noradrenaline release at the DRt [30]. 

2 OPIOIDS AND PAIN 

2.1 OPIOIDS IN PAIN TREATMENT 

Clay tablets from around Early Bronze Age prove that, at least since the Ancient 

Sumerian civilization, opioids have been used to treat pain and to ‘‘ease the harshness 

Figure 4: DRt involvement in pain modulating circuitries. Ascending connections are represented in red, descending 
projections are in blue and nociceptors are depicted in green. A–D are central nervous system sections and represent 
the spinal dorsal horn (A), the medulla oblongata and pons (B), the mesencephalon (C) and the forebrain 
(diencephalon and telencephalon, D). Abbreviations: ACC, anterior cingulate cortex; Ins, insular cortex; Mot, Motor 
cortex; Som, somatosensory cortex; Hyp, hypothalamus. Adapted from Almeida et al. [16]. 
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of life’’ [31]. Nowadays, opioids are the most common treatment for acute and cancer-

related pain. More recently, they arose as a therapy for comforting patients with chronic 

nonmalignant pain [17, 31, 32], as consequence, opioids are now the most often 

prescribed drugs for chronic pain [8, 32].  

2.2 OPIOID RECEPTORS 

Opioids activate peripheral, spinal and supraspinal opioid receptors. To date, three 

different groups of opioid receptors have been identified (µ - MOR; δ - DOR and κ- KOR) 

which are further divided into different sub-families [11, 18, 33]. MOR-1 mediate 

opioids’ analgesic and euphoric effects as well as physical dependence and MOR-2 

mediate bradycardia and respiratory depressant effects. DOR, with two subtypes 

identified so far, mediate spinal analgesic effects and it is involved in tolerance. KOR 

mediate spinal analgesia, miosis, sedation and diuresis [34].  A fourth related receptor, 

the orphanin-receptor like 1 (ORL-1) was described. The opioid receptors mediate their 

effects via activation of guanine-nucleotide binding proteins (G-proteins) [11, 18, 33]. 

The MOR presents the widest distribution in the brain and spinal cord, while the DOR 

and the KOR have a more restricted distribution. In peripheral tissues, opioid receptors 

are responsible for the modulation of several physiological functions [33].  

The most powerful analgesics act on MOR and so those are the most deeply studied 

receptors [11]. These receptors are expressed both on pre- and post-synaptic neurons 

in the CNS [11, 33] and exert a major inhibitory influence in pain transmission at the 

spinal level, exerting their actions via MOR expression in pre-synaptic primary sensory 

neurons and in post-synaptic secondary neurons [4, 11, 33]. Furthermore, MOR is 

expressed in several supraspinal areas related to pain modulation, such as the insular 

cortex, amygdala, hypothalamus, PAG, RVM [11, 33] and the DRt [35] and are 

abundantly expressed in the limbic system inhibiting the emotional perception of pain 

[33]. 

2.3  EFFECTS OF OPIOIDS IN PAIN MODULATION 

There are several neurochemical systems involved in the pain control and opioids 

display an important role in this matter since they are included in the most relevant and 

ancient therapeutic approaches for pain [33]. Endogenous opioids are proteins naturally 

existing in the organism [34]. β-endorphin, met-and leuenkephalin, dynorphins and β-
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endorphins, respectively result from three known precursors: proenkephalin, 

prodynorphin and pro-opiomelanocortin [33, 36]. These endogenous opioid peptides 

have different affinities for opioid receptors. For instance, the enkephalins activate 

mainly the DOR having some effects on the MOR, the dynorphins activate mainly the 

KOR and β-endorphins act on the MOR and the DOR [33, 36]. Two additional peptides 

endomorphin-1 and -2, have no precursor for endogenous synthesis identified so far, 

but it is known that they bind with high affinity to MOR [33, 34].  In addition, an 

endogenous opioid-like substance, nociceptin, is the product of a novel gene distinct 

from the gene families from which the endogenous opioids are derived [34]. 

At the periphery, endogenous opioids are synthetized by the neuroimmune system 

and bind to opioid receptors in the peripheral nerve terminals, which causes a decrease 

in nerve excitability and the release of inflammatory mediators. In the CNS, opioids 

regulate nociceptive pathways both at spinal and supraspinal levels. At the spinal level, 

opioids inhibit nociceptive transmission conveyed by Aδ- and C-fibers [33]. The opioid 

peptides β-endorphin, dynorphins and enkephalins are widely distributed in the brain, 

whereas in the spinal cord dynorphins are mainly present in interneurons. Spinal 

enkephalins are found primarily in long descending pathways from midbrain to the 

dorsal horn [36].  

The opioids are also involved in pronociceptive effects in the PNS and in the CNS. 

An increase in spinal dynorphins has been related with the development of hyperalgesia 

and allodynia since it increases the release of excitatory neurotransmitters, which 

contribute to amplify pain transmission [17, 33]. At the supraspinal level, opioids inhibit 

ON-cells and activate OFF-cells [11]. Serotoninergic neurons from the RVM are activated 

by enkephalinergic neurons from the PAG and project to the spinal cord, inducing the 

release of enkephalins which inhibit the activity of Aδ- and C-fibers entering the spinal 

cord. Noradrenergic neurons from the locus coeruleus projecting to the spinal dorsal 

horn are also regulated by opioids [11]. The MOR exert direct and indirect influence in 

descending facilitation from the DRt, based on the expression of MOR on local and 

spinally-projecting neurons [37]. In a model of inflammatory pain, a decrease in the 

expression of DOR and MOR was reported at the DRt [35, 38]. Based on the location of 

these receptors on the DRt-spinal pathway, their decrease is likely to amplify the DRt-

spinal facilitatory effects [23]. 
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3 OPIOID-INDUCED HYPERALGESIA 

3.1 DEFINITION 

Opioid-induced hyperalgesia (OIH) is an opioid use related problem that arose in 

the past years [31]. In some scenarios, treating patients and animals with opioids elicits, 

paradoxically, increased perception of pre-existing pain and, in some cases, it is 

associated with a modification of pain characteristics and an extension of the painful 

area [17, 39]. Stated otherwise, opioids may directly facilitate pro-nociceptive pathways 

such that patients are overly affected by noxious stimuli compared with opioid naïve 

patients [17, 31, 32].  

OIH definition is often confused with opioid tolerance and withdrawal-associated 

hyperalgesia (WAH). These syndromes can manifest similar symptoms, but are clinically 

differentiated from OIH due to differing effective interventions [40]. 

Tolerance occurs when the patient seeks pain relief and increasing doses of opioid 

are necessary to maintain appropriate analgesia (Figure 5 B) [31, 40] . This definition 

could be confused with OIH, however, in opposition to tolerance, increasing doses of 

opioids will only worsen pain (Figure 5 A) [39].  

WAH is a time limited reaction, translated as a diffuse joint pain and body aches 

taking place along with detoxification  from chronic opioid use or if scheduled doses are 

skipped [40]. 

Figure 5: Alterations in opioid dose-response relationship with chronic opioid administration. It is a hypothetical 
experience, where an acute opioid infusion is used to detect changes in the analgesic dose-experimental pain response 
curve that occur as a result of chronic opioid exposure. The responses of opioid naïve patients are shown as a solid 
line. A, In OIH, the dose-response curve of the chronic opioid user (dashed line) is shifted downward. B, In analgesic 
tolerance, the slope of the dose-response curve of the chronic opioid user (dashed line) becomes attenuated and 
rightward shifted, but, there is no significant change in pain sensitivity at baseline Adapted from Chu et al. [31]. 
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3.2  CLINICAL AND ANIMAL EVIDENCE 

Several studies suggest that OIH can develop in humans and may have important 

clinical implications [31, 32]. Studies have been conducted using several distinct 

methodologies.  

In the mid-1960s, methadone was firstly applied as a substitution treatment for 

former opioid addicts and, in the past years, it became a basic therapy for these cases, 

preventing abstinence symptoms [41]. There are several studies where observations in 

this set of patients are compatible with the hypothesis that OIH, when diagnosed, is 

caused by chronic opioid exposure [32, 42].  

Regarding diagnosis of OIH in the scenery of acute intraoperative opioid exposure, 

several clinical studies reported increased postoperative pain in patients that received 

higher doses of intraoperative opioids, in the context of major abdominal surgery [32, 

43-45].   

There are also studies describing OIH in patients with acute physical opioid 

dependence and, in this case, OIH was paired with aggravation of the induced 

hyperalgesic skin lesions, enlargement of the area of mechanical hyperalgesia induced 

by transdermal electrical stimulation, aggravation of pressure-evoked pain and/or 

increased sensitivity to cold pressor pain in healthy human volunteers following 

precipitated opioid withdrawal [31, 32]. 

A few prospective clinical studies also show evidence for the development of OIH. 

A small prospective study showed OIH in 6 patients with chronic back pain, after one 

month of oral morphine treatment, when compared to baseline values [46, 47]. Another 

study, involving a bigger sample population, showed a significant negative correlation 

between experimental OIH and all clinical pain measures, in a dose dependent manner 

[47, 48]. Additional indirect evidence for OIH comes from another prospective study of 

patients with chronic pain receiving intermediate-term opioid treatment who attended 

a pain rehabilitation program, which included the cessation of opioid use. Heat pain 

thresholds were increased, at the end of the program, compared to their levels prior to 

enrolment [47]. 

Kayan et al. [49] first described the phenomenon of hyperalgesia after acute 

morphine injection in rats in 1971 and there are now more than 90 publications available 
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describing OIH in a wide range of animal models [31]. For more than three decades, it 

has been recognized that rodents show hyperalgesic responses after the administration 

of an opioid antagonist which causes withdrawal or during spontaneous withdrawal 

after cessation of opioid administration [32]. Chronically administrated opioids are now 

also shown to cause a sustained pronociceptive response, related both to the opioid 

dose administered and to the experimental pain model used (i.e., thermal, mechanical, 

electrical or chemical) [40].  

Two fundamental patterns characterizing the onset and resolution of OIH in animals 

can be distinguished. The first is observed after acute administration, that is, the 

systemic administration of one to four relatively high opioid doses within one hour, 

evoking brief hyperalgesia which lasts for hours or, exceptionally, for days in a dose 

dependent manner [32]. The second and most usual pattern is observed after animals 

are exposed to opioids for three to twelve days. In this case, if opioids are continuously 

administered an antinoceptive response is usually reported in the first day and then a 

loss of this effect is observed or along with the induction of a hyperalgesic state during 

ongoing drug administration. Alternatively, if animals are given repeated systemic or 

intrathecal boluses of opioids for several days, they gradually develop hyperalgesia to 

thermal or mechanical stimuli. When studied, it was also possible to directly correlate 

the time course of resolution of OIH with the time course of its development  [32]. 

3.3  MOLECULAR MECHANISMS 

OIH is thought to result from neuroplastic changes in the PNS and in the CNS 

resulting in the sensitization of pronociceptive pathways and it can been described 

based on the site of the plasticity [19], where the relevant mechanisms are probably 

unique [31]. 

Spinal cord plasticity underlying OIH has been demonstrated after both intrathecal 

and systemic administration of opioids [19, 31, 32] and the most obvious consequence 

of spinal sensitization is the higher transmission of noxious inputs to supraspinal sites 

[17]. The major role players involved in spinal sensitization described until now include 

N-methyl-D-aspartate (NMDA) receptors, non-NMDA excitatory amino acid receptors, 

[50], protein kinase C (PKC) [17, 19, 31, 32], spinal dynorphin, spinal prostaglandins [32] 

and spinal cyclooxygenase (COX) [19]. The spinal dorsal horn is vital to many 
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mechanisms supporting OIH [19], as the correlation between OIH and spinal cord 

plasticity is consonant with the emerging appreciation of spinal inflammation as 

participating in many abnormal pain syndromes [17, 19, 31].  

Regarding the molecular mechanisms underlying OIH, there are evidences 

suggesting that after binding morphine to MOR, on a post-signalling neuron, there are 

the activation of G-protein mediated PKC translocation and the removal of the NMDA 

receptor Mg2+ plug (Figure 6 – item 1). Glutamate is released from pre-synaptic cells 

inducing the ionotropic NMDA receptor to allow Ca2+ influx, resulting in augmented 

intracellular Ca2+ which leads to several downstream effects, including activation of 

calcium-calmodulin (Ca2+-CaM), changes in gene expression and further activation of 

PKC (Figure 6 – items a-b-c). Ca2+-CaM in turn initiates the conversion of L-arginine into 

nitric oxide (NO) by NO synthesis. NO may then act as a retrograde messenger to 

enhance glutamate release from the pre-synaptic neuron. With continual activation of 

these pathways, by opioid receptor occupation, PKC may uncouple the G-protein from 

MOR preventing any downstream signalling upon ligand binding [50].  

There are also evidence suggesting that this process is not limited to neuronal cells 

and that glial cells also play an important part in OIH. Indeed, inhibition of glial cells may 

be enough to re-establish opioids therapeutic effects. Chronic opioid administration 

may act through the MOR on glial cells increasing the production and release of 

cytokines and chemokines or act directly on glial and neuronal glutamate transporters 

to alter synaptic glutamate levels (Figure 6 - items 2 and 3). Once released, cytokines 

may then act on the pre- or post-synaptic neurons to induce hyperalgesia or on other 

glial cells to promote further neuroimmune activation [50]. 
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The influence of higher CNS centres in OIH is yet poorly studied, however, there has 

been an increase in proven influence of supraspinal sites through enhanced descending 

facilitation to the spinal cord dorsal horn. So far, only the involvement of RVM was more 

deeply studied for OIH [17, 19, 31].  

The underlying mechanisms of OIH are quite similar to the ones underlying 

neuropathic pain, which can become an obstacle for treating this syndrome, since, if 

opioids are able to activate the same pathways as neuropathic pain, administration of 

opioids during or after nerve injury may facilitate, instead of preempt, the development 

of neuropathic pain [39]. 

3.4 GLIAL CELLS 

Since the end of last century, there is an emergence of the importance of the 

neuroimmune interface, meaning, the bidirectional signalling between neurons and 

Figure 6: Cellular mechanisms of morphine hyperalgesia. Morphine (represented by M, as a representative opioid) 
may act on the post-synaptic neuron (1), on the glial cells (2) or on the pre-synaptic neuron (3). Regarding the post-
synaptic neuron (1), it binds to the μ-receptor (μ-R) activates G-protein mediated protein kinase C (PKC) translocation 
and activation promoting removal of the Mg2+ plug from the NMDA receptor (NMDA-R). Glutamate (glu) released 
from the pre-synaptic cells induces NMDA-R to allow Ca2+ influx, increasing intracellular Ca2+ which will result in the 
activation of Ca2+-CaM(calcium-calmodulin) (a), changes in gene expression (b) and further activation of PKC (c). Ca2+-
CaM in turn initiates the conversion of L-arginine to NO mediated by nitric oxide synthase (NOS), which will enhance 
glutamate release from the pre-synaptic neuron. Chronic opioid administration also affects the μ-R on glial cells (2), 
causing an augmented production and secretion of cytokines and chemokines and the neuronal glutamate 
transporters (GluT) to alter synaptic glutamate levels (3). Abbreviations in figure not presented in text: G = G-protein 
coupled to receptor; NO = nitric oxide; NMDA = N-methyl- D-aspartate Adapted from Deleo et al. [50]. 
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immune-competent cells from the CNS, including glia, endothelial cells, perivascular 

macrophages and infiltrating T cells [3, 51, 52].  

Not that long ago, information about glial functions was limited to their role 

providing structural support for neurons and immune surveillance, aiding the 

maintenance of CNS homeostasis [51, 53, 54]. In recent years, experimental and clinical 

studies have confirmed the neuroimmune interface as fundamental for the 

development of pain [51, 52].  

The lack of axons and their yet-to-be-discovered part in cell-to-cell communication 

delayed the attention glia deserved in pain facilitation until the early 1990s. From such 

decade, an intriguing feature of glial cells has emerged since it is now known they can 

act in areas of CNS quite remote from the focus of injury or disease [51]. This research 

was accompanied by a growing appreciation that the behavioural effects observed in 

pain could also be due to the local release of cytokines by glia residing within the CNS 

[3, 52]. With this discovery, it was possible to postulate the existence of a crosstalk 

between glia and neurons of the CNS where CNS neurons can activate glial cells and, 

when recruited, these glial cells can, in turn, regulate neuronal function [51].  

3.4.1 Glial cell types  

Glial cells account for 70% of CNS total cells and can be divided into two main 

groups: microglia and macroglia. Macroglia can be further divided into astrocytes, 

oligodendrocytes and radial cells like Bergmann cells, located in cerebellar cortex, and 

Müller cells, located in retina. Besides neurons, these cells are the second main element 

of neural tissue and although they cannot transmit nerve impulses, they are central in 

the synthesis, release and uptake of neurotransmitters [52, 54].  

Microglial cells represent the immune system at the spinal cord level and represent 

as little as 5–12% of all cells in the CNS [54]. This is however altered during ongoing 

pathological states, when microglia undergoes strong proliferation and dynamically 

modulates neuronal functions [52]. These cells have distinct morphological and 

functional properties that are developed under the influence of nearby astrocytes, 

which produce colony stimulating factors, and neurons, which can modulate microglial 

function via the release of neurotrophins [51]. Under a basal surveillance state, the 

cytoarchitecture of microglia allows them to continuously sample the extracellular space 
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for perturbations [3, 54]. Nevertheless, microglia plays an important role in several 

diseases, for instance, in the case of neuropathic pain, microglial cells are the first to 

become activated following peripheral nerve injury and remain active for several weeks 

[52]. In normal conditions, microglia exhibit ramified processes that are highly motile 

and express receptors for complement components and low levels of cell-surface 

immune molecules. This status changes dramatically following injury to the CNS or to 

peripheral nerves or peripheral tissues [51, 54]. It is already known that microglia 

presents pleomorphic responses to distresses elicited in the nervous system, with a 

premise that activated microglia emerges from a resting state (Figure 7 – item a) and 

undergoes phenotypic alterations in a variety of morphological forms (Figure 7), 

including, for example, the amoeboid (the most activated morphology - Figure 7 – items 

e and f) [55].   

Figure 7: Progressive stages of microglial activation, from a (the inactive state) to f (the most active state). Adapted 

from Kreutzberg, G.W. [56]. 

Morphologic alterations of microglia are accompanied by modifications in gene 

expression, including the upregulation of receptors and the production of a repertoire 

of cytokine and chemokine mediators [51, 54]. Microgliosis is often correlated with 

increased expression of CD11b and allograft inflammatory factor 1 (AIF-1; also known as 

Iba-1) which are regularly used as markers of microglial cells [3]. 

Astrocytes are the most abundant cells in the CNS [3, 52, 54]. In addition to 

providing structural support, promoting formation of the blood–brain barrier and 

regulating cerebral blood flow, astrocytes contribute to synaptic transmission, provide 

trophic support and promote repair of neuronal systems [3]. Through the expression of 

numerous transport proteins, astrocytes are capable of maintaining homeostasis by 
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means of regulation of extracellular levels of ions, proteins and neurotransmitters in 

their surrounding environment [3, 52, 54]. Astrocytes are intimately associated with 

neuronal synapses because a single astrocyte can make contact with several neurons 

[54]. As with microglia, damage to peripheral nerves and peripheral tissues alters the 

resting state of astrocytes, most prominently near the central terminals of damaged 

sensory neurons and around motor neurons [51]. This altered state is referred to as 

activation and it is marked by an increased expression of the glial fibrillary acidic protein 

(GFAP) [3, 51, 52, 54].  

3.4.2 Involvement of glial cells in OIH 

Although the adverse effects from opioids use can be partly explained by neuronal 

mechanisms, the emerging role of central immune signalling is revolutionizing opioid 

pharmacology [3]. Glia now have a well-established role in initiating and maintaining 

increased nociception in response to peripheral nerve injury. Several research groups 

have documented that glia can powerfully modulate the analgesic actions of chronically 

administered opioids [53]. There are now several studies suggesting that CNS glia, in 

concert with proinflammatory cytokines and chemokines [19, 31], contribute to 

hypersensitivity and the decreased efficacy of opioids in chronic neuropathic pain states, 

in the spinal cord [50, 52, 57, 58]. The understanding of glial involvement in neuropathic 

pain and opioid pharmacodynamics has grown together, such that they are now 

indelibly intertwined. These pain-relevant topics are of interest primarily because 

clinical pain syndromes occur in epidemic proportions worldwide, including chronic pain 

states that last for years to a lifetime of unremitting pain [54]. 

 The notion that glia can modulate opioid actions was first postulated in the late 

1980s. Several studies showed that chronic morphine administration causes glial 

activation in spinal cord [53, 54], and co-administration of morphine with a glial 

activation inhibitor resulted in the maintenance of analgesic efficacy and in a 

corresponding reduction of glial activation. Some studies conducted in neuropathic pain 

models, led to the conclusion that at least some products of activated glia that enhance 

neuropathic pain may also oppose morphine analgesia [53].  

It appears that morphine acts not only at classical opioid receptors on nociceptive 

neurons, but also that glial activation signal produces a cascade of events that results in 
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increased nociception. The sum of morphine’s neuronal antinociceptive activity and its 

pronociceptive glial activation results in a net reduction in analgesia. Moreover, since 

glial activation increases with chronicity of opioid treatment, it seems that opioid-

induced glial activation contributes significantly to the atypical allodynia and 

hyperalgesia that results from chronic opioid administration [53]. 

4 GENETIC MANIPULATION OF THE NOCICEPTIVE SYSTEM 

In recent years, the development of selective genetic manipulation has largely 

enriched the understanding of molecular mechanisms of the descending pain 

modulatory system [21, 59]. Pre-clinical trials of gene therapy for pain control reporting 

promising results, related to safety and efficacy, along with an early clinical trial with 

exciting outcomes show the potential of the genetic manipulation of nociceptive system 

[30, 60-62].  

Due to the deeper knowledge achieved regarding mechanisms of pain, it is now 

possible to engineer vectors carrying transgenes with specific promoters directed to 

targets of the CNS and of the PNS deeply involved in facilitation of pain and 

somatosensory system areas [59]. Thereby, gene therapy allows the delivery or 

manipulation of genes, increasing the specificity, avoiding, thus, side effects and off-

target toxicity, mediating gene expression for a controlled and extended period of time 

[63]. The greater advantage of gene therapy is that this system is readily controllable. 

There are three main components that can be manipulated: the vector, the transgene 

and the promoter [59].  

The vector is the carrier of the transcriptional cassette and its main function is to 

deliver its content to specific cell targets. Vectors can be derived from viral or nonviral 

systems, however, viral vectors have greater efficiency and specificity for the delivery of 

exogenous genes to cells, therefore they are the most used and studied delivery vectors 

[59, 60, 64].  Some of the viral vectors have the ability to be transported retrogradely, 

which allows the vector to be uptaken at the nerve terminal and then migrate to the 

nucleus, often located in remote areas, surgically difficult to access [59]. Briefly, the ideal 

viral vector, should be able to express external genes for a long period and should be 

non-pathogenic and nontoxic. In this sense, viral vectors are created by deleting and 
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replacing nonessential and pathological genes from the virus, by exogenous coding 

sequences, and by maintaining structural motits needed to infect cells and transfer their 

content. The most commonly used viral vectors are derived from the herpes-simplex 

virus (HSV-1), adeno-associated virus, adenovirus and lentivirus [60, 64]. Lentiviral 

vectors have the advantage of allowing long term transgene expression. They belong to 

a subclass of retroviruses capable of inserting DNA into the cell genome. They are 

therefore interesting vectors for non-dividing cells as neurons and they have also been 

used for gene delivery in neural stem cells and progenitor cells [64].  

The transgene is a coding sequence of a gene which can be fused with tags (small 

unrelated sequences) or even expressed under the same promoter with fluorescent 

proteins, so cells transfected with the transgene can be easily detected [63]. These 

coding sequences generally express neurotransmitters and receptors involved in pain 

transmission, neurotrophic factors and anti-inflammatory substances [59]. However, it 

is also possible to insert antisense sequences or RNAi molecules in order to promote 

down-regulation of the expression of a gene [60, 63]. As for the promoter, cell-type 

specific promoters are preferred in order to restrict gene expression to a specific cell 

type or even to a neurochemical neuronal population. Synapsin I, calcium/calmodulin-

dependent protein kinase II, tubulin alpha I and neuron-specific enolase are some of the 

promoters specifically targeting only neurons [59].  

  Targeting brain circuits of pain is definitely challenging mainly because the access 

to brainstem areas is a huge hurdle and the complex neuronal circuits are also greatly 

difficult to manipulate. Gene transfer in the endogenous pain control system has been 

mainly achieved with HSV-1 vectors to express opioid peptides [35, 62], glutamate 

decarboxylase (GAD) [65] and tyrosine hydroxylase [30], inducing analgesia in several 

pain models [35, 59, 61, 62].  
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Aims and methodology 

The analgesic role of opioids for treating chronic pain are of extreme importance, 

since chronic pain afflicts a large amount of people worldwide. Nonetheless, chronic 

opioid administration may lead to several side effects, including a paradoxical 

hyperalgesic effect, also known as opioid-induced hyperalgesia (OIH). Several lines of 

evidence suggest that descending facilitatory pathways are involved in the modulation 

of OIH. The dorsal reticular nucleus (DRt) exerts a unique role in descending pain 

facilitation and its activity is modulated by opioids. 

One of the goals of the present thesis was to determine the behavioural effects of 

chronic morphine administration in a chronic pain model, the spared nerve injury (SNI) 

model. The SNI model presents substantial and prolonged changes in mechanical 

sensitivity and thermal responsiveness that closely mimic many features of clinical 

neuropathic pain [66]. We first assessed the effects of chronic administration of 

morphine in evoked pain by three behavioural tests: the von-Frey test to assess 

mechanical allodynia [67], the pin-prick test to verify changes in mechanical 

hyperalgesia [68] and the acetone test to study cold allodynia [69]. Then, we used the 

conditioned place preference (CPP) test to evaluate the effect of chronic morphine in 

spontaneous pain. Additionally, we evaluated the effect of chronic morphine in the basal 

expression of the proto-oncogene c-Fos, a marker of neuronal activation, in the spinal 

dorsal horn [70]. 

 The second aim of this thesis consisted on studying the involvement of the DRt 

during OIH, induced in the SNI model. For that, first we evaluated the effects of µ-opioid 

receptors (MOR) knock-down at the DRt. Then we determined whether glial cells were 

activated in the DRt.  

To knock-down the expression of MOR at the DRt we used a lentiviral vector. This 

vector was chosen since it does not undergo retrograde expression and so it was 

possible to specifically target DRt neurons and control MOR expression in these neurons 

[71]. We determined the effects of MOR knock-down during chronic morphine 

administration in evoked pain by the behavioural tests described above. 
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The effects of chronic morphine treatment on glial activation were determined by 

the evaluation of the expression of the microglia marker Iba-1 and the astrocyte marker 

GFAP. Additionally, we performed a morphological analysis of microglia to ascertain its 

activation.  
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Materials and Methods 

1 ANIMALS 

Pathogen-free adult male Wistar rats (Charles River colony, France) were pair-

housed in standard Plexiglas cages with ad libitum food and water. After stereotaxic 

injections, the animals were housed individually. The colony room was maintained at 22 

± 2°C on a standard 12/12 h light/dark cycle. All experiments were conducted during the 

light phase. Upon arrival, rats were allowed one week of acclimation before any 

procedure. All procedures were performed in accordance with the European 

Community Council Directive (86/609/EEC) and the ethical guidelines for pain 

investigation [72].  

2 LENTIVIRAL VECTORS  

The lentiviral vectors used in this study were kindly provided by Professor Steven 

Wilson from the University of South Carolina (Dpt. of Pharmacology, Physiology and 

Neurosciences). We used a lentiviral vector that knocks down MOR expression (MOR-R, 

Figure 8) carrying the human synapsin promoter (hSYN-1p), MOR cDNA in reverse 

orientation and enhanced green fluorescent protein (EGFP). The control vector (LV-

Control; Figure 8) only carries the EGFP transgene. The vectors further carry the 

encephalomyocarditis virus internal ribosome entry site (IRES) and the transcriptional 

regulatory element (WPRE). 

The lentiviral particles were produced by co-transfection of human embryonic 

kidney 293T cells with the lentiviral vectors, a packaging plasmid (pCMVΔR8.92), a 

plasmid encoding the rev protein (pRSV-Rev) and a plasmid encoding the vesicular 

Figure 8: Schematic diagrams of the vectors. Abbreviations: LTR- long terminal repeat. 
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stomatitis virus G glycoprotein (pMD.G). The vectors were titrated by quantitative real-

time PCR and stored in 10% sucrose in PBS (Appendix A). 

3 SURGICAL PROCEDURES 

3.1 NEUROPATHIC PAIN INDUCTION 

The neuropathic pain model of Spared Nerve Injury (SNI) was induced as described 

by Decosterd and Woolf [66]. First, rats were administered intraperitoneally (i.p.) with 

a mixture of ketamine hydrochloride (Imalgene 1000® - 0.06 g/Kg) and medetomidine 

(Medetor® - 0.25 g/Kg). Then, animals’ left thigh was shaved and disinfected with 

iodopovidine (Betadine®), the skin was incised vertically approximately 3,5 cm and, 

using a blunt-pointed scissors, a section was made directly through the biceps femoris 

muscle exposing the sciatic nerve and its three terminal branches: the common peroneal 

(1), tibial (2) and sural (3) nerves (Figure 9).  

The SNI procedure comprised the axotomy and ligation of the tibial and common 

peroneal nerves leaving the sural nerve intact. The common peroneal and the tibial 

nerves were isolated from the sciatic nerve, tight-ligated with 4.0 silk and sectioned 

distal to the ligation, removing 2 ± 4 mm of the distal nerve stump, preventing nerve 

regeneration. During the procedure, the sural nerve was carefully maintained intact. 

Figure 9: Exemplificative picture of the terminal branches of sciatic nerve. (1) Common peroneal, (2) tibial (3) 
sural nerves. 
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After the procedure, the muscle was sutured with absorbable line 4-0 and the skin was 

sutured with staples (Stoelting®, U.S.A.). 

All animals were rehydrated by subcutaneous (s.c) administration of saline solution 

0,9% and the anaesthesia was reverted with an s.c injection of atipamezole 

hydrochloride (Revertor®- 0,5 g/Kg). The staples suturing the skin were removed 

approximately 7 days after surgery. 

3.2 OSMOTIC MINI PUMP IMPLANTATION 

Mini-osmotic pumps (ALZET- model 2001- 200 µL; Figure 10 A), were filled with 

saline (n=6) or morphine (45 µg-1.µL-1.h-1; n=6) and immersed in a 0,9% saline solution 

at 37 ºC for at least 4 hours before implantation, for stabilization purposes. Animals 

were anesthetized with isofluorane (IsoFlo®) and their dorsum was shaved and cleaned 

with Betadine® solution. A midline incision was made to the skin and with a blunt-

pointed scissors the skin was separated from the fascia and pumps were implanted 

subcutaneously (Figure 10 B). The incision was closed with surgery staples (Stoelting®, 

U.S.A.) and animals returned to their home cage.  

Mini-pumps were implanted 2-3 weeks after SNI induction, the animals were 

monitored daily to evaluate body weight and to detect withdrawl signs caused by 

incorrect functioning of the mini-pumps such as teeth chattering, diarrhea, rhinorrhoea, 

ptosis, irritability, lacrimation, escaping, penile erection and abnormal posture [73]  

Figure 10: Implant of osmotic morphine/saline mini-pumps. (A) Schematic representation of osmotic mini-pumps. 
These mini-pumps act by osmotic pressure differences between their interior side (osmotic layer) and the tissue where 
the mini-pump is implanted. The higher concentration of osmotic layer constituents triggers the entrance of water to 
the mini-pump through a semi-permeable membrane covering the surface of the mini-pump. As water comes in, the 
osmotic layer compresses the flexible compartment releasing the agent previously packaged inside the reservoir. The 
flow is determined by the exterior membrane permeability, by temperature (which should be around 37 ºC) and by 
osmolality. (B) Implant of the mini-pumps in animals’ dorsum.  
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3.3 STEREOTAXIC INJECTIONS 

Rats weighing 285-315g were deeply anesthetized by an i.p injection of a mixture of 

ketamine hydrochloride (0.06 g/Kg) and medetomidine (0.25 g/Kg). The rats were placed 

on a stereotaxic frame (David Kopf Instruments, U.S.A.) by positioning their head in the 

incisor bar (Figure 11 – item B) and insertion of the earbars (Figure 11 – item C) into each 

ear canal. Once each earbar was inserted, verified by a blink reflex usually induced by 

the contact of the earbar with the ear canal, the rat was placed into the holder and fixed 

(Figure 11). The head of the animal was cleaned with Betadine® solution and using a 

scalpel, a midline incision was made to separate the muscle and fascia, to expose the 

bone. Then a small burr hole was drilled over the targeted area and, with a blunt needle, 

the dura was carefully pierced. 

Using a Hamilton syringe (Figure 11- item A), the rats received two injections of the 

lentiviral vector (0.6 μl each injection at 5.106 TU1/μl) in two different rostrocaudal 

locations of the DRt following the stereotaxic coordinates shown in Table 1. The 

interaural line was used as a reference to calculate the coordinates (Figure 12). The 

suspensions were injected at the slow rate (0.2 μl/2 min) and, at the completion of the 

injections, the needle was left in place for 10 min to avoid reflow, before being slowly 

removed. After stereotaxic surgery, all animals were rehydrated by subcutaneous (s.c) 

administration of saline solution 0,9% and the anaesthesia was reverted with an s.c 

injection of atipamezole hydrochloride (Revertor®- 0,5 g/Kg) and then the animals were 

individually housed and monitored daily to evaluate body weight, any visible motor 

deficit and sedation.  

                                                           
1 TU- Transducing units 
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Figure 11: The stereotaxic frame. (A) Hamilton syringe; (B) Incisor bar and (C) Earbars 

 

 

 

Figure 12: Dorsal view of the rat skull. Position of the interaural line used as a reference to calculate the 

coordinates to target the DRt. The positions of bregma and lambda points are also shown in the diagram. Bregma and 

lambda are used as references to calculate coordinates to target rostral brain regions. Adapted from Paxinos and 

Watson [22]. 
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Table 1: Stereotaxic coordinates to target the left DRt 

Coordinates (mm) Left DRt (1st 

injection) 

Left DRt (2nd 

injection) 

AP(Anterior-posterior) -6.0 -6.4 

LM (Latero-medial) +1.4 +1.3 

DV (Dorso-ventral) -1.5 -1.7 

 

The stereotaxic surgeries were performed between 2-3 weeks after SNI induction. 

At the completion of the stereotaxic procedure, the animals were implanted with 

osmotic mini-pumps filled with morphine (45 µg-1.µL-1.h-1) or saline and the animals 

were assigned to different experimental groups. In one group, the animals were injected 

with LV-Control and implanted with osmotic mini-pumps filled with morphine (n=5) or 

saline (n=5); in the other group, the animals were injected with MOR-R and implanted 

with osmotic mini-pumps filled with morphine (n=6) or saline (n=4) 

 

4 BEHAVIOURAL ANALYSIS  

4.1 EVOKED PAIN 

The behavioural evaluation of evoked pain was performed after a period of 

habituation of one week, during which the animals were handled in the behavioural test 

room for 30 min every day and placed in the testing apparatus for another 30 min (Figure 

13 A). The criteria for adequate habituation were that animals did not freeze or defecate 

when placed in the test apparatus.  

After SNI induction, the animals typically develop mechanical allodynia, mechanical 

hyperalgesia and cold allodynia in the injured paw [66] which are ascertained by von-

Frey, pin-prick and acetone tests, respectively. To evaluate the development of these 

pain behaviours, the rats were placed on an elevated transparent cage with a mesh wire 

bottom allowing the stimulation of the lateral plantar surface of the injured hindpaw.  
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Scheme 1: Time course of nociceptive behavioural evaluation after mini-pump implantation and/or stereotaxic surgery 
+ mini-pump implantation. After 2-3 weeks of SNI surgery, animals were divided into 2 experimental settings. Animals 
from experimental set nº 1 were implanted with osmotic mini-pumps containing saline or morphine (45 µg-1.µL-1.h-1). 
Animals from experimental set nº2 were stereotaxically injected with LV-Control or MOR-R and osmotic mini-pumps 
of either saline or morphine were implanted in each group. Animals were tested at Day 0, before the surgical 
procedures, and at days 2, 4 and 7.  

 

 

Figure 13: Behavioural tests apparatus. (A) Animal placed in the individual Plexiglas container in the wire grid; (B) von-

Frey test; (C) Pin-prick test; (D) Acetone test.  

The von-Frey test was performed by applying von-Frey monofilaments (Stoeling, 

U.S.A.) in a sequence of increasing stiffness for 5 seconds (Figure 13 B) [67]. The 
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threshold was taken as the lowest force that evoked a brisk withdrawal response to one 

of five repetitive applications. The pin-prick test was performed by the application of a 

brief stimulation with a safety pin (Figure 13 C) at an intensity sufficient to produce a 

reflex withdrawal response but not penetrate the skin and the duration of paw 

withdrawal was clocked [68]. The acetone test was performed by application of 40 µL of 

acetone using a micropipette tip connected to a micropipette without touching the skin 

(Figure 13 D) and the duration of the withdrawal was timed [69]. 

Two experimental sets of animals were used. One set of animals was used to 

evaluate the time course effect of morphine administration (Experimental set nº 1, 

Scheme 1). The animals from this set were first submitted to SNI surgery and 2-3 weeks 

later they were implanted with a mini-pump filled with saline or morphine (n=6, each 

group; Scheme 1). The second set of animals was used to evaluate the time course effect 

of MOR expression knock down during chronic morphine exposure (Experimental set nº 

2, Scheme 1). The animals from both experimental sets were behaviourally evaluated by 

von-Frey, pin-prick and acetone tests before and at 2, 4 and 7 days after mini-pump 

implantation and/or stereotaxic injections with mini-pump implantation (Scheme 1). 

4.2 SPONTANEOUS PAIN 

Spontaneous pain was evaluated by the conditioned place preference (CPP) test. 

CPP was performed in a Plexiglas apparatus measuring 100 [length (L)] 40 [width (W)] X 

40 [height (H)] cm and comprising two distinct conditioning environments separated by 

a neutral space. Each conditioning environment measured 40 (L) X 40 (W) X 40 (H) cm. 

Each environment contained a visual and a tactile clue. One environment had a floor 

consisting of 0,5 cm metal bars spaced 2 cm apart (edge-to-edge) and walls with 

alternating 3 cm wide black and white horizontal stripes. The floor of the second 

environment was a mesh wire with 0,5 cm holes, and walls with alternating wide black 

and white vertical stripes. The neutral area measured 20 X 40 X 40 cm, with black 

Plexiglas walls and floor. During the conditioning phase, Plexiglas partitions matching 

their respective environments were inserted to restrict the rats to a specific designated 

environment. The behaviour of each rat was recorded using a camera and the videos 

were analyzed by Ethlog 2.2. 
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An unbiased protocol was used starting 14 days after SNI induction. All rats 

underwent a 2 day habituation period during which they were exposed to the 

environment with full access to all chambers for 15 min. On day 2 (pre-conditioning; 

Scheme 2), behaviour was recorded for 15 min and analyzed to verify no pre-

conditioning chamber preference. Rats spending less than 20% or more than 80% of the 

entire time in one of the chambers were excluded. Each rat was then randomly assigned 

to a treatment group and a conditioning environment in a counterbalanced fashion. 

After recording their behaviour, the rats were implanted with osmotic mini-pumps filled 

with morphine or saline (Scheme 2). On days 3-8 (conditioning; Scheme 2 - item 1) the 

animals were subcutaneously injected with saline once a day or morphine (10 mg/Kg; 

Scheme 2 – item 2) on alternate days and, immediately after the injection, the animals 

were placed into the designated conditioning chamber for 1 hour. On day 9 (post-

conditioning; Scheme 2) rats were placed in the CPP box in a drug-free state, with access 

to all chambers, their behaviour was recorded for 15 min and the difference between 

post- and pre-conditioning time spent in each compartment was calculated.  

Scheme 2: Time course for spontaneous pain evaluation in the CPP test. Animals were allowed a 15 min period of 
habituation at day 1 and were recorded day 2 to ascertain preferences. Mini-pumps were implanted and one group 
(1) received saline (S) s.c every day or (2) morphine (M, 10 mg/Kg) every other day for 6 days and placed in a specific 
compartment for 1 hour each day. On day 9 animals were allowed to explore the apparatus in a drug free state for 15 
min and were recorded to ascertain preferences.  

5  VASCULAR PERFUSION AND MATERIAL PROCESSING FOR IMMUNOHISTOCHEMICAL ANALYSIS  

After the behavioural evaluation, the animals were given an overdose of sodium 

pentobarbital (65 mg/Kg of body weight), placed in the supine position, the abdomen 

and the thorax were opened to expose the heart and 0,2 mL of heparine (Braun Medical, 

Portugal) were injected into the left ventricle. A catheter was then introduced into the 

ascending aorta for perfusion with 200 mL of calcium-free Tyrode’s solution (Appendix 

A), followed by 800 mL of fixative solution containing 4% paraformaldehyde in 0.1 M PB, 

pH 7.2 (Appendix A). 

 The animals implanted with mini-pumps and stereotaxically injected with the 

lentiviral vectors (Experimental set nº 2; Scheme 1) were perfused using a set up that 



31 
 

allowed the perfusion of animals by gravity. After perfusion, the brain was removed and 

immersed in the fixative solution for 4h followed by 30% sucrose in 0,1M PB, pH 7,2 

overnight at 4ºC. The brainstem was serially cut in a freezing microtome at 40 µm, 

collected in 4 sets and stored in a cryoprotector solution (Appendix A) at -20ºC. 

The animals implanted with mini-pumps (Experimental set nº 1; Scheme 1) and 

without any further surgical manipulation were perfused using a perfusion pump at a 30 

mL/min rate. After perfusion, the brain and the L4 spinal segment were removed and 

immersed in a fixative overnight and 4 hours, respectively followed by 30% sucrose, in 

a 0,1 PB, pH 7,2, as above. The brainstem sections were processed as above and used 

for the immunohistochemical analysis of microglia and astrocytes. The L4 spinal segment 

was serially cut at 40 µm and the sections were collected in 3 sets and stored in a 

cryoprotector solution at -20ºC. One set of the spinal L4 sections was used to evaluate 

Fos expression. The material from this last experimental set of animals was processed 

with these modifications because our preliminary experiments showed that under these 

conditions the immunolabelling of glial cells was more consistent compared to the 

material processed by gravity and post-fixed for 4h. 

6 TRANSDUCTION PATTERN ANALYSIS AND HISTOLOGICAL VERIFICATION OF INJECTION SITES  

To analyse the transduction patterns of the lentiviral vectors, one set of brainstem 

sections from animals injected with LV-Control were mounted on gelatine-coated slides, 

cover slipped with a solution of glycerol diluted in PB (1vol/3vol) and analyzed in an 

ApoTome Slider (Zeiss®) fluorescence microscope with an excitation length of 488 nm. 

EFGP positive cells were plotted on diagrams of medulla oblongata sections.  

MOR-R vectors also carry the EFGP transgene (Figure 8) but its expression levels are 

undetectable, likely due to the RNA interference reaction induced by antisense RNA of 

MOR which degrades EGFP RNA placed in the second position of the bicistronic 

construct. Therefore the location of the injection sites of MOR-R-injected-animals was 

determined by checking the position of the needle tract after counterstaining the 

medullary sections with thionin (Appendix A) [74]. Only animals with vector injections 

centred in the DRt were included in data analysis. 
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7  IMMUNOHISTOCHEMICAL ANALYSIS OF MICROGLIA 

7.1 DENSITOMETRIC ANALYSIS 

Brainstem sections were incubated with a rabbit polyclonal anti-Iba-1 antibody 

(Wako, Japan) in 0,1 M PBS containing 0,3% Triton X-100 (PBS-T) at 1:2500 for 48 hours 

at 4 ºC. After washing with PBS-T the sections were incubated for 1h with a swine 

biotinylated anti-rabbit serum (Dako, Denmark) diluted in PBS-T containing 2% normal 

swine serum. Sections were washed again and incubated for 1h in PBS-T containing the 

avidin-biotin complex (1:200; ABC; Vector Laboratories, U.S.A). After washing in 0,1 M 

Tris-HCl, pH 7,6, bound peroxidase was revealed using 0,0125% 3,3´-diaminobenzidine 

tetrahydrochloride (DAB; Sigma Aldrich, U.S.A.) and 0,025% H2O2 in the same buffer. The 

sections were mounted on gelatine-coated slides, cleared in xylol and cover slipped with 

Eukitt (Sigma, U.S.A.). Five sections encompassing the rostro-caudal extent of the DRt 

were taken from each animal and photomicrographs of the left DRt (ipsilateral to SNI 

surgery) and right DRt (contralateral to the SNI surgery) were taken using a Zeiss® light 

microscope with a high-resolution digital camera.  

7.2 MORPHOLOGICAL ANALYSIS 

 The second set of brainstem sections encompassing the DRt was incubated with 

a rabbit polyclonal anti-Iba-1 antibody (Wako, Japan) in PBS-T at 1:1000 for 48 hours at 

4°C. After washing with PBS-T the sections were incubated for 1h with a donkey anti-

rabbit IgG 594 (Alexa Fluor®, U.S.A.) diluted in PBS-T containing 2% normal swine serum. 

The sections were mounted on gelatine-coated slides and cover slipped with a solution 

of glycerol diluted in PB (1vol/3vol). Z-stack images from ipsilateral and contralateral DRt 

from each animal, with an optimal distance of 0,720 µm, were acquired with an 

ApoTome Slider (Zeiss®) fluorescence microscope, with an excitation length of 594 nm 

(20x objective) and the maximum intensity projection of the Iba-1 channel was obtained 

in order to visualize all microglial processes. Using the Image J® software, for one 

representative DRt contralateral and ipsilateral to SNI surgery per animal, these 

maximum projections (Figure 14 A) were converted to a binary image (Figure 14 B) and 

then skeletonized (Figure 14 C). The AnalyzeSkeleton plugin 

(http://imagejdocu.tudor.lu/) was then applied to all skeletonized images to collect data 
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on the number of endpoints per frame, as an indicator of total number of microglial 

processes, (Figure 14 D1, blue) and process length (Figure 14 D1, orange), which were 

then normalized dividing by total cell number. The number of amoeboid cells was also 

counted to obtain the rate of these cells in the total cell number per section.  

 

Figure 14: Skeleton analysis of microglia morphology. (A) Maximum intensity projections of fluorescence images were 

converted to (B) binary images and then (C) skeletonized. The number of microglia (D1) process endpoints (blue) and 

process length (orange) were summarized for statistical comparisons from Analyse Skeleton plugin by Image J®.  

8 IMMUNOHISTOCHEMICAL ANALYSIS OF ASTROCYTES  

Brainstem sections were incubated with a mouse polyclonal anti-GFAP antibody 

(Sigma, U.S.A.) in PBS-T at 1:1000 for 48 hours at 4°C. After washing with PBS-T, the 

sections were incubated for 1h with a horse biotinylated anti-rabbit serum (Dako, 

Denmark) diluted in PBS-T containing 2% normal horse serum. Sections were washed 

again and the detection of the immunoreaction was performed using the ABC solution 

(1:200; ABC; Vector Laboratories, U.S.A) as above. The sections were mounted on 

gelatine-coated slides, cleared in xylol and cover slipped with Eukitt. Five sections 

encompassing the rostro-caudal extent of the DRt were taken from each animal and 

photographed. The densitometric analysis was performed as described above for Iba-1.  
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9 IMMUNOHISTOCHEMICAL ANALYSIS OF SPINAL FOS 

The spinal cord sections were incubated with a polyclonal anti-Fos antibody raised 

in rabbit (Oncogene, U.K.), diluted at 1:10000 in PBS-T and 2% normal swine serum, for 

48 hours at 4°C. After washing with PBS-T, the sections were incubated for 1h with a 

swine biotinylated anti-rabbit serum (Dako, Denmark) diluted in PBS-T containing 2% 

normal swine serum. Sections were washed again and the detection of the 

immunoreaction was performed using the ABC solution (1:200; ABC; Vector 

Laboratories, U.S.A) as above. The sections were cleared in xylol and coverslipped with 

Eukitt. Ten sections were randomly photographed from each rat using a Zeiss® light 

microscope with a high resolution camera and the number of Fos-immunoreactive (IR) 

neurons was counted in the spinal dorsal horn (laminae I–II and laminae III-VI) using the 

cell counter plugin from Image J® software.  

10  STATISTICAL ANALYSIS 

Evoked pain scores were analyzed by two way ANOVA for repeated measures 

followed by Bonferroni post-hoc tests. The spontaneous pain behaviour (CPP test) was 

analyzed by one-way ANOVA followed by Bonferroni post-hoc test for multiple 

comparisons.  

The number of Fos-IR neurons, the densitometric analysis of glial cells and the 

morphological analysis of microglia were analyzed by using two-way ANOVA followed 

by Bonferroni post-hoc tests for multiple comparisons. The statistical analysis was 

performed by Graphpad Prism 6®. The significance level was set at 0,05.   
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Results 

1 GENERAL CONDITIONS OF THE ANIMALS 

The weight of the animals was taken as a measure of their well-being, so animals 

were weighted during the whole period of behavioural assessment.  

After the implantation of the mini-pumps all animals gained weight throughout the 

entire period of behavioural testing (Figure 15 A). No significant differences between 

animals chronically administered with morphine or saline were observed. At day 7, 

animals administered with morphine (n=6) gained 23 ± 4,69 g and animals receiving 

mini-pumps filled with saline (n=6) gained 24,5 ± 6,77 g.   

After stereotaxic surgery, weight evolution was similar both in animals injected with 

the control vector (LV-Control) and MOR-R. Animals injected with LV-Control lost 17,6 ± 

10 g and animals injected with MOR-R lost 18 ± 5,6 g  during the first 2 days (LV-Control 

n = 10; MOR-R n = 10) and then progressively regained weight (Figure 15 B). Additionally, 

all animals showed normal exploratory activity and did not exhibit any visible 

behavioural abnormality until the end of the experiments.  

Figure 15: Animals’ weight evolution after (A) mini-pumps implantation (saline – blue line n n= 6; morphine – red line 
n=6) and (B) after stereotaxic injection of lentiviral vectors into the DRt (LV-Control – blue line n = 10; MOR-R – red 
line n = 10). 
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2 EFFECTS OF CHRONIC MORPHINE ADMINISTRATION 

2.1 BEHAVIOURAL EFFECTS 

2.1.1 Effects on evoked pain behaviour 

The effects of the chronic morphine administration were tested before and at 2, 4 

and 7 days after mini-pumps implantation (Scheme 1). 

In pin-prick test, animals chronically administered with morphine showed a 

significant increase of withdrawal duration at day 4 (p=0,0027; Figure 16 A) and day 7 

(p=0,0001; Figure 16 A) compared to baseline. At day 7, the withdrawal duration of the 

morphine group was also higher than in the saline group (p=0,0159; Figure 16 A). No 

significant differences were observed in the saline group compared to baseline.  

Figure 16: Time course effects of morphine administration on (A) mechanical hyperalgesia (B) cold allodynia and (C) 
mechanical allodynia. Implant of osmotic mini-pumps was performed on day 0. Data are presented as mean ± SEM. 
(saline – blue line n=6; morphine – red line (n=6) *p<0,05; **p<0,01; ***p<0,001 vs.D0; # p<0,05 morphine vs saline.  
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In the acetone test, animals treated with morphine showed a significant increase of 

the withdrawal duration at day 7 compared to day 0 (p=0,0287; Figure 16 B) and 

compared to saline (p=0,0289; Figure 16 B). No significant differences were observed in 

the saline group compared to baseline.  

In the von-Frey test, no significant differences were observed within each group and 

between both groups (Figure 16 C). 

2.1.2 Effects on spontaneous pain behaviour 

A CPP was performed on animals chronically administered with saline (n=6) and 

morphine (n=6).  

Animals chronically treated with saline and receiving morphine in alternate days 

(n=3) spent longer time in the morphine-paired chamber compared to control animals 

receiving saline every day (n=3), although this comparison did not reach statistical 

significance (Figure 17). Animals chronically treated with morphine and receiving 

morphine in alternate days (n=3) spent significantly less time in the morphine paired 

chamber compared to animals chronically treated with saline and receiving morphine in 

alternate days (p=0,0277; Figure 17). No differences were found between animals 

Figure 17: Effects of chronic administration of morphine on the conditioned place preference test. During the 
conditioning, morphine (red bars - 10 mg/kg, s.c.) was injected in alternate days in animals chronically administered 
with saline (n=3) or morphine (n=3). On a separate group of animals saline (blue bars) was injected every day in 
animals chronically administered with morphine (n=3) or saline (n=3). Data are means ± SEM, * p=0,0277, n=3/group. 
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chronically treated with saline (n=3) or morphine (n=3) and paired with saline (Figure 

17). 

2.2 EFFECTS ON THE EXPRESSION OF SPINAL FOS 

Chronic administration of morphine showed no significant changes in the number 

of Fos-IR cells compared to saline, both in the left (ipsilateral to SNI) and right 

(contralateral to SNI) spinal dorsal horn (Figure 18).  

3 EFFECTS OF MOR-KNOCK DOWN EXPRESSION AT THE DRT DURING CHRONIC MORPHINE 

ADMINISTRATION 

3.1 PATTERN OF LENTIVIRAL TRANSDUCTION AND INJECTION SITE ANALYSIS 

The pattern of lentiviral transduction was analyzed in animals injected with LV-

Control and with the injection site centred at the DRt (Figure 19 A, B). In those animals, 

the injection site was constituted by a central dark zone corresponding to the needle 

tract with numerous EGFP+ neurons (Figure 19 B) around this central region. A total of 

ten animals out of eleven were successfully injected with the LV-Control vector at the 

DRt. All EGFP+ neurons were located within the boundaries of the DRt which indicates 

that injections correctly placed at the DRt show a pattern of lentiviral transduction 

restricted to the DRt. 

Figure 18: Effects of chronic administration of morphine on the expression of Fos at the spinal dorsal horn. Number of 
Fos-IR cells in laminae I-II, laminae III-VI and total per section. Data are presented as means ± SEM (morphine n=6; 
saline n = 6). 
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The injection site of MOR-R-injected animals was analyzed in medullary sections 

stained with thionin, because EGFP expression from these constructs (Figure 8) was 

almost undetectable. The injection site was identified by the presence of the needle 

tract in the DRt. In those animals the injection site was constituted by a central dark core 

corresponding to the needle tract surrounded by a peripheral zone lightly stained by 

thionin (Figure 19 C). Only animals with the injection site placed at the DRt (MOR-R n = 

10 out of 12) were included in data analysis. 

Figure 19: Localization of the injection site in the DRt. (A) Diagram depicting the location of the DRt, at 5.60 mm caudal 
to the interaural line adapted from the Paxinos and Watson [22]. (B) Fluorescence photomicrograph of the injection 
site at the DRt showing EGFP neurons better depicted in the insert. (C) Representative photomicrograph of a thionin-
stained section illustrating a correct vector injection at the DRt. Scale bar in B: 200 μm (C is at the same magnification). 

3.2 BEHAVIOURAL EFFECTS 

The effect of the MOR knock-down at the DRt during chronic treatment with 

morphine was evaluated before and at 2, 4 and 7 days after the mini-pumps 

implantation and stereotaxic injections.  

In the pin-prick test, animals chronically treated with morphine and injected with 

the control vector show a significant augmented withdrawal duration at all times tested 

(Day 2, p= 0,0316; Day 4, p=0,0182; Day 7, p=0,0022; Figure 20 A) compared to baseline. 
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Animals injected with MOR-R and chronically exposed to morphine did not present 

significant alterations compared to baseline. At day 7, the withdrawal responses of 

MOR-R animals were significantly lower than in the LV-Control group (p=0,0109: Figure 

20 A).  

In animals chronically treated with saline, the injection of LV-Control did not induce 

significant alterations compared to baseline. MOR-R caused a significant increase of the 

withdrawl duration at day 2 (p=0,0137; Figure 20 B) and at day 7 (p=0,0002; Figure 20 

B). At day 7, the withdrawal duration of the MOR-R group was also higher than in the 

LV-Control group (p= 0,0053; Figure 20 B).  

In the acetone test, animals chronically treated with morphine and injected with LV-

Control showed a significant increase in the withdrawal duration, at day 7 (p=0,0393; 

Figure 21 A) compared to baseline. Animals injected with MOR-R showed no significant 

differences compared to baseline. At days 4 (p=0,0227; Figure 21 A) and 7 (p=0,0007; 

Figure 21 A) animals injected with the MOR-R vector displayed lower withdrawal 

responses compared to the LV-Control group. 

Animals chronically administered with saline and injected with MOR-R showed an 

increase of withdraw responses at all times (day 2, p=0,0024; day 4, p= 0,0103; day 7, 

p=0,0001; Figure 21 B) compared to baseline. Animals injected with the LV-Control 

showed an increase in withdrawal duration at day 2 (p=0,001; Figure 21 B) and at day 4 

and 7 the withdrawal responses decreased to values similar to baseline. At day 7 (p= 

Figure 20: Time course effects of MOR knock-down at the DRt in mechanical hyperalgesia during chronic morphine 
administration (A) and chronic saline administration (B). Stereotaxic injection + implant of osmotic mini-pumps were 
performed at D0. Data are presented as mean ± SEM. (chronic morphine treatment: LC-Control-injected n=5, MOR-
R-injected n=6; chronic saline treatment: LV-Control-injected n=5; MOR-R-injected n=4).  *p<0,05; **p<0,01  vs.D0; # 
p<0,05; ## p<0,01 MOR-R vs LV-Control. 
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0,0255; Figure 21 B) the animals injected with MOR-R display higher withdrawal 

duration compared to the LV-Control group. 

No significant differences were observed in the von-Frey test within each group and 

between both groups (Figure 22). 

 

Figure 21: Time course effects of MOR knock-down at the DRt in mechanical allodynia during chronic morphine 
administration (A) and chronic saline administration (B). Stereotaxic injection + implant of osmotic mini-pumps 
were performed at D0. Data are presented as mean ± SEM. (chronic morphine treatment: LC-Control-injected n=5, 
MOR-R-injected n=6; chronic saline treatment: LV-Control-injected n=5; MOR-R-injected n=4). Data are presented 
as mean ± SEM.  

Figure 22: Time course effects of MOR knock-down at the DRt in cold allodynia during chronic morphine 
administration (A) and chronic saline administration (B). Stereotaxic injection + implant of osmotic mini-pumps 
were performed at D0. Data are presented as mean ± SEM. (chronic morphine treatment: LC-Control-injected n=5, 
MOR-R-injected n=6; chronic saline treatment: LV-Control-injected n=5; MOR-R-injected n=4). *p<0,05; **p<0,01; 
****p<0,0001  vs.D0; # p<0,05; ### p<0,001 MOR-R vs LV-Control.  
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4 EFFECTS OF CHRONIC MORPHINE ADMINISTRATION ON GLIAL EXPRESSION 

4.1 EFFECTS ON MICROGLIA 

4.1.1 Densitometric analysis 

The evaluation of Iba-1 expression in the DRt was performed using DRt sections 

from animals, chronically administered with morphine or saline.   

Iba-1 expression in the DRt quantified by densitometry was significantly higher in 

animals treated with morphine compared to animals treated with saline both in left 

(ipsilateral to SNI; Figure 23 A, B, C) and the right DRt (contralateral to SNI; Figure 23 C).   

4.1.2 Morphological analysis  

The morphological analysis of microglia in the DRt was performed to assess if there 

were differences in total branch number per cell, process length per cell and rate of 

amoeboid cells in microglia in the left DRt (ipsilateral to SNI) and right (contralateral  to 

SNI) between animals chronically administered with morphine and chronically 

administered with saline.  

Figure 23: Effects of chronic administration of morphine on the expression of Iba-1 at the DRt. Representative 
photomicrographs of Iba-1-IR labeling on the left DRt (ipsilateral to SNI) of animals chronically administered with 
morphine (A) and in animals chronically administered with saline (B). Data in C shows the expression of Iba-1 at the 
left (ipsilateral to SNI, Ipsi) and right (contralateral to SNI, Contra) DRt of saline and morphine treated animals. Data 
are presented as mean ± SEM (saline n=6; morphine n=6) *p<0,05; **p<0,01. Scale in B: 100 µm (A is at the same 
magnification) 
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No significant differences were observed in the number of branches and their length 

per cell between saline- and morphine- treated animals. An increase in the percentage 

of amoeboid cells was observed in the left DRt (ipsilateral to SNI) of morphine-treated 

animals compared to saline (p=0,0300; Figure 24 C).   

4.2 EFFECTS ON ASTROCYTES 

The evaluation of GFAP expression in the DRt was performed using DRt sections 

from animals chronically administered with morphine or saline.   

The GFAP expression quantified by densitometry was significantly higher in animals 

treated with morphine compared with saline at the left DRt (ipsilateral to SNI; p=0,0444; 

Figure 25 A, B, C). In morphine-treated animals, the ipsilateral DRt showed a significant 

increase of GFAP when compared to the contralateral DRt (p=0,0418; Figure 25 C). 

Figure 24: Effects of chronic administration of morphine on the microglia morphology at the DRt.  Maximum 
projections of 0,720 µm z-stacks of Iba-1 expression in DRt were acquired and analysis of end point/cell, as an 
indicative of branch number per cell (A), process length per cell (B) and percentage of amoeboid cells (C) are shown. 
Data as means ± SEM (morphine n=3; saline n = 3).*- p= 0,0300 
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Figure 25: Effects of chronic administration of morphine on the expression of GFAP at the DRt. Representative 
photomicrographs of GFAP-IR labeling on the left DRt (ipsilateral to SNI) of animals chronically administered with 
morphine (A) and in animals chronically administered with saline (B). Data in C shows the expression of GFAP at the 
left (ipsilateral to SNI, Ipsi) and right (contralateral to SNI, Contra) DRt of saline and morphine treated animals. Data 
are presented as mean ± SEM (saline n=4; morphine n=5) *p<0,05. Scale in B: 100 µm (A is at the same magnification) 
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Discussion and Conclusions 

The results gathered in the present thesis show that chronic administration of 

morphine in animals with chronic neuropathic pain induces an aggravation of pre-

existing mechanical and thermal sensibility to pain. In the CPP test, the animals 

chronically treated with morphine failed to show preference for the morphine-paired 

chamber which indicates a loss of the analgesic effect of morphine. Lentiviral-mediated 

MOR knock-down at the DRt showed that the opioidergic system exerts an inhibitory 

effect at the DRt, in control animals, while the opposite occurs in animals chronically 

treated with morphine.  

The morphological analysis of glial markers show that glia are likely to play an 

important role at the DRt during chronic morphine exposure, as suggested by the 

augmented expression of GFAP, an astrocytes marker, and Iba-1, a microglia marker, at 

the DRt of animals struggling with OIH.  

1 EFFECTS OF CHRONIC ADMINISTRATION OF MORPHINE IN NEUROPATHIC PAIN 

Chronic administration of morphine has already been shown to induce hyperalgesia 

in naïve animals during acute pain induction [75-77] and during inflammatory [78] and 

post-operative pain [43, 45, 79-83]. Our results show for the first time that chronic 

morphine administration also induces an aggravation of pain in a chronic neuropathic 

pain model. These results are clinically relevant since opioid drugs are used in patients 

struggling with moderate and severe chronic pain [17, 31, 32].   

For the assessment of evoked pain, the pin-prick and the acetone test, respectively, 

showed that chronic administration of morphine led to an increase of mechanical 

hyperalgesia and cold allodynia. This increase of pain was not observed in the von-Frey 

test probably due to technical issues. Indeed, due to neuropathic pain, animals respond 

to the lowest microfilament available (0,008 g) at the baseline, therefore it was 

impossible to observe further decreases of the mechanical threshold. However, the 

mechanical effects on pain were still confirmed through the pin-prick test, as referred 

above.    
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With nonverbal animals, the assessment of spontaneous pain is a hurdle. In the past 

years, the CPP test, which was traditionally used to test the rewarding effects of drugs 

[84-86], has been used  for the assessment of ongoing pain both in inflammatory [87, 

88] and in neuropathic pain models [89-91]. Relief of pain is rewarding in humans [92] 

and rats [93] and so, if the ongoing pain is altered, rats will react in consonance, during 

the evaluation of their preference. Our results show that chronic administration of 

morphine reversed the preference of the animals for the morphine-paired chamber with 

even a trend towards a light aversion. Although these experiments were performed with 

a small number of animals, they are indicative of a loss of the analgesic effects of 

morphine in animals chronically treated with morphine. Increasing the number of 

animals should reinforce these results. These behavioural results combined with an 

increase of evoked-pain responses show that chronic administration of morphine results 

in loss of its analgesic effect leading to an increase of pro-nociception. 

Activation of the c-Fos proto-oncogene in the SNI model was shown to require 

specific stimulus [94-96]. However, our results show that, even without stimulus, there 

were elevated levels of Fos-IR cells in animals treated with morphine as well as animals 

treated with saline and both at the spinal dorsal horn ipsilateral and contralateral to SNI 

surgery. A slight tendency for an increase of Fos-IR cells was observed in animals 

chronically treated with morphine, however, since control animals also display elevated 

values, these results probably result from unspecific staining of Fos-IR cells. 

2 INVOLVEMENT OF THE DRT FACILITATION IN OIH 

2.1 EFFECTS OF MOR KNOCK DOWN AT THE DRT DURING CHRONIC MORPHINE ADMINISTRATION 

The animals injected with the lentiviral vectors recovered well from the surgery and 

regained weight progressively, in a manner similar to animals injected with neuronal 

tracers [24, 25] or subjected to cannula implantation [30] in the DRt, which indicates 

that the vectors did not affect the general animal well-being. The exploratory activity of 

the animals was normal which further indicates that lentiviral-mediated gene transfer 

did not interfere with these physiological functions. 

EGFP expression from the control vector was confined to the DRt which indicates that 

lentiviral-mediated gene transfer was restricted to the DRt. The labelling of transduced 

cells showed a neuronal morphology indicating that gene transfer was targeted to 
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neurons. This is due to the use of the human synapsin promoter whose activity is 

restricted to neurons [97, 98]. Previous studies from our group (unpublished data) 

showed that the vector used for this study decreases MOR expression at the DRt. Several 

animal groups, during the evoked pain assessment, showed augmented withdrawal 

duration at day 2, however we hypothesize that the increase of pain observed at this 

time point results from the severe trauma caused by the stereotaxic injections.   

By down-regulating MOR expression at the DRt, in animals treated with saline, we 

showed an increase of pain sensibility, which indicates that MOR plays an inhibitory role 

at the DRt. These results confirm previous reports on the inhibitory effects of the 

opioidergic modulation of the DRt [35, 61].   

We also show that, knock-down of MOR expression at the DRt, during chronic 

morphine exposure, prevents opioid-induced hyperalgesia. In this sense, MOR presents 

opposing actions at the DRt, since in this case, MOR appears to modulate an increase in 

pain facilitation at the DRt. There are reported evidence of this switch of MOR signalling 

both in vitro [99-102] and at the locus coeruleus both ex-vivo [103] and in vivo [104] and 

at nucleus acumbens [104].  Usually MOR exerts a inhibitory action by inhibiting 

adenylate cyclase (AC) activity, causing activation of Kir3 K+ channels and inhibition of 

the voltage-dependent Ca2+ channels, leading to hyperpolarization of the cell [99, 104, 

105]. However, the verified effect of MOR facilitation is consonant with the literature, 

where it is referred that prolonged exposure to opioids may change the normal 

signalling pathway.  This alteration may be explained by a switch on the G-protein 

coupled with this receptor, from Gi/o-protein to Gs-protein, leading to an increase in AC , 

which causes augmented levels of cyclic adenosine monophosphate (cAMP), altering the 

hyperpolarized state of the neuron by changing the intracellular concentrations of Ca2+ 

and K+ [100, 101, 106, 107] . Ca2+ and/or cAMP will phosphorylate cAMP response 

element-binding protein (CREB) which is known to be critical for a variety of adaptive 

neuronal changes [103, 104, 108]. 

Results from an ongoing thesis in our group, show that lidocaine administered 

directly into the DRt, prevents OIH in naïve animals after chronic administration of 

morphine, which shows that the DRt is involved in descending facilitation during OIH. 

The results obtained in the present thesis demonstrate that the involvement of the DRt 

is mediated via the opioidergic system, namely MOR.  
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2.2 EFFECTS OF CHRONIC MORPHINE ADMINISTRATION ON GLIAL ACTIVATION AT THE DRT 

Several studies report the fundamental role of glia in OIH in the spinal cord [109, 110], 

therefore we evaluated the role of these cells at the DRt. Our results showed an increase 

of the microglia marker Iba-1 and the astrocytes marker GFAP. Regarding microglia, we 

also performed a morphological analysis to evaluate morphological alterations, which 

complements the study of activation of these cells. However, the number of DRt sections 

analyzed must be augmented in order to seek for statistically relevant conclusions. Even 

though, we could already observe an increase in the rate of amoeboid cells, the most 

activated morphological state of microglia, in animals chronically treated with 

morphine. Activation of glia at the DRt is likely to be important in OIH and so it should 

be further studied. For instance, studies of co-localization of activation markers of these 

cells with p-p38 or pERKs should be performed to ascertain glial activation, downstream 

in the signalling pathway, and inhibition of glia at the DRt should be behaviourally 

evaluated.  

3 CONCLUSIONS AND FUTURE PERSPECTIVES 

Opioids are a common therapy for chronic pain and unravelling the molecular 

mechanisms involved in OIH is fundamental since, instead of relieving pain, these drugs 

may be responsible for hyperalgesia, in some patients. Unveiling the molecular 

mechanisms behind this condition is the key to overcome its side effects, namely the 

loss of their analgesic effect after chronic administration. In the future, it would be 

interesting to continue the studies of this thesis by using another analgesic drug 

combined with chronic administration of morphine could to confirm the loss of analgesic 

effect we observed during acute morphine administration at the CPP test.  

Regarding the involvement of DRt in OIH, we show the effects of lentiviral injection 

at the DRt on evoked pain during chronic morphine treatment. The effects of the 

lentiviral injection at the DRt on spontaneous pain could also be assessed. To study how 

the facilitatory effects of opioids at the DRt are influenced by glia during chronic 

neuropathic pain and chronic morphine exposure, it would be interesting to inhibit glial 

cells at the DRt and assess evoked and spontaneous pain. Work from our group (data 

not published) has showed that DRt is involved in pain facilitation during OIH in an acute 
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pain model. The involvement of glia in this and in other pain models could also be 

interesting to further study.  
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Appendix A: Composition of solutions 

1. PHOSPHATE BUFFER SALINE (PBS) (1L) 

 Phosphate buffer (PB) 0,1M pH=7,2: 

Na2H2PO4H2O – 15,60g 

K2HPO4 – 17,4g 

H2O up to 1L 

 PBS: 

PB 250 ml 

H2O up to 1L 

NaCl - 9g 

2. PHOSPHATE BUFFER SALINE WITH TRITON X-100 (PBS-T) 

PBS - 996ml 

Triton X-100 - 4ml 

3. TYRODE’S SOLUTION (1L) 

NaCl – 6,8 g 

KCl – 0,40g 

MgCl2 6 H2O – 0,32 g 

MgSO4 7 H2O – 0,1 g 

NaH2PO4 H2O – 0,17 g 

Glucose 1 g 

NaHCO3 – 2,2 g 

H2O up to 1L 

4. CRYOPROTECTOR SOLUTION (1L) 

PB 0,1M pH=7,2 - 125 ml 

H2O - 375 ml 

Sucrose - 300g 

Ethylene glycol - 300ml 

PB 0,1M pH=7,2 up to 1L 
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5. THIONIN STAINING 

1. Solutions 

Acid acetone: acetone / acetic acid (4 vol / 1 vol) 

0,1% thionin in 10% formalin 

2. Protocol 

Incubate the slides in acid acetone for 5 min;  

Rinse with distilled water;  

Stain in formol-thionin for 1 minute; 

Rinse with distilled water; 

Dry at 37 ° C;  

Dehydrate in xylene for 5 min;  

Mount with Eukitt. 

 


