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A general perturbation solution to a restricted low-thrust Lambert rendezvous problem, considering circular-to-

circular in-plane maneuvers using tangential thrust and including a coast arc, is developed. This provides a fully

analytical solution to the satellite reconnaissance problem. The solution requires no iteration. Its speed and simplicity

allow problems involving numerous spacecraft and maneuvers to be studied; this is demonstrated through two case

studies. In the first, a range ofmaneuvers providing a rapid flyover of LosAngeles is generated, giving an insight to the

trade space and allowing the maneuver that best fulfills the mission to be selected. A reduction in flyover time from

13.8 to 1.6 days is possible using a less than 17 m∕s velocity change. A comparison with a numerical propagator

including atmospheric friction andan 18th-order tesseralmodel shows 4 s of difference in the time of flyover.A second

study considers a constellation of 24 satellites that can maneuver into repeating ground track orbits to provide

persistent coverage of a region. A set of maneuvers for all satellites is generated for four sequential targets, allowing

themost suitablemaneuver strategy to be selected. Improvements in coverage of greater than 10 times are possible as

compared to a static constellation using 35% of the propellant available across the constellation.

Nomenclature

A = propulsive acceleration, m∕s2
Aatm = acceleration due to atmospheric friction, m∕s2
a = osculating semimajor axis, km
�a = mean semimajor axis, km
CD = satellite coefficient of drag
d = great-circle distance from subsatellite point to target, km
e = eccentricity
f = flattening of Earth
H = scale height of Earth’s atmosphere, km
h = altitude with respect to mean Earth radius, km
i = inclination, deg
J2 = coefficient of the Earth’s gravitational zonal harmonic of

the second degree
k = utility function weighting factor
M = mean anomaly, deg
m = satellite mass, kg
n = mean motion, deg
�n = perturbed mean motion, deg
Re = mean Earth radius, km
s = instrument swath width, km
t = time, s
U = utility function
u = argument of latitude, deg
v = satellite velocity, m/s
X = attribute of utility function
Δu = change in argument of latitude, deg
ΔV = change in velocity, m∕s
ΔΩ = change in right ascension of the ascending node, deg
α = effective cross-sectional area, m2

δ = latitude, deg
θ = true anomaly, deg
μ = standard gravitational parameter of Earth, m3∕s2
ρ = atmospheric density, kg∕m3

Ψ = longitude, deg
Ω = right ascension of the ascending node, deg
Ωet0 = right ascension of Greenwich at epoch, deg
ω = argument of perigee, deg
ωe = angular velocity of Earth, rad∕s

Subscripts

alt = total for altitude changing phases (that is, phase 1 and
phase 3)

c = geocentric
POI = point of interest
ref = reference value
SSP = subsatellite point
total = total at maneuver end
0 = at maneuver start
1 = at end of phase 1
2 = at end of phase 2
3 = at end of phase 3

I. Introduction

T RADITIONALLY, low-Earth-orbiting (LEO)Earth observation
constellations have aimed to provide global coverage [1–7].

This focus on spatial performance canmake providing good temporal
coverage challenging and responding to a change in mission
requirements difficult [8–10]. This paper looks to enable responsive,
reconfigurable LEO satellite constellations by providing a rapid
solution and holistic insight to the satellite reconnaissance problem.
Note that reconfiguration here, and throughout this paper, is taken to
mean the changing of a constellation from one formation to another
through the maneuvering of the constituent satellites. The solution
developed uses a general perturbation method to calculate circular-
to-circular in-plane low-thrust satellite maneuvers that enable a point
of interest on the Earth’s surface to be targeted. This provides a fully
analytical solution to the low-thrust Lambert rendezvous problem
with tangential thrust and a single coast arc. It is of note that the
solution is therefore also directly applicable for other purposes, such
as maneuver design for in-orbit rendezvous or close approach: for
example, in support of in-orbit servicing or space debris removal
applications. However, in this paper, the solution is further extended
to the spacecraft’s ground track. Most recent attempts to solve the
Lambert targeting problem have focused on increasing the efficiency
of the available numerical methods [11–13]. However, a fully
analytical solution is extremely fast and noniterative, making it ideal
for preliminary trajectory design. The analytical solution presented in
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Ref. [14] demonstrates this for a single-impulse transfer; the solution
presented herein for a low-thrust spiral transfer with a single coast arc
shares many of these advantages.
Providing overflight of multiple successive ground targets, also

known as satellite reconnaissance, using a satellite equipped with
electric propulsion was apparently first proposed by Guelman and
Kogan in 1999 [15]. They determined the problem to be a discrete
optimization problem and used a simulated annealing method to
identify the minimum propellant trajectory that would satisfy the
requirement to pass over a set of targets in a given time. Jean and de
Lafontaine extended this work by incorporating the first harmonic of
the Earth’s oblateness and generalizing the method to give an
expression for the time to target flyby following in-plane low-thrust
maneuvers described by cubic or quartic guidance laws [16]. They
then incrementally searched through the possible solutions to find a
trajectory with an acceptable acceleration profile.
The use of high-thrust maneuvers to provide overflight of a target

has also been studied. Zhu et al. proposed a solution based on a
Hohmann transfer to achieve flyover of a given ground target [17].
Multiple objectives are considered, including maximizing coverage
time of the target and minimizing the propellant required for the orbit
transfer. Combining these into a fitness function, Zhu et al. used
particle swarm optimization and differential evolution to select a
satellite froman available set and to optimize themaneuver trajectory.
However, Zhu et al. noted that an optimal solution cannot be
guaranteed. This is a weakness of all numerical techniques that have
been used to tackle this problem to date, for both low- and high-thrust
scenarios, because they do not provide a complete view of the
solution space.
Work has also been done considering the reconfiguration of a

constellation of multiple satellites. Davis proposed the use of
Hohmann transfer maneuvers and approximated the solution to
Lambert’s problem using a fourth-order polynomial [18]. He then
used an auction algorithm, as proposed by De Weck et al. [19], to
assign the satellites to appropriate slots in the final constellation.
Consideration has also been given to the design of a constellation to
enable efficient future reconfiguration. Legge highlighted that
traditional constellation designs are nonoptimal for reconfigurable
missions and that, when designing for reconfiguration, unusual
constellation architectures can offer improved performance [20].
Legge’s work used an analytical method to describe the constellation
reconfiguration using impulsive double Hohmann transfers. He then
performed a multiobjective optimization to assign satellites to
positions in the new constellation and identify favorable
configurations. Legge suggested that consideration of low-thrust
electric propulsion would be complementary to his work because it
could allow for lower propellant usage at the cost of increased
reconfiguration time. A tool developed by Paek et al. in recent years
aimed to concurrently optimize satellite and constellation designs by
running numerous reconfigurations and using a genetic algorithm
[21]. Paek et al. limited the maximum constellation size to 49
satellites to reduce computation time, but they still required up to 15 h
to perform a single optimization. Based on these results, Paek et al.
highlighted that the length of time required to propagate the satellite
maneuvers is a key limitation of his tool.
There have been some recent attempts to solve the reconnaissance

problem analytically. Zhang et al.’s [22] and Zhang and Sheng’s [23]
work provided approximate semianalytical solutions to the problem
using high-thrust propulsion. Their methods, based on Kepler’s
equations and considering up to four impulsive maneuvers, allow for
theminimum-energy trajectory to be found. The results are found to be
suboptimal as compared with a numerical solver, but Zhang et al. [22]
andZhang andSheng [23] highlighted that they couldprovide an initial
guess for higher-precision models and may be useful in cases where
fast computational speed is desired. For low-thrust propulsion,Coet al.
[24,25] and Co and Black [26] developed a control algorithm that
allows a single satellite to pass over a given target using electric
propulsion. Co et al. [24,25] andCo andBlack [26] used the difference
in time of flyover between the maneuvering satellite and the
nonmaneuvering reference satellite as a metric, and they could solve
for this using a single equation. Their method numerically propagates

the reference satellite’s position for a given time in order to identify
close passes to the target. These passes are then ordered in terms of the
soonest encounter if the fastest overflight solution is desired, or by
order of closest pass if the minimum propellant solution is desired.
Discarding those that are infeasible allows the fastest, or minimum-
energy, feasible solution to be found. Being based on a straightforward
analytical expression, Co et al.’s [24,25] and Co and Black’s [26]
solution allows for analysis of the possible reach of a maneuver of this
type and the impact of the initial orbit parameters on the maneuver
efficiency.However, its accuracy is limitedbecause it does not consider
the perturbing effect of an oblate central body on the satellite mean
motion; this simplification introduces significant errors when
considering the position of the satellite’s ground track. The
requirement to numerically propagate the position of the reference
satellite is also a limitation of the solution because the length of time
required for the procedure can limit its applicability for large-scale
constellations or complex scenarios involving multiple targets.
The general perturbation method presented herein offers a fast,

analytical solution to the satellite reconnaissance problem. A full
overview of the solution space is produced for each scenario,
enabling themission designer or operator to obtain an insight into the
reconfiguration problem and select the maneuvers best suited to the
mission objective. The method is restricted to circular-to-circular in-
plane tangential low-thrust maneuvers and incorporates a coast arc to
ensure efficient propellant usage. The solution directly links the
satellite maneuvers to the resulting ground track location, allowing
for straightforward overflight targeting of a given region. Two
disaster response case studies are presented to demonstrate the ease
with which complex scenarios can be investigated to gain vital
insights that would be difficult to obtain through numerical
methods alone.

II. Method

To develop an analytical solution to the overflight targeting
problem, the Gauss–Lagrange planetary equations are used and only
secular perturbations of the orbit are considered. In the case of the
Earth, one of the most significant secular perturbations is caused by
the first zonal harmonic of the nonspherical gravitational field (also
known as J2). This produces a secular variation in the right ascension
of the ascending node (RAAN) of the satellite Ω; the argument of
perigeeω; the mean anomalyM; and themeanmotion n [27,28]. The
argument of latitude (AOL) u, defined as the sum of the argument of
perigee and the true anomaly θ (i.e., u � ω� θ) also experiences a
secular change as a result of J2. The rate of change of each of these
orbital elements due to J2 is a function of the satellite’s semimajor
axis. Changing a satellite’s altitude has a direct effect on the orbit
period and can be used to affect a change in the satellite’s true
anomaly, and thus the satellite ground track. Including the secular
effects of J2 gives a more accurate prediction of this change by
incorporating the perturbing effects of the central body on the satellite
mean motion, the AOL, and the RAAN. This accuracy is necessary
when targeting the overflight of localized regions of the Earth’s
surface because a small difference in the RAAN or AOL can give
large errors in the predicted location of the satellite ground track.
Other disturbing forces, such as higher-order central body effects,

third-body effects, solar radiation pressure, and atmospheric friction,
can also produce secular effects in the orbital elements. As will be
discussed in Sec. III, the inaccuracies in the solution arising from
excluding higher-order central body effects were found to be small,
and thus it was deemed acceptable to exclude them from the solution.
Third-body effects for LEO satellites are very small when compared
with the effect of J2; as such, they are not considered in the solution.
Additionally, the effects of atmospheric friction at LEO altitudes are
significantly larger than the effects of solar radiation, and so solar-
radiation effects are not considered. Atmospheric friction can have a
notable impact on the satellite orbit, and its consideration for long-
duration scenarios is vital. Assuming that atmospheric friction
compensation maneuvers are performed throughout the coast arc
allows the assumption of no altitude change during this time.
However, in order to maintain the analytical solution, the effect of
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atmospheric friction is not considered during the altitude change
phases. Due the relatively short duration of these phases (less than
four days for all cases considered), the errors introduced by this
simplification are small, as will be shown in Sec. III.

A. Maneuver Description

The satellite maneuver strategy considered in this paper is a three-
phasemaneuver that consists of an initial thrusting phase inwhich the
satellite increases or decreases its altitude relative to its initial orbit:
hereafter referred to as phase 1. This is done using continuous low
thrust with a constant acceleration. The second phase, referred to as
phase 2, is a coast arc in which the satellite is assumed to maintain a
constant altitude by thrusting to counteract the effect of atmospheric
friction. In the final phase, denoted phase 3, the satellite moves to the
desired final altitude; this may or may not be the same as the initial
altitude at the beginning of phase 1. This is performed using
continuous low-thrust propulsionwith the same constant acceleration
as in phase 1. This method is similar to the three-sequence transfer
found by Cerf to offer the minimum propellant low-thrust transfer
between circular orbits when the effects of J2 are included [29]. Note
that not all phases are required to be present for the solution to be
valid; one or more of the phases can be excluded without
fundamentally altering the method.
To solve the overflight targeting problem, an analytical expression

is created that defines the change in the RAANand theAOL achieved
during this three-phase maneuver as a function of the total time taken
and the change invelocityΔV required for themaneuver. This change
in the RAAN andAOL is then linked to the spacecraft ground track to
determine the location of the subsatellite point after the three-phase
maneuver has been performed. Selecting the final altitude to be that of
a repeating ground track orbit can additionally provide regular,
repeated coverage of the target region, if desired.

B. Fundamental Equations

The time rate of change of a satellite’s orbital elements can be
expressed as a sum of the conservative and nonconservative
perturbing forces acting on the satellite [30]. The well-known
Lagrange planetary equations, presented in Refs. [31] and [32],
provide a convenient method to determine the effect of conservative
forces acting on the satellite; whereas the Gauss version of the
planetary equations, presented in Ref. [32], is more appropriate for
the consideration of nonconservative perturbations, such as those
caused by a constant applied acceleration.
The Lagrange planetary equations describe the time rate of change

of the orbital elements as a result of a disturbing function. To consider
the secular effects of J2 only, the relevant disturbing function can be
averaged over one orbit period. This procedure was described in
Refs. [31] and [32]. For a circular orbit, the Lagrange planetary
equations, considering only the secular effects of J2, reduce to�

d �a

dt

�
J2

� 0 (1)

�
de

dt

�
J2

� 0 (2)

�
di

dt

�
J2

� 0 (3)

�
dΩ
dt

�
J2

� −
3 �nR2

eJ2
2 �a2

cos i (4)

�
dω

dt

�
J2

� 3 �nR2
eJ2

4 �a2
�4 − 5sin2i� (5)

�
dM

dt

�
J2

� �n � n

�
1 −

3R2
eJ2

4 �a2
�3sin2i − 2�

�
(6)

where �n is the mean motion including secular J2 perturbations. The
unperturbed mean motion n is defined as n �

�����������
μ∕ �a3

p
.

The Gaussian form of the Lagrange planetary equations provides a
description of the time rate of change of the orbital elements as a
result of perturbations that are expressed as disturbing accelerations
or specific forces. The standard form of the Gauss planetary
equations are given by Refs. [32] and [33]. The only nonconservative
force directly considered is the spacecraft propulsion system
acceleration; atmospheric friction does produce a nonconservative
force, but it is assumed to be compensated for during any coast arcs
and is neglected during the altitude change phases in order to
maintain the analytical solution. The spacecraft accelerationAwill be
continually applied in the tangential direction, with a positive A
corresponding to a propulsive acceleration applied in the positive
tangential direction. As this acceleration is assumed to be small for
low-thrust systems, the orbit can be assumed to remain circular
throughout the maneuver such that there will be no change in
eccentricity. In addition, as the propulsion acceleration is assumed to
be constant throughout the altitude change phases, all periodic terms
(i.e., those that are a function of the true anomaly) can be ignored
because the resulting perturbations will be zerowhen averaged over a
single orbit period. The resulting equations of motion are thus�

d �a

dt

�
thrust

� 2

�n
A (7)

�
de

dt

�
thrust

� 0 (8)

�
di

dt

�
thrust

� 0 (9)

�
dΩ
dt

�
thrust

� 0 (10)

�
dω

dt

�
thrust

� 0 (11)

�
dM0

dt

�
thrust

� 0 (12)

Summing Eqs (1–12) gives full expressions for the time rate
of change of the orbital elements under the influence of secular
J2 effects and with constant applied propulsive acceleration. These
are

d �a

dt
�

�
d �a

dt

�
J2

�
�
d �a

dt

�
thrust

� 2

�n
A (13)

de

dt
�

�
de

dt

�
J2

�
�
de

dt

�
thrust

� 0 (14)

di

dt
�

�
di

dt

�
J2

�
�
di

dt

�
thrust

� 0 (15)

dΩ
dt

�
�
dΩ
dt

�
J2

�
�
dΩ
dt

�
thrust

� −
3 �nR2

eJ2
2 �a2

cos i (16)
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dω

dt
�

�
dω

dt

�
J2

�
�
dω

dt

�
thrust

� 3 �nR2
eJ2

4 �a2
�4 − 5sin2i� (17)

dM

dt
�

�
dM

dt

�
J2

�
�
dM

dt

�
thrust

� n

�
1 −

3R2
eJ2

4 �a2
�3sin2i − 2�

�
� �n

(18)

As the argument of perigee is undefined for circular orbits, it is
helpful to consider the change in the argument of latitude instead. For
a circular orbit, θ � M; and the rate of change of the argument of
latitude can be defined as

du

dt
� dM

dt
� dω

dt
� �n� 3 �nR2

eJ2
4 �a2

�4 − 5sin2i� (19)

C. Conversion to Mean Orbital Elements

Equations (13–18), described in Sec. II.B, include thrust and
secular perturbations resulting from the first zonal harmonic J2; no
periodic contributions are considered due to the averaging of the
disturbing function [31]. The resulting orbital elements calculated
using these expressions are thus essentially mean elements because
both the short-periodic contributions (related to the satellite orbit
period) and the long-periodic contributions (related to the motion of
the line of apsides) have been ignored. Hence, for a consistent
solution, mean elements should be used in the calculation of these
expressions. There are many accepted methods to calculate mean
orbital elements; for the analysis presented herein, Brouwer’s
definition ofmean orbital elements is used [28]. The use of a different
mean element set will impact the results obtained; however, this does
not affect the fundamental method presented in this paper.
Of particular note is the conversion from an osculating to a mean

semimajor axis. This was given by Brouwer [28] as

�a � a −
3J2R

2
e

2a
sin2�i� cos�2u� (20)

Aswill be discussed in Sec. II.D, forming a fully analytical solution
to describe the three-phase transfer requires that the thrusting phases be
integrated over the semimajor axis rather than over time. If the
osculating semimajor axis is to be given as an input, then it is necessary
to incorporate the conversion from osculating to mean semimajor axis
directly into the expressions presented in Sec. II.B. This allows the
expressions to be integrated over the osculating, rather than the mean,
semimajor axis andmaintain thegreatest accuracy.However, including
the conversion to the mean semimajor axis in Eq. (13) prevents a fully
analytical solution from being obtained due to the complex functions
produced during integration. To avoid this issue, the osculating
semimajor axis can be used in Eq. (13) with minimal impact on the
solution accuracy, as will be shown in Sec. III. All other orbital
elements are taken as their value at the time the osculating value is
given; for the cases presented herein, all osculating values are given at
the time of the most recent pass of the ascending node (i.e.,
u � 0 deg). To directly compare with numerical solutions, this is the
methodused throughout thispaper, allowing theosculating elements to
be used as inputs to both the numerical and analytical methods. This
gives the rate of change of the semimajor axis as

da

dt
� 2

�n 0 A (21)

where

�n 0 � n

�
1 −

3R2
eJ2

4a2
�3sin2i − 2�

�
(22)

D. Change in Right Ascension of Ascending Node and Argument of
Latitude

The rate of change of the RAAN and AOL are described by
Eqs. (16) and (19), respectively. During the coast arc, because
atmospheric friction compensation maneuvers are assumed to be
performed, the semimajor axis a can be assumed to remain constant
and Eqs. (16) and (19) can be integrated over time to produce
expressions for the change in the RAAN and AOL.
During the altitude change phases, the semimajor axis is not

constant and varies according to Eq. (21). As a result, Eqs. (16) and
(19) cannot be directly integrated over time. By combining Eqs. (21)
and (16), an expression for the change in the RAAN as a function of
the semimajor axis can be produced in the form of

dΩ
da

� −
3 �n �n 0R2

eJ2
4 �a2A

cos i (23)

Assuming that acceleration remains constant throughout the
altitude change maneuver, Eq. (23) can be integrated with respect to
the semimajor axis to give the change in the RAANover the course of
the altitude change maneuver. Similarly, combining Eqs. (21) and
(19) gives an expression for the change in theAOLas a function of the
semimajor axis as

du

da
� �n �n 0

2A

�
1� 3R2

eJ2
4 �a2

�4 − 5sin2i�
�

(24)

This can be integratedwith respect to the semimajor axis to give the
change in the AOL over the course of the altitude change maneuver.

E. Analytical Description of Three-Phase Maneuver

As described in Sec. II.D, integrating Eqs. (16) and (19) gives
expressions for the change in the RAAN and the change in the AOL,
respectively, for the satellite during the coast arc as a function of time.
This corresponds to phase 2 of the three-phase maneuver. Integrating
Eqs. (23) and (24) gives expressions for the change in the RAAN and
AOL, respectively, as a function of the change in the semimajor axis
for a satellite performing an altitude change maneuver. This
corresponds to phases 1 and 3 of the three-phase maneuver.
Combining these equations to account for all three phases gives fully
analytical expressions for the RAAN and the AOL of the satellite
after the maneuver is complete. That is,

Ωtotal � Ω0 � ΔΩ1 � ΔΩ2 � ΔΩ3 (25)

and

utotal � u0 � Δu1 � Δu2 � Δu3 (26)

These expressions, although complete, express the final RAAN
and AOL in terms of the semimajor axis reached at the end of phase 1
a1 and the time required for the coasting phase t2. For the purposes of
this work, it is more useful to express these changes in terms of the
total maneuver time ttotal and the required change in velocity. The
time required for the coast arc t2 can be expressed as

t2 � ttotal − t1 − t3 (27)

where t1 and t3 are the time taken for phase 1 and phase 3,
respectively. Integrating Eq. (21)with respect to time and rearranging
gives an expression for t1 as

t1 �
���
μ

p �a5∕20 f20a21 � 3J2R
2
e�2 − 3sin2i�g � 3a

5∕2
1 J2R

2
e�3sin2i − 2� − 20a

5∕2
1 a20�

20a5∕20 a
5∕2
1 A

(28)
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with t3 being calculated using the same expression but with a2 in

place ofa0 anda3 in place ofa1. Substituting these into Eq. (27), with
the assumption that a2 � a1, and then into Eqs. (25) and (26) allows
Ωtotal and utotal to be expressed in terms of ttotal and a1.
It is then possible to express a1 in terms of the change in velocity

required to change the altitude of the satellite ΔValt. Assuming a

small propellant mass flow rate and a small propellant mass fraction

[34], the change in velocity required to change the satellite altitude in

phase 1 can be approximated as

ΔV1 �
����

�����
μ

a1

r
−

�����
μ

a0

r ���� (29)

withΔV3 calculated using a similar expression butwitha3 in place of
a0. From this, an expression for a1 as a function of ΔValt can be

derived as

a1 �
4μa0

μ� a0�
���������������μ∕a3�

p � ΔValt��2
���������������μ∕a0�

p � ���������������μ∕a3�
p � ΔValt�

(30)

where ΔValt � ΔV1 � ΔV3. Note that ΔValt does not include the

change in velocity required for atmospheric friction compensation

ΔV2; this is discussed in more detail in Sec. II.G. In Eq. (30),ΔValt is

additive for an altitude-lowering maneuver in which the satellite

decreases its altitude in phase 1 and increases it in phase 3, whereas

ΔValt is subtractive for an altitude-raising maneuver in which the

satellite raises its altitude in phase 1 and lowers it in phase 3. Using

this definition ofa1 in Eqs. (25) and (26), and assuming that the initial

and final altitudes of the satellite are known, fully analytical

expressions are produced for the RAAN and AOL at the end of the

maneuver as a function of the total time required for themaneuver and

the change in velocity required to change the satellite altitude. These

expressions are given in full in the Appendix. Note that these

equations are combined in such a way that only a single propulsive

acceleration value forA is required; in the case that the satellite raises

its altitude in phase 1, a positive value ofA should be used; whereas if

the satellite lowers its altitude in phase 1, a negative value ofA should

be used.

F. Analytical Description of Ground Track Motion

If the aim of a given mission is to target a specific point of interest

(POI) on the ground, then it is useful to link the RAAN and the AOL

of the satellite postmaneuver to changes in the ground track. Using

spherical geometry, the geocentric latitude of the subsatellite point

(SSP) δc at a given time can be calculated by

δc � sin−1�sin i sin utotal� (31)

with the corresponding longitude of the SSP ΨSSP given as

ΨSSP � atan2

�
cos i sin utotal
cos utotal

�
− ωettotal � Ωtotal −Ωet0 (32)

whereΩet0 is the right ascension of Greenwich at epoch, andωe is the

angular rate of rotation of the Earth [35]. The geocentric latitude δc
can be converted to geodetic latitude δSSP using

tan δSSP � tan δc
1 − f�2 − f� (33)

where f is the flattening of the Earth [36]. Assuming a World

Geodetic System 1984 ellipsoid model of the Earth

[37], f � 0.00335281.

The haversine formula given by

d�2Resin
−1

×
� �����������������������������������������������������������������������������������������������������������������������

sin2
�
δSSP−δPOI

2

�
�cos�δSSP�cos�δPOI�sin2

�
ΨSSP−ΨPOI

2

�s �
(34)

can be used to calculate the great-circle distance between the
subsatellite point and the point of interest on the ground after the
maneuver, assuming the latitude δPOI and longitudeΨPOI of the point
of interest are known [38]. Geodetic latitude values should be used in
Eq. (34) for both the SSP and POI, although it should be noted that
use of the haversine formula assumes a spherical Earth for the
calculation of the distance between the points. All reference to
“distance” throughout this paper refers to the great-circle distance
calculated in this manner. Using Eqs. (31) and (32), the haversine
distance d can be expressed analytically in terms of the orbit
elements, and thus using Eqs. (25) and (26) as a function of the
maneuver time ttotal andΔValt. The partial derivative of Eq. (34) with
respect to ttotal can be used to find the extrema of this distance
function for a given ΔValt, whereas the second partial derivative can
be used to discern the minima from the maxima. Both the first and
second derivatives of d can be found analytically. This allows all
minimumdistance solutions to be found and those forwhich the point
of interest is in view to be identified. The analytical nature of the
solution means it can be solved quickly to provide a full overview of
the solution space.

G. Atmospheric Friction Compensation in Phase 2

It is assumed that the satellite maintains a constant altitude during
phase 2 (the coast arc) by thrusting in the positive tangential direction
to compensate for the effect of atmospheric friction. The acceleration
caused by this force can be approximated by

Aatm � −
1

2

CDα

m
ρv2rel

vrel��vrel�� (35)

where vrel is the relative velocity between the satellite and the
atmosphere [39].Making the assumption that the atmosphere is static
and that the atmospheric friction force acts only in the negative
tangential direction gives

Aatm � −
1

2

CDα

m
ρv2 (36)

where v is the satellite velocity that, for a circular orbit, can be
expressed as

v �
���
μ

�a

r
(37)

The atmospheric density can be approximated using an
exponential density model as

ρ � ρref exp

�
−
href − h

H

�
(38)

For all analytical cases considered in this paper, the atmospheric
density is modeled using the Committee on Space Research
International Reference Atmosphere 1972 (CIRA-72) atmospheric
model for 25–500 km and CIRA-72 with an exospheric temperature
of T∞ � 1000 K for 500–1000 km, as presented in Refs. [39]
and [40].
Once the acceleration caused by atmospheric friction has been

calculated for the coast arc altitude using Eq. (36), the necessaryΔV
to counteract the effect of atmospheric friction can be calculated as
the required acceleration multiplied by the time of the coast arc:

ΔV2 � Aatmt2 (39)
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This atmospheric friction compensation ΔV2 is added to ΔValt to
give the total maneuver change in velocity ΔV total. It is of note that,
because the atmospheric model used is divided into altitude bands for
the calculation of atmospheric density, it is not possible to express
Eq. (34) in terms of ΔV total while maintaining a fully analytical
solution. As such, the possible flyover instances are calculated as a
function ofΔValt. The correspondingΔV2 is then calculated for each
solution and included in the maneuver selection tradeoff.

III. Comparison with Numerical Simulation

Acase study is used to compare the results produced by the general
perturbation solution with those of a numerical simulation. The case
selected considers a satellite in the same orbit as the International
Space Station. The goal of the proposed mission is to reduce the
revisit time of this satellite over Los Angeles, California in response
to an earthquake in the region, for example. The orbital constants and
satellite parameters for this and all other case studies are given in
Tables 1 and 2. The orbit parameters for this comparison case are
given in Table 3. The satellite propulsion system acceleration is
calculated by assuming a 3 kg satellite (e.g., a 3 units (U) CubeSat
[41,42]) equippedwith the electrospray propulsion systemdeveloped
by the Space Propulsion Laboratory of theMassachusetts Institute of
Technology, which produces a nominal thrust of 350 μN and has a
specific impulse of 760 s [43–47]. For a 3 kg 3U CubeSat carrying
50 g of propellant, this equates to a maximum ΔV of 120 m∕s,
assuming a constant nominal thrust and a constant acceleration. This
is a valid assumption because the propellant accounts for just 1.67%
of the spacecraft wet mass and would see a change in acceleration of
just 0.00198 mm∕s2 if the full propellant mass were used; this is a
change of less than 1.7%.
Figure 1 shows the distance from the POI to the subsatellite point

over two days as calculated using Eq. (34) for an altitude-lowering
maneuver using a ΔValt of 0–20 m∕s. The times at which the POI
will be in view for a givenΔValt are found by locating the minima of
the analytical function and identifying those that fall within view of
the satellite; these are shown as dots in Fig. 1. The solution is only
plotted for feasible solutions for which the required ΔV can be
produced in the allotted time. Following the paths of the constant
maneuver time, it can be seen how the function varies withΔValt and,

conversely following a path of constantΔValt, it can be seen how the

solution changes with increased maneuver time. In both cases, the

solutions vary smoothly and cross the troughs and peaks of the

surface that occur as a result of the satellite passage over one orbit

period.

A. Nonmaneuvering Satellite

For a nonmaneuvering satellite (i.e.,ΔValt � 0 m∕s), the distance
from the SSP to the POI is shown in Fig. 2 for a 16-day period as

calculated by the general perturbationmethod. The dashed horizontal

line is drawn at half the swath width, taken to be 100 km, indicating

the distance at which the POI will be visible to the satellite, assuming

a conical field of view. The times of each of the target flyovers and the

distance of the SSP from the POI at that time are given in Table 4. This

solution assumes that the satellite maintains a constant altitude by

performing atmospheric friction compensation maneuvers through-

out the 16-day period; this was calculated to require a ΔV
of 3.22 m∕s.
The numerical simulator used for comparison propagates the

position of the spacecraft using a set ofmodified equinoctial elements

[48] using an explicit variable-step-size Runge–Kutta formula of

orders four and five formula: the Dormand–Prince pair [49]. The

simulation includes an 18th-order tesseral model for the calculation

of central body perturbations. Atmospheric friction is modeled using

the U.S. Standard Atmosphere, 1976 model [50]; this is a more

recent, and more detailed, atmospheric model than that used by the

general perturbation solution. For all analyses, a relative and absolute

error tolerance of 1 × 10−12 and a solution refinement factor of 30 are

used. The times at which the POI is found to be in view by the

numerical simulation for a nonmaneuvering satellite are given in

Table 4 with the corresponding distance to the target. The ΔV
required for atmospheric friction compensation over this 16-day

period was found to be 2.52 m∕s; this is 20% less than the amount

calculated using the analytical method.

Table 1 Orbital constants.

Parameter Symbol Value Units

Gravitational parameter μ 3.986 × 1014 m3∕s2
Mean radius of Earth Re 6.371 × 103 km
Coefficient of J2 for Earth J2 1.0827 × 10−3 — —

Angular velocity of Earth ωe 7.2921 × 10−5 rad∕s

Table 2 Spacecraft parameters.

Parameter Symbol Value Units

Coefficient of drag CD 2.2 ——

Satellite mass m 3 kg
Satellite cross-sectional area α 0.03 m2

Table 3 Los Angeles flyover mission parameters.

Parameter Symbol Value Units

Propulsion acceleration A �1.1667 × 10−4 m∕s2
Inclination i 51.64 deg
Initial/final osculating semimajor axis a0, a3 6773 km
Initial/final mean semimajor axis �a0, �a3 6767 km
Initial AOL/RAAN u0, Ω0 0 deg
Latitude of POI δPOI 34.05 deg
Longitude of POI ΨPOI −118.24 deg
Epoch — — 1 Jan. 1990, 00:00:00 hrs ——

Right ascension of Greenwich at epoch Ωet0 100.39 deg
Instrument swath s 200 km
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2000
4000
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8000
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Fig. 1 Distance from subsatellite point to point of interest plotted as a
function ofmaneuver time andΔValt. Dots indicate instanceswhen target
is in view of satellite.
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The results in Table 4 show a close correlation between the general
perturbation and numerical solutions. The greatest difference in
flyover time identified by the analytical versus the numericalmodel is
less than 3 s, and the largest difference in the distance to the target at
flyover is approximately 5 km. It is of note that the analytical solution
misses a pass at 13.91 days identified by the numerical simulation.
This pass is at a distance of approximately 98 km from the POI, and so
this is likely due to errors in the accuracy of the analytical model. As
this pass is close to the edge of the field of view, it would be extremely
short and of low quality. However, if it is desirable to ensure that
passes close to the edge of the field are identified, a margin could be
added to the swath width.
Figure 3 shows the haversine distance between the subsatellite

points as calculated by the analytical and the numerical solutions over
the same 16-day period as in Fig. 2. From these results, it is clear that
the distance oscillates over time; this is due to the short-periodic
variations in the orbital elements caused by J2 and higher-order terms
that are not included in the analytical solution. This is a key
consideration when using this method and, indeed, all general
perturbation methods because, due to the averaging of the
disturbances over the orbit, the results will only be accurate after an
integer number of orbit revolutions. Due to these oscillations, it is
useful to consider the maximum difference and mean difference
between the analytical and numerical methods. This is also shown in
Fig. 3, where the mean and maximum values are calculated over a
one-day period. These results show that the maximum difference
gradually increases over time to just over 20 km. Themean difference
initially decreases before increasing to approximately 15 km; this is
likely the result of the long-periodic effects of J2 and higher-order
terms that are not accounted for in the analytical solution, as well as
any discrepancies in the calculation of the secular effects of J2 and
atmospheric friction. These results indicate that, for a simulation of
up to 16 days, an error boundof 25 kmcan be applied to the calculated
distance to the target. It should be noted that this error bound is
defined based on the specific case considered herein; cases with
different orbit and satellite parameters may be subject to greater or

lesser errors. It is of note that instance 4 from Table 4, which was not
identified by the analytical solution, is just 2 km from the edge of the
swath, and thus falls within this error range.

B. Maneuvering Satellite

The general perturbation method is now used to calculate the time
required to fly over the target when the satellite ismaneuvered using a
given ΔValt. Considering the results from Sec. III.A, it was decided
that the maneuver should begin 1.433 days from epoch, which is at
the time of the second viewing instance as calculated by the analytical
method and given in Table 4, with the aim of reducing the subsequent
flyover time of the POI from the 13.8-day gap that would otherwise
exist. This assumes that the passes at 3.08 and 13.91 days would be
too short and too close to the edge of the swath width to be of value.
To comparewith the numerical simulation, only a singlemaneuver

is analyzed; the results for a range of values will be investigated in
Sec. IV. An altitude-lowering maneuver using a ΔValt of 30 m∕s is
arbitrarily selected for this, and the assumption is made that the
satellite will return to its initial altitude at the end of the maneuver.
Using a ΔValt of 30 m∕s, the analytical solution identifies three
possible maneuvers that would end with the satellite in view of the
target. These are given in Table 5 with the corresponding distance
from the SSP to the POI at closest approach. The shortest possible
flyover time using 30 m∕s is found to be 5.06 days from epoch,
shortening the time of flyover by more than 10 days when compared
with the nonmaneuvering case. The atmospheric friction
compensation ΔV2 required for this maneuver is found to be
0.21 m∕s, giving a ΔV total of 30.21 m∕s.
The numerical simulator is used to investigate the solution found

using the general perturbation method. To identify only any errors
occurring during the maneuver, the simulation begins 1.433 days
from epoch at viewing instance 2 from Table 4, as calculated by the
analytical method. At this point, the three-phase maneuver is carried
out, based on the solution found using the analytical method for
flyover A, as given in Table 5. This consists of an initial thrusting
phase to lower the orbit, lasting 35.71 h, followed by a 15.54 h coast

Table 4 Comparison of flyover times and haversine distance to target for nonmaneuvering satellite calculated analytically versus numerically.

Analytical Numerical

Viewing instance Time, days Distance to target, km Time, days Distance to target, km Difference in flyover time, s Difference in distance, km

1 0.136 6.22 0.136 10.02 −0.76 −3.8
2 1.433 69.74 1.433 65.50 −0.27 4.24
3 3.083 90.66 3.083 93.80 −0.44 −3.14
4 —— —— 13.91 98.39 —— ——

5 15.209 38.31 15.209 47.22 2.80 −4.99

Fig. 2 Distance from subsatellite point to target plotted as a function of total time for a nonmaneuvering satellite as calculated by the analytical method.
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arc. Finally, a 35.71 h thrusting phase raises the orbit back to its initial
altitude. The satellite is assumed to perform atmospheric friction
compensation during the coast arc, as well as before and after the
targeting maneuver.
Figure 4 shows the distance from the subsatellite point to the target

as calculated using the haversine formula at each time step
throughout the numerical simulation. The dashed horizontal line
indicates the distance at which the POI will be visible to the satellite.
The peak seen at 5.06 days from epoch corresponds to the pass that
occurs at the end of themaneuver. This pass is found by the numerical
solution to occur 32 s earlier than predicted by the analytical solution.
The distance from the SSP to the target at this time is found to be
57.00 km, which is a difference of 11.36 kmwhen compared with the
analytical solution. If atmospheric friction compensation is
performed in the numerical simulation during the altitude change
phases, in addition to the coast arc, the flyover occurs just 6.7 s after it
is predicted by the analytical solution at a distance of 66.52 km from
the POI, which is a difference of 2 km when compared with the
analytical solution. These results imply that the effects of
atmospheric drag are the largest contributor to the discrepancy in
the time of flyover as predicted by the general perturbation method;
however, the largest difference is very small at less than 1 min over a
3.6-day maneuver.

IV. Rapid Return Mission Case Study

The case study presented in this section extends the scenario
considered in Sec. III. As shown in Sec. III, if no maneuvers are
performed, there is a 13.8-day gap between flyovers of Los Angeles
after the second viewing at 1.433 days from epoch. It has been shown
that an altitude-lowering maneuver using aΔV total of 30.21 m∕s can
reduce the time between flyovers from 13.8 to 3.62 days. The same
scenario is investigated here for a range ofΔV total values and for both
altitude-lowering and altitude-raising maneuvers. Using the general
perturbationmethod, the shortest possible time inwhich a pass can be
made over Los Angeles is calculated for a ΔValt range from
0–120 m∕s in increments of 1 m∕s. The corresponding atmospheric
friction compensation ΔV2 for each maneuver is then calculated

using Eq. (39) and added to give the change in velocity required for
the fullmaneuverΔV total. These results are shown in Fig. 5, where the
circles indicate altitude-lowering maneuvers and the squares show
altitude-raising maneuvers. The inset is a portion of Fig. 5 showing
themaneuvers requiring aΔV of less than 17 m∕s and approximately
1.65 days of maneuver time. Note that the time shown is the time
taken for the maneuver, and not the time from epoch. The amount of
ΔV2 required for atmospheric friction compensation is dependent on
the maneuver selected, with those maneuvers requiring longer coast
times at lower altitudes needing the greatest proportion; the largest
ΔV2 required for the range of maneuvers considered is found to be
2.7 m∕s. The results show that the minimum achievable flyover time
is 1.65 days, or 39.59 h, which is achieved with a ΔV total of just
1.32 m∕s using an altitude-loweringmaneuver. This gives a decrease
in flyover time of almost 11 days when compared with the
nonmaneuvering case.
Each maneuver option in Fig. 5 will have a corresponding

minimum distance to the target at flyover that will define the payload
look angle. This is shown in Fig. 6 for the solutions requiring a
maneuver time of approximately 1.6 days and a ΔValt of 1–17 m∕s.
Note that, in order to produce a continuous contour, Fig. 6 is plotted in
terms ofΔValt, and so it does not include the additionalΔV2 required
for atmospheric friction compensation. The shortest possible
maneuver, which is an altitude-lowering maneuver requiring 39.59 h
and a ΔV total of 1.32 m∕s, will have a distance to target at flyover of
greater than 90 km; this is seen in the bottom left of Fig. 6. The other
set of contours corresponds to the possible altitude-raising
maneuvers. The minimum time altitude-raising maneuver takes
39.6 h and requires aΔV total of 1.31 m∕s; however, it has a distance to
target at flyover of greater than 80 km. Increasing the ΔValt used
increases the required maneuver time but also reduces the minimum
distance to the target at flyover. The minimum distance to the target
that can be obtained using maneuvers with a ΔValt of less than
17 m∕s is approximately 30 km; however, there are other maneuver
options shown in Fig. 5 that will enable a direct flyover of the target at
the cost of higher ΔV and maneuver time. In addition, it may be
possible to obtain a direct flyover by altering the thrust profile of the
lowerΔV maneuvers using the analytical solution as an initial guess.
These insights obtained from the solution space can be extremely
valuable to an operator, allowing for an informed tradeoff between
mission goals, and are difficult to gain through numerical
methods alone.
Amaneuver using aΔValt of 12 m∕s, corresponding to aΔV total of

12.08 m∕s and predicting a distance to target at flyover of 34 km, is
selected as a compromise between ΔV total, the flyover time, and the
look angle at flyover. This maneuver is analyzed using the numerical
propagator described in Sec. III. The results from the analytical

Fig. 3 Haversine distance between subsatellite points as calculated by analytical and numerical solutions for a nonmaneuvering satellite.

Table 5 Target flyover times for maneuvering satellite calculated
analytically.

Possible flyover
instance

Time from
epoch, days

Maneuver
time, days

Distance from SSP to
POI, km

A 5.06 3.62 68.37
B 8.32 6.88 12.91
C 11.94 10.50 45.63
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method are used to define the maneuver to be carried out, and

atmospheric friction compensation is assumed to be performed

during phase 2, as well as before and after the maneuver. The satellite

begins the three-phase altitude-raising maneuver 1.433 days from

epoch. Figure 7 shows the distance from the subsatellite point to the
target as calculated using the haversine formula at each time step
throughout this mission. As before, the dashed horizontal line
indicates the distance at which the POI will be visible to the satellite.
A peak can be seen in Fig. 7 corresponding to a pass that occurs at
3.09 days from epoch. This pass occurs just 4 s earlier than predicted
by the analytical solution, with the distance from the SSP to the target
at this time found to be 38 km; this is 4 km greater than predicted by
the analytical solution. The total ΔV required is found to be
12.06 m∕s, including that required for atmospheric friction
compensation. This gives a difference of just 0.02 m∕s when
compared with the general perturbation solution.

V. Fire Response Case Study

The case study presented in this section considers a constellation
tasked with fire detection and subsequent maneuvering to provide
targeted coverage of fire outbreaks. This scenario is based on the
“reconfigurable constellation” concept of operations, in which the
Earth observing constellation has two operational modes that it can
maneuver between [20,51,52]. The first is a global observation mode

Fig. 4 Distance from subsatellite point to target as calculated by numerical simulation.Maneuver begins at 1.433 days, following the solution for flyover
A from Table 5 given by the analytical method.

Fig. 5 Shortest time to flyover for a given ΔVtotal as calculated by the analytical method. Inset shows maneuvers requiring ΔV < 17 m∕s and
approximately 1.65 days of maneuver time.

Fig. 6 Minimumdistance to target for selected solutions as a function of
maneuver time and required ΔValt.
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(GOM), in which the satellites are spread out to provide even

coverage of the observation region. The second mode is the regional

observation mode (ROM), in which some of the satellites are moved

into repeating ground track (RGT) orbits over a point of interest to

provide improved coverage of the target. For the proposed mission,

the constellation in the GOMwould be used to detect the outbreak of

fire and then would transition to the ROM to provide more frequent

revisits of the affected area. Once targeted coverage is no longer
required, the constellation returns to the GOM to continue global

observations.
Sequential fire outbreaks in four different locations are considered to

assess the effectiveness of a responsive constellation to provide

increased coverage of a range of latitudes. The areas considered are

Cairngorms National Park in Scotland; Yosemite National Park in

California; Agulhas National Park in South Africa; and Lagunas de

Montebello National Park in Mexico. The constellation proposed for

this study comprises 24 satellites in four orbit planes at an inclination of

60 deg. For this inclination, a repeat ground track of 15 orbits per day,

giving two daily overflights of the target, requires a mean altitude of
513.087 km, as calculated for a circular orbit using the method

described in Refs. [20] and [53]. The initial mean altitude of the GOM

constellation is arbitrarily selected as 542.857 km. From this altitude, a

satellite requires a minimum ΔV of 17 m∕s to reach the ROM orbit

altitude. The parameters of the constellation are given in Table 6. The

proposed swathwidth of 50 km is based on amission design proposing

the use of a constellation of CubeSats for fire detection [54]. The

mission is assumed to use 3U CubeSats equipped with electrospray

propulsion providing aΔV of 120 m∕s, as in Secs. III and IV, and the
constants in Table 1 and parameters in Table 2 are used.
To transition between the GOM and ROM, two satellites per plane

will be maneuvered into repeating ground tracks (i.e., eight satellites
in total), with one satellite providing coverage of the target region on

the upward pass and the other providing coverage on the downward
pass. Moving additional satellites provides limited benefit because
there are only two positions in each RGT orbit plane that provide a
flyover of the target; thus, the maneuvering of more satellites would
result in multiple satellites positioned very close together, providing
overlapping coverage and limited increased utility. The satellites
remaining in the GOM orbit are not rephased to provide even
coverage from this altitude; however, theywill still provide incidental
coverage of the target.
For all targets, the region of interest is taken to be a rectangle

encompassing the park with the parameters given in Table 7. The fire
events occur sequentially in each region as follows: 1) Cairngorms,
2) Yosemite, 3) Agulhas, and 4) Lagunas de Montebello. For each
outbreak, the constellation will maneuver to the ROMand then remain
in the ROM for seven days before transitioning back to the GOM. The
constellation then remains in the GOM for seven days before the next
fire is detected. The exception to this is the transition between targeting
Yosemite andAgulhas; in this case, the fire inAgulhas is assumed to be
detected while the constellation is still targeting Yosemite, and so a
direct transition from ROM to ROM occurs.

A. Method

To decide which satellites should be maneuvered during each
reconfiguration, and what form these maneuvers should take, each
satellite is analyzed using the general perturbation method described
in Sec. II, producing a list of all possible maneuvers that each satellite
could perform that would conclude with the satellite over the target
region and in a repeating ground track orbit. This is done for a ΔValt

range of 17–120 m∕s in increments of 1 m∕s for up to 10 days of total
maneuver time, and it considers both altitude-raising and altitude-
lowering maneuvers. The satellites are assumed to perform
atmospheric friction compensation at all times, except when
performing altitude changemaneuvers; this applies to the satellites in
both the GOM and ROM.
To select the “best” maneuvers from the full solution set, the

solutions are grouped first by orbit plane and then by whether they
will view the target on an upward or downward pass. A simple
additive multiattribute utility function is then applied to produce a
single utility score for each solution [55,56]. The solution in each
grouping with the highest utility function is selected. In some cases,
where the difference in utility function between satellites was small, a
judgment was made to select the preferred solution; this was done to
bring the desired outcome in linewith what amission operator would
likely select while avoiding the need to fine tune the utility function,
which is outside the scope of this paper.
A simple additive multiattribute utility function can be described

by

Fig. 7 Distance from subsatellite point to target as calculated by numerical simulation. Altitude-raising maneuver begins at 1.433 days following a
12.08 m∕smaneuver as calculated by the analytical method.

Table 6 Fire response constellation mission parameters.

Parameter Value Units

Propulsion acceleration �1.1667 × 10−4 m∕s2
Inclination 60 deg
GOM initial osculating/mean altitude 550∕542.857 km
ROM initial osculating/mean altitude 520.261∕513.087 km
Number of orbit planes 4 ——

Number of satellites per plane 6 ——

RAAN spacing between orbit planes 90 deg
In-plane spacing between satellites 60 deg
Epoch 1 Jan. 1990, 00:00:00 hrs ——

Right ascension of Greenwich at epoch 100.39 deg
Instrument swath 50 km
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U�X� �
XN
n�1

knUn�Xn� (40)

whereXn is a single attribute,Un�Xn� is the utility function of a single
attribute, kn is a weighting factor for a single attribute, U�X� is the
multiattribute utility function, andN is the number of attributes to be
considered. Theweighting factors determine the relativeweighting to
be given to each attribute. For this scenario, the attributes selected are
the ΔV total required for the maneuver, the maneuver time, and the

distance to the center of the region of interest at the end of the
maneuver. Each of these is normalized against the range of possible
values of the attribute to give a utility between zero and one. That is,

Un � Xworst − Xn

Xworst − Xideal

(41)

whereXworst is theworst possible value of the attribute, andXideal is the
best possiblevalue.A relativeweighting is appliedwithΔV total taken as
the normal value, and so kΔV � 1, and relative weightings are given to
themaneuver time and distance to target, respectively, as ktime � 3 and
kdistance � 0.5 to prioritize the maneuver time over the other attributes.

It is of note that this criteria selection will tend to focus coverage on the
center of the POI; selecting different attribute criteria could allow for
coverage to be evenly spread across the region, for example.
Once the fire has been dealt with, it is assumed that the

constellation will return to the GOM to continue global observation.
This is considered a nonurgent maneuver, and so the minimumΔValt

possible is used, with the required satellite in-plane phasing being

achieved by the satellite remaining in the RGTorbit for as long as is
necessary before maneuvering. In this case, there is essentially no
phase 1 maneuver; instead, the satellite coasts as in phase 2 before
raising its altitude to return to theGOMconstellation. To calculate the
required maneuver time for each satellite, a simplified version of the

general perturbation method is used in which the time and ΔV for
phase 1 are both set to zero. Taking any satellite in the same plane and
at the GOM altitude as a reference, the desired difference in the final
AOLs of the maneuvering satellite and the reference satellite can be
specified, and thus the total required maneuver time calculated to

achieve the desired spacing using the minimumΔValt of 17 m∕s. All
possiblemaneuvers are investigated and the solutions selected to give
the shortest totalmaneuver time for each plane. On return to theGOM
using this method, the satellite spacing within each orbit plane will
return to 60 deg; however, the RAAN of the maneuvered satellites

will have a slight variation from the other satellites. This could be
readjusted by raising the altitude of these satellites above the GOM
altitude and allowing them to drift in theRAANbefore rephasing. For
this study, the orbit planeswere not adjusted and the largest difference
in the RAAN between two satellites in the same plane was

approximately 2.5 deg at the end of the mission.

When maneuvering to the target of Agulhas National Park, the
constellation is assumed to begin maneuvering directly from
observingYosemitewith no transition to theGOM.The samemethod
is used to select the satellites to maneuver; in this case, five of the
satellites selected to maneuver were already in RGT orbits over
Yosemite, whereas the other three selected were in the higher GOM
orbit. This leaves three satellites in RGT orbits over Yosemite that
should be returned to the GOM. As before, this was done using the
minimum possible ΔValt of 17 m∕s with the required satellite in-
plane phasing being achieved by the satellite remaining in the RGT
orbit for as long as required.

B. Results

To assess the improvement in the coverage and revisit time that
could be achieved through the use of the proposed responsive
constellation, a comparison is made with a static constellation of 24
satellites inclined at 60 deg and at amean altitude of 542.857km; this is
the same as the initial GOM constellation. The coverage available for
both the static constellation and the responsive constellation is
analyzed over a one-week period using a simple orbit propagator that
includes only the secular effects of J2. A summary of these results is
given in Table 8, where the average coverage and revisit time refers to
themeanvalue across the entire region of interest. Peak coverage refers
to the maximum coverage available to any single location within the
region of interest. The maximum local revisit time refers to the
maximum time that any single locationwithin the region is not viewed.
Figures 8–11 visually depict the coverage available to each region

from the static constellation and the responsive constellation over a
one-week period.‡ From these results, it is clear that, in all cases, the
responsive constellation provides greater coverage than the static
constellation. Amore significant improvement in coverage is seen for
those targets at lower latitudes because the coverage available to them
from the static constellation is lower when compared to targets at the
upper latitudes of the satellites’ visible region. For example, the
responsive constellation provides average regional coverage to the
Cairngorms of approximately 1.6 times that available from the static
constellation, whereas theLagunas deMontebello receivesmore than
10 times greater coverage from the responsive constellation as
compared to the static constellation. Also of interest, as seen in
Table 8, is that the revisit time provided by the responsive
constellation is consistent for all latitudes, with a revisit time of
between 2.5 and 4.0 h for each of the regions considered. This is in
contrast to the static constellation that has a longer revisit time at
lower latitudes.
Table 9 summarizes the entire mission. The mission takes just less

than 82 days, assuming seven days for each ROM and GOM phase,
and requires a total ΔV of 1019 m∕s, including that required for

Table 8 Summary of coverage available to target regions in a seven-day period for both a static and responsive
constellation

Cairngorms Yosemite Agulhas
Lagunas de
Montebello

Static Responsive Static Responsive Static Responsive Static Responsive

Average coverage of region, min 2.8 4.5 1.0 4.4 1.0 5.6 0.64 6.9
Peak local coverage, min 3.2 7.7 1.1 6.6 1.1 7.2 0.7 7.0
Average revisit time, h 5.6 3.9 16.1 3.8 16.7 3.0 23.8 2.8
Maximum local revisit time, h 15.5 17.7 56.8 23.7 62.3 11.7 48.6 4.7

Table 7 National Park locations

Region of interest Minimum latitude Maximum latitude Minimum longitude Maximum longitude Units

Cairngorms 56.58 57.66 −4.64 −2.65 deg
Yosemite 37.49 38.18 −119.89 −119.20 deg
Agulhas −34.83 −34.68 19.63 20.02 deg
Lagunas de Montebello 16.07 16.12 −91.74 −91.63 deg

‡Map data: Google, INEGI, AfriGIS (Pty) Ltd., www.google.com/maps,
[retrieved 08 November 2017].
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atmospheric friction compensation throughout; this is just 35%of the
total ΔV available across the constellation. Satellite 13 uses the
largest proportion of propellant, requiring a ΔV of almost 109 m∕s.
Satellites 2, 3, 9, 11, 18, and 20 all perform no altitude-changing
maneuvers throughout the mission and require a ΔV of just 1.6 m∕s
for atmospheric friction compensation. The average ΔV used across
all satellites is 42 m∕s; thus, it is likely that the constellation could
perform numerous further reconfigurations before all propellant
would be depleted. The standard deviation of the propellant usage
across all satellites is 30.04 m∕s.

It is possible to balance propellant usage by including the
satellites’ remaining propellant in the maneuver selection utility
function. To do this, an additional attribute termUfb was added to the
utility function to account for the propellant remaining on board each
satellite. Thiswas included in Eq. (41)with aweighting of kfb � 2. In
this scenario, the first two reconfigurations to target the Cairngorms
and Yosemite are the same as for the case with no propellant
balancing. However, beyond this point, the scenario changes due to
the new utility function. The mission takes 1.5 days longer and uses
161 m∕smoreΔV; however, this is still just 41%of the total available

Fig. 8 Total time a region ofCairngormswas seen in a one-week period for a) the static constellation, andb) the responsive constellation. (See footnote ‡.)

Fig. 9 Total time a region of Yosemite was seen in a one-week period for a) the static constellation, and b) the responsive constellation. (See footnote ‡.)

Fig. 10 Total time a region of Agulhas was seen in a one-week period for a) the static constellation, and b) the responsive constellation. (See footnote ‡.)
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Fig. 11 Total time a region of Lagunas deMontebellowas seen in a one-week period for a) the static constellation, and b) the responsive constellation (See
footnote ‡.)
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Fig. 12 Total ΔV used over time for the fire response mission for cases with and without propellant balancing.

Fig. 13 ΔV used by each satellite in the fire response mission for cases with and without propellant balancing.

Table 9 Fire response mission ΔV and time required for each section.

Section Section time, days Total time, days Section ΔV, m∕s Total ΔV, m∕s
Start 0.00 0.00 0 0
Maneuver to target Cairngorms 2.87 2.87 144.25 144.25
Observing Cairngorms in ROM 7.00 9.87 4.00 148.25
Return to GOM 10.37 20.24 140.74 288.99
Time in GOM 7.00 27.24 3.36 292.35
Maneuver to target Yosemite 4.72 31.96 181.96 474.31
Observing Yosemite in ROM 7.00 38.96 4.00 478.31
Maneuver to target Agulhas 7.92 46.88 187.94 666.25
Observing Agulhas in ROM 7.00 53.88 4.00 670.25
Return to GOM 9.59 63.47 140.82 811.07
Time in GOM 7.00 70.47 3.36 814.43
Maneuver to target Chiapas 4.01 74.48 200.77 1015.20
Observing Chiapas in ROM 7.00 81.48 4.00 1019.20
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across the constellation. The standard deviation of propellant usage
across all satellites in this case is reduced to 15.03 m∕s, with all
satellites havingmaneuvered; and the largest amount ofΔV used by a
single satellite is 79 m∕s, which was used by satellite 13. The total
cumulative ΔV used over time for the cases with and without
propellant balancing is shown in Fig. 12. Figure 13 shows the total
ΔV used by each satellite for both cases. It is clear that, although the
inclusion of propellant balancing uses a greater ΔV overall, it does
result in a more even spread of propellant use across the individual
satellites.

VI. Conclusions

A general perturbation method can be used to solve the presented,
restricted low-thrust Lambert rendezvous problem and gain an
insight into the capabilities of a maneuverable satellite, or satellites,
that would be difficult to achieve using numerical methods alone.
Complex scenarios including numerous satellites and thousands of
possible maneuvers can be analyzed extremely quickly and without
iteration; for the cases considered herein, a single maneuver can be
analyzed in 0.5 s using Wolfram Mathematica 11.3 running on a
desktop computerwith an Intel Core i7-4790CPUand8GBofRAM.

By providing all possible solutions, the method grants the mission

designer the ability to select, from the full solution set, the maneuver,

ormaneuvers, that bestmeet themission goals. This removes reliance

on numerical optimizers to calculate suitable maneuver profiles

because these cannot guarantee that the optimal solution is found.

Responsive missions carried out using existing technology can

provide significant improvements in the volume and frequency of

data collection when compared with traditional, static satellite

missions. A small satellite equipped with low-thrust propulsion is

capable of reducing the revisit time to a target by more than 85% for

less than a 20m/s velocity change. The choice ofmaneuver requires a

three-way tradeoff between the change in velocity required, the

maneuver time, and the look angle to target. A constellation of

satellites can provide increased coverage of between 1.6 and 10 times

to regions of interest when compared with a static, global coverage

constellation by maneuvering into repeating ground track orbits over

the target. The revisit time of this constellation postreconfiguration is

more uniform across latitudes than a traditional static constellation

that will provide more frequent revisits to higher-latitude targets.

Applying propellant balancing across the constellation increases the

overall velocity change required for the mission but more evenly

distributes the propellant usage across the satellites.

Appendix: Equations for Right Ascension of Ascending Node and Argument of Latitude Change
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e�3�1� 3 cos�2i��J2R2

e�9ζγ2 � 459κγ3 − 25920γ4� − 6γ�5184γ4 � 108γ3κ � 9γ2ζ��
�64a103 �3�1� 3 cos�2i��J2R2

e�18ζγ2 � 918κγ3 − 51435γ4� − 6γ�13203γ4 � 351γ3κ � 18γ2ζ��
−432γa83�−6γ�10368γ4 � 351γ3κ � 18γ2ζ� � 3�1� 3 cos�2i��J2R2

e�−51435γ4 � 918γ3κ � 18γ2ζ��g

� 1

3;674;160
���
2

p
Aμ7

���������������������
�β3∕μ2a30�

q
a70J

6
2R

12
e

β7csc12�i�
�

μ4a30
β3�−3γ � �32μ2a20∕β2��3

�
3∕2

f18;600;435�1� 3 cos�2i��sin18�i�J102 R20
e

� 1

β2
3;674;160μ2sin12�i�a20J62R12

e �−216γ3 � 3�1� 3 cos�2i��J2R2
e�−180γ2 � 3γκ��

−
1

β4
725;760μ4sin6�i�a40J32R6

e�3�1� 3 cos�2i��J2R2
e�9ζγ2 � 432κγ3 − 25920γ4� − 216γ3�144γ2 � 3γκ��

� 1

β6
9;289;728μ6sin4�i�a60J22R4

e�3�1� 3 cos�2i��J2R2
e�9ζγ2 � 459κγ3 − 25920γ4� − 6γ�5184γ4 � 108γ3κ � 9γ2ζ��

� 1

β10
67;108;864μ10a100 �3�1� 3 cos�2i��J2R2

e�18ζγ2 � 918κγ3 − 51435γ4� − 6γ�13203γ4 � 351γ3κ � 18γ2ζ��

−
28;311;552γμ8a80�−6γ�10368γ4 � 351γ3κ � 18γ2ζ� � 3�1� 3 cos�2i��J2R2

e�−51435γ4 � 918γ3κ � 18γ2ζ��
β8
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where

γ � J2R
2
esin

2�i�
ζ � 72J22R

4
esin

4�i� � 9J22R
4
e�7sin2�i� − 2��9sin2�i� − 4�

κ � 3J2R
2
e�7sin2�i� − 2� � 3J2R

2
e�9sin2�i� − 4�

and, for the case where the satellite altitude is lowered in phase 1,

β � a0

� �����
μ

a3

r
� ΔValt

��
2

�����
μ

a0

r
�

�����
μ

a3

r
� ΔValt

�
� μ

whereas for the case in which the satellite altitude is raised in phase 1,

β � a0

� �����
μ

a3

r
− ΔValt

��
2

�����
μ

a0

r
�

�����
μ

a3

r
− ΔValt

�
� μ
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