

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of

ancillary services from demand side management and distributed generation

SmartNet simulation platform

Authors:

Giacomo Viganò, Marco Rossi (RSE), Peter Sels, Guillaume Leclercq, Thomas Gueuning, Marco Pavesi

(N-SIDE), Yelena Vardanyan, Razgar Ebrahimy (DTU), Joseba Jimeno, Nerea Ruiz (TECNALIA), Gary

Howorth (USTRATH), Juliano Camargo, Chris Hermans, Fred Spiessen (VITO), Harald Svendsen (SINTEF),

Distribution Level Public

Responsible Partner RSE

Checked by WP leader

Marco Rossi

Date: 21/06/2019

Approved by Project

Coordinator

Gianluigi Migliavacca

Date: 25/06/2019

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 691405.

Issue Record

Planned delivery date M36 (31/12/2018)

Actual date of delivery M42 (30/06/2019)

Status and version 1.0 – Final

Version Date Author(s) Notes

0.0 October 2018 RSE First template with description of physical layer

0.5 November 2018 N-SIDE, DTU,

TECNALIA,

USTRATH, VITO,

SINTEF

Contributions received by partners

0.7 May 2019 RSE Harmonization of the content

0.8 June 2019 N-DISE, DTU,

TECNALIA,

USTRATH, VITO,

SINTEF

Revision of the content

0.9 June 2019 RSE Revision by WP leader

1.0 June 2019 RSE Final version

Copyright 2019 SmartNet Page 1

About SmartNet

The project SmartNet (http://smartnet-project.eu) aims at providing architectures for optimized interaction between TSOs and

DSOs in managing the exchange of information for monitoring, acquiring and operating ancillary services (frequency

control, frequency restoration, congestion management and voltage regulation) both at local and national level, taking into account

the European context. Local needs for ancillary services in distribution systems should be able to co-exist with system needs for

balancing and congestion management. Resources located in distribution systems, like demand side management and distributed

generation, are supposed to participate to the provision of ancillary services both locally and for the entire power system in the

context of competitive ancillary services markets.

Within SmartNet, answers are sought for to the following questions:

• Which ancillary services could be provided from distribution grid level to the whole power system?

• How should the coordination between TSOs and DSOs be organized to optimize the processes of procurement and

activation of flexibility by system operators?

• How should the architectures of the real time markets (in particular the markets for frequency restoration and

congestion management) be consequently revised?

• What information has to be exchanged between system operators and how should the communication (ICT) be

organized to guarantee observability and control of distributed generation, flexible demand and storage systems?

The objective is to develop an ad hoc simulation platform able to model physical network, market and ICT in order to analyse

three national cases (Italy, Denmark, Spain). Different TSO-DSO coordination schemes are compared with reference to three

selected national cases (Italian, Danish, Spanish).

The simulation platform is then scaled up to a full replica lab, where the performance of real controller devices is tested.

In addition, three physical pilots are developed for the same national cases testing specific technological solutions regarding:

• monitoring of generators in distribution networks while enabling them to participate to frequency and voltage

regulation,

• capability of flexible demand to provide ancillary services for the system (thermal inertia of indoor swimming pools,

distributed storage of base stations for telecommunication).

Partners

Copyright 2019 SmartNet Page 2

Table of Contents

1 The SmartNet Simulator ... 9

1.1 Time axis of the simulation .. 10

1.1.1 Aggregation/Market/Disaggregation Latency (from devices data collection to application

of set-points) .. 13

1.1.2 Market clearing frequency .. 14

1.1.3 Pipelining .. 15

1.2 Simulation of the SmartNet TSO-DSO coordination schemes ... 17

1.2.1 TSO-DSO coordination scheme A – Centralized ancillary services market model 18

1.2.2 TSO-DSO coordination scheme B – Local ancillary services market model 19

1.2.3 TSO-DSO coordination scheme C – Shared balancing responsibility model 20

1.2.4 TSO-DSO Coordination scheme D – Common TSO-DSO ancillary services market model21

1.2.5 Process describing the independent evolution of device status and network 22

2 Scheduler .. 24

2.1 Brief description of the module .. 24

2.2 The high level architecture ... 24

2.3 Input from database .. 26

2.4 List of functions of the module ... 26

2.5 Output to database ... 27

3 Bidding and dispatching layer .. 28

3.1 Atomic Loads Aggregation/Disaggregation module ... 29

3.1.1 Brief description of the module .. 29

3.1.2 Input from other modules ... 30

3.1.3 Flow chart of the module ... 31

3.1.4 Output to database ... 34

3.2 TCL Aggregation module ... 35

3.2.1 Brief description of the module .. 35

3.2.2 Input from database .. 36

3.2.3 Input from other modules ... 37

3.2.4 List of functions of the module ... 37

3.2.5 Flow chart of the module ... 39

3.2.6 Output to database ... 42

3.3 TCL Disaggregation module ... 44

3.3.1 Brief description of the module .. 44

3.3.2 Input from database .. 44

3.3.3 Input from other modules ... 44

Copyright 2019 SmartNet Page 3

3.3.4 List of functions of the module ... 45

3.3.5 Flow chart of the module ... 45

3.3.6 Output to database ... 46

3.4 Conventional Generators Aggregation module ... 47

3.4.1 Brief description of the module .. 47

3.4.2 Input from database .. 47

3.4.3 Input from other modules ... 48

3.4.4 List of functions of the module ... 48

3.4.5 Flow chart of the module ... 48

3.4.6 Output to database ... 50

3.5 Conventional Generators Disaggregation module ... 51

3.5.1 Brief description of the module .. 51

3.5.2 Input from database .. 51

3.5.3 Input from other modules ... 51

3.5.4 List of functions of the module ... 52

3.5.5 Flow chart of the module ... 52

3.5.6 Output to database ... 53

3.6 CHP Aggregation module .. 54

3.6.1 Brief description of the module .. 54

3.6.2 Input from database .. 54

3.6.3 Input from other modules ... 55

3.6.4 List of functions of the module ... 55

3.6.5 Flow chart of the module ... 55

3.6.6 Output to database ... 57

3.7 CHP Disaggregation module .. 58

3.7.1 Brief description of the module .. 58

3.7.2 Input from database .. 58

3.7.3 Input from other modules ... 58

3.7.4 List of functions of the module ... 58

3.7.5 Flow chart of the module ... 59

3.7.6 Output to database ... 60

3.8 Curtailable generation and curtailable load Aggregration/Disaggregation module 61

3.8.1 Brief description of the module .. 61

3.8.1.1 CGCL Aggregator Factory... 62

3.8.1.2 CGCL Aggregator Implementation Module (Agent Logic)... 63

3.8.2 Input from database .. 65

3.8.3 Input from other modules ... 67

Copyright 2019 SmartNet Page 4

3.8.3.1 Inputs for CGCL Aggregator Factory ... 67

3.8.3.2 Inputs for CGCL aggregator implementation .. 67

3.8.4 Flow chart of the module ... 68

3.8.4.1 CGCL Aggregator Factory Module .. 68

3.8.4.2 CGCL Aggregator Implementation Module .. 74

3.8.5 Output to database ... 77

3.8.5.1 Aggregation Bids to Market .. 77

3.8.5.2 Disaggregation Outputs .. 77

3.9 Electrical Energy Storage unit aggregation module .. 79

3.9.1 Brief description of the module .. 79

3.9.2 Input from database .. 79

3.9.3 Input from other modules ... 80

3.9.4 List of functions of the module ... 81

3.9.5 Flow chart of the module ... 82

3.9.6 Output to database ... 82

3.10 Electrical Energy Storage unit disaggregation module .. 84

3.10.1 Brief description of the module .. 84

3.10.2 Input from database... 84

3.10.3 Input from other modules ... 85

3.10.4 List of functions of the module .. 85

3.10.5 Flow chart of the module ... 85

3.10.6 Output to database ... 86

4 Market layer .. 87

4.1 Brief description of the module and flowchart .. 87

4.2 Inputs from database .. 89

4.3 List of functions ... 91

4.4 Flow chart .. 93

4.5 Outputs to database ... 94

5 Physical layer ... 96

5.1 Brief description of the module .. 96

5.1.1 Updated of devices status according to disaggregation set-points .. 96

5.1.2 Simulation of network and automatic asset ... 96

5.1.3 Update of devices status according to network behaviour .. 97

5.2 Input from database .. 97

5.3 Input from other modules ...102

Copyright 2019 SmartNet Page 5

5.4 List of functions of the module ...102

5.5 Flow chart of the module...108

5.5.1 PHYLAY 1 ..108

5.5.2 PHYLAY 2 ..119

5.5.2.1 Simulation of DSO operations ..122

5.5.2.2 Simulation of TSO operations ..122

5.5.2.3 Updated states of devices ..127

5.6 Output to database ...134

6 Database tables..136

6.1 Devices ...136

6.1.1 Device Constants: ..136

6.1.2 Device Profiles ..136

6.1.3 TCL Aggregator internal tables ...139

6.1.4 Disaggregator set points ..140

6.1.5 Device and Network Variables ..140

6.1.6 Initial state of devices ...141

6.1.7 Final state of devices ...141

6.2 Network Model ..142

6.2.1 Network parameters ...142

6.2.2 Network Variables ..145

6.2.3 Final state of network ...145

6.3 Market tables ..147

6.3.1 Market Bids: ..147

6.3.2 Market Bid Constraints: ...149

6.3.3 Price profiles ...152

6.3.4 NodeNetInjection: ...152

6.3.5 Market Clearing: ..153

7 References ...157

Copyright 2019 SmartNet Page 6

List of Abbreviations and Acronyms

Acronym Meaning

aFRR automatic Frequency Restoration Reserve

AL Atomic Load

AMPL A Mathematical Programming Language (software)

CGCL Curtailable Generation Curtailable Load

CHP Combined Heat and Power

CON(V) Conventional Generator

CPLEX A mixed-integer linear programming solver offered by IBM (software)

CS Coordination scheme

DB Database

DSO Distribution System Operator

EES Electrical Energy Storage

EV Electric Vehicle

mFRR manual Frequency Restoration Reserve

OLTC On Load Tap Changer

OPF Optimal Power Flow

PF Power Flow

PHYLAY Physical Layer

PV Photovoltaic

SEL Sheddable Load

SQL Structured Query Language

STATCOM Static Compensator

STO Storage

TCL Thermostatically Controlled Loads

TSO Transmission System Operator

Copyright 2019 SmartNet Page 7

Executive Summary

The TSO-DSO coordination schemes proposed by SmartNet have been tested by means of dedicated

simulations aimed at realistically reproducing the behavior of the electrical system and of the involved actors in

hypothetical scenarios (expected 2030 situation of Italy, Denmark and Spain). The present report describes the

software platform of the simulator which has been completely developed by the SmartNet team on the basis of

the theoretical concepts in terms of aggregation/disaggregation, TSO-DSO interactions and responsibilities,

market clearing strategies.

An exhaustive simulation of TSO-DSO coordination schemes requires the simulation of both transmission and

distribution network, including all the power devices and source of flexibility which are connected to the

electricity system. For this reason, all the software blocks managed by the simulation platform have been

designed in order to manage large amount of data and the related algorithms have been designed by means of

simplifications that define a trade-off between simplicity (low computational burden) and accuracy.

In order to test the main interactions among system actors, the simulator has been coded by defining three

main layers:

• The market layer, which integrates the market clearing routines aimed at solving the forecasted

conditions of network imbalance and congestions by optimally activating the flexibility bids. It can

have different structures depending on the implemented TSO-DSO coordination scheme (central

market, central+local markets, etc.) and integrates the possibility of accepting complex bids

submitted by distribution resources too.

• The bidding and dispatching layer, which implements the aggregation/disaggregation routines

that translate the flexibility of physical resources (both transmission and distribution ones) into

profitable bids to be submitted to the market. It also convert the market directives into individual

set-points to be sent to the activated resources.

• The physical layer, which simulates the physics behind each considered flexible power unit and the

effects of its produced/consumed power on the electricity system. In addition to the network

behavior, it also simulates the autonomous actions taken by network operators on grid asset,

including curtailment in case of unforeseen congestions.

Copyright 2019 SmartNet Page 8

These layers are composed by different blocks that can be called in sequence by a dedicated scheduler.

Numerous settings can be set in order to simulate arbitrary market and bidding dynamics (market frequency,

latency, time horizon).

The document describes in detail the simulation blocks that have been developed by the SmartNet team,

illustrating the role of the main functions, the variables used to make interaction among different layers, as well

as the necessary settings for the setup of simulation platform. In spite the simulation platform will not publicly

available, the level of details adopted for this report allows the reader to understand the main dynamics behind

each different software block, as well as the overall information flow between the simulated system actors

(market operator(s), network operators, aggregators, users/producers).

Copyright 2019 SmartNet Page 9

1 The SmartNet Simulator

In order to allow distribution system resources to provide ancillary services to the power system, the project

SmartNet proposed different TSO-DSO coordination schemes [1]. These interaction models, in addition to enable

an efficient procurement and activation of reserves located ad distribution level, new ancillary services aimed at

guaranteeing a better management of the distribution network (i.e. congestion management and balancing).

Each TSO-DSO coordination scheme has its own peculiarities and the performance is expected to be

dependent on the application scenario. The objective of the project SmartNet consists of testing the proposed

TSO-DSO interactions on the 2030 scenarios expected for Italy, Denmark and Spain. For this reason, a dedicated

simulation platform has been realized in order to implement the main concepts developed within the project

aimed at supporting the coordination between network operators. The structure of the simulator can be

described as a sequence of three main blocks:

• The bidding and aggregation layer

It consists in the processes aimed at converting the flexibility of physical resources (located bot at

transmission and distribution levels) into bids that guarantee a profit to their owner. In case

numerous small resources are threated (such as the case of small distribution power units), these

processes aggregates them in order to constructs completive flexibility bids.

Once the ancillary services market has selected the optimal activations, the accepted bids are

processed by this layer in order to convert market directives into power set-points for the controlled

physical resources (disaggregation).

This layer, described in detail in section 3, implements the algorithms proposed by [2].

• The market layer

It implements the market clearing algorithms aimed at optimizing the activations of the submitted

bids for the simultaneous management of two ancillary services: balancing and congestion

management. Depending on the TSO-DSO coordination scheme, these services are limited to the

transmission network (the TSO is a buyer of flexibility) or extended to distribution network too

(both TSO and DSO are buyer of flexibility).

In order to manage distribution resources and increase the competition, the implemented algorithms

integrate the possibility of submitting bids with complex constraints, particularly useful for the

management of (distribution) resources with rebound effects.

This layer, described in detail in section 4, implements the algorithms described in [3].

• The physical layer

It simulates the behavior of the physical devices connected to distribution and transmission grids on

the basis of their internal states and set-points received by the bidding and dispatching layer. Their

power exchanges are then computed in order to calculate the state of the electrical network.

While the other two layers work on forecasted network situations, the physical blocks works on the

actual state of the system. This means that residual imbalance (due to forecasting error) and

congestions (due to unpredicted overloading and voltage issues) are managed separately by means

Copyright 2019 SmartNet Page 10

of secondary frequency regulation and unwanted measures.

The functions implemented within this layer are described in section 5.

The following sub-sections describes the main concepts behind the developed simulation environment,

illustrating how the time dimension, the sequence of the blocks are managed by the software environment and

their interactions. In addition, from section 2 to section 6, each layer is described in detail by listing all the coded

functions and database variables called during the simulation process.

1.1 Time axis of the simulation

The SmartNet simulation is structured in order to return, on a discrete-time axis, the situation of the network

as well as the status of the flexible devices. These time steps, represented in Figure 1, correspond to the time

instants in which relevant updates are experienced by the physical layer: they can be represented by the state

variation of devices and/or network assets, as well as the instants in which information are communicated

from/to the other simulation layers.

Figure 1 – Discrete-time axis for which the SmartNet simulator returns the network conditions

and status of devices. A time resolution of 15 minutes is hypothesized

According to the diagram proposed in Figure 1, the application of the set-points (returned by the bidding and

dispatching layer) and the communication of the network/devices status (again to the bidding and dispatching

layer) are simultaneous. However, since the application of the set-points of the devices (as well as the natural

evolution of the non-controlled power units) produces effects on the network physical quantities that have to be

kept monitored until the reception of new set-points. In fact, between two generic T-th and (T+1)-th steps, the

power exchange of non-controlled devices can change, failures occurs, network operators take action

(congestion management, aFRR), etc. For this reason, an additional time step (T+1)- is added in order to provide

information on the events occurred within two consecutive set-points reception (T and T+1). In practice (Figure

2), having assumed that the starting network situation is the one in T-:

Copyright 2019 SmartNet Page 11

• the set-points returned by the other layers are applied in T and, consequently, the device and network

status are updated;

• the updated status of the devices and of the network are communicated back to the other layer in the

same time instant;

• the application of the set-points and the evolution of non-flexible devices determine transients in the

network/devices status and their final values (steady state condition) are returned at (T+1)-.

• During the time elapsed from T to (T+1)-, the network/devices situation has evolved creating also new

imbalance and activating the aFRR.

Figure 2 – SmartNet simulator events reported on the discrete-time axis.

A time resolution of 15 minutes is hypothesized

The set-points communicated at time T to the physical layer and the successive network/device status

evolution correspond to the result of a structured process that involves all the SmartNet simulation layers. A

graphical representation of this process (corresponding to one time step iteration of the SmartNet simulator) is

reported in Figure 3 and it shows the following main steps:

1. The past network/devices situation is collected for:

a. Physical layer – return a forecasting of the situation of the network/devices when the set-points

will be applied (and beyond).

b. Bidding and dispatching layer – Calculating bids of resources that directly access to the market.

c. Bidding and dispatching layer – Aggregating small units to access to the market.

2. The outputs of these three sub-processes are managed by the market layer in order to report them in

the optimization functions of the market clearing algorithm. The market returns the optimal set-points

of the modelled flexible resources aimed at solving energy balance and network congestions.

3. Once set-points have been disaggregated/managed by the bidding and dispatching layer, this last layer

sends them to the physical one, as well as the set-points for the network asset controlled by the

operators (e.g. tap changing transformers).

4. At this step, set-points are applied (T-th time step) and begin to produce effects on the devices and on

network status.

5. However, having considered that the forecasted situation at step 1.a. is subject to errors, unforeseen

situations (deviations from ideal set-points, congestions, residual imbalance, etc.) may happen and:

Copyright 2019 SmartNet Page 12

a. resources subjected to forecasting error activate their assigned set-points only if their current

flexibility margins allow them;

b. network operators perform corrective actions (curtailment of resources in case of congestions,

aFRR activation in case of residual imbalance, etc.).

All these measures take time to be activated and, in order to evaluate their impact on the network state,

their impact is reported at (T+1)- (immediately before the application of the new set-points,

simultaneously computed by the other layers).

6. Therefore, in correspondence of (T+1)- time step, the network is assumed to be:

a. Without congestions (solved by the market with mFRR activations and congestion management

strategies performed by network operators)

b. Balanced (thanks to the activation of mFRR and aFRR)

c. Ready to receive new set-points by the other layers (in order to replace the activated reserves)

7. The process is repeated from step 1 for the computation of the set-points to be activated at T+1.

The diagram reported in Figure 3 already indicates some concepts related to the time dynamics of the system.

The following sub-sections are explaining more in details the aspects of latency L and market clearing period Ts.

Figure 3 – Details of a generic SmartNet simulation process

Copyright 2019 SmartNet Page 13

1.1.1 Aggregation/Market/Disaggregation Latency (from devices data collection to

application of set-points)

In real life, the execution of the bidding/market clearing/dispatching processes (also reported in Figure 3)

isrequires computational burden and time. This means that, from the measured/estimated imbalance and

congestion to the application of corrective set-points, there is a time latency. This latency may depend on several

factors:

• size of the network;

• aggregation/disaggregation timing;

• amount of bids to be processed by market clearing algorithms;

• amount/complexity of constraints to be included in the optimization algorithms;

• etc.

Taking into account the discrete-time axis defined at the beginning of the document, this latency L can be

measured with the amount of time steps elapsed from the data collection (instant in which bidding/dispatching

and market layers are querying the physical one) to the set-points application on resources. Figure 4 graphically

reports the latency concept:

• when L=1 the network/devices are monitored till T-1, the set-points are communicated at T- and start to

produce effects on the physical layer starting from T;

• when L=2 the network/devices are monitored till T-2, the set-points are communicated at T- and start to

produce effects on the physical layer starting from T;

• when L=3 the network/devices are monitored till T-3, the set-points are communicated at T- and start to

produce effects on the physical layer starting from T.

In all the cases, after the application of the set-points, the physical layer autonomously evolves until the

reception of new set-points at T+1. Therefore, as anticipated above, at (T+1)- the simulation results will report

the network/device status after their evolution according to the forecasting error and the possible interventions

of network operators in order to contain residual imbalance and congestions.

Copyright 2019 SmartNet Page 14

Figure 4 – SmartNet simulation process: latency (the set-point calculation process consists

of a combination of aggregation, market and disaggregation routines)

1.1.2 Market clearing frequency

Previously, two important time quantities have been defined:

• the resolution (… T-1, T, T+1 …) of the discrete-time axis, on which the simulation results are reported;

• the latency L of the set-points calculation, starting from the network/devices measurements.

In addition to these, another important parameter to be defined is represented by the market clearing

frequency. In fact, it is not necessary to have a cleared market with the same time resolution adopted for the

provision of the simulation results, but it can be arbitrarily selected on the basis of standard

balancing/congestion management needs.

According to this, the frequency (period) TS is defined as the amount of time steps (referred to the simulation

discrete-time axis) between two consecutive market clearing processes. Even in this case, the concept can be

represented graphically (Figure 5). From the reported diagrams, it is possible to notice that:

Copyright 2019 SmartNet Page 15

• in order to provide the set-points at the generic time step T, aggregators and market can access only to

network/devices situations before (T-L) and only making forecast for the consecutive time steps

(T > T-L);

• the market clearing frequency cannot be lower than 1;

• when TS>1, the intermediate network/devices situations have to be calculated by means of a dedicated

processes which are separated from the market one (modelling only the network/devices independent

evolution and the possible interventions of network operators);

• in this last case, the market clearing and disaggregation processes return a series of set-points to be

applied in the next time instants (not only at T, but also at T+1, T+2, … T+TS).

Figure 5 – SmartNet simulation process: market clearing frequency

1.1.3 Pipelining

The previous section reports scenarios in which the latency corresponds to the market clearing period

(L = TS). However the possibilities are not limited to this situation.

In principle, the provision of set-points happens with a fixed timing (e.g. every 15 minutes a new series of

set-points is provided to the devices/network). However, the process of generating these values can also be

faster, with a latency L < TS (Figure 6). In this case the market clearing algorithms generally process the

set-points for more time intervals (Ts sets of set-points).

Copyright 2019 SmartNet Page 16

Figure 6 – SmartNet simulation process: case for which L < TS

When L > TS the situation is more complex. Looking at Figure 7 it can be noticed that separate processes have

to be run in parallel in order to provide the required set-points at every TS. In this case, one of the processes

aimed at generating the set-points (layer (1)) has not visibility of the ones generated by the parallel processes

(layer (2)) and vice versa. This aspect is, of course, a significant issue and this decoupling should be faced with

appropriate techniques.

Figure 7 – SmartNet simulation process: case for which L > TS

Copyright 2019 SmartNet Page 17

1.2 Simulation of the SmartNet TSO-DSO coordination schemes

The investigations performed by SmartNet have highlighted five different coordination schemes that describe

the interactions between TSO and DSO for the management of flexible resources for the provision of ancillary

services. These schemes are described in [1] and [3] and are represented by:

• A. Centralized ancillary services market model

• B. Local ancillary services market model

• C. Shared balancing responsibility model

• D. Common TSO-DSO ancillary services market model

• E. Integrated flexibility market model

Having considered the concepts described within the previous section, a single iteration of the SmartNet

simulator (detailed in Figure 3) is reported in the sequence diagram depicted in Figure 8. In this scheme

(representing two hypothetical cases of L and TS) the processes responsible of generating and applying

set-points are highlighted with a red path, while the processes describing the network/devices independent

evolution are highlighted with a green path.

Figure 8 – Path followed by a single iteration of SmartNet simulator for two different selections of L and TS

The following sub-sections report the detailed sequence diagrams adopted by the simulator in order to

simulate the different TSO-DSO coordination schemes. It will be noticeable how TSO-DSO interactions will

mainly impact on the market structure, rather than the other layer, except for TSO-DSO coordination scheme C,

where the balancing responsibility assigned to the DSO is significantly affecting the simulation of the distribution

network.

Copyright 2019 SmartNet Page 18

1.2.1 TSO-DSO coordination scheme A – Centralized ancillary services market model

In this scheme, the process describing the generation of individual set-points (one for each flexible resource) is reported in Figure 9. It can be noticed that, since the

market includes only the transmission network model, the forecasted network status is required only at transmission level. According to [1], distribution grid

constraints can be potentially modelled within the central market clearing algorithm. This last case, however, would be extremely similar to coordination scheme D1

(in terms of simulation results) and, for this reason, this variant is not investigated. The sequence diagram showing the simulation steps of TSO-DSO coordination

scheme A is reported in Figure 9.

Figure 9 – TSO-DSO coordination scheme A – generation of individual set points for energy balancing

Copyright 2019 SmartNet Page 19

1.2.2 TSO-DSO coordination scheme B – Local ancillary services market model

In this coordination scheme, in addition to the centralized market, a local market is cleared at distribution level. The DSO has priority to procure the necessary

flexibilities in the local market (i.e. for local congestion management and rebalancing of taken actions) and, after that, the remaining resources are forwarded to the

centralized market (which also includes transmission elements). The sequence diagram showing these steps is reported in Figure 10.

Figure 10 – TSO-DSO coordination scheme B – generation of individual set points for energy balancing

Copyright 2019 SmartNet Page 20

1.2.3 TSO-DSO coordination scheme C – Shared balancing responsibility model

This coordination scheme is fairly different with respect to the other ones, since the DSO is called to act with balancing responsibility and the management of

transmission and distribution system is completely decoupled. The same basic sequence diagram can be considered representative of the two distinct processes (one

for distribution and one for transmission) and they are schematized in Figure 11.

Figure 11 – TSO-DSO coordination scheme C – generation of individual set points for energy balancing

Copyright 2019 SmartNet Page 21

1.2.4 TSO-DSO Coordination scheme D – Common TSO-DSO ancillary services market model

From the simulation perspective, this coordination scheme is identical to coordination scheme A, except for the integration of the distribution network model in the

centralized market clearing. This means that, also the forecasting of the distribution network state has to be calculated and sent to the common market. The process of

generating individual set points is schematized in Figure 12.

Figure 12 – TSO-DSO coordination scheme D – generation of individual set points for energy balancing

Copyright 2019 SmartNet Page 22

1.2.5 Process describing the independent evolution of device status and

network

In real world, during the processing of aggregation/market/disaggregation routines, the controllable

devices and the network states are subjected to independent evolution, which occurs because of the

forecasting error that determines:

• deviations of resources from the set-points requested by the disaggregators;

• unforeseen network congestions that requires re-dispatching of critical resources;

• residual network imbalance (consequence of the previous two points) that has to be managed

by means of aFRR activations.

The simulation environment takes into account the effects of the forecasting error on the application

of set-points. The three considered points are processed by means of the sequence diagram reported in

Figure 13, which describes how network/devices are evolving from the application of

market/disaggregators set-points in T-1 to the time instant immediately before the application of the

market/disaggregators set-points in T.

Figure 13 – Independent network evolution and operations during the bidding and market processes

This process can be applied to any TSO-DSO coordination scheme. However, a different approach has

been selected for coordination scheme C. In this case, having assumed that the DSO has balancing

responsibility for the distribution network, it is called to provide an independent aFRR regulation in

order to manage the residual imbalance of its system. According to this, Figure 14 report the sequence

diagram aimed at describing the network/devices status evolution for coordination scheme C.

Copyright 2019 SmartNet Page 23

Figure 14 – Application of individual set points for energy balancing and consequent network evolution

(TSO-DSO coordination scheme C)

Copyright 2019 SmartNet Page 24

2 Scheduler

2.1 Brief description of the module

The SmartNet architecture has been designed in a way as to allow different companies to develop and

run each their own blocks with as minimal necessary interactions as possible. For this reason, an

architecture based on sequentially executable blocks has been chosen. This sequential execution order

leads to a scheduler that just corresponds to a simple for loop over the blocks and just executes the

block.execute() method for each block. The scheduler defines the order in which blocks have to be

executed. In particular, according to architecture described in section 1, three main blocks can be

identified:

• Bidding and dispatching layer (described in section 3)

It simulates the processes that translate the status of the flexible units in bids to be transmitted

to the market operator. These processes also include aggregation of small unit flexibilities in a

single one (big enough to participate to the market). Secondly, once the market has returned a

solution, this layer dispatches the set-points to the controllable units.

• Market layer (described in section 4)

It runs the optimization algorithms (market clearing routines) that return the optimal set-points

that have to be applied in order to balance the considered electricity system. These set-points are

communicated to the bidding and dispatching layer (some of them are aggregated) in order to be

adequately dispatched to the resources of the physical layer.

• Physical layer (described in section 5)

It simulates the electrical behavior of the network and devices for a given set of set-points

provided by the other layers (bidding and dispatching layer). This layer also includes the

low-level controls of network operators on grid assets and devices for the management of

network congestions and borders balancing (secondary frequency control).

2.2 The high level architecture

The high level architecture and corresponding directory organisation of code is as given in Figure 15.

It includes orange blocks (process blocks) and blue blocks (database storage blocks). In the same picture,

one can see that some blocks operate at node level (green area) and some at device level (yellow area).

Different modules do not send messages between them directly, but rather each block writes all its

outputs to the global database and then finish execution. Then the next block knows exactly where to pick

up that (and other) information from the database.

Copyright 2019 SmartNet Page 25

Figure 15 – Block sequence diagram: implementation in process, tables and directories

A SmartNet simulation starts by reading the prepared scenario. A scenario consists of human

prepared data and then some of it is also still deduced/expanded initially in the simulation. Then, the

aggregation blocks (one per specific technology) aggregates its flexibility capabilities per node. These are

then written into bids and constraints table within the database. The scheduler then gives control to the

market. The market reads these bids and constraints table and sets up a market clearing optimisation

table (in AMPL). The market then solves it and writes its outputs (accepted bid quantities and nodal

prices and the state of the network nodes and edges) to the database in what it is called the clearing block.

This data is then read by the disaggregation blocks. These blocks disaggregate the accepted quantities at

the node level into accepted quantities at the device level and as such reach set-points for their devices.

The physical layer then checks whether these activations are feasible for the network, and performs a

sequence of tuning algorithms to resolve any problems. The resulting set-points and state of the network

is written to the database and serves as the starting point for the iteration corresponding to the next time

step. The scheduler repeats this process for every time step defined in the simulation. The flow of

operation depicted has to be repeated in order to simulate the desired time horizon.

Copyright 2019 SmartNet Page 26

2.3 Input from database

This section lists and describes the tables where the data are read. It is important is to underline the

control parameters that affect the behaviour of the module and that can be changed in order to simulate

different scenario configurations.

• L_m: This is the Latency of the market. Latency is defined as the (integer) time (index)

difference by the time step at which the market calculates its outputs (atT) and the first tim

step it calculates the outputs for (forT). This latency also implies that bidders should submit

their bids by at least so much time in advance for the bids to be considered in the market.

• H_m: Length of the Horizon of the market. This is the [difference between the last and the first

forT that the market considers in its bids] + 1.

• rollingHorizonAggregatorAndMarket: When True, this indicates that the market is

run every time step. If False, the market will only be run every H_m time steps, so all

decisions are final, since outputs for any single time step are only calculated once.

• disaggregateOnlyOncePerMarketClearing: If True, it disaggregators are called only

once for the entire time horizon. If False disaggregation is done every time step instead, in

which case disaggregators have to produce only values for one iteration (at a time).

• disaggregateWithOnlyMostRecentPhylayToOutput: Determines which phylay

output is used to disaggregate. If False, disaggregators work with information from block

phylay2 (from older atT for forT where atT<forT-L_m already. If True, disaggregation

happens only with phylay2 info produced at atT=forT–L_m.

2.4 List of functions of the module

run(scenarioId, overwrite_CS_code, marketSolver=’cplex’): This is the main

scheduler function. One can specify the simulation to be carried out, the coordination scheme that has to

be tested for this scenario and the solver that the market should use (cplex/gurobi). This function

performs a loop that just calls the execute function of each block in a specific order. Different schedules

are possible. For example it can be that the aggregator and market module are called for every loop

iteration, or not. Some cases like these are described in the previous section where the meaning of the

called parameters is described.

The scheduler has been designed with care that all configurations (parameter value combinations)

generate a consistent data flow. This means that all data that is produced (written to an

(atT, forT)-location) is read by subsequent modules (read after write guarantee) as well as that all data

consumed (read from an (atT, forT)-location), is indeed actually produced by previous modules (write

before read guarantee).

Copyright 2019 SmartNet Page 27

2.5 Output to database

The scheduler just corresponds to a loop calling all block.execute functions from the process

blocks. The only table it also writes to is the timing logging table, where it logs the name of the function

and starting time in seconds.

Copyright 2019 SmartNet Page 28

3 Bidding and dispatching layer

The bidding and dispatching layer is responsible of translating the physical flexibility of power devices

in bids (bidding section) to be processed by the market blocks. Once the market clearing algorithm has

returned its results, the accepted activations are again processed by this layer (dispatching section) in

order to convert them into individual set-points for the physical resources (managed by the physical

layer).

Since the majority of the connected resources are located at distribution level and are characterized

by small power flexibility, most of the time the bidding and dispatching processed are actually

represented by aggregation and disaggregation functions, which merge together small resources in order

to produce bids with larger quantities.

According to [2], the aggregation and disaggregation functions are carried out for each technology

independently. The following sections analyze in details how these algorithms have been implemented

within the SmartNet simulator code in order to interact with the rest of the simulation environment

(Scheduler, database, market and physical layers).

Copyright 2019 SmartNet Page 29

3.1 Atomic Loads Aggregation/Disaggregation module

3.1.1 Brief description of the module

This class performs the aggregation of atomic loads and produces the bids for the market block. An

atomic load consists of a device for which the activation can be postponed for a while, but once started

cannot be paused or interrupted. The flexibility is produced by checking what loads are available in the

system, and anticipating or postponing some of them in a coordinated manner by solving a discrete

optimization problem. In this simulation the AggregatorAL is used to provide demand response bids

from wet appliances, ie. dishwashers, tumble-driers, washing machines. The system makes use of

mixed-integer linear optimization and requires CPLEX.

The detailed description of the atomic loads aggregation/disaggregation model is found in [2]. What

this model represents, in short, is the controlled postponed activation of wet appliance loads with a fixed

power profile.

As with other aggregator modules, the atomic loads aggregator is created in the database by the

Scheduler and controlled by calling three functions:

• AggregatorAL.initialize

o Obtains scenario, nodes and networks data from the database, finds the bidding

node of each associated device node (the nodal resolution of the system varies with

the simulated TSO-DSO coordination scheme). The flow diagram is represented in

Figure 16.

• AggregatorAL.execute in mode “aggreg”

o In case of available devices for a specific network node, it creates a flexibility bid and

places it into the database. The flow diagram is represented in Figure 17.

• AggregatorAL.execute in mode “disagg”

o It activates the corresponding devices of a previously formulated bid that was

accepted by the market clearing module. The flow diagram is represented in Figure

18.

As with the other aggregator modules, the AggregatorAL is integrated to the Scheduler (see

section 2) and retrieves any other necessary data from the database.

The database is initially populated with characteristics of each aggregated device (stored in

devices_WetConstants). Each stored record represents the activation of one particular appliance

assumed to happen at a given time of the simulation. These device_WetConstants instances are

generated from a probability distribution, but, for simplicity, instead of working with the probability

distribution we assume complete information from the device_WetConstants records that will be

available during the day and at what time.

Copyright 2019 SmartNet Page 30

The database records associated with the AggregatorAL, as with other aggregators, are constantly

modified by the physical layer. The physical layer will be updating these appliances through the use of

devices_WetVariables and the functions WetAggToVar and WetVarToDevOut. More

information is available in section 5.

When the Scheduler calls the AggregatorAL.execute(“aggreg”), it updates its internal state

of the time of activation of the available loads, possibly altered by the physical layer module.

As with other bidding modules, the results of the market clearing module also affects the

AggregatorAL. When calling the AggregatorAL.execute(“disagg”), the accepted bids involving

this module are retrieved from the database. The module recovers the individual appliances involved in

the bid formulation and activates them.

3.1.2 Input from other modules

The resources controlled by the AggregatorAL are inserted in the database by the scenario creation

module.

The Scheduler can set up the aggressiveness of the AggregatorAL by adjusting the tail threshold.

This represents unwanted rebound caused by the flexibility activation that will be carried beyond the

current bidding window. If this value is too low, the algorithm is too conservative and no flexibility bids

will be produced by the AggregatorAL. If it is too high, it means that possible large imbalances are

being carried out of the simulation horizon. There is also the risk that the aggregator exhaust all its loads

in the first moment and keeps none for future market iterations.

When calling AggregatorAL.execute the only arguments are related to the time window

characteristics. There is atT, the time at which the aggregator is called and the latency L, which

represents a future time step where the flexibility is actually needed. For instance, when called on

aggregation mode, if atT=10 and L=3, the aggregator will look for loads that are still available at the

time step 10 (they have not started yet) and will modify their activation in order to change the aggregated

consumption profile as much as possible to the time slot forT=13.

In disaggregation mode these arguments are just used as filters to find any corresponding accepted

bids in the database.

Copyright 2019 SmartNet Page 31

3.1.3 Flow chart of the module

Figure 16 – Flow diagram of AggregatorAL.initialize

Scheduler initializes

AggregatorAL.initialize

devices_WetConstants

profiles_WetApplianceModel

profiles_WetApplianceProfile

profiles_WetApplianceBooting

Distribution

Preprocessing and

initialization

Initializes solver

Return to

Scheduler

Resources are

aggregated for each

distribution node

Actor

TSO-DSO

coordination

scheme A?

Resources are

aggregated for each

transmission node

 Solver available?

yes no

Raise exception

yes

no

Copyright 2019 SmartNet Page 32

Figure 17 – Flow diagram of AggregatorAL.execute(“aggreg”)

Scheduler executes

AggregatorAL.execute(“aggreg”) devices_WetConstants

Update available loads

Estimate flexibility cost

for all prospected bids

Gather all loads with the

same bidding node

Collect flexibility bids, if any,

and imbalances

(generate_flex_options)

Create exclusive QtBids at

each bidding node

independently

Write to database

 Any unprocessed

bidding node?

Return to

Scheduler

bids_QtBid

bids_QBid

bids_QBidSegment

bids_ExclusiveChoiceConstraintOnQtBids_QtBid

yes

no

Copyright 2019 SmartNet Page 33

Figure 18 – Flow diagram of AggregatorAL.execute(“disagg”)

Scheduler executes

AggregatorAL.execute(“aggreg”)

Collect all accepted bids for each

bidding node associated with the

AggregatorAL

For each one of them, collect the

loads employed in the bid

construction

Return to
Scheduler

Update loads starting time

according to the bid

requirements

disaggregators_setpoints_

WetAggOut

clearing.models.

QtBidVariables

Copyright 2019 SmartNet Page 34

3.1.4 Output to database

The AggregatorAL.initialize adds only an instance of the Actor model representing the

AggregatorAL.

AggregatorAL.execute(“aggreg”) possibly creates a bid for the corresponding market

iteration. Creating a bid requires the creation of linked records on the following database tables:

• QtBid,

• QBid,

• QBidSegment.

If more than one single possible activation is returned by AggregatorAL.execute(“aggreg”),

multiple records are added to QtBid, QBid and QBidSegment database tables. In this case, the instance

of ExclusiveChoiceConstraintOnQtBids_QtBid is also created, in order to specify the mutually

exclusive nature of the submitted flexibilities.

AggregatorAL.execute(“disagg”) stores the activations to be sent to physical devices on

disaggregators_setpoints_WetAggOut database table. These represent the activation of devices

that were actually anticipated to form the flexibility promised by an accepted bid.

Copyright 2019 SmartNet Page 35

3.2 TCL Aggregation module

3.2.1 Brief description of the module

The objective of the Thermostatically Controllable Loads (TCLs) Aggregation module is to combine the

flexibilities provided by a portfolio of TCLs defining, as output, a set of flexibility bids to be delivered to a

certain market session. The aggregation model assumes a direct load control scheme over the TCLs,

where the control variable consists of the temperature set-point that can be deviated from the baseline

temperature (in general, the comfort temperature set-point) between the upper and lower limits

(previously agreed between the end-users and the Aggregator). End-users received an economic

compensation in exchange for the loss of comfort. Based on this cost, the Aggregator defines the bidding

price. The detailed model of TCLs aggregation is described in [2].

A preliminary step to the algorithm is to define all possible control strategies than can be applied to

each TCL within the portfolio. For this purpose, a set of possible temperature set-points is defined by

splitting the control (and end-user comfort) margins of each TCL into a set of equal-sized temperature

levels. In addition, it is assumed that the durations of the control actions are variable varying from one

time-step to a maximum duration equal to the market horizon. As a result, the total number of control

actions that can be applied to each TCL is the multiplication of the total number of temperature levels by

the total number of possible durations. Each possible control action will lead to obtain a different

(mutually exclusive) flexibility bid.

The TCL Aggregator module implements two main steps, one for each control action:

1. Simulation of the individual flexibility profile of each TCL that is defined as the difference between

the baseline power profile and the controlled one. For this purpose, a second-order thermal model

describing the dynamics of the TCL is implemented. Discomfort costs are calculated based on the

internal temperature deviation from the baseline temperatures.

2. Aggregation of the individual flexibility profiles and discomfort costs to build the aggregated

flexibility bid to be delivered to the market.

This process is repeated for all control actions, obtaining as a result a set of flexibility bids that are

provided to the Market module. As anticipated above, these are sent with exclusive choice constraints to

indicate that only a single bid can be accepted among a set of bids as they correspond to different type of

control actions that cannot be supplied at the same time. As the flexibility that a TCL can provide at each

time-step depends on the past states of the device, the bids include two additional constraints: they have

to be “non-curtailable bid” and “Accept all time steps or none”. In this way, it is ensured that a bid is

accepted for all time-steps or it is not accepted at all (that is, that the whole power profile defined by the

bid is accepted).

Copyright 2019 SmartNet Page 36

3.2.2 Input from database

The inputs from the database required by the TCL Aggregation module are listed next:

TCL Aggregator internal tables

• aggreg_AggregatorTcl

• aggreg_AvailabilityProfile

• aggreg_AvailabilityStep

• aggreg_BidConfig

• aggreg_ComfTempProfile

• aggreg_ComfTempStep

• aggreg_Device

• aggreg_Envelope

• aggreg_ExtTempProfile

• aggreg_ExtTempStep

• aggreg_ExtTGProfile

• aggreg_ExtTGStep

• aggreg_IntTGProfile

• aggreg_IntTGStep

• aggreg_MaxTempProfile

• aggreg_MaxTempStep

• aggreg_MinTempProfile

• aggreg_MinTempStep

• aggreg_Tcl

• aggreg_TclStatus

• aggreg_TimeStep

• tcls_FlexProfSet

• tcls_TempSetPointSet

Network parameters

• network_Node

• network_SubNetwork

• network_SubNetworkType

• network_Network

Copyright 2019 SmartNet Page 37

Price profiles

• profiles_NodeDeltaCost

• profiles_NodeDeltaCostProfile

• profiles_NodeHasNodeDeltaCostProfile

• profiles_NodePrice

• profiles_NodePriceProfile

• profiles_NodeHasNodePriceProfile

Scenario data

• scenario_Scenario

Devices set-points

• devices_setpoints_TclDevOut

3.2.3 Input from other modules

The only direct input of the TCL aggregation module is from the Scheduler, that provides at every

market session the following parameters:

• Aggregation mode ("aggreg")

• Scenario identifier

• Starting time-step of the simulation window

• Market latency

• Market horizon

3.2.4 List of functions of the module

The TCL Aggregation module is based on an iterative process aimed at generating the flexibility bids.

This process comprises a set of loops that iterate, for each TCL in the portfolio, all the possible control

actions that can be applied to each TCL unit, i.e. temperature set-points set and control durations.

The module has been implemented following an object-oriented programming model. Each main

function corresponds to a different Class implemented in a separated python module (*.py) and

includes all required functions to implement a certain loop. In the next lines, the main functions of each

Class are described.

Copyright 2019 SmartNet Page 38

• Aggregator.py – Class AggregatorTCL

It implements the interface between the Scheduler and the TCL Aggregator/Disaggregator

modules. Gets all the required data for the simulation (scenario, coordination scheme,

simulation window, list of nodes, etc.) and calls the function that starts the aggregation

process:

o AggregatorTCL.doAggregation starts the aggregation process.

o AggregatorTCL.updateStatusFromPhylay reads the latest status of TCL

units from the physical layer and updates the status within the aggregation model.

• node_aggregator.py – Class NodeAggregator

It contains the main processes for simulating the aggregation process, especially the logic for

generating flexibility bids for all network nodes (that have TCL devices connected), and sends

the generated bids to the market.

o NodeAggregator.doAggregation performs the practical aggregation. It

includes a loop for carrying out the aggregation process for each network node.

o NodeAggregator.sendBidsMarket saves the generated flexibility bids,

including bid constraints, into the database.

• tcl_aggregator.py – Class TCLAggregator

It contains the logic for simulating the aggregation process for all TCLs connected to a single

network node. The main parameters of the simulation are initialised: list of available TCLs for

control within the TCL set, the set of temperature set-points and the set of control durations

to be simulated for each TCL connected to the specified node.

o TCLAggregator.doAggregation performs aggregation for all available TCLs, all

temperature set-points within the set-point set and all control durations within the

control duration set.

• portfolio_flex.py – Class PortfolioFlexSimulator

It contains the logic for simulating the individual flexibility profiles for all TCLs in the TCL set.

o PortfolioFlexSimulator.simulateTcls: contains a loop for simulating each

TCL for all the possible temperature control set-points and control durations within

the control duration set.

• set_point_flex.py – Class SetPointFlexSimulator

It contains the logic for simulating all temperature control set-points within the set-point set

for a given TCL unit.

o SetPointFlexSimulator.simulateControlTemp: for a given TCL, contains a

loop for simulating each temperature control set-point within the set-point set for all

control durations within the control duration set.

Copyright 2019 SmartNet Page 39

• profile_flex.py – Class ProfilesFlexSimulator:

It contains the logic for simulating all control durations within the control duration set for a

given TCL unit and temperature control set-point.

o ProfilesFlexSimulator.simulateProfiles: for a given TCL and

temperature control set-point, contains a loop for simulating each control duration

within the control duration set.

• multi_step_flex.py – Class MultiStepFlexSimulator:

It contains the logic for simulating all time-steps within the simulation window for a given

TCL unit, temperature control set-point and control duration.

o MultiStepFlexSimulator.simulatePeriod: for a given TCL, temperature

control set-point and control duration, contains a loop for simulating each time-step

of the simulation window

• single_step_flex.py – Class SingleStepFlexSimulator

It contains the logic for simulating the behaviour of a TCL during a single time step.

o SingleStepFlexSimulator.simulateStep: implements the required

calculations to simulate individual flexibility and discomfort cost for a single time

step when a particular temperature set-point and control duration is applied to a TCL

unit. The calculation is based on a second-order thermal model. The evolution of the

internal and envelope temperatures is also calculated as they are used as the initial

values for the next time-step calculations.

3.2.5 Flow chart of the module

The general structure of the TCL Aggregation module is described in the following three flowcharts.

The one illustrated in Figure 19 represents the main aggregation process. The second one (illustrated in

Figure 20), which is included within the first chart, represents the steps for the generation of the

aggregated bids. Finally, the third one (illustrated in Figure 21), which is included within the second one,

represents the steps for the generation of the individual bids. The algorithm takes as inputs scenario and

simulation information provided by the Scheduler, together with detailed data of the TCLs in the

portfolio, including constants and profiles information from the internal database tables of the TCL

aggregator. In addition, network information is also required because, as a function of the coordination

scheme, the generated flexibility bids will be grouped per transmission or distribution nodes (CS-A:

transmission nodes, other CSs distribution nodes). The results consist of a set of aggregated flexibility

bids per node that are stored in the bids and constraints tables of the market.

Copyright 2019 SmartNet Page 40

Figure 19 – Flow diagram of AggregatorTCL.execute(“aggreg”)

Copyright 2019 SmartNet Page 41

Figure 20 – Flow diagram of TCLAggregator.doAggregation

Copyright 2019 SmartNet Page 42

Figure 21 – Flow diagram of MultiStepFlexSimulator

3.2.6 Output to database

The TCL Aggregation module communicates with the other simulation blocks by writing in the

database tables reported below:

TCL Aggregator internal tables

• aggreg_FlexCalculation

• aggreg_BidProfile

• aggreg_BidCalculation

Copyright 2019 SmartNet Page 43

Bids

• bids_QBid

• bids_QBbidSegment

• bids_QtBid

Constraints

• constraints_ActivationDurationConstraint

• constraints_ExclusiveChoiceConstraintOnQtBids

• constraints_QPHalfPlaneConstraint

Copyright 2019 SmartNet Page 44

3.3 TCL Disaggregation module

3.3.1 Brief description of the module

The objective of the TCL Disaggregation module is to translate the results of the market clearing

process into control temperature set-points for the TCLs to attain the committed flexibility.

The implemented disaggregation process is straightforward since there is a direct link between the

flexibility bids sent to the market and the individual control actions applied to the TCLs used to obtain

them. So, when the market clearing results are known, the TCL Disaggregation module maps the accepted

bids with the individual control set-points and sends them to the Physical Layer module.

3.3.2 Input from database

The inputs from the database required by the TCL Disaggregation module are listed next:

Market clearing

• clearing_QBidSegmentVariables

• clearing_QBidVariables

• clearing_QtBidVariables

• clearing_SolveResult

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBbid

TCL Aggregator internal tables

• aggreg_FlexCalculation

• aggreg_BidProfile

• aggreg_BidCalculation

3.3.3 Input from other modules

As for the aggregation module, the only direct input is from the Scheduler that provides the

following parameters each time the TCL Disaggregation module is called:

Copyright 2019 SmartNet Page 45

• Aggregation mode ("disagg")

• Scenario identifier

• Starting time-step of the simulation window

• Market latency

• Market horizon

3.3.4 List of functions of the module

The main functions of the TCL Disaggregation module are described below. In a similar way as the TCL

Aggregation module, it has been implemented following an object-oriented programming model in which

each main function has been implemented in a different Class, and each Class in a different python

module (*.py).

• Aggregator.py – Class AggregatorTCL

It implements the interface between the Scheduler and the TCL Aggregator/Disaggregator

module.

o AggregatorTCL.doDisaggregation: starts the disaggregation process

• bid_disaggregator.py – Class BidDisaggregator

It contains the main entry point for simulating the disaggregation processes.

o BidDisaggregator.doDisaggregation: performs the disaggregation based

on the clearing results provided by the market module. As output, the temperature

set-points of the TCLs for the Physical Layer module are generated.

3.3.5 Flow chart of the module

The general structure of the TCL Disaggregation module is described in the flowchart of Figure 22. The

algorithm takes as inputs the clearing results of the market as well as information about the flexibility

bids previously sent to the market and the simulation results stored in the internal database tables of the

Aggregator. Afterwards, it carries out a straightforward disaggregation process to determine the set-

points to be sent to the TCLs to attain the committed flexibility.

Copyright 2019 SmartNet Page 46

Figure 22 – Flow diagram of AggregatorTCL.execute(“disagg”)

3.3.6 Output to database

Outputs from the TCL Disaggregator module consist of individual control temperature set-points for

each TCL that are written in the next table of the database:

Disaggregator set points

• disaggregator_setpoints_TclAggOut

Copyright 2019 SmartNet Page 47

3.4 Conventional Generators Aggregation module

3.4.1 Brief description of the module

The objective of this module consists of defining flexibility bids for the conventional generators. A

simplified model is implemented assuming that the flexibility of each generator corresponds to the

difference between the maximum/minimum power and the baseline. According to this a bid is created for

each time step (a single Qtbid composed by multiple Qbids) containing two segments: one for positive

flexibility (baseline production to maximum capacity) and the other for negative flexibility (baseline

production to technical minimum). Ramp constraints (RampConstraints) and reactive power

capability (QPDiscConstraint) are also forwarded to the market module.

3.4.2 Input from database

The inputs from the database required by the Conventional Generators Aggregation module are listed

next:

Device Constants:

• device_ConConstants

Device Profiles

• profiles_ConPowerProfile

• profiles_ConPower

Price profiles

• profiles_NodeDeltaCost

• profiles_NodeDeltaCostProfile

• profiles_NodeHasNodeDeltaCostProfile

• profiles_NodePrice

• profiles_NodePriceProfile

• profiles_NodeHasNodePriceProfile

Network parameters

• network_Node

• network_SubNetwork

Copyright 2019 SmartNet Page 48

• network_SubNetworkType

• network_Network

Device variables

• devices_ConVariables

Scenario data

• scenario_Scenario

3.4.3 Input from other modules

The only direct input is from the Scheduler that provides the following parameters each time the

Conventional Generators Aggregation module is called::

• Aggregation mode ("aggreg")

• Scenario identifier

• Starting time-step of the simulation window

• Market horizon

• Market latency

3.4.4 List of functions of the module

The main functions of the Conventional Generators Aggregation module are described below:

• Aggregator.py – Class AggregatorCONV

It implements the interface between the Scheduler and the Conventional Generators

Aggregation/Disaggregation module. It initializes all the required data for the simulation

(scenario, coordination scheme, simulation window, list of nodes, etc.) and calculates the

flexibility bids.

o AggregatorCONV.execute(“aggreg”): contains the main entry point for

simulating the aggregation process.

o AggregatorCONV.aggreg_bid: creates the flexibility bids of the conventional

generators

3.4.5 Flow chart of the module

The general structure of the Conventional Generators Aggregation module is described in the

flowchart of Figure 23. The algorithm takes as inputs scenario and simulation information provided by

Copyright 2019 SmartNet Page 49

the Scheduler, together with detailed data of the conventional generators including constants, variables

and profiles. Network information is also required to know the generators connection nodes. The results

consist of a set of flexibility bids per node that are stored in the bids and constraints tables.

Figure 23 – Flow diagram of AggregatorCON.execute(“aggreg”)

Copyright 2019 SmartNet Page 50

3.4.6 Output to database

Outputs of the Conventional Generators Aggregation module are written in the following database

tables:

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBid

Constraints

• constraints_QPDiscConstraint

• constraints_RampConstraint

Copyright 2019 SmartNet Page 51

3.5 Conventional Generators Disaggregation module

3.5.1 Brief description of the module

The objective of the Conventional Generators Disaggregation module is to translate the results of the

market clearing process into power set-points for the conventional generators to attain the committed

flexibility. The implemented disaggregation process is straightforward as each bid sent to the market is

directly accepted or rejected.

3.5.2 Input from database

The inputs from the database required by the Conventional Generators Disaggregation module are

listed as follows:

Market clearing

• clearing_QBidSegmentVariables

• clearing_QBbidVariables

• clearing_QtBidVariables

• clearing_SolveResult

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBid

3.5.3 Input from other modules

The disaggregation module takes as additional inputs the following parameters, which are provided

by the Scheduler routine:

• Aggregation mode ("disagg")

• Scenario identifier

• Starting time-step of the simulation window

• Market latency

• Market horizon

Copyright 2019 SmartNet Page 52

3.5.4 List of functions of the module

The main functions implemented in the Conventional Generators Disaggregation module are

described below:

• Aggregator.py – Class AggregatorCONV

It implements the interface between the Scheduler and the Conventional Generators

Aggregator/Disaggregation module.

o AggregatorCONV.execute(“disagg”)

It contains the main entry point for simulating the disaggregation process.

o AggregatorCONV.disaggreg_bid

It performs disaggregation based on the clearing results provided by the market

module. As output, power set-points for the conventional generators for the physical

layer module are generated.

3.5.5 Flow chart of the module

The general structure of the Conventional Generators Disaggregator module is described in the

flowchart of Figure 24. The algorithm takes as inputs the clearing results of the market as well as

information about the flexibility bids previously sent to the market and carries out a straightforward

disaggregation process to determine the set-points to be sent to the units to attain the committed

flexibility.

Copyright 2019 SmartNet Page 53

Figure 24 – Flow diagram of AggregatorCON.execute(“disagg”)

3.5.6 Output to database

Outputs from the Conventional Generators Disaggregation module consist of individual power

set-points attributed to each conventional generator. These set-points are stored within the following

database table:

Disaggregator set points

• disaggregator_setpoints_ConAggOut

Copyright 2019 SmartNet Page 54

3.6 CHP Aggregation module

3.6.1 Brief description of the module

The objective of this module consists of generating flexibility bids for the Combined Heat and Power

(CHP) units. A simplified algorithm is implemented: it assumes that the flexibility that can be provided by

each unit corresponds to a portion (defined by a power availability factor) of the power bandwidth

between the maximum/minimum power and the baseline. The availability factor represents a fraction of

the maximum flexibility which limits the possible baseline deviations in order to do not significantly

deviate from the nominal thermal demand.

According to this a bid is created for each time step (a single Qtbid composed by multiple Qbids)

containing two segments: one for upward power flexibility and the other for downward negative

flexibility. The reactive power capability (QPDiscConstraint) is also forwarded to the market module.

3.6.2 Input from database

The inputs from the database required by the CHP Aggregation module are listed next:

Device Constants:

• device_ChpConstants

Profiles

• profiles_ChpPowerProfile

• profiles_ChpPower

• profiles_NodeDeltaCost

• profiles_NodeDeltaCostProfile

• profiles_NodeHasNodeDeltaCostProfile

• profiles_NodePrice

• profiles_NodePriceProfile

• profiles_NodeHasNodePriceProfile

Network parameters

• network_Node

• network_SubNetwork

• network_SubNetworkType

• network_Network

Copyright 2019 SmartNet Page 55

Device and Network Variables

• devices_ChpVariables

Scenario data

• scenario_Scenario

3.6.3 Input from other modules

The only direct input is from the Scheduler that provides the following parameters each time the

CHP Aggregation module is called:

• Aggregation mode ("aggreg")

• Scenario identifier

• Starting time-step of the simulation window

• Market latency

• Market horizon

3.6.4 List of functions of the module

The main functions of the CHP Aggregation module are described below:

• Aggregator.py – Class AggregatorCHP

It implements the interface between the Scheduler and the CHP Aggregation/Disaggregation

module. Initializes all the required data for the simulation (scenario, coordination scheme,

simulation window, list of nodes, etc.) and calculates the flexibility bids.

o AggregatorCHP.execute(“aggreg”): contains the main entry point for

simulating the aggregation process.

o AggregatorCHP.aggreg_bid: creates the flexibility bids of the CHPs

3.6.5 Flow chart of the module

The general structure of the CHP Aggregation module is described in the flowchart of Figure 25. The

algorithm takes as inputs scenario and simulation information provided by the Scheduler, together with

detailed data of the CHPs including constants, variables and profiles. Network information is also

required to know the connection nodes of the CHPs. The results consist of a set of flexibility bids per node

that are stored in the bids and constraints tables of the market.

Copyright 2019 SmartNet Page 56

Figure 25 – Flow diagram of AggregatorCHP.execute(“aggreg”)

Copyright 2019 SmartNet Page 57

3.6.6 Output to database

Outputs of the CHP Aggregation module are stored within the following tables of the database:

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBbid

Constraints

• constraints_QPDiscConstraint

Copyright 2019 SmartNet Page 58

3.7 CHP Disaggregation module

3.7.1 Brief description of the module

The objective of the CHP Disaggregation module consists of translating the results of the market

clearing process into power set-points for each CHP units to attain the committed flexibility. The

implemented disaggregation process is straightforward as each bid sent to the market is directly

accepted or rejected and does not need extra processing.

3.7.2 Input from database

The inputs from the database required by the CHP Disaggregation module can be listed as follows:

Market clearing

• clearing_QBidSegmentVariables

• clearing_QBidVariables

• clearing_QtBidVariables

• clearing_SolveResult

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBbid

3.7.3 Input from other modules

The only direct input is from the Scheduler that provides the following parameters each time the

CHP Disaggregation module is called:

• Aggregation mode("disagg")

• Scenario identifier

• Starting time-step of the simulation window

• Market latency

• Market horizon

3.7.4 List of functions of the module

The main functions implemented in the CHP Disaggregation module are described below:

Copyright 2019 SmartNet Page 59

• Aggregator.py – Class AggregatorCHP

It implements the interface between the Scheduler and the CHP Aggregation/Disaggregation

module.

o AggregatorCHP.execute(“disagg”): contains the main entry point for

simulating the disaggregation process.

o AggregatorCHP.disaggreg_bid: performs disaggregation based on the

clearing results provided by the market module. As output, power set-points of each

CHP (to be processed by the physical layer module) are generated.

3.7.5 Flow chart of the module

The general structure of the CHP Disaggregator module is described in the flowchart of Figure 26. The

algorithm takes as inputs the clearing results of the market as well as information about the flexibility

bids previously sent to the market and carries out a straightforward disaggregation process to determine

the set-points to be sent to the CHPs to attain the committed flexibility.

Figure 26 – Flow diagram of AggregatorCHP.execute(“disagg”)

Copyright 2019 SmartNet Page 60

3.7.6 Output to database

Outputs from the CHP Disaggregation module consist of individual power set-points for each CHP unit,

which are stored within the following table of the database:

Disaggregator set points

• disaggregator_setpoints_ChpAggOut

Copyright 2019 SmartNet Page 61

3.8 Curtailable generation and curtailable load Aggregration/Disaggregation

module

3.8.1 Brief description of the module

The Curtailable Generation Curtailable Load (CGCL) aggregation/disaggregation module simulates the

aggregation/disaggregation of data and bids from hundreds of thousands of devices attached to a

particular node/ or a set of nodes1 on a physical power network. In this case, four different types of

devices are collated:

• Run-of-the-river hydroelectric

• Photovoltaic – PV (Solar)

• Wind

• Sheddable Loads (SEL) – e.g. Street Lamps

For each time step, bids from these different types of devices are combined into price buckets to

produce up to 20 price volume bids per time step2 (10 up bids and 10 down bids). Market rules

determine when aggregators will bid i.e. the time step and for how many future intervals (e.g. 8 bids of 15

minutes for the next hour).

Overall Control of the bidding process, including time steps, the number of periods bid, aggregation

and disaggregation start signals is driven by the Market Scheduler and scenario inputs. This data is sent

to a CGCL aggregator by the Scheduler.

The CGCL aggregator code initialises and creates all the aggregators for the scenario, and collects all the

device data associated with each aggregator. In effect, each aggregator is an agent (a software object),

who stores the data from all the devices connected to the aggregator’s node or nodes, in an in-memory3

three dimensional matrix.

An agent based object orientated design was used to construct the CGCL aggregator using a buckets or

tranche system to aggregate bids from up to 300,000 devices of four different types (PV Solar, Hydro

Wind and Sheddable Loads) across 10÷20,000 power nodes. In the current version, buckets are clustered

by cost, but the concept can be extended to a more general clustering algorithm.

The CGCL aggregator code makes extensive use of Pythons Numpy Array data manipulation routines

for calculation speed, which is ideally suited to n dimensional matrix manipulation

1 Under certain TSO-DSO coordination schemes the aggregator my collate data from several nodes
2 Parameter driven. User can change.
3 For speed – RAM is thousands of times faster than SSD

Copyright 2019 SmartNet Page 62

The CGCL aggregator code is split into two main parts:

1. A CGCL Aggregator Factory (Figure 27)

This creates the appropriate number of aggregator agent objects, creates a list (a python

dictionary – an agent Directory) of those objects , so that we can take control of them later

and populates them with data from a relational database. On receipt of an aggregation or

disaggregation signal from the scheduler module it also triggers the individual agents to

perform their calculations. Currently this is performed sequentially, but this could be

potentially multi-tasked.

2. An CGCL Implementation module

It contains the logic of the individual aggregator agents.

Figure 27 – Overall approach and design of CGCL aggregation

3.8.1.1 CGCL Aggregator Factory

The aggregator factory module creates an actor object that is used to create aggregator agents at

nodes. A list (or an agent directory) of the agents is created and is used to cycle through each of the

agents. The code in this module is essentially split into four and orchestrates the actions of CGCL

aggregator agents, each at a different node. This module or python package carries out the following

steps:

Copyright 2019 SmartNet Page 63

1. Initialisation of data – Pulling profile data once from the database at the very beginning of the

simulation and storing such data in Numpy matrices and lists. This data is transferred to

Agents so that they can create specific data (eg specific device profiles). This data is not

specific to any particular agent – e.g. Standardized Profiles and types

2. Creates and triggers the initialisation of aggregator agents. A dictionary of agent objects is

made, so that the code can address different agents at a later date. Control logic within this

module checks to see what TSO-DSO Coordination Scheme is being used. In the case of

Coordination Scheme A, aggregators are assigned to transmission nodes only, but a

list/dictionary of the distribution nodes associated with the Transmission node is made and

passed to the aggregator agent. So that it can collate all devices associated with the

distribution nodes connected to the transmission node. In the case of all other coordination

schemes, aggregators are placed at each and every node (Transmission and Distribution).

3. Sends an Executes aggregation signal to each of the aggregator agents – this triggers the

agents to aggregate and send bids to a global list. At the end of this process the module bulk

writes the bid data contained in this list. This is much quicker than having each individual

agent do this.

4. Sends an Executes disaggregation signal to each agents – this triggers the agents to

disaggregate cleared bids

Signalling is essentially controlled by an external scheduler. The overall flow and interactions of the

CGCL aggregator with other modules is shown in Figure 28. Note black blocks in the diagram are modules

that are provided by others simulation layers/blocks (e.g. Market Clearing or Scheduler modules). Dark

brown blocks are associated with the CGCL Aggregator Factory module and the other colours are

associated with the CGCL implementation module.

3.8.1.2 CGCL Aggregator Implementation Module (Agent Logic)

The aggregator implementation module, contains the logic of the aggregator agents, and performs

four main tasks:

1. Initialisation of agent Object – When an agent object is created this simple function creates

internal storage of variables and sets up certain parameters

2. Initialisation of Agent data – This function pulls device specific data from the database and

creates device profiles for the devices attached to the aggregator.

3. Aggregation – Creates bids for the aggregator and sends these bids to a database, so that the

market layers can clear the market.

Copyright 2019 SmartNet Page 64

4. Disaggregation – Recovers cleared bid data associated with the specific aggregator agent and

disaggregates cleared bids. This results in an agent sending new set-points to all of the

devices on the particular node. These set-points are stored in a dedicated table.

Figure 28 – Overall flow and interactions of the CGCL aggregator with other modules

Copyright 2019 SmartNet Page 65

3.8.2 Input from database

The inputs to the CGCL Aggregator modules can be divided into a number of groups. Inputs also come

from four types of devices namely Hydro, PV (Solar) Wind and Sheddable Loads (SEL), although this

could be extended. The CGCL Factory which creates the agents first, captures data that is generic to all

devices. It does this only once at the beginning of the simulation for speed and passes this data in the

form of lists and Numpy arrays to other parts of the code. The CGCL implementation code module takes

inputs from the database that are agent specific like device data and constants and uses data passed to it

in arrays from the factory module. Specific inputs from the SmartNet database are as follows:

Scenario:

• Scenario_Scenario: provides data on scenario including name , number of time steps to

be simulated

Scheduler:

• Scheduler_Scheduler: provides data on latency and for what time horzon - eg

Aggreagtor to be 12 periods forward form time t. Sent indirectly via scheduler module

Device Constants:

• device_HydConstants: Hydroelectric generators parameters e.g. marginal cost, power

capabilitym, etc.

• device_PvConstants: Photovoltaic generators parameters

• device_SelConstants: Sheddable loads parameters

• device_WindConstants: Wind generators parameters

Device Profiles

• Hydro generators

o profiles_HydPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_HydPower: power production forecast profiles – represents actual

profiles

o profiles_HydPowerBaselineProfile: contains the connection between the

related profile and the constants table.

Copyright 2019 SmartNet Page 66

o profiles_HydPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results.

• PV generators

o profiles_PvPowerProfile: contains the connection between the related profile

and the constants table.

o profiles_PvPower: power production forecast profiles

o profiles_PvPowerBaselineProfile: contains the connection between the

related profile and the constants table.

o profiles_PvPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results

• Sheddable loads

o profiles_SelPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_SelPower: power absorption forecast profiles.

• Wind generators

o profiles_WindPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_WindPower: power production forecast profiles.

o profiles_WindPowerBaselineProfile: contains the connection between the

related profile and the constants table.

o profiles_WindPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results.

Network parameters

• network_Node: contains general information of each node (belonging sub-network…)

• network_Network: is the main table, contain the name of the network.

• network_SubNetwork: contain the list of sub-networks (the transmission networks, and

the distribution networks) in which the networks is divided.

• network_SubNetworkType: type of sub-networks (transmission or distribution)

Bids (Market bids)

• bids_QtBid: main record for bid at time

• bids_Qbid: represents a bid for a forward time horizon. Linked to bids_QtBid record via

foreign key. Also an output.

Copyright 2019 SmartNet Page 67

• bids_QBidSegment: within each time step (i.e. bids_Qbid) , aggregators can bid price

and volume segments (both for up and down flexibility)also an output (e.g. bid volume at a

price P4

Clearing (Market bids cleared)

• Clearing_QBidSegmentVariables: cleared bids containing accepted fractions and link

to bids_Qbidsegment records

3.8.3 Input from other modules

3.8.3.1 Inputs for CGCL Aggregator Factory

The only direct input is from the scheduler which provides calls on methods that initialise

aggregators. The scheduler

• Sends an initialisation signal to set up the Factory Actor

• Starts the aggregation logic when required (via execution function in mode “aggreg”)

• starts the disaggregation logic when required (via execution function in mode “disagg”)

3.8.3.2 Inputs for CGCL aggregator implementation

• Generic data such as base and actual profile types – sent for all types of devices (Hydro, PV,

Wind and SEL), passed to the agent in a call as a tuple of lists from agent factory

• Cleared Bids

o clearing_QbidSegmentsVariables: provides cleared bids sent by the

aggregator to the market. This data input provides details on how much the market

cleared as a fraction. Note the CGCL aggregator will accept partial bids.

• Control signals from Scheduler via CGCL Factory

o Mode “aggreg”: Starts aggregation process which takes device data and marginal

costs and clusters data into price buckets or segments so that it can be bid to the

market via a database write.

o Mode “disagg”: Starts the disaggregation process.

4 Note that the aggregator bids P0 and P1 but [2] defined that P0=P1 for this type of aggregator

Copyright 2019 SmartNet Page 68

During the execution process, data such as the scenario, the time step atT, the market latency

atToForLatency and the number of periods to be bid forHorizon are sent to the agent

implementation during this control signal process.

3.8.4 Flow chart of the module

As described above, the CGCL structure is divided in two main modules (Python packages), called

CGCL Factory and CGCL Implementation. In the sections that follow we provide descriptions of the

various functions in the two main modules or packages, and present flowcharts of the logic inside these

various functions.

3.8.4.1 CGCL Aggregator Factory Module

The aggregator factory class or module consist of three main methods. These are

• AggregatorCGCL.initialize (Figure 29 and Figure 30)

o It prepares all the data needed for the whole simulation period and stores profile

data used by all device types in this aggregator. Also includes data for the scenario,

e.g. market horizons, latency, etc. It is launched once by scheduler main system.

o Initialise callas the function fill_in_profile_data

• AggregatorCGCL.execute(modestring) (Figure 31 and Figure 32)

o Routine that is called from the scheduler. It passes a modestring which tells the

routine whether to aggregate (“aggreg”) or disaggregate (“disagg”). It also

passes scenario data, the time period horizon and latency .

o The execution routine cycles through each agent stored in the agent directory and

calls the appropriate routine inside each agent object (aggregate or disaggregate)

o The initial design had agents writing bids variables directly to the database, resulting

in millions of data writes. This proved to be slow resulting in hour long writes per

time period. The latest design uses global lists to store SQL write commands. This is a

much faster process as the millions of outputs can be stored in these lists and written

once during the aggregation process as a bulk create.

o As similar issue occurs with writes to the disaggregator set-points out tables.

Copyright 2019 SmartNet Page 69

• AggregatorCGCL.fill_in_profile_data

o Is called many times by the Factory module. Data profiles are read in for many

devices and converted into Numpy arrays for later manipulation.

o This routine uses scenario data to create a blank array for all time periods

o The routine checks to see if the database data in array form has the appropriate

period. If it does not it copies the last known record into the empty data value slot.

This array is used as the input to calculations

Copyright 2019 SmartNet Page 70

Figure 29 – Flow diagram of AggregatorCGCL.initialize

Copyright 2019 SmartNet Page 71

Figure 30 – Flow diagram of AggregatorCGCL.initialize – creation of agents

Copyright 2019 SmartNet Page 72

Figure 31 – Flow diagram of AggregatorCGCL.execute

Copyright 2019 SmartNet Page 73

Figure 32 – Flow diagram of AggregatorCGCL.execute

aggregation and creation of bids

Copyright 2019 SmartNet Page 74

3.8.4.2 CGCL Aggregator Implementation Module

The aggregator implementation class is more complex than the factory as it contains the underlying

logic and control logic for each of the individual aggregators. We have used an agent based method to

create one aggregator (if required) at the appropriate node in the network. In a large system we would

have tens of thousands of aggregator agents. Each agent stores its own data such as device profiles (both

day ahead and their expected or actual profiles) and performs its own calculations and stores the results

of those calculations within its own memory. It takes device bids from four types of devices namely

Hydro, PV (Solar) , Wind and sheddable loads (SEL), clusters that data into price buckets or segments and

effectively bids this data to the market by storing those bids into the QtBid, Qbid and QBidSegments

tables:

• QtBid is the main record that represents the collection of bids made at a node at a particular

time step that may be for many future time periods and for many price ranges;

• Associated with the QtBid are the records associated with each forward period bid. E.g. at

time 0 we will bid for the next hour in fifteen minute intervals and supply in this instance 4

Qbids for those forward time periods. This is represented by a QBid record, one for each

forward time bid.

• Associated with each of the forward time steps is a set of Qbidsegment records, which can

be thought of as a flexibility supply curve providing different volumes at different prices. The

curve represents both upward flexibility bids and downward flexibility bids.

Each aggregator agent performs its own calculations and updates the tables as necessary. A minimum

bid size of 1 kW (this is parameter driven) is provided so not all Qbid and Qtbid records may be sent. In

some time periods three Qbid records might be sent and in others only one may be sent for a particular

Qtbid. Logic has to deal with this irregularity. We utilise a map list that maps actual segment bids to

columns in the finalbidmatrix, to deal with this irregularity. Bids for a particular time period are

stored within the agent as a matrix finalbidmatrix (which has a Up and Down versions). The matrix

represents the clusters/segments as well as the devices in that cluster including details on its type,

volumes (active and reactive power), its bid (price) and so on. This matrix approach allows the logic in

the module to unpick cleared bids and disaggregate them to individual devices associated with

aggregator.

The Market is cleared by the market module which stores the cleared bids in the

QbidSegmentVaribales table. This is linked via foreign keys to the QbidSegment tables stored by

the aggregator routine, described above.

Copyright 2019 SmartNet Page 75

The scheduler triggers the disaggregation routine by sending a signal to the aggregator factory. The

aggregator factory uses the agent list (python dictionary) to send a control signal (call to function) to each

aggregator in turn, to tell it to disaggregate. This routine cycles through each agent and calls the

disaggaregation routine within the agent aggregator.

The aggregator implementation class contains the logic of the aggregator agents and its initialisation

code. It has a number of functions listed below:

• _init_

o Is called when the agent object is created by the Agent Factory.

o Takes data from the aggregator factory.

o Creates internal storage in lists and arrays for later use.

o Calls initialise function.

• initilaise

o Initializes all required variables for the simulation of an aggregator agent, including

the list of devices associated with the aggregator, device constants and variables and

sets initial settings.

• grab_initial_data

o This function/routine takes all the initial data required for the agent aggregator at

each node.

o Uses this data to create individual device profiles for each device for the whole

simulation. This is done once when the agent is created to save time. Device data is

created for all curtailable devices.

o Cost data for each device is obtained and stored in Numpy based matrices.

o Additional data is added to the matrices/arrays so that they can be filtered and sliced

later.

• agent_aggregate_cgcl

o Called by the aggregation factory module.

o Calls aggregation logic and is used to create bids for the market.

o Calls generate_qt_bid routine to write bids to a global array, so that the Factory

can write them to the appropriate databases.

• agent_disaggregate_cgcl

o Called by the aggregator factory in its execute routine. This factory routine cycles

around all the agents and triggers the disaggregation routine inside each of them.

o The disaggregation routine makes use of the Qtbid, Qbid, QbidSegments and

QbidSegmentVariables records and internal arrays such as the finalbid

matrix and bidmatrix to unpick the bids and disaggregate. The use of codes for

Copyright 2019 SmartNet Page 76

device types allows us to filter Numpy arrays to extract data for particular devices

and therefore allows us to more easily write to the appropriate device output table.

o Data is sent to a routine called disaggregate_cgcl_core that starts to perform

the aggout part of the code (consisting of writing data to the aggregator set-point

tables). The routine cycles through all the devices on the node (or nodes) attributed

to this aggregator and checks to see whether this device is present in memory. If it is

not the device is left at its set-point (i.e. the baseline or day-ahead profile value for

this time period), else it is changed.

o A record is written to the disaggreagtor_setpoint_out table (there is one

table for each type of device technology). Records are therefore appended to global

lists and written to the database in one go. This is only done after all aggregator

agents have updated all of their records related to the selected time step.

• disaggregate_cgcl_core

o It creates a table aimed at storing the reference to the device to which the set-points

should be changed and by how much. Changes can be upward and downward.

o It retrieves the cleared data from the clearing_QbidSegmentVariables table

and uses the previously internally stored table to unpick the bids to apportion them

to individual devices. Where the market clears or accepts the full volume of a

particularly bucket or segment, the module logic accepts all bids from all the devices

assigned to this particular bucket. In the case where the market accepts a fraction of

the bid segment, we must apportion volumes to individual devices.

• generate_qt_bids

o Called by agent_aggregate_cgcl function (described above). Takes data stored

internally inside the selected agent that contains data on the bids and writes Qtbid

record – the first part of three parts, to record a bid

• execute_qbidsd

o It creates a list of Qbid records by appending to a global list

write_qbid_list_allagents. Each agent adds or appends to this list. Once all

agents have added to this list for a particular time period, the aggregator factory

writes as a bulk create to the database

• execute_segs_bit

o It creates a list of QbidSegments records by appending to a global list

write_q_list_allagents. Each agent adds or appends to this list. Once all

agents have added to this list for a particular time period, the aggregator factory

writes as a bulk create to the database table.

Copyright 2019 SmartNet Page 77

3.8.5 Output to database

There are two main types of output that that aggregator provides to the database. The first concerns

the bids to the market (QBid, Qtbid, QtBidSegments) and the second, set point outputs from the

disaggregation process , to be used by the physical layer.

3.8.5.1 Aggregation Bids to Market

The aggregation process clusters all bids from four types of devices and collates them into a number of

buckets or segments to be bid to the market. The parameters max_number_stacks_up and

max_number_stacks_down in the aggregator factory, define the max number of buckets/segments

that can be bid to the market. This is currently set to ten for both up and down bids and for all aggregator

agents, but can be set differently for each individual aggregator agent.

• QtBid: Main record sent by aggregator at a node at the time when the bid is submitted. This

record allows the routine to retrieve from the database all the bids related to all future time

steps within the market clearing horizon.

• Qbid: Records future time horizon bids for a particular time step. Essentially it is a

placeholder for segment bids (or bid curve). Record allows us to recover bid segments at this

future time horizon.

• QbidSegments: Segments which creates the bid curve in the quantity-price dimensions.

3.8.5.2 Disaggregation Outputs

After the disaggregation process, new device set points are determined and all aggregator set points

are updated even ones that did not change and are marked with a time stamp. As the described

aggregator deals with four types of devices, the disaggregation process has to correctly identify the type

of device that has both a change and no change to its set-point and then change the value in the

appropriate disaggregator_setpoints_{device}out tables. There are four of them that

updated by the CGCL Aggregator module:

• disaggregator_setpoints_hydout: set-points from disaggregator to run-of-the-river

hydroelectric power plants.

• disaggregator_setpoints_pvout: set-points from disaggregator to solar power

plants.

Copyright 2019 SmartNet Page 78

• disaggregator_setpoints_winddout: set-points from disaggregator to wind power

plants.

• disaggregator_setpoints_selout: set-points from disaggregator to sheddable loads

(e.g. Street Lamps)

Copyright 2019 SmartNet Page 79

3.9 Electrical Energy Storage unit aggregation module

3.9.1 Brief description of the module

In this section the integration of the Electrical Energy Storage (EES) unit aggregation module in the

SmartNet simulation platform is described. Under the smart grid concept, an EES aggregator will

participate in SmartNet market (ancillary service market) on behalf of the EES owner, aiming to maximize

its profit. The EES unit’s aggregation model is a profit maximizing optimization problem, where a linear

programing is used as a mathematical tool. In detail presentation of the EES unit aggregation optimization

algorithm is provided in [2]. The EES unit aggregation model is coded through a mathematical modelling

language (AMPL) and a Python interfaces have been created to enable AMPL model integration with the

database and the rest of the simulation platform. The integration procedure is depicted in Figure 33.

According to it, Interface 1 provides database-AMPL (DB2AMPL) communication by reading the

corresponding tables from the database and creating a {file}.dat for AMPL model. Then AMPL

aggregation model is simulated with {file}.dat input parameters. When the simulation is complete,

the AMPL writes simulation results (the optimal bids) on {file}.log. In a similar way, the Interface 2

establishes the communication between AMPL-database (AMPL2DB) by reading AMPL {file}.log file

and writing the optimal bids to the respective tables in the database (market module).

Figure 33 – The EES unit aggregation module integration procedure with the database

3.9.2 Input from database

The following tables provide the input for the EES interface;

Device Constants:

• device_StoConstants

• device_StoCategory

Copyright 2019 SmartNet Page 80

Scenario:

• scenario_Scenario

Profiles:

• profiles_StoPowerProfiles

• profiles_NodeHasNodePriceProfile

• profiles_ NodePriceProfile

• profiles_NodePrice

• profiles_StoPower

• profiles_ NodeHasNodeDeltaCostProfile

• profiles_ NodeDeltaCost

Network:

• network_Node

• network_Network

• network_SubNetwork

• network_SubNetworktype

phylay_setpoints:

• phylay_setpoints_StoPhyOut

3.9.3 Input from other modules

The Scheduler model provides the following parameters to the interface:

• Aggregation Mode ("aggreg")

• Scenario identifier

• A starting time step

• Market latency

• Market horizon

Copyright 2019 SmartNet Page 81

3.9.4 List of functions of the module

By launching the python script AggregatorSTO.execute(“aggreg”) three modules are called:

queries.py contains the required functions to read the data from the database, readDbForAmpl.py

module aggregates the data read by queries.py and finally aggregator.py sends the bids to the

market.

• queries.py contains the following functions:

o queries.retrieve_constants

o queries.get_timeStepLengthInSeconds

o queries.get_CB

o queries.get_priceProfile_query

o queries.get_stoConstants_query

o queries.get_stoPhyOut

o queries.get_TimeRleated

o queries.get_accepted_bids

o queries.get_cleared_price

o queries.get_ActivePowerDeltaCost

o queries.create_actor

o queries.get_nodes_list

• readDbForAmpl.py contains the following functions:

o readDbForAmpl.write_first_block

o readDbForAmpl.write_second_block

o readDbForAmpl.write_third_block

o readDbForAmpl.write_fourth_block

o readDbForAmpl.write_fifth_block

o readDbForAmpl.write_sixth_block

o readDbForAmpl.write_seventh

o readDbForAmpl.write_eighth_block

o readDbForAmpl.write_ninth_block

o readDbForAmpl.make_Files

o readDbForAmpl.bid

o readDbForAmpl.find_Ampl_file_to_append_cleared_bids

o readDbForAmpl.allSubNets

o readDbForAmpl.subNets_items

Copyright 2019 SmartNet Page 82

o readDbForAmpl.trans_and_Distri_nodes

o readDbForAmpl.arrange_Trans_and_distr_nodes

o readDbForAmpl.get_set_of_EVS

o readDbForAmpl.create_list_of_Transmission_nodes

• aggregator.py contains the following functions:

o aggregator.initialise

o aggregator.execute

o aggregator.aggreg_bid

o aggregator.create_qSegment

o aggregator.create_QPHalfPlaneConstraint

o aggregator.get_cleared_bids

3.9.5 Flow chart of the module

The simulation block prepares the files (optimization models) to be processed by AMPL and their

structure is highly dependent on the chosen coordination scheme. Once all the files {file}.dat are

generated by accessing to the simulation database then the AMPL model runs and outputs the results as

bids that are sent back to the database by means of {file}.log. The flowchart of the module is

reported in Figure 34.

3.9.6 Output to database

Bids

• bids_QBid

• bids_QBidSegment

• bids_QtBbid

Constraints

• constraints_QPDiscConstraint

Copyright 2019 SmartNet Page 83

Figure 34 – Flow diagram of AggregatorSTO.execute(“aggreg”)

Scheduler executes

AggregatorSTO.execute(“aggreg”)

Create a mathematical model of ESS

aggregations (one {file}.dat, for each

units cluster) selected on the basis of selected

TSO-DSO coordination scheme and units

availability

AMPL processes (one by one)

{file}.dat and returns the

optimization problem results

(stored in {file}.log)

Create ESS

charging/discharging bids

to be submitted to the

market

Return to

Scheduler

bids_QtBid

bids_QBid

bids_QBidSegment

constraints_QPHalfPlaneConstraint

ESS units data

Network parameters

Price profiles

Scenario data

Copyright 2019 SmartNet Page 84

3.10 Electrical Energy Storage unit disaggregation module

3.10.1 Brief description of the module

Electrical Energy Storage (EES) unit disaggregation model is a cost minimizing optimization problem,

where the main objective of the function consists of supplying the accepted charge/discharge quantity

with the lowest possible cost. Detailed description of the EES unit disaggregation model is provided in [2].

As for the aggregation module, the EES unit disaggregation functions are coded in AMPL and Python

which communicates through Interface 1 and Inferface 2 (DB2AMPL and AMPL2DB respectively). The

activations returned by the market module are coded within the mathematical model ({file}.dat) and

processed by AMPL, which returns {file}.log converted by a python module in the set-points of each

ESS unit (Figure 35).

Figure 35 – The EES unit disaggregation module integration procedure with the database

3.10.2 Input from database

Unlike the aggregation parts where there is a need to access various tables in the database, in the

disaggregation part all is needed to check how many bids were accepted if any and check the status of the

clearing market. Once the new data is obtained, it is then appended to the existing data for optimization

model to solve it.

Market clearing:

• clearing_NodeVariables

• clearing_QBidVariables

Copyright 2019 SmartNet Page 85

Bids:

• bids_Qbid

• bids_QbBidSegment

• bids_QtBid

3.10.3 Input from other modules

The Scheduler model provides the following parameters to the interface;

• Aggregation Mode ("disaggreg")

• Scenario identifier

• A starting time step

• Market latency

• Market horizon

3.10.4 List of functions of the module

In order to disaggregate ESS units activations, the Scheduler launches the python script

AggregatorSTO.execute(“disagg”) which is calling the following functions coded within

aggregator.py module:

• aggregator.write_dissagreg_ampl_file

• aggregator.sendDisAggregationLogDataToDatabase

3.10.5 Flow chart of the module

The disaggregation process begins by checking the bids stored within the database, querying the ones

that have been accepted. Once these information is obtained the requested activations are grouped for

each node of the network (nodal resolution is depending in the TSO-DSO coordination scheme) and an

AMPL model is constructed for that node. Similar to the aggregation process, the AMPL optimization

model runs each individual {file}.dat to perform disaggregation and the results are stored within

{file}.log (one for each node) which is then immediately written back into the database. The

flowchart of the module is represented in Figure 36.

Copyright 2019 SmartNet Page 86

Figure 36 – Flow diagram of AggregatorSTO.execute(“disagg”)

3.10.6 Output to database

Once the disaggregation data is calculated it is then written back into the database in the following

table.

Disaggregator_setpoints:

• disaggregator_setpoints_StoAggOut

Scheduler executes

AggregatorSTO.execute(“disagg”)

Create a mathematical model of

ESS disaggregation (one

{file}.dat, for each units

cluster)

AMPL processes (one by one)

{file}.dat and returns the

optimization problem results

(stored in {file}.log)

Create ESS

charging/discharging

set-points to be processed

by the physical layer

Return to

Scheduler

Market clearing information

Bids

Updated ESS units situation

ESS units disaggregation

set-points

Copyright 2019 SmartNet Page 87

4 Market layer

4.1 Brief description of the module and flowchart

The market layer encompasses the clearing platform of the integrated reserve market. The integrated

reserve market architecture aims at allowing flexible resources coming from both transmission and

distribution networks to compete in the same ancillary services market. As shown in Figure 37, the

market receives bids (from aggregators), network models (from physical layer) and forecasted network

imbalance (from scenario) as inputs. Based on the provided inputs, the market is ready to run the

constrained-optimization problem known as the “market clearing”. This is the core algorithm which is

responsible to calculate the optimal volume of power exchange (cleared quantity) and the associated

value of power injection or off-take at each node (cleared price). In a final step, the results of the market

clearing are sent to the aggregators, which in turn dispatch the resources accordingly (disaggregation

module).

Figure 37 – Simplified block diagram of the main interactions of the market block with other simulation

layers

In order to map the dynamics of different flexibility resources while expressing the constraints of assets,

aggregators, and operators, the market module allows both simple bids (specifying quantities and prices)

and complex bids, i.e. simple bids on which further constraints (e.g. ramping constraints, exclusive bids)

are applied. Concerning the network constraints, there is a trade-off between the level of details of the

network and the computational time: it cannot be very simplified (otherwise it creates a big demand of

unwanted measurements because the physical constraints of network will not be considered in the

market clearing algorithm) but it cannot be too complex (in order to maintain the algorithm

computationally tractable). Therefore, a proper network model is chosen based on the type, topology, and

Copyright 2019 SmartNet Page 88

size of the power network. Voltage constraints and reactive power are included for the distribution grid,

whereas a DC model for the transmission network is adopted.

In the clearing module, methods for finding the optimal values of traded quantity (of energy) and the

resulting price (of the corresponding quantity) are developed. The clearings of quantity and price are not

separable tasks, but rather procedures belonging to the same module.

Furthermore, four coordination schemes for the acquisition of ancillary services between the

transmission system operator (TSO) and the distribution system operator (DSO) have been considered in

the simulation. There are different requirements regarding the parameter settings, input/output data and

arrangement of modules for each TSO-DSO coordination scheme, as well as additional local optimization

algorithms for the decentralized schemes.

Focusing on inputs and outputs that the market reads respectively writes to the database, we can

summarize this in Figure 38.

Figure 38 – Summary of market inputs and outputs

The following sections describe the inputs and output of the market block in detail. Note that, apart

from these database tables and fields, there are no other inputs or outputs to and from the market, except

market internal files, like AMPL model files and log files. These market internal files are of no use to the

other blocks in the SmartNet simulator.

Copyright 2019 SmartNet Page 89

4.2 Inputs from database

The inputs of the market layer are firstly the one related to the network description, secondly the bids

and bid constraints (coming from the aggregators) and finally the forecasted net injections per node

coming from scenario. The database tables that are used as market input are listed below, together with

and explanation of the main related parameters (columns of the table).

Network Model:

The market needs to know the network description to be able to model the power flows of the lines as

a function of the power exchange of the nodes. This includes the network topology and electrical

parameters of lines, the be able to calculate active, reactive power flows and losses. The network model is

described here as an input to the market block, but is also an input to other blocks. Other blocks will refer

to this section if it’s an input to their blocks as well.

The network is composed by the following fields, which are all read by the market block:

• Network.models.Network

• Network.models.SubNetwork

• network.models.Node

• network.models.Edge

• network.models.NodeConstants

• network.models.EdgeConstants

Market Bids:

Bid related inputs are the following.

• bids.models.QBidSegment

• bids.models.QBid

• bids.models.QtBid

There are class functions to plot bids in vector graphic format for debugging. These also allow to do

curve crossing and graphically discover the crossing point. An example is given in Figure 39.

Copyright 2019 SmartNet Page 90

Figure 39 – Illustrative bid curve plots

Market Bid Constraints:

It is perfectly possible to only construct bids (QtBid, QBid, QBidSegment) combinations into the

market without adding any constraint over them. These are called naked bids. However, sometimes

temporal constraints (like ramp constraints) or logical constraints (like conditional constraints: if accept

bid1, also accept bid2) are needed for some of the simulated flexible units. For this reason the following

constraint types have been modeled on the basis of the different aggregator typologies:

• constraints.models.QPHalfPlanceConstraint

• constraints.models.QPDiscConstraint

• constraints.models.rampConstraint

• constraints.models.ActivationDurationConstraint

• constraints.models.IntegralConstraint

• constraints.models.ImplicationConstraintsOnQBids

• constraints.models.ImplicationConstraintOnQtBids

• constraints.models.ExclusiveChoiceConstraintOnQBids(_List)

Copyright 2019 SmartNet Page 91

• constraints.models.ExclusiveChoiceConstraintOnQBids_QBid

• constraints.models.ExclusiveChoiceConstraintOnQtBids(_List)

• constraints.models.ExclusiveChoiceConstraintOnQtBids_QtBid

NodeNetInjection:

• scenario.models.NodeNetInjectionProfile

• scenario.models.NodeHasNodeNetInjectionProfile

• scenario.models.NodeNetInjection

4.3 List of functions

The market layer is composed by several functions, and the main ones can be listed as follows:.

• market.initialise(scenarioId, atT=-1): function to be performed only once, so

outside the scheduler loop.

• market.generateAmplAtTIndependentAmplDataFile: function to generate the part

of the AMPL data file that is not changing from time iteration to the next. This is mainly the

network data, which, in the SmartNet simulations, is assumed to not change over time.

• market.setTimeParameters(atT, atToForLatency, forHorizon): sets market

parameters, feed form the scheduler.

• market.preprocessBids(scenario): for a scenario with coordination scheme A

specified, bids have to be relocated to the transmission node that is connected to the root

node of the distribution network of the node that the original bid was destined for. This

function is for debugging the market only.

• market.preprocessBidNetInjection(scenario, atT, atToForTLatency,

forHorizon): In case of coordination scheme A, the node net injection has to be adapted as

well, to reflect that all of it is happening in the parent node of the distribution network root

node. This function is for debugging the market only.

• market.execute(scenario, atT, atToForTLatency, forHorizon,

workWithCoordinationSchemeFiles=True,

minQBidSegmentQuantityInMW=0): The main block (here: market) function called by

the scheduler. When workWithCoordinationSchemeFiles is False the function

supports an older code version that predates the use of coordination schemes. True is the

default and to be used for all SmartNet simulations. minQBidSegmentQuantityInMW is a

parameter that can be increased to let the market ignore really small bids.

Copyright 2019 SmartNet Page 92

• market.testExec: a function like execute but with more settable arguments. Execute

calls testEcex with some arguments set to fixed values.

• writeTemplateSetsFile(), generateAmplDataFile(),

readSubstituteWrite() are just some of the main functions to generate the

optimisation problem as AMPL language files. correctQtBidAndWarn() is a function that

checks for errors against the market rules, format or tolerances in Bids and produces

warnings in the log, which can be sent to bidders.

• parallelExecute() is a function that, for coordination scheme C, writes many

independent problems that can be executed in parallel, to files, then writes a makefile to

execute these in parallel and calls the make on the makefile to do so, then combines the

outputs into one big log file. This can then be parsed by the standard output parsing function

without it needing to know that parallelism was ever used.

• writeOutSvgAndPdfFiles(): writes out scalable vector graphic files, so visualisations, of

the network grid with the market outcome in terms of power flows, voltages, loading

annotated on top of it. This is very useful for debugging or illustration purposes. An example

of a part of an as such generated picture for a radially shaped distribution grid with market

output on top is given in Figure 40.

Copyright 2019 SmartNet Page 93

Figure 40 – Illustrative distribution network plotted with electrical variables (market results)

4.4 Flow chart

The main flow chart is summarized in Figure 38 already. However as for the technological

implementation a different representation is given in Figure 41.

Copyright 2019 SmartNet Page 94

Figure 41 – Technical flow diagram of the market layer process

Figure 41 indicates in the purple area, the names of the main tables that are inputs or outputs to and

from the market block. In the inner turquoise block, in the outer green U shaped area, we can see that the

code handling database reads and writes is coded in python programming lanquage. The inner green

modules reveal that the python code writes a set of files in the AMPL language (amongst which the main

ones are a .dat(a) file and a .mod(el) file). These files formulate the optimisation problem in a

concise way. The .mod file holds a model that is independent of the input data. The .dat file holds all the

data that is dependend on an iteration, or a coordination scheme and such. AMPL executable is then

called, asking it to solve this optimisation problem. The AMPL executable than generates log files in a

particular format, which is then parsed by python code again, which puts the resulting optimisation

variable values in the database.

4.5 Outputs to database

The outputs of the market are the market clearing data. More specifically, these entail the accepted

quantity (fractions) for all QBidSegements for the specific time step of the auction (forT). Also a price

per node is returned, since the implemented market is assumed to adopt a a pay-as-clear remuneration

approach.

Market Clearing:

There are three main market outputs as variable values determined by the market: Bid related, Node

related and Edge related outputs. In more detail, these are the following.

• clearing.models.QBidSegmentVariables

Copyright 2019 SmartNet Page 95

• clearing.models.QBidVariables

• clearing.models.NodeVariables

• clearing.models.EdgeVariables

A graphical summary of the 5 tables returned the market outputs and their relations is reported in

Figure 42. In this picture it can be noticed that each of the tables QtBid, QBid and QBidSegment have

their respective variable counterpart tables that reference them. As for Nodes and Edges, these also

have market variables associated to them and these tables make a reference (forerign key) to the

scenario.

Figure 42 – Tables returned by the market layer and their relations

There are three other results, mainly for debugging purposes, the market writes to the database:

• clearing.MarketDSOAggregation

• clearing.AggDSOBids

• clearing.models.DistributedTimingTrace

Copyright 2019 SmartNet Page 96

5 Physical layer

5.1 Brief description of the module

The physical layer simulates the physical behaviour of the network (transmission and distribution)

and of all the connected controllable devices. The physical layer is simulated in three main steps:

1. The set-points (resulting from the disaggregation process) are applied to the devices taking

into account their actual status and physical constraints.

2. The networks states, both for distribution and transmission, are computed. The physical layer

optimizes the use of resources in order to avoid congestions not detected by the market. At

this step the secondary frequency regulation (i.e. automatic Frequency Restoration Reserve -

aFRR) is activated in order to compensate residual energy imbalance.

3. The states of devices are updated taking into account the regulation requested at the previous

points.

5.1.1 Updated of devices status according to disaggregation set-points

The aggregation processes introduces approximations in the physics of the controlled devices,

especially when several devices have to be managed and all the variables cannot be monitored. In

addition, some of the variable involved in the estimation of available flexibility might be affected by

forecasting error. For this reason the physical layer corrects the set-points of devices on the basis of a

more detailed model and real time profile. Once these set points have been corrected, the state of the

power system can be computed.

5.1.2 Simulation of network and automatic asset

The simulation of the entire power system (transmission and distribution network) can result in a

complex problem to be managed by a single computational step. Taking advantage of the decoupling

between transmission and distribution systems (tap-changing transformers are assumed to be

operational in all primary substations) the effect of the transmission system voltage on the distribution in

is considered negligible. With this assumption, each distribution network is simulated separately by using

the most updated status of the connected devices and, thanks to the network model (physical parameters,

constraints and controllable asset), and obtaining the voltage of its nodes, loading of its lines and the

power exchange with the upstream network (transmission system). Subsequently, once the power

exchange in correspondence of the primary substations is available, also the transmission network can

simulated. Both distribution and transmission networks are simulated by using a standard Optimal

Power Flow (PyPower) software which has been adapted according to the simulation platform needs. In

the optimization of networks, the algorithms use both the DSO or DSO assets and the available

Copyright 2019 SmartNet Page 97

controllable resources, selected by the scenario, to avoid current and voltage congestions by modulating

(in case of necessity) their active and reactive power exchanges (actions on the active power set-points

represent the unwanted measures) within the flexible resources capabilities.

Static compensators (STATCOMs) and On Load Tap Changers (OLTC) are providing significant

contribution to transmission system stability (especially in terms of voltage regulation). However, the

simulation tool adopted (PyPower) does not allow a straightforward integration of these asset. Thus, for

simplicity reasons, these assets are not simulated (except at distribution level) and lager voltage

regulation margins have been implemented.

After having simulated the entire power system the residual total imbalance is calculated in order to

compensate it with aFRR resources. The calculated aFRR needs are then shared between all the resources

(both at distribution and transmission levels) that can provide this service. The power exchange of nodes

is then accordingly updated by performing another Optimal Power Flow (OPF) aimed at solving the

congestions possibly caused by aFRR activations (for sake of simplicity, aFRR effects on lines loading are

recalculated for transmission network only).

5.1.3 Update of devices status according to network behaviour

After the simulation of the entire network, the devices status are updated based on possible requests

computed with the OPF for solving network congestions. In these calculations the new set-points and

status already respect the internal constraints of the controlled units since the active and reactive power

capabilities of resources have been preliminarily computed taking into account the devices

characteristics. The updated state of devices are then reported to aggregators for the next simulation

steps.

5.2 Input from database

The input of the physical layer can be divided in two group. The first group refers to the data used to

simulate the devices, while the second group refers to the data used for the network simulation. The input

data used by the devices are divided according to the typologies of devices and they describe all the

devices characteristics used both for aggregators and physical layer simulations. The table that contain all

the constants characteristics of devices are:

Device Constants:

• device_ChpConstants

• device_ConConstants

• device_HydConstants

• device_PvConstants

Copyright 2019 SmartNet Page 98

• device_SelConstants

• device_StatConstants

• device_StoConstants

• device_TclConstants

• device_WetConstants

• device_WindConstants

The active power profiles of the devices are reconstructed from the following tables. Depending on the

complexity of the device technologies, the power profile of each of them can be described by using

multiple tables. The presence of two tables is the minimum requirement: one contains the time profile,

while the second is used to link the time profile with the corresponding power unit stored in the constant

table. In this way the same profile can be assigned to multiple devices.

Device Profiles

• Combined Heat and Power generators

o profiles_ChpPowerProfile

o profiles_ChpPower

o profiles_XiDemandHeatProfile

o profiles_XiDemandHeat

• Conventional generators

o profiles_ConPowerProfile

o profiles_ConPower

• Hydroelectric generators

o profiles_HydPowerProfile

o profiles_HydPower

o profiles_HydPowerBaselineProfile

o profiles_HydPowerBaselines

Copyright 2019 SmartNet Page 99

• Solar generators

o profiles_PvPowerProfile

o profiles_PvPower

o profiles_PvPowerBaselineProfile

o profiles_PvPowerBaseline

• Sheddable loads

o profiles_SelPowerProfile

o profiles_SelPower

• STACOM

o profiles_StatPowerProfile

o profiles_StatPower

• Storage devices

o profiles_StoPowerProfile

o profiles_StoPower

• Thermostatically controlled loads

o profiles_TclConfortTempProfile

o profiles_TclConfortTemp

o profiles_TclAvailabilityProfile

o profiles_TclAvailability

o profiles_TclMaxTempProfile

o profiles_TclMaxTemp

o profiles_TclMinTempProfile

o profiles_TclMinTemp

o profiles_TclInternalThermalGainProfile

o profiles_TclInternalThermalGain

o profiles_TclEnvThermalGainProfile

o profiles_TclEnvThermalGain

o profiles_ExternalTempProfile

o profiles_ExternalTemp

Copyright 2019 SmartNet Page 100

• Atomic Loads – Wet Appliances

o profiles_WetApplianceModel

o profiles_WetApplianceProfile

o profiles_WetApplianceBootingDistribution

• Wind generators

o profiles_WindPowerProfile

o profiles_WindPower

o profiles_WindPowerBaselineProfile

o profiles_WindPowerBaseline

Finally, in order to simulate the interaction of the physical devices with the aggregators (and the

market) the set-point sent by the aggregators are processed by accessing to the following tables (which

are divided per device technology):

Disaggregator set-points

• disaggregator_setpoints_ChpAggOut

• disaggregator_setpoints_ConAggOut

• disaggregator_setpoints_HydAggOut

• disaggregator_setpoints_PvAggOut

• disaggregator_setpoints_SelAggOut

• disaggregator_setpoints_StatAggOut

• disaggregator_setpoints_StoAggOut

• disaggregator_setpoints_TclAggOut

• disaggregator_setpoints_WetAggOut

• disaggregator_setpoints_WindAggOut

The data of the network are stored in two categories of table: one for the constant data, the other for

the power profiles. The constant data are stored in:

Copyright 2019 SmartNet Page 101

Network parameters

• network_Node

• network_NodeConstants

• network_BusType

• network_Edge

• network_EdgeConstants

• network_Network

• network_SubNetwork

• network_SubNetworkType

• phylay_ControlSolutionDso

• phylay_ControlSolutionTso

The power profile of each node, which contain all the information of devices not participating to the

market, is contained in the following tables:

Node power profile

• profiles_NodePower

• profiles_NodePowerProfile

• profiles_NodeHasNodePowerProfile

In addition there are a set of support tables, which are used for storing temporary state both for

devices and networks:

Device and Network Variables

• phylay_NodeVariables

• phylay_EdgeVariables

• devices_ChpVariables

• devices_ConVariables

• devices_HydVariables

• devices_PvVariables

• devices_SelVariables

• devices_StatVariables

• devices_StoVariables

• devices_TclVariables

• devices_WetVariables

• devices_WindVariables

Copyright 2019 SmartNet Page 102

5.3 Input from other modules

The only direct input is from the scheduler, which shares scenario ID and the time step resolution to

be used for the simulation.

5.4 List of functions of the module

For each device category there is a set of function used for simulating its behaviour and the evolution

of the internal states.

• Combined heat and power generators

o devices_ChpAggToVar: this function takes the set-points of aggregators, checks

the constraints and writes them in the variables support tables.

o devices_ChpVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_ChpVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it considers possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_checkChp: this is a sub-function used to check if the set-points respect

the charge constraints and in case it corrects them.

o devices_uptdateChp: this is a sub-function used to check if the set-points respect

the physical constraints. In case they are not, the function corrects them, opportunely

updating the state of the device.

• Conventional generators

o devices_ConAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

o devices_ConVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

Copyright 2019 SmartNet Page 103

o devices_ConVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_updateCon: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

• Hydro generators

o devices_HydAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

o devices_HydVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_HydVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_updateHyd: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

• Photovoltaic generators

o devices_PvAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

o devices_PvVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_PvVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_updatePv: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

Copyright 2019 SmartNet Page 104

• Sheddable loads

o devices_SelAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

o devices_SelVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_SelVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_updateSel: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

• Static Compensators (STATCOM)

o devices_StatAggToVar: this function takes the set-points of aggregators, it

checks the constraints and it writes them in the variables support tables.

o devices_StatVarToDevOut: this function takes the state of the devices before

the simulation of the network (which are stored in the variables tables) and writes

them in the devices table.

o devices_StatVarToPhyOut: this function takes the state of the devices (stored

in the variables tables) after the simulation of the network (so that it consider

possible re-dispatching due to network congestion management) and writes them in

the devices table.

o devices_updateStat: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

• Storages

o devices_StoAggToVar: this function takes the set-points of aggregators, checks

the constraints and writes them in the variables support tables.

o devices_StoVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

Copyright 2019 SmartNet Page 105

o devices_StoVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it considers possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_checkSto: this is a sub-function used to check if the set-points respect

the charge constraints and in case it corrects them.

o devices_uptdateSto: this is a sub-function used to check if the set-points respect

the physical constraints. In case they are not, the function corrects them, opportunely

updating the state of the device.

• Thermostatically controlled loads

o devices_TclAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

o devices_TclVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_TclVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

o devices_TclControl: this is a sub-function used to check if the set-points respect

the temperature constraints and in case correct them.

o devices_TclControlPower: this is a sub-function used to check if the set-points

respect the physical constraints. In case they are not, the function corrects them,

opportunely updating the state of the device.

o devices_updateStateFirstOrder: this is a sub-function used to check if the

set-points respect the constraints. In case they are not, the function corrects them,

and then update the state of the device (with a first order state-space model).

o devices_uptdateTcl: this is a sub-function used to check if the set-points respect

the constraints. In case they are not, the function corrects them, and then update the

state of the device (with a second order state-space model).

• Atomic loads (wet appliances)

o devices_WetAggToVar: this function takes the set-points of aggregators, it checks

the constraints and it writes them in the variables support tables.

Copyright 2019 SmartNet Page 106

o devices_WetVarToDevOut: this function takes the state of the devices before the

simulation of the network (which are stored in the variables tables) and writes them

in the devices table.

o devices_WetVarToPhyOut: this function takes the state of the devices (stored in

the variables tables) after the simulation of the network (so that it consider possible

re-dispatching due to network congestion management) and writes them in the

devices table.

• Wind generators

o devices_WindAggToVar: this function takes the set-points of aggregators, it

checks the constraints and it writes them in the variables support tables.

o devices_WindVarToDevOut: this function takes the state of the devices before

the simulation of the network (which are stored in the variables tables) and writes

them in the devices table.

o devices_WindVarToPhyOut: this function takes the state of the devices (stored

in the variables tables) after the simulation of the network (so that it consider

possible re-dispatching due to network congestion management) and writes them in

the devices table.

o devices_updateWind: this is a sub-function used to check if the set-points respect

the constraints, in case correct them, and then update the state of the device.

There is also a list of common sub-functions aimed at checking further constraints violations.

• devices_checkRectangularCapability: check if the set points respect the

rectangular capability of simulated devices.

• devices_checkCapacityCapability: check if the set points respect the charge

constraints (i.e. energy capacity) of simulated devices.

• devices_checkRampCapability: check if the set points respect the ramp capability of

simulated devices.

• devices_checkCircularCapability: check if the set points respect the circular

capability of simulated devices.

The network state is mainly computed by a modified version of PyPower, however it has been

necessary to write a set of functions that create the input with the correct control configuration:

Copyright 2019 SmartNet Page 107

• phylay_powerFlowDsoReactive: this function compute the Optimal Power Flow (OPF)

of a distribution network having assumed that only the reactive regulation of devices is

possible.

• phylay_powerFlowDsoOpf: this function compute the Optimal Power Flow (OPF) of a

distribution network in which both reactive and active power can be dispatched.

• phylay_powerFlowDso: this function compute the Power Flow (PF) of a distribution

network without any possible regulation from the simulated devices.

• phylay_powerFlowDsoFast: this function is used for small networks to compute a

simplified Power Flow (PF) of a distribution network in order to speed up the simulation

process.

• phylay_powerFlowTsoReactive: this function compute the Optimal Power Flow (OPF)

of a transmission network having assumed that only the reactive regulation of devices is

possible.

• phylay_powerFlowTsoOpf: this function compute the Optimal Power Flow (OPF) of a

transmission network in which both reactive and active power can be dispatched..

• phylay_powerFlowTso: this function compute the Power Flow (PF) of a transmission

network without any possible regulation from the simulated devices.

• phylay_secondaryRegulation: this function, given the imbalance of a power system,

compute the automatic secondary regulation for each device participating to the service.

• phylay_secondaryRegulationSubNetwork: this function is used in coordination

scheme C where a local (distribution) secondary regulation is performed in order to correct

local imbalance. The function, given the imbalance of a sub-network, computes the secondary

regulation for each device participating to the regulation.

• phylay_powerFlowDsoSecondary: this function network sums all the secondary

regulation contributions of the devices connected to distribution networks and assigns them

to the corresponding transmission node.

• phylay_typeBusConversion: this function converts the network_BusType into the

PyPower format

• phylay_createCaseBus: this sub-function is used to create the nodes input in the

PyPower format.

• phylay_createNodeT: this sub-function is used to create slack node in PyPower format.

• phylay_createCaseBranch: this sub-function is used to create the branches input in

PyPower format.

• phylay_createtriplets: this sub-function is used to create the generators input in

PyPower format. For each generator, a triplet of devices is created in order to divide upward

and downward contribution and allowing a better modulation of power.

Copyright 2019 SmartNet Page 108

• phylay_createtripletsReactive: this sub-function is used to create the generators

input in PyPower format when only reactive regulation is possible. For each generator, a

triplet of devices is created in order to divide upward and downward contribution and

allowing a better modulation of power.

• phylay_writeToPhylayOut: this function is used to store the state of nodes and

branches returned by the simulator to the output tables.

5.5 Flow chart of the module

The physical layer structure is divided in two main blocks, called PHYLAY 1 and PHYLAY 2. The

phylay1 has the objective of computing the application of the disaggregator set points to the resources,

taking into account a detailed model of devices. The possible differences between the disaggregators set

point and their application are caused by two main reasons:

• Aggregators uses simplified models with respect to the simulated physics of the devices.

• Forecast errors on the profiles.

• A change in the state of devices occurred in previous time steps in order to manage a local

unexpected congestion (re-dispatch).

The final power exchange are then used to compute the network state. The phylay1 does not

compute the evolution of the state of devices (e.g. the state of charge of storages), because this is done

only when the congestion management of the network is performed in phylay2. In fact the set point of

devices can change due to re-dispatching measures (i.e. unwanted measures) activated by network

operators.

5.5.1 PHYLAY 1

The general structure of phylay1 is described in the flowchart reported in Figure 43. The algorithm takes

into account the previous state of devices, the device parameters, the real time profile and the aggregator

set-points in order to compute the exchange of power of each single device. The results are stored in the support

tables and in the device set-points tables.

Copyright 2019 SmartNet Page 109

Figure 43 – Flow diagram of PHYLAY 1

Within phylay1, each device is simulated and the computation process can be described separately

with dedicated flowcharts (Figure 44÷Figure 53).

Scheduler

executes phylay1

Device constants

Device profiles

Disaggregator set

points

Compute the state of devices

after the application of

disaggregator set points,

checking (and possibly

correcting) violations of

constraints.

Device Variables

Return to

Scheduler

Devices Set-points

Device previous state

Copyright 2019 SmartNet Page 110

Figure 44 – Flow diagram of PHYLAY 1 – Combined Heat Power devices

phylay1 calls

ChpAggToVar

 Chp constants

Chp profiles

Chp Disaggregator

set-points
Check if the set points respect

the device capability and the

ramp constraints by running

the function checkChp

Chp initial set-point

Return to

phylay1

Update the set-points of the

heat storage checking the

maximum and minimum state

of charge constraints by the

function uptdateChp

Chp Variables

Chp previous state

Copyright 2019 SmartNet Page 111

Figure 45 – Flow diagram of PHYLAY 1 – Conventional generators

phylay1 calls

ConAggToVar

Con profiles

Con constants

Con Disaggregator

set-points
Check if disaggregator

set-points are present

Con initial set-point

Return to

phylay1

Check if the set-points

respect the device capability

and the ramp constraints with

the function uptdateCon

Con Variables

Copyright 2019 SmartNet Page 112

Figure 46 – Flow diagram of PHYLAY 1 – Hydro generators

phylay1 calls

HydAggToVar

Hyd constants

Hyd profiles

Hyd Disaggregator

set-points

If the-set points are higher

than the actual availability of

resource, they are corrected

Check if the set-points respect

the device capability and the

ramp constraints by running the

function updateHyd

Hyd initial set-points

Return to

phylay1

Hyd Variables

Hyd previous state

Copyright 2019 SmartNet Page 113

Figure 47 – Flow diagram of PHYLAY 1 – Photovoltaic generators

phylay1 calls

PvAggToVar

Pv constants

Pv profiles

Pv Disaggregator

set-points

If the-set points are higher

than the actual availability of

resource, they are corrected

Check if the set-points respect

the device capability and the

ramp constraints by running the

function updatePv

Pv initial set-points

Return to

phylay1

Pv Variables

Pv previous state

Copyright 2019 SmartNet Page 114

Figure 48 – Flow diagram of PHYLAY 1 – Sheddable loads

phylay1 calls

SelAggToVar

Sel constants

Sel profiles

Sel Disaggregator

set-points

If the-set points are higher

than the actual availability of

load consumption, they are

corrected

Check if the set-points respect

the device capability and the

ramp constraints by running the

function updateSel

Sel initial set-points

Return to

phylay1

Sel Variables

Sel previous state

Copyright 2019 SmartNet Page 115

Figure 49 – Flow diagram of PHYLAY 1 – Static compensators

phylay1 calls

StatAggToVar

 STATCOM constants

STATCOM profiles

 STATCOM

Disaggregator set-points

Check if disaggregator set

points are present

Check if the set-points

respect the device capability

and the by running the

function updateStat

 STATCOM initial

set-points

Return to

phylay1

 STATCOM

Variables

Copyright 2019 SmartNet Page 116

Figure 50 – Flow diagram of PHYLAY 1 – Storage-base devices

phylay1 calls

StoAggToVar

Sto constants

Sto profiles

Sto Disaggregator

set-points

Check if the storage device

(e.g. electric vehicle) is

connected

Check if the set-points respect

the device capability and the

ramp constraints by calling the

function checkSto

Sto initial set-point

Return to

phylay1

Update the set-points of the

storage checking the maximum

and minimum state of charge

constraints by calling the

function uptdateSto

Sto previous state

Sto Variables

Copyright 2019 SmartNet Page 117

Figure 51 – Flow diagram of PHYLAY 1 – Thermostatically controlled loads

phylay1 calls

TclAggToVar

Tcl constants

Tcl profiles

Tcl Disaggregator

set-points
Check if the set-points respect

the device capability and the

ramp constraints by calling the

function TclControl

Tcl initial set-point

Return to

phylay1

Tcl previous state

Tcl Variables

Copyright 2019 SmartNet Page 118

Figure 52 – Flow diagram of PHYLAY 1 – Atomic loads

phylay1 calls

WetAggToVar

Wet constants

Wet profiles

Wet Disaggregator

set-points

Check if the set-points

respect the constraints of

maximum delay.

Compute the actual power

absorption based on the

profile

Wet initial set-points

Return to

phylay1

Wet Variables

Wet previous state

Device previously

activated?

yes

no

Copyright 2019 SmartNet Page 119

Figure 53 – Flow diagram of PHYLAY 1 – Wind generators

5.5.2 PHYLAY 2

The phylay2 block is more complex: it computes the electrical variables of the networks and the

evolution of the state of devices. At first, distribution networks are simulated by means of an Optimal

Power Flow (OPF). The control scenario of the network (e.g. controllable distribution transformers, etc.)

is specified by the fields present in the table ControlSolutionDso, which can be modified together

with the tables reporting the characteristics of devices (e.g. reactive power limit capabilities). According

to the flowchart reported in Figure 54, the OPF of distribution network computes the necessary action

from the asset of DSO and from the local resources in order to solve possible congestions (if any).

phylay1 calls

WindAggToVar

 Wind constants

Wind profiles

Wind Disaggregator

set-points

If the set-points are higher

than the actual availability of

resource, they are corrected

Check if the set-points respect

the device capability and the

ramp constraints by calling the

function updateWind

Wind initial set-points

Return to

phylay1

Wind Variables

Wind previous state

Copyright 2019 SmartNet Page 120

Figure 54 – Flow diagram of PHYLAY 2 – Part 1

Scheduler

calls phylay2

Network parameters

Devices constants

Compute the state of distribution networks by calling

the function powerFlowDsoOpf. The function also

updates the state of devices based on the necessary

control in order to solve congestions and compute the

network inbalance for CS_C

Compute the secondary

regulation of each device by

calling the function

secondaryRegulation

Devices variables

Network final state

Node power profile

Devices variables

Compute the total imbalance

of transmission network by

calling the function

powerFlowTsoReactive

Update the exchange of power in

primary substations due to the

secondary regulation by calling the

function

powerFlowDsoSecondary

Compute the state of transmission network by

calling the function powerFlowTsoOpf. The

function also updates the state of devices based

on the necessary control in order to solve

congestions

Phylay unbalance

Is CS_C?

no

yes

Compute the secondary regulation of each

device for each distribution network by

calling the function

secondaryRegulationSubNetwork

Update the exchange of power in primary

substations due to the secondary regulation

by calling the function

powerFlowDsoSecondary

Compute the secondary regulation of

each device connected to transmission

network by the function

secondaryRegulationSubNetwork

Compute the total imbalance of

transmission network by the function

powerFlowTsoReactive

phylay2 part 2

Copyright 2019 SmartNet Page 121

After that, the states of devices are updated in order to take into account possible control actions used

to solve congestions (Figure 55). These new set-points are decided by a dedicated OPF function in which

the flexible elements are constructed in order to make the devices respecting their capability and charge

constraints.

Figure 55 – Flow diagram of PHYLAY 2 – Part 2

The simulation of the operations carried DSO and TSO is performed with similar functions, which are

adapted for the specific characteristics of the two types of network. The functions aimed at simulating

DSO operations are described in section 0, while the ones carried out by TSO are reported in section 0. In

the following section, the individual functions aimed at computing the evolution of the state of devices

are then described. These functions take the correction of set-points processed during the network

operation and apply them to the device models in order to obtain their new internal states (section

5.5.2.3).

Device constants

Device profiles

Devices variables

Compute the state of devices

after the network evolution

Return to

scheduler

Devices final state

Device previous state

phylay2 part 2

Copyright 2019 SmartNet Page 122

5.5.2.1 Simulation of DSO operations

There are two main functions that allow to compute the state of distribution network in different

control configurations:

• powerFlowDsoOpf: Optimal Power Flow (OPF) of distribution network with active and

reactive power modulation from local resources and the asset of DSO.

• powerFlowDsoOpfReactive: Optimal Power Flow (OPF) of distribution network with

reactive power modulation from local resources and the asset of DSO.

The structure of the two functions is quite similar. These routines create the electrical structure of

networks in the PyPower format and they convert the devices in the PyPower format for programmable

generators. The model of generators take into account the constraints of devices (e.g. maximum power) in

modulating active and reactive power. Also the possible asset of DSO (i.e. tap-changing transformers,

static compensators, etc.) is taken into account within the optimization model.

The functions can possibly take into account the effects of state estimation error. In this case, two

network simulations are carried out. The first one is computing an OPF having as input the state of

devices to which an error (representative of state estimation uncertainty) is added. This routine returns

the set-points to be applied to actual devices. At this point, a new network simulation is carried out with

them.

The flow diagram of the DSO operation simulator is reported in Figure 56 and Figure 57, representing

the data preparation and computation steps respectively.

5.5.2.2 Simulation of TSO operations

The functions that compute the state of the transmission network and simulates TSO actions are quite

similar to the routines aimed at representing the DSO networks and operations. The two main differences

are:

• multiple slack generators are added in correspondence of the networks borders (which

simulates neighbouring countries);

• the exchange of power of nodes is computed considering also the exchange with distribution

networks.

Figure 58 and Figure 59 reports the flow diagrams illustrating the algorithms adopted for the

simulation of transmission network simulation.

Copyright 2019 SmartNet Page 123

Figure 56 – Flow diagram of powerFlowDsox – data conversion to PyPower format

Phylay2 calls

powerFlowDsox

Network node

Devices constants

Computation of the exchange of power of

each node.

Devices variables

Node power profile

For each device is created a generator in

PyPower format (with negative power

for loads) and the control solution (e.g.

maximum reactive power exchange) is

specified. The power of non-controllable

devices is instead added to the node. Also

a slack bus is added to represent the HV

network

The bus matrix of PyPower is created Node parameters

Control solution

Edge parameters
The branch matrix of PyPower is

created

The gen and gencost matrixes of

PyPower is created

Control solution
An error could be added to simulate the

error introduced by the state estimation

powerFlowDsox

part 2

Copyright 2019 SmartNet Page 124

Figure 57 – Flow diagram of powerFlowDsox – distribution network simulation

The power exchanges of the node are recomputed

having considered the possible error introduced by

the state estimation

The OPF is performed by a modified function of

pypower. In case of convergence issues, the OPF is

repeated with different control configurations or

enlarging some constraints (e.g. current constraints)

in order to obtain a solution. The state of the network

is then updated.

Edge variables

Node variables

Clearing node variables

Clearing edge variables

The OPF is performed by a modified function of

PyPower. In case of convergence issues, the OPF is

repeated with different control configurations or

enlarging some constraints (e.g. current constraints)

in order to obtain a solution. The set-point of devices

are updated to solve congestions.

Devices variables

powerFlowDsox

part 2

Copyright 2019 SmartNet Page 125

Figure 58 – Flow diagram of powerFlowTsox – data conversion to PyPower format

Phylay2 calls

powerFlowTsox

Network node

Devices constants

Computation of the exchange of power of

each node, including the power flowing

from/to distribution networks

Devices variables

Node power profile

For each device, a generator is created in

PyPower format (with negative power

for loads) and the control solution (e.g.

maximum reactive power exchange) is

specified. The power of non-controllable

devices is instead added to the node. Also

slack buses are added to represent the

network borders.

The bus matrix of PyPower is created Node parameters

Control solution

Edge parameters
The branch matrix of PyPower is

created

The gen and gencost matrixes of

PyPower is created

Control solution
An error could be added to simulate the

error introduced by the state estimation

powerFlowDsox

part 2

Network node

Copyright 2019 SmartNet Page 126

Figure 59 – Flow diagram of powerFlowTsox – transmission network simulation

The power exchanges of the node are recomputed

having considered the possible error introduced by

the state estimation

The OPF is performed by a modified function of

pypower. In case of convergence issues, the OPF is

repeated with different control configurations or

enlarging some constraints (e.g. current constraints)

in order to obtain a solution. The state of the network

is then updated.

Edge variables

Node variables

Clearing node variables

Clearing edge variables

The OPF is performed by a modified function of

PyPower. In case of convergence issues, the OPF is

repeated with different control configurations or

enlarging some constraints (e.g. current constraints)

in order to obtain a solution. The set-point of devices

are updated to solve congestions.

Devices variables

powerFlowTsox

part 2

Copyright 2019 SmartNet Page 127

5.5.2.3 Updated states of devices

As anticipated above, the new set-points are applied to each single devices according to the algorithm

described in Figure 60÷Figure 69. Their applicability is checked by comparing them with the power and

state-of-charge capabilities.

Figure 60 – Flow diagram of PHYLAY 2 – Combined Heat Power devices

Phylay2 calls

ChpVarToPhyOut

 Chp constants

Chp profiles

Chp Variables Check if the set-points respect

the device capability and the

ramp constraints by calling the

function checkChp

Chp final set-point

Return to

phylay2

Update the set-points and the state of

charge of the thermal storage checking

the maximum and minimum state of

charge constraints by calling the

function updateChp

Chp previous state

Copyright 2019 SmartNet Page 128

Figure 61 – Flow diagram of PHYLAY 2 – Conventional generators

Figure 62 – Flow diagram of PHYLAY 2 – Hydro generators

Phylay2 calls the

ConVarToPhyOut

 Con constants

 Con Variables

Check if the set-points respect

the device capability and the

ramp constraints by calling the

function updateCon

Con final state

Return to

Phylay2

Phylay2 calls

HydVarToPhyOut

Hyd constants

Hyd Variables

Check if the set-points respect

the device capability and the

ramp constraints by calling the

function updateHyd

Hyd final state

Return to

Phylay2

Hyd previous state

Copyright 2019 SmartNet Page 129

Figure 63 – Flow diagram of PHYLAY 2 – Photovoltaic generators

Figure 64 – Flow diagram of PHYLAY 2 – Sheddable loads

Phylay2 calls the

PvVarToPhyOut

PV constants

PV profiles

PV variables

If the set-points are higher

than the actual availability of

resource, they are corrected

Check if the set-points respect the

device capability and the ramp

constraints by calling the function

updatePv

Return to

Phylay2

PV final state

PV previous state

Phylay2 calls the

SelVarToPhyOut

Sel constants

Sel profiles

Sel variables

If the set-points are lower

than the actual availability of

resource, they are corrected

Check if the set-points respect the

device capability and the ramp

constraints by calling the function

updateSel

Return to

Phylay2

Sel final state

Sel previous state

Copyright 2019 SmartNet Page 130

Figure 65 – Flow diagram of PHYLAY 2 – Static compensators

Phylay2 calls the

StatVarToPhyOut

 STATCOM constants

STATCOM profiles

 STATCOM variables

Check if disaggregator

set-points are present

Check if the set-points

respect the device capability

and the by calling the

function updateStat

Return to

Phylay2

 STATCOM final

state

Copyright 2019 SmartNet Page 131

Figure 66 – Flow diagram of PHYLAY 2 – Storage-base devices

Phylay2 calls the

StoVarToPhyOu

Sto constants

Sto profiles

Sto Variables

Check if the storage (e.g.

electric vehicle) is connected

Check if the set-points respect

the device capability and the

ramp constraints by calling the

function checkSto

Return to

Phylay2

Update the set-points and the

state of charge of the storage

checking the related constraints

by calling the function

uptdateSto

Sto previous state

Sto final state

Copyright 2019 SmartNet Page 132

Figure 67 – Flow diagram of PHYLAY 2 – Thermostatically controlled loads

Phylay2 calls

TclVarToPhyOut

Tcl constants

Tcl profiles

Tcl Variables
Check if the set-points respect the

device capability and the ramp

constraints by calling the function

TclControl

Return to

Phylay2

Tcl previous state

Tcl final state

Compute the new air and

walls temperatures

Copyright 2019 SmartNet Page 133

Figure 68 – Flow diagram of PHYLAY 2 – Atomic loads

Phylay2 calls the

WetVarToPhyOut

 Wet constants

Wet profiles

Wet Variables

Check if the set-points

respect the constraints of

maximum delay.

Compute the actual power

absorption based on the

profile

Return to

Phylay2

Wet final state

Wet previous state

Device previously

activated?

yes

no

Copyright 2019 SmartNet Page 134

Figure 69 – Flow diagram of PHYLAY 2 – Wind generators

5.6 Output to database

The initial state of devices, which is the results of the application of aggregators set-points, are stored

in the following tables:

Initial state of devices

• devices_setpoints_ChpDevOut

• devices_setpoints_ConDevOut

• devices_setpoints_HydDevOut

• devices_setpoints_PvDevOut

• devices_setpoints_SelDevOut

• devices_setpoints_StatDevOut

• devices_setpoints_StoDevOut

• devices_setpoints_TclDevOut

• devices_setpoints_WetDevOut

• devices_setpoints_WindDevOut

Phylay2 calls the

WindVarToPhyOut

 Wind constants

Wind profiles

Wind Variables

If the set-points are higher

than the actual availability of

resource, they are corrected

Check if the set-points respect the

device capability and the ramp

constraints by calling the function

updateWind

Return to

Phylay2

Wind final state

Wind previous state

Copyright 2019 SmartNet Page 135

The final state of devices, resulting from the network evolution (action taken by network operators),

are stored in the following tables. They are also used as an input in the next time step iteration because

they store the internal state of devices (e.g. state of charge of storages).

Final state of devices

• phylay_setpoints_ChpPhyOut

• phylay_setpoints_ConPhyOut

• phylay_setpoints_HydPhyOut

• phylay_setpoints_PvPhyOut

• phylay_setpoints_SelPhyOut

• phylay_setpoints_StatPhyOut

• phylay_setpoints_StoPhyOut

• phylay_setpoints_TclPhyOut

• phylay_setpoints_WetPhyOut

• phylay_setpoints_WindPhyOut

The state of nodes and branches are stored in the following tables. These table are also the output

table of the market. The field writer (=phylay/market) is used to distinguish the two type of output.

Final state of network

• clearing_NodeVariables

• clearing_EdgeVariables

Finally, some summarizing parameters, which describe the state of each sub-network, are stored in

the table:

• phylay_Unbalances

Copyright 2019 SmartNet Page 136

6 Database tables

6.1 Devices

These tables refers mainly to devices. The input data used by the devices are divided based on the

device typology and they describe all the devices characteristics used both for aggregators and physical

layer simulations.

6.1.1 Device Constants:
The table that contain all the constants characteristics of devices are:

• device_ChpConstants: Combined Heat Pump parameters

• device_ConConstants: Conventional Generators parameters

• device_HydConstants: Hydroelectric generators parameters

• device_PvConstants: Photovoltaic generators parameters

• device_SelConstants: Sheddable loads parameters

• device_StatConstants: STATCOM parameters

• device_StoConstants: Storage parameters

• device_TclConstants: Thermostatically controlled loads parameters

• device_WetConstants: Wet appliances (Atomic Loads) parameters

• device_WindConstants: Wind generators parameters

6.1.2 Device Profiles

The profiles of the simulated resources are saved in the following tables. For each typology of devices,

two tables are provided: one contains the time profile, while the second is used to link the time profile

with the corresponding device in the constant table. In this way the same profile can be assigned to

multiple devices.

• CHP generators

o profiles_ChpPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_ChpPower: power production profiles

o profiles_XiDemandHeatProfile: contains the connection between the related

profile and the constants table.

o profiles_XiDemandHeat: thermal load profiles

Copyright 2019 SmartNet Page 137

• Con generators

o profiles_ConPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_ConPower: power production profiles

• Hydro generators

o profiles_HydPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_HydPower: power production forecast profiles

o profiles_HydPowerBaselineProfile: contains the connection between the

related profile and the constants table.

o profiles_HydPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results

• PV generators

o profiles_PvPowerProfile: contains the connection between the related profile

and the constants table.

o profiles_PvPower: power production forecast profiles

o profiles_PvPowerBaselineProfile: contains the connection between the

related profile and the constants table.

o profiles_PvPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results

• Sheddable loads

o profiles_SelPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_SelPower: power absorption forecast profiles

• STACOM

o profiles_StatPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_StatPower: reactive power absorption forecast profiles

• Storage devices

o profiles_StoPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_StoPower: power exchange forecast profiles

• Thermostatically controlled loads

o profiles_TclConfortTempProfile: contains the connection between the

related profile and the constants table.

o profiles_TclConfortTemp: comfort temperature profile

Copyright 2019 SmartNet Page 138

o profiles_TclAvailabilityProfile: contains the connection between the

related profile and the constants table.

o profiles_TclAvailability: availability profile of devices (0/1)

o profiles_TclMaxTempProfile: contains the connection between the related

profile and the constants table.

o profiles_TclMaxTemp: maximum temperature profile

o profiles_TclMinTempProfile: contains the connection between the related

profile and the constants table.

o profiles_TclMinTemp: minimum temperature profile

o profiles_TclInternalThermalGainProfile: contains the connection

between the related profile and the constants table.

o profiles_TclInternalThermalGain: thermal power profile produced by

other devices injected In the air

o profiles_TclEnvThermalGainProfile: contains the connection between the

related profile and the constants table.

o profiles_TclEnvThermalGain: thermal power profile produced by other

devices injected In the wall

o profiles_ExternalTempProfile: contains the connection between the related

profile and the constants table.

o profiles_ExternalTemp: external temperature profile

• Atomic Loads – Wet Appliances

o profiles_WetApplianceModel: contains the connection between the related

profile table, the Booting distribution table and the constants table.

o profiles_WetApplianceProfile: power absorption profile

o profiles_WetApplianceBootingDistribution: time step when the devices

start its cycle

• Wind generators

o profiles_WindPowerProfile: contains the connection between the related

profile and the constants table.

o profiles_WindPower: power production forecast profiles

o profiles_WindPowerBaselineProfile: contains the connection between the

related profile and the constants table.

o profiles_WindPowerBaseline: scheduled power production profiles from

previous (e.g. intraday) market results

Copyright 2019 SmartNet Page 139

6.1.3 TCL Aggregator internal tables

The TCLs have additional tables used by the related aggregator.

• aggreg_AggregatorTcl: contains the id and name of the TCL aggregator

• aggreg_AvailabilityProfile: contains the connection between the related profile and

the parameter values

• aggreg_AvailabilityStep: TCL availability profiles values (0/1)

• aggreg_BidConfig: contains configuration parameters to build TCL bids including the

number of temperature set points and control durations to be used (control variables)

• aggreg_ComfTempProfile: contains the connection between the related profile and the

parameter values

• aggreg_ComfTempStep: TCL comfort temperature profiles values

• aggreg_Device: TCL devices main technical characteristics (nominal power, efficiency,

etc.)

• aggreg_Envelope: TCLs envelope thermal parameters

• aggreg_ExtTempProfile: contains the connection between the related profile and the

parameter values

• aggreg_ExtTempStep: external temperature profiles values

• aggreg_ExtTGProfile: contains the connection between the related profile and the

parameter values

• aggreg_ExtTGStep: external thermal gains profiles values

• aggreg_IntTGProfile: contains the connection between the related profile and the

parameter values

• aggreg_IntTGStep: internal thermal gains profiles values

• aggreg_MaxTempProfile: contains the connection between the related profile and the

parameter values

• aggreg_MaxTempStep: TCL maximum temperature profiles values

• aggreg_MinTempProfile: contains the connection between the related profile and the

parameter values

• aggreg_MinTempStep: TCL minimum temperature profiles values

• aggreg_Tcl: includes a list of all TCLs involved in the simulation and defines the values of

all their parameters

• aggreg_TclStatus: includes the status of each TCL at the beginning of the simulation

(temperature set-point, indoor and envelope temperatures, …). This information is updated

from the physical layer module at the beginning of the simulation.

• aggreg_TimeStep: time-steps data

Copyright 2019 SmartNet Page 140

• tcls_FlexProfSet: set of control durations that can be applied to the TCLs in the portfolio

• tcls_TempSetPointSet: set of temperature set-points that can be applied to each TCL in

the portfolio

• aggreg_FlexCalculation: contains internal information of the TCL Aggregation module

related to the simulations of the individual flexibility profiles and their mapping with the

qbidsegments.

• aggreg_BidProfile: contains internal information of the TCL Aggregation module related

to the calculation of the qbidsegments.

• aggreg_BidCalculation: contains internal information of the TCL Aggregation module

related to the calculation of the qbids.

6.1.4 Disaggregator set points

The third necessary element for the processing of device evolution consists of the set-points from

aggregators, which are stored in the following tables.

• disaggregator_setpoints_ChpAggOut: set points for Combined Heat Pumps

• disaggregator_setpoints_ConAggOut: set points for conventional generators

• disaggregator_setpoints_HydAggOut: set points for hydro generators

• disaggregator_setpoints_PvAggOut: set points for photovoltaic generators

• disaggregator_setpoints_SelAggOut: set points for sheddable loads

• disaggregator_setpoints_StatAggOut: set points for STATCOM

• disaggregator_setpoints_StoAggOut: set points for storages

• disaggregator_setpoints_TclAggOut: set points for thermostatically controlled

loads

• disaggregator_setpoints_WetAggOut: set points for atomic loads

• disaggregator_setpoints_WindAggOut: set points for wind generators

6.1.5 Device and Network Variables

In addition, there are a set of support tables which are used for storing temporary state of devices:

• phylay_NodeVariables: contains the state of nodes

• phylay_EdgeVariables: contains the state of branches

• devices_ChpVariables: contains the state of Combined Heat Pumps

• devices_ConVariables: contains the state of conventional generators

• devices_HydVariables: contains the state of hydro generators

Copyright 2019 SmartNet Page 141

• devices_PvVariables: contains the state of photovoltaic generators

• devices_SelVariables: contains the state of sheddable loads

• devices_StatVariables: contains the state of STATCOM

• devices_StoVariables: contains the state of storages

• devices_TclVariables: contains the state of thermostatically controlled loads

• devices_WetVariables: contains the state of atomic loads

• devices_WindVariables: contains the state of wind generators

6.1.6 Initial state of devices

The initial state of devices, after the application of set-points provided by the disaggregation routines,

are stored in the following tables:

• devices_setpoints_ChpDevOut: sate of combined heat pumps

• devices_setpoints_ConDevOut: sate of conventional generators

• devices_setpoints_HydDevOut: sate of hydro generators

• devices_setpoints_PvDevOut: sate of photovoltaic generators

• devices_setpoints_SelDevOut: sate of sheddable loads

• devices_setpoints_StatDevOut: sate of STATCOM

• devices_setpoints_StoDevOut: sate of storages

• devices_setpoints_TclDevOut: sate of thermostatically controlled loads

• devices_setpoints_WetDevOut: sate of atomic loads (wet appliances)

• devices_setpoints_WindDevOut: sate of wind generators

6.1.7 Final state of devices

The final state of devices, after the network evolution, are stored in the following tables. They are also

used as an input in the next time step iteration because they also store the internal state of devices (e.g.

state of charge of storages).

• phylay_setpoints_ChpPhyOut: sate of combined heat pumps

• phylay_setpoints_ConPhyOut: sate of conventional generators

• phylay_setpoints_HydPhyOut: sate of hydro generators

• phylay_setpoints_PvPhyOut: sate of photovoltaic generators

• phylay_setpoints_SelPhyOut: sate of sheddable loads

• phylay_setpoints_StatPhyOut: sate of STATCOM

• phylay_setpoints_StoPhyOut: sate of storages

• phylay_setpoints_TclPhyOut: sate of thermostatically controlled loads

Copyright 2019 SmartNet Page 142

• phylay_setpoints_WetPhyOut: sate of atomic loads (wet appliances)

• phylay_setpoints_WindPhyOut: sate of wind generators

6.2 Network Model

The market and physical layers need to know the network description to be able to model the power

flows of the lines as a function of the power exchange of the nodes. This includes the network topology

and electrical parameters of lines, the be able to calculate active, reactive power flows and losses. The

network model is described here as an input to the market block, but is also an input for the other

simulation layers.

6.2.1 Network parameters

The network model is composed by the following fields, which are all read by the market block.

• Network.models.Network: We consider a single network per simulation in SmartNet.

Since we study interactions between DSO and TSO, their respective networks are both

modelled as ‘SubNetworks’ of this one Network. In SmartNet, we consider only scenario’s

where the Network has at most one Transmission SubNetwork and where the Network can

have zero or any positive number of Distribution Networks.

• Network.models.SubNetwork: Subnetworks are of type ‘D’ (distribution) or type ‘T’

(transmission). A SubNetwork mentions in its network field that it is part of the Network. In

SmartNet, a distribution SubNetwork is radial. A transmission network can be radial or

meshed. For Distribution networks we have functions to automatically derive the root node.

(For Transmission networks of course the root node does not generally exist.)

• network.models.Node: The Node in a network is where lines connect. It’s also where

power is injected or off-taken. The Node refers in its subnetwork field to the SubNetwork it

belongs to.

• network.models.Edge. Edges model the lines in the physical grid. They describe the

connections along which power flows from node to node. An Edge has a fromNode and an

uptoNode. An Edge can belong to one SubNetwork if both fromNode and uptoNode

belong to the same Network or crosses SubNetwork boundaries otherwise.

• network.models.NodeConstants: Node-constants describe the physical parameters of

the network that are node related. NodeConstants refer in node to the Node the constants

are for. We separated the NodeConstants from its Node to be able to change the list of

NodeConstants, while not having to change anything in the Node class. The list of used

NodeConstants parameters is:

Copyright 2019 SmartNet Page 143

o node: node the NodeConstants refer to

o nodeBusType: (1=PQ, 2= PV, 3 = reference, 4 =isolated)

o nodeBoundary: (0 = not a boundary node, 1 = is a boundary node)

o s_sh: nodal shunt conductance (real part of shunt admittance y_sh, [UNIT:S])

o b_sh: nodal shunt susceptance (imaginary part of shunt admittance y_sh, [UNIT :S])

o U_nom: nominal voltage [UNIT:kV]

o U_min: minimal voltage [UNTI:kV]

o U_max: maximal voltage [UNIT:kV]

o P_min: minimal active power [UNTI:MW]

o P_max: maximal active power [UNIT:MW]

o Q_min: minimal reactive power [UNIT:MW]

o Q_max: maximal reactive power [UNIT:MW]

o S_injectionMin: maximum apparent power [UNIT:MW] Only used for debugging.

o S_offtakeMax: maximum apparent power [UNIT:MW] Only used for debugging.

o g_sh_pu: series resistance (per unit) real part of the series impedance z_l_s

[UNIT:Ohm]

o b_sh_pu: series susceptance (per unit) real part of the nodal shunt admittance

y_sh [UNIT:S]

o function translateToPu() translates all constants to per unit values.

• network.models.EdgeConstants: Edge-constants describe the physical parameters of

the network that are edge related. EdgeConstants refer in edge to the Edge the constants

are for. We separated the EdgeConstants from its Edge to be able to change the list of

EdgeConstants, while not having to change anything in the Edge class. The list of used

EdgeConstants parameters is:

o r_l_s: series resistance (real part of series impedance z_l_s) [UNIT:Ohm]

o x_l_s: series reactance (imaginary part of series impedance z_l_s) [UNIT:Ohm]

o g_ij_sh: conductance (real part of the admittance y_ij_sh) of the i side shunt

[UNIT:S]

o b_ij_sh: susceptance (imaginary part of the admittance y_ij_sh) of the i side

shunt [UNIT:S]

o g_ji_sh: conductance (real part of the admittance y_ji_sh) of the j side shunt

[UNIT:S]

o b_ji_sh: susceptance (imaginary part of the admittance y_ji_sh) of the j side

shunt [UNIT:S]

Copyright 2019 SmartNet Page 144

o r_l__pu: per unit series resistance (real part of series impedance z_l_s)

[UNIT:Ohm]

o x_l_s_pu: per unit series reactance (imaginary part of series impedance z_l_s)

[UNIT:Ohm]

o g_ij_sh_pu: per unit conductance (real part of the admittance y_ij_sh) of the i

side shunt [UNIT:S]

o b_ij_sh_pu: per unit susceptance (imaginary part of the admittance y_ij_sh) of

the i side shunt [UNIT:S]

o g_ji_sh_pu: per unit conductance (real part of the admittance y_ji_sh) of the j

side shunt [UNIT:S]

o b_ji_sh_pu: per unit susceptance (imaginary part of the admittance y_ji_sh) of

the j side shunt [UNIT:S]

o U_ij_sh_rated: rated max voltage amplitude difference between on line from

node i to node j [UNIT:kV]

o U_ji_sh_rated: rated max voltage amplitude difference between on line from

node j to node i [UNIT:kV]

o I_ij_sh_rated: rated max current on line from node i to node j [UNIT:A]

o I_ji_sh_rated: rated max current on line from node i to node j [UNIT:A]

o S_ij_sh_rated: rated max om power amplitude difference on line from node i to

node j [UNIT:MW]

o S_ji_sh_rated: rated max om power amplitude difference on line from node j to

node i [UNIT:MW]

o S_ij_sh_rated: rated max om power amplitude difference on line from node i to

node j, used by the physical layer [UNIT:MW]

o a_ij_min: rated min on tap changing ratio of transformer on line from i to j

[UNIT:1]

o a_ij_max: rated max on tap changing ratio of transformer on line from i to j

[UNIT:1]

o nTaps_ij: number of taps on tap changing transformer on line from i to j [UNIT:1]

o a_ji_min: rated min on tap changing ratio of transformer on line from j to i

[UNIT:1]

o a_ji_max: rated max on tap changing ratio of transformer on line from j to i

[UNIT:1]

Copyright 2019 SmartNet Page 145

o nTaps_ij: number of taps on tap changing transformer on line from j to i [UNIT:1]

o phi_ij_min: min on angle range of phase shifter on line from i to j [UNIT:rad]

o phi_ij_max: max on angle range of phase shifter on line from i to j [UNIT:rad]

o phi_ji_min: min on angle range of phase shifter on line from j to i [UNIT:rad]

o phi_ji_max: max on angle range of phase shifter on line from j to i [UNIT:rad]

• network_BusType: different type of node (PV, PQ…)

• network_SubNetworkType: type of sub-networks (transmission or distribution)

• phylay_ControlSolutionDso: contains information about how a network is operated

(e.g. use of OLTC…)

• phylay_ControlSolutionTso: contains information about how a network is operated

(e.g. use of OLTC…)

6.2.2 Network Variables

In addition there are a set of support tables are used for storing temporary state of networks:

• phylay_NodeVariables: contains the state of nodes

• phylay_EdgeVariables: contains the state of branches

6.2.3 Final state of network

Some summary parameters that describe the state of each sub-network are stored in the table:

• clearing.models.NodeVariables:

o scenario: simulation scenario the other fields in this table refer to

o writer: ‘market’ or ‘phylay’ because only those two process blocks write to

this storage block

o node: node the other fields in this table refer to

o atT: atT the other fields in this table refer to [UNIT:1]

o forT: forT the other fields in this table refer to [UNIT:1]

o vsq: value of voltage squared obtained for (scenario, wroter, node, atT, forT)

[UNIT:kV2]

o v: value of voltage obtained for (scenario, writer, node, atT, forT) [UNIT:kV]

o acceptedActivePower: sum of all accepted active power over all QBids obtained

for (scenario, writer, node, atT, forT) [UNIT:MW]

Copyright 2019 SmartNet Page 146

o acceptedReactivePower: sum of all accepted reactive power over all QBids for

(scenario, writer, node, atT, forT) [UNIT:MW]

o clearedPriceActivePower: nodal price for active power for (scenario,

writer, node, atT, forT) [UNIT:EUR/MW]

o clearedPriceReactivePower: nodal price for reactive power (usually around

some % of active power price) [UNIT:EUR/MW]

o vAngle: voltage phasor angle [UNIT:rad]

o vReal: voltage phasor real part [UNIT:1]

o vImaginary: voltage phasor imaginary part [UNIT:1]

• clearing.models.EdgeVariables:

o scenario: simulation scenario the other fields in this table refer to

o writer: ‘market’ or ‘phylay’ because only those two process blocks write to

this storage block

o edge: edge the other fields in this table refer to

o atT: atT the other fields in this table refer to [UNIT:1]

o forT: forT the other fields in this table refer to [UNIT:1]

o theta_ij: voltage angle difference between node i and node j [UNIT:rad]

o P_ij_i: active power flowing from i to j, measured at i [UNIT:W]

o Q_ij_i: reactive power flowing from i to j, measured at i [UNIT:W]

o P_ij_j: active power flowing from i to j, measured at j (not the same as P_ij_i if

lossy) [UNIT:W]

o Q_ij_j: reactive power flowing from i to j, measured at j (not the same as Q_ij_i

if lossy) [UNIT:W]

o a_ij: transformer ratio: a_ij = U_i’ / U_i [UNIT:1]

o a_ji: transformer ratio: a_ji = U_j’ / U_j [UNIT:1]

o csq_ij: square of edge current in A^2 [UNIT:A2]

o c_ij: edge current in A [UNIT:A]

o c_ij_Angle: (edge) voltage phasor angle (difference) in radians [UNIT:rad]

o c_ij_Angle_Real: real part of c_ij_Angle [UNIT:1]

o c_ij_Angle: Imaginary part of c_ij_Angle [UNIT:1]

• phylay_Unbalances: contains summary parameters that describe the state of each sub-

network

Copyright 2019 SmartNet Page 147

6.3 Market tables

The following tables are related to the market module interactions with the database. These tables are

written by the aggregators in order to submit the bids to the market and, after the execution of the

clearing functions, they are read by the other blocks (disaggregators and physical layer) in order to apply

the market directives to the physical devices and network..

6.3.1 Market Bids:

Bid related inputs are the following.

• bids.models.QBidSegment: A QBidSegment is just a pair of quantities (quantity0, quantity1)

and a related pair of prices (price0, price1). The sign/direction-correspondence-convention

here is that quantities in the bid correspond to injection into the grid (node) and prices in the

bid correspond to what is asked to be paid by the bidder from the market to the bidder. But

both quantities and prices can be positive and negative in general. This allows all four

(quantity-sign, price-sign combinations).

o quantity0: described above

o quantity1: described above

o price0: described above

o price1: described above

o qBid: the QBid that this segment is part of (see below for QBid)

o segmentIndex: an integer that is positive for positive quantities and negative for

negative quantities. It indicates the order of segments for the case that bidders

directly bid complete merit order curves. This allowed direct curve visualization per

bidder. However, bidders can bid al their bids as separate segments, all belonging to a

different QBid as well.

• bids.models.QBid: A QBid is a collection of one or more QBidSegments. This is

realized by QBidSegments referring to their QBid in the QBidSegment field.

o qtBid: the QBid the QBid is part of

o relForT: the relative time that the QBid is for. The absolute time it is for it

(absolute) forT = qtBid.forT + QBid.relForT. Note that the (integer) time

(step) the bid is put in the system is called atT in SmartNet and the (integer) time

(step) of the auction that the bid is meant to participate in, is called forT. So you bid

at ‘atT’ for an auction consideration for ‘forT’.

Copyright 2019 SmartNet Page 148

• bids.models.QtBid: A QtBid is a collection of QBids, each with their respective time

indication. This is realized by a QBid referring to its QtBid in the field qtBid and specifying

the relForT as well (see discussion in QBid just above). This makes that a time profile of

quantities and prices can be bid.

o actor: the id of the person/entity bidding

o forT: the (absolute, integer) time (index) of the auction that the bid is to be

considered.

o node: reference to the node the bid is for. Notice that we don’t bid on zones, but on

specific nodes. We also have nodal prices and not zonal prices as market output.

o qtBidNr: a number only used by the bidder (and not the market) for his own

reference.

o Name: a name only used by the bidder (and not the market, apart for logging) for his

own reference.

There are class functions to plot bids in SVG format for debugging. These also allow to do curve

crossing and graphically discover the crossing point. An example is given in Figure 70.

Figure 70 – Graphical representation of bids submitted to the market module

Copyright 2019 SmartNet Page 149

6.3.2 Market Bid Constraints:

It is perfectly possible to only bid bids (QtBid, QBid, QBidSegment) combinations into the market

without adding any constraint over them. We call these bid ‘naked bids’. However, sometimes temporal

constraints (like ramp constraints) or logical constraints (like conditional constraints: if accept bid1, also

accept bid2) constraints are needed in reality. So we also modelled the following constraints types. The

constraints were chose on an as-needed-by-aggregator-basis. So we think they reflect what is needed in

reality.

• constraints.models.QPHalfPlanceConstraint: Essentially, constraining the

(active power, reactive power) 2-dimensional feasible space for a bid of aggregated

devices can be defined per time step separately, so per QBid separately. However, we

defined the constraint on a QtBid, in case the bidder wants to easily define the same

feasible half-planes for all QBids in the QtBid in one constraint. Note that multiple half

planes can be defined, so that any convex area can be nicely approximated to any desired

accuracy (e.g.: triangular, rectangular capability, circular capability). This convex

capability is common in devices and such convex areas have the nice property that also the

capability of the aggregated devices results in a convex area of the same shape.

o qtBid: the qtBid these half-planes constraints are applicable to.

o fromRelForT: the lowest forT in the QtBid the half-planes constraint will be

applied to

o uptoRelForT: the highest forT in the QtBid the half-planes constraint will be

applied to. Note that the same constraints will be applied for all QBids with a

relForT within [fromRelForT, uptoRelForT]

o lineQtoPSlope: the slope of the line defining the half-plane in (active (P),

reactive(Q))-power space. Note that we consider the slope of Q as a (linear) function

of P. Zero is possible to specify here. Infinity is not allowed. Infinity corresponds to

the case of a vertical line in (P,Q) space and to the case of no restriction of Q, so a

constraint with slow Infinity is redundant and not needed since already contained

implicitly by the restriction on active power only in a segment to the range

[QBidSegment.quantity0, QBidSegment.quantity1].

o lineQOffset: The reactive energy offset (also called absis) off the line that

describes the half-plane in (P,Q) space. So this is the value of reactive energy on this

line when P=0.

o constrainToUpFromLine: indicates which side of the line (above/below) is the

feasible area the (P,Q) feasible points are restricted to by this constraint. When True,

the upper part of the line indicates the feasible space, when False, the lower part fo

the line indicates the feasible space.

Copyright 2019 SmartNet Page 150

• constraints.models.QPDiscConstraint: Essentially, constraining the (active

power, reactive power) to a circular area, centered around d (0,0). This is defined because

some devices have this shape of capability and also their aggregated bids then have a

circular shaped capability.

o qtBid: the qtBid these disc constraints are applicable to.

o fromRelForT: the lowest forT in the QtBid the disc constraint will be applied to

o uptoRelForT: the highest forT in the QtBid the disc constraint will be applied to.

Note that the same constraints will be applied for all QBids with a relForT within

[fromRelForT, uptoRelForT]

o maxApparentPower: The radius of the disc describing the capability of the bid in

(P,Q) space. The inside of this disc indicates the feasible space.

• constraints.models.rampConstraint: This is a temporal constraint, so should for

sure be defined on QtBids since these objects have the time concept defined in them.

o qtBid: the qtBid the other fields refer to

o fromRelForT: the first time index in forT terms that the constraint is defined on

o uptoRelForT: the last time index in forT terms that the constraint is defined on

o activePowerIncrement: a step (can be positive or negative) in MW from time

step fromRelForT to time step uptoRelForT. How this value is used, as an upper

or lower bound, depends on the next field. [UNIT:MW]

o imposeIncrementAsMinimum: Boolean, when True, it means that a minimum

increment is imposed between the accepted active power values in the entire QBid

(summed over all its QBidSegments) for fromRelT and for uptoRelT.

• constraints.models.ActivationDurationConstraint: defined on a QtBid,

this constraint allows to specify that if any acceptance happens in a QtBid for it can never

be for fewer than x subsequent time steps. This avoids to many activations and

deactivations in a short time, with the objective to avoid wear-and-tear.

o qtBid: the qtBid the other fields refer to

o deltaAlphaLo: the number of time steps that should always be equal or less than

any duration of an activation occurring in the QtBid horizon.

o fullyInsideQtBidHorizon: If True, then a QtBid will never see activation in

its horizon if the corresponding deactivation (happening at least deltaAlphaLo

time steps later due to this constraint) does not fit in the horizon anymore. Default

value is True.

Copyright 2019 SmartNet Page 151

• constraints.models.IntegralConstraint: This constraint allows to set upper

and/or lower limits on the total accepted energy value between two time steps of a

QtBid. This can (and is in SmartNet) used for battery modelling.

o qtBid: the qtBid the other fields refer to

o fromRelForT: the first time index in forT terms that the constraint is defined on

o uptoRelForT: the last time index in forT terms that the constraint is defined on

o energyLo: the lower bound on the energy that can be accepted in this QtBid

during the interval [fromRelT, uptoRelT] [UNIT:MWh]

o energyHi: the upper bound on the energy that can be accepted in this QtBid

during the interval [fromRelT, uptoRelT] [UNIT:MWh]

• constraints.models.ImplicationConstraintsOnQBids: between any

combination of a (QtBid, QBid) and another (QtBid, QBid) an implication relation can

be set up, meaning that if the first QBid is accepted (meaning all its bidsegments are

accepted above their respective minimal acceptance levels) the second QBid should be

accepted (same meaning for that QBid). For this specification of both QtBids and QBids

is needed. We also ask the bidder to specify the forT. While the forT is in principle

deductible information, this allows the market to perform a check that he/she indicated

the QBids that correspond to these forT values. So the fields are.

o ifQtBid

o ifQBid

o ifForT

o thenQtBid

o thenQBid

o thenForT

• constraints.models.ImplicationConstraintOnQtBids: A constraint, similar

to the previous one, but directly between the acceptance values of two QtBids, is also

defined. The QtBid acceptance fields are defined as True when some (not nothing) of a

QtBid has been accepted. The fields for this constraint are only two.

o ifQtBid

o thenQtBid

• constraints.models.ExclusiveChoiceConstraintOnQBids(_List): This is

the parent class defining a new list constraint. It just contains an ID in the database and no

other fields. As such, we can make any number of lists.

• constraints.models.ExclusiveChoiceConstraintOnQBids_QBid: In this

table an entry is made for each QBid that needs to be added to the exclusive choice list

(defined by a reference to

Copyright 2019 SmartNet Page 152

constraints.models.ExclusiveChoiceConstraintOnQBids(_List).ID). So

we have a reference to that list and a reference to the QBid that ends up in that list. As

such we can make any list have as many QBids as we want. The market will generate

exclusive constraints for all QBids belonging to the same list. It will do so for all lists.

• constraints.models.ExclusiveChoiceConstraintOnQtBids(_List): This

is the parent class defining a new list constraint. It just contains an ID in the database and

no other fields. As such, we can make any number of lists.

• constraints.models.ExclusiveChoiceConstraintOnQtBids_QtBid: In this

table an entry is made for each QtBid that needs to be added to the exclusive choice list

(defined by a reference to

constraints.models.ExclusiveChoiceConstraintOnQtBids(_List).ID).

So we have a reference to that list and a reference to the QtBid that ends up in that list. As

such we can make any list have as many QtBids as we want. The market will generate

exclusive constraints for all QtBids belonging to the same list. It will do so for all lists.

6.3.3 Price profiles

The price associated to each node is contained in the following tables.

• profiles_NodeDeltaCost: node delta cost data

• profiles_NodeDeltaCostProfile: contains the connection between the related profile

and the parameter values

• profiles_NodeHasNodeDeltaCostProfile: contains the connection between the

nodes and the node delta cost profiles

• profiles_NodePrice: node price data

• profiles_NodePriceProfile: contains the connection between the related profile and

the parameter values

• profiles_NodeHasNodePriceProfile: contains the connection between the nodes and

the node price profiles

6.3.4 NodeNetInjection:

This table contain the profiles used in the market to compute the imbalance.

• scenario.models.NodeNetInjectionProfile: Defines the profile name

(irrespective of how many data will be contained by it in the NodeNetInjectiopn

class). This is the parent class defining a profile name only (apart form an implicit ID). The

idea of this is that in this way, multiple nodes can be reusing the same profile without

Copyright 2019 SmartNet Page 153

having to define the profile more than once. The profile itself can contain many values (for

(node, atT, forT) tuples), so that reduces work and database space used.

o name: only a name is needed here

• scenario.models.NodeHasNodeNetInjectionProfile: Defines the link

between a node and a profile.

o scenario: simulation scenario

o node: node it refers to

o nodeNetInjectionProfile: refers to the first class in NodeNetInjection

• scenario.models.NodeNetInjection: Defines the profile records. The Node net

injection is defined by the scenario. It is the net (as injection – off-take) amount of MW that

is supposed to be injected per node. This information is needed by the market in the

power balance equations it needs to respect at all times. Indeed, in all nodes, all incoming

flows (injection, power flowing into the node via lines) should be equal to all outgoing

flows (off-take, power flowing out of the node via lines). The scenario generates these

values from the knowledge of the devices that are connected to these nodes and their

respective power production or consumption, based on forecasts performed at atT for

time steps into the future: forT.

o nodeNetInjectionProfile: refers to the first class in NodeNetInjection

o atT: time it is predicted at [UNIT:1]

o forT: time it is predicted for [UNIT:1]

o P_fix: active power value predicted [UNIT:MW]

o Q_fix: reactive power value predicted [UNIT:MW]

Helper functions are defined to search for the most recent prediction for a forT value at a certain

node. These functions hide the complexity of the three classes needed to store this efficiently.

6.3.5 Market Clearing:

The outputs of the market are the market clearings. More specifically, these entail the accepted

quantity (fractions) for all QBidSegements for the specific forT of the auction. Also a price per node is

outputted, since the implemented market is a pay-as-clear market.

There are three main market outputs as variable values determined by the market: Bid related, Node

related and Edge related outputs (see section 6.2.3). In more detail, these are the following.

• clearing.models.QBidSegmentVariables:

o qbidSegment: reference to the qBidSegement the other fields are applicable to

o atT: the integer time index the bid is made at (in fact directly derivable from QBid and

QtBid fields that this segment belongs to)

Copyright 2019 SmartNet Page 154

o forT: the integer time index of the auction the bid is to be considered for (also derivable

from QBid and QtBid fields that this segment belongs to)

o acceptedFraction: a fractional number between 0 and 1 that indicates what fraction

was accepted from this bid segment. Together with cleared nodal prices these are the

main result of the market clearing [UNIT:1]

o acceptedQuantity: the quantity in MW that was accepted from this bid segment

[UNIT:MW]

o accepted: a Boolean value that is True when any (non-zero) fraction of this bid

segment was accepted, False otherwise. So this field’s value is directly derivable from

acceptedFraction [UNIT:True/False]

• clearing.models.QBidVariables:

o qBid: the QBid these variables refer to

o atT, forT: (see: clearing.models.QBidSegmentVariables above)

o acceptedActivePower: The sum of all accceptedPower over all the

QBidSegments belonging to this QBid.

o acceptedReactivePower: The total reactive power for this QBid. Note that,

contrary to active power, it is not possible to spread this reactive power over the

individual QBidSegments in this QBid. Active reactive power constraints are only

defined on the level of QBid and not at the level of QBidSegments, so segments do not

define nor constrain reactive power. Segments do define and constrain active power by

their quantity0 and quantity1 fields.

o accepted: a Boolean field that reports whether or not all the QBidSegments

contained in this QBid are accepted at or above their minimal acceptance level.

o Note that the QBid cleared price is not stored here since it is a nodal property rather

than a per QBid property.

• clearing.models.QtBidVariables:

o qtBid: reference to the qtBid its fields apply to.

o atT: (see: clearing.models.QBidSegmentVariables above). Note that a QtBid

can refer to multiple, be it consecutive, forT values. This can be derive from the QBids

that belong to this QtBid.

Copyright 2019 SmartNet Page 155

Figure 71 summarizes the five tables that the market outputs and their relations. In this picture we

can see that each of the tables QtBid, QBid and QBidSegment have their respective variable

counterpart tables that reference them. As for Nodes and Edges, these also have market variables

associated to them and these tables make a reference (forerign key) to the scenario.

Figure 71 – Tables returned by the market layer and their relations

There are three other results, mainly for debugging purposes, the market writes to the database, like:

• clearing.MarketDSOAggregation which summarizes for the same (scenario, atT,

forT, node, subnetwork) tuple, information on aggregated DSO bid injection, aggregated

DSO bid cost and up and down injection.

• clearing.AggDSOBids which summarizes per (scenario, atT, forT, node,

subnetwork, qtBid, qBid, segment, quantities, prices and SOCP and power

slacks) for easier debugging.

• clearing.models.DistributedTimingTrace: This table is written to by market, but

by also most other blocks in order to assemble the time it takes for functions in these blocks.

It is a logging table useful to see which block functions take the highest fraction of the time

spent during simulation and to know where to focus on to reduce total simulation time.

o scenario: The simulations scenario (Country, Coordination Scheme,

simulation version)

o atT: For every atT we typically produce time log points in this table

o block: name of the block the function belongs to (free text)

o function: name of function (free text)

o subnet: subnetwork name (if applicable, freetext)

Copyright 2019 SmartNet Page 156

o startedAt_Seconds: the time the function was started. The duration of the function

can be derived from the start startedAt_Seconds of the next function in this table

minus the startedAt_Seconds of the current function on this table.

Copyright 2019 SmartNet Page 157

7 References

[1] Gerard H., Rivero E., Six D., SmartNet project Deliverable 1.3, “Basic schemes for

TSO-DSO coordination and ancillary services provision”. December 2016.

Available on-line at: http://smartnet-project.eu/wp-content/uploads/2016/12/

D1.3_20161202_V1.0.pdf [last accessed in 18 June 2019].

[2] Dzamarija M., Plecas M., Jimeno J. et al., 2018, SmartNet project Deliverable 2.1,

“Aggregation models”. May 2018. Available on-line at: http://smartnet-

project.eu/wpcontent/uploads/2018/05/D2.1_20180524_V1.0.pdf

[last accessed in 18 June 2019].

[3] Leclercq G., Pavesi M., Gueuning T. et al., SmartNet project Deliverable 2.2,

“Network and market models”. February 2019. Available on-line at:

http://smartnet-project.eu/wpcontent/uploads/2019/02/2019215113154_

D2.2_20190215_V1.0.pdf [last accessed in 18 June 2019].

