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Abstract: This paper considers a single-unit system subject to two types of failures: a 

traditional catastrophic failure and a two-stage delayed failure. Periodic inspections are 

carried out to identify the defective stage of the two-stage failure process, whereas 

preventive replacements are implemented to avoid any potential failure due to the 

catastrophic failure mode. We construct a basic maintenance model and then extend it 

to the cases of imperfect inspections (i.e., inspections that do not always notice a 

defective state). We analyze the renewal process of the system and establish the 

expected long-run cost rate (ELRCR). The optimal inspection period and preventive 

replacement interval are determined by minimizing the ELRCR. A case study on 

infusion pumps is presented to illustrate the proposed model. 

 

Keywords: periodic inspection; preventive replacement; delay-time; two-stage failure 

process; imperfect inspection. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/222699872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 

 

1. Introduction 

With the ongoing development of technology, modern systems are becoming 

increasingly complicated and often have components that are subject to multiple failure 

modes (Wang & Wu, 2014). In general, these failure modes can be classified into two 

categories: hard failures and soft failures. Hard failures are the failures whose 

occurrence is instantaneous and, most likely, self-announcing. Soft failures, on the 

contrary, would generate early warning signals or have degradation patterns, which may 

be detected by inspection or monitoring. 

Modern complex systems, e.g., micro electromechanical systems (MEMS) and 

complex medical devices, are usually subject to both hard failures and soft failures 

(Park et al., 2013 and Peng et al., 2010). For instance, MEMS contain both mechanical 

and electrical parts. The mechanical parts suffer wear that may be monitored or 

inspected, whereas the electrical parts may fail suddenly and make inspections fruitless 

for preventive maintenance. For complex medical devices such as infusion pumps, hard 

failures can occur due to the malfunction of the alarm and circuit breaker/fuse, while 

soft failures occur on the labeling and battery/charger. The voltage of the battery is 

routinely checked, whereas the circuit breaker/fuse cannot be monitored and may 

therefore fail suddenly. 

To maintain a high availability, inspection is a commonly applied technique for 

modern plant systems (Mendes et al., 2014 and Taghipour & Banjevic, 2012). Through 

inspection, potential defects can be identified and preventive maintenance actions can 

be carried out (Nguyen et al., 2015 and Wu et al., 2016). Accordingly, system failure 

can be avoided and the operational cost of the system can be reduced. Thus, it is an 

effective measure to improve the quality and performance of the system. Inspections 

can be conducted periodically (Biswajit & Saren, 2016, Yang & Jae, 2014 and Liu et 

al., 2016a), on a condition-based basis (Dieulle et al., 2003 and Michele et al., 2015), 
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or after the completion of successive tasks (Zhao & Nakagawa, 2013 and Liu et al., 

2016b). Periodic inspection is widely adopted in practice due to its easy implementation 

and effectiveness. Wang (2009) formulated an inspection model with two kinds of 

periodic inspection: minor inspection and major inspection. Aven and Castro (2009) 

studied the optimal periodic inspection policy under safety constraints. Instead of 

considering cost as the single objective, Ferreira et al. (2009) investigated the optimal 

inspection interval in a multi-criteria framework. 

Inspections are effective only if there are defective states for the system, so that the 

system can be repaired preventively before a failure occurs. This leads to the usefulness 

of the delay-time concept. Originally proposed by Christer (1976), the delay-time 

concept regards the failure mechanism as a two-stage process, where the first stage is 

from the installation to the point of a defect’s arrival and the second stage (known as 

the delay-time stage) is from the start of the defective state to the failure, if left 

unattended. This concept has inspired many subsequent studies, such as Christer (1999), 

Wang (2012) and Zhao et al. (2015).Williams and Hirani (1997) studied the optimal 

inspection policy for multi-state systems with multi-level maintenance based on the 

delay-time model. Christer and Lee (2000) modified the delay-time model by 

considering the downtime caused by failures. Wang (2011) extended the traditional 

two-stage delay-time model to a three-stage process and studied the associated optimal 

inspection policy. An overview of the recent delay-time-based maintenance models can 

be seen in Wang (2012). 

In practice, inspections can be imperfect due to the limitation of detection 

techniques and the effect of environmental variations. An inspection may fail to identify 

a defective state or mistakenly treat a normal state as the defective state (Biswajit & 

Saren, 2016, Flage, 2014 and Phan & Zhu, 2015). Usually the performance of an 

inspection is measured in terms of the probability of defect detection and the probability 

of a false alarm (Sahraoui et al., 2013). Berrade et al. (2012) formulated an imperfect 
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inspection model and investigated the reliability of a system with a defective state. The 

imperfect inspection model was further extended to the scenario of a finite horizon 

(Berrade et al., 2013). Sheils et al. (2010) developed a two-stage inspection policy to 

assess deteriorating infrastructure, in which the detection process is divided into two 

stages: inspection and sizing. Mohammadi et al. (2015) integrated the imperfect 

inspection model into a manufacturing system, where the optimal production period 

and inspection policy were obtained. One limitation of the previous studies is that they 

only consider one failure mode. In reality, a system is usually subject to multiple failure 

modes (Liu et al., 2013 and Park et al., 2013). Imperfect inspection for a system with 

multiple failure modes requires more investigation. 

In this paper, we study the maintenance policy for a single-unit system subject to 

two different failure modes. Failure mode 1 is the soft failure, and the failure process is 

formulated using the delay-time model. Periodic inspections are conducted to detect the 

possible defective state of failure mode 1. The case of imperfect inspection is also 

considered by assuming that the probability of detection is constant. For failure mode 

2, which belongs to the hard failure, the failure rate increases with the system age. 

Preventive replacement is implemented to renew the system so as to decrease the 

system failure rate. Appropriate preventive replacement policy is appreciated to balance 

the failure probability and maintenance cost. To reduce the operational cost, the optimal 

inspection and preventive replacement intervals that minimize the expected long-run 

cost rate (ELRCR) are studied. 

The remainder of this paper is organized as follows. Section 2 gives the detailed 

system description and assumptions. Section 3 studies the basic model by assuming that 

the inspection is perfect and the preventive replacement interval is an integer multiple 

of the inspection interval. Different renewal scenarios are investigated in detail, and the 

expected renewal cycle length together with the expected renewal cycle cost based on 

the renewal process are formulated. Section 4 extends the basic model to the case with 
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imperfect inspections. Section 5 illustrates the proposed inspection and preventive 

maintenance model with a case study on infusion pumps. Section 6 concludes the paper 

and discusses possible directions for future study. 

Notations 

cC  Cost of a renewal cycle 

FC  Cost of system failure 

IC  Inspection cost 

RC  Replacement cost 

ECR  Expected long-run cost rate 

dN  
Number of inspections to detect the defective state after the occurrence 

of a defective state 

T  Periodic inspection interval 

cT  Length of a renewal cycle 

fT  Time of system failure 

RT  Time to preventive replacement 

1X  Duration of the system in normal state for failure mode 1 

2X  Duration of the system in defective state for failure mode 1 

3X  Duration of the system in operating state for failure mode 2 

n  Number of inspections before preventive replacement 

  Probability of defect detection 

i  Shape parameter of Weibull distribution 
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i  Scale parameter of Weibull distribution 

 

2. System description 

The system under consideration is a single-unit system subject to two different, 

independent failure modes. Both failure modes lead to the system failure. Failure mode 

1 consists of a two-stage failure process, which is modeled using the delay-time concept. 

With respect to mode 1, the system is first in the normal state, and then experiences a 

defective stage prior to the eventual failure. The durations of the normal state and the 

defective state are described by two independent random variables 1X   and 2X  , 

respectively. Denote the corresponding cumulative distribution functions (CDFs) as 

( ), 1, 2iF i = , and the corresponding probability density functions (PDFs) as ( )if  . 

Failure mode 2 corresponds to a hard failure, i.e., the failure occurs without any 

prior warning, either because the defective state cannot be identified or there is no delay 

time at all. The random time before failure for mode 2 is denoted by 3X  . The 

corresponding CDF and PDF are 3 ( )F   and 3 ( )f  , respectively. 

To detect the possible defective state of failure mode 1, a periodic inspection of 

period T  is carried out during the operation of the system. The probability of defect 

detection   is assumed to be a constant (Williams & Hirani, 1997). Whenever the 

defective state of failure mode 1 is detected, the system is immediately replaced. Since 

failure mode 2 has no defective stage, inspection is ineffective. Nevertheless, to 

mitigate the system failure due to mode 2, a preventive replacement is carried out at 

RT  if no defective stage has been identified before RT . Whenever a failure occurs, it 

can always be detected, and the system can be immediately renewed. Compared with 

the operation period of the system, the time taken to inspect and renew the system is 
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assumed to be negligible. 

Let IC  be the cost of a single inspection. We assume the cost of replacement at 

inspections is equal to the preventive replacement cost at RT , which is denoted as RC . 

When a failure occurs, corrective replacement is implemented to remedy the 

consequences of the failure with the associated cost FC . Clearly, FC  should satisfy 

F RC C . The cost items due to failure mode 1 and failure mode 2 are identical. 

3. The basic model 

Before establishing the maintenance model, we investigate the stochastic behavior 

of the system subject to two failure modes.  

Consider failure mode 1 first. We have the CDF of failure mode 1 as  

( ) ( )12 1 2 1 2 1 1 2
0

( ) , ( ) ( )
t

F t P X X t P X t X t X f F t d  = +  =   − = − . 

As failure mode 1 and failure mode 2 are independent, the CDF of the system lifetime 

fT  can be obtained as 

( ) ( ) ( )( )1 2 3 12 3

12 3 12 3

( ) 1 1 ( ) 1 ( )

       ( ) ( ) ( ) ( ).

fF t P T t P X X t X t F t F t

F t F t F t F t

=  = +    = − − −

= + −
    (1) 

With this result, we can proceed to formulate the maintenance model and further 

analyze the effectiveness of the maintenance policy.  

In this section, we assume that the inspection is perfect ( =1  ) and that the 

preventive replacement interval is an integer multiple of the inspection interval, i.e., 

RT nT= , for integers 1n  . The system can be renewed in the following cases: (1) the 

defective state of failure mode 1 is detected at the kth inspection, 1,..., ( 1)k n= − ; (2) a 

preventive replacement is carried out at nT  ; and (3) failure occurs between

( )( )1 , , 1,...,k T kT k n− = . 
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In the following, we first analyze these three possible scenarios and derive their 

corresponding probabilities. Denote cT  as the length of a renewal cycle, and cC  as 

the cost in a renewal cycle. The expected renewal cycle length ( )cE T  and the expected 

renewal cost ( )cE C  can be obtained subsequently. Finally, the ELRCR, which is a 

function of T  and n , can be obtained as (Do et al, 2015; Wu et al, 2016) 

( )
( , ) .

( )

c

c

E C
ECR T n

E T
=  (2) 

Once the ELRCR is obtained, the optimal maintenance policy ( , )T n   that minimizes 

( , )ECR T n  can be obtained easily with numerical methods. 

3.1 Analysis of the renewal scenarios 

The occurrence of renewal case (1) indicates that the system is still in the normal 

state at ( )1k T− , that a defect occurs before kT , and that neither failure mode 1 nor 

failure mode 2 occur before kT , as illustrated in Fig. 1. Hence, the probability of this 

scenario is 

   1 1 2 3

3 1 2
( 1)

( ) Pr ( 1) , Pr

( ) ( ) ( ) , 1,..., 1.

c

kT

k T

P T kT k T X kT X X kT X kT

R kT f t R kT t dt k n
−

= = −   +  

= − = −
 (3) 

where cT  is the length of a renewal cycle and ( ) 1 ( ), 1, 2,3i iR F i = −  =  denotes the 

reliability function of the normal state, defective state and failure mode 2, respectively. 
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0 (k-1)T kT

X1
X2

X3

 

Fig.1 Renewal of the system due to the detected defective state of failure mode 1. 

If no defective state is detected in the first ( 1)n −  inspections, the system has to be 

renewed at nT  given no failure occurs before nT . This case indicates that the system 

due to failure mode 1 is still in the normal state at ( 1)n T−  and that failure in mode 2 

does not occur before nT  , as illustrated in Fig. 2. The corresponding occurrence 

probability of this scenario is 

 

( )

1 1 2

3

1

3 1 2 1
( 1)

{( 1) , }
( ) Pr Pr

{ }

( ) ( ) ( ) ( ) .

c

nT

n T

n T X nT X X nT
P T nT X nT

X nT

R nT f t R nT t dt R nT
−

−   +  
= =  

  

= − +

 (4) 

 

0 (n-1)T nT

X1
X2

X3

0 (n-1)T nT

X1

X3

(a)

(b)

 

Fig.2 Renewal of the system due to the preventive replacement: (a) defective state of 

failure mode 1 before nT ; (b) normal state of failure mode 1 before nT . 

As previously mentioned, whenever a failure occurs, the system is renewed 

immediately. A failure occurring at (( 1) , )t k T kT −   implies the following two 

exclusive cases: 
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(i) The system due to failure mode 1 enters the defective state at some 

(( 1) , )k T t  −  and leads to the system failure at t, while failure mode 2 does not 

occur before t, as illustrated in Fig. 3(a);  

(ii) Failure mode 2 leads to the system failure at t, and the system due to failure mode 

1 is either in the normal state or the defective state at t (but is normal at ( 1)k T− ), 

as illustrated in Fig. 3(b) and Fig. 3(c).  

Let 
fT  be the time of system failure. The PDF of 

fT  is given as 

( )( )
( )

1 1 2 3

0
1 1 2 3

3 1 2
( 1)

3 1 1 2
( 1)

{( 1) , ( , ), }1
( ) lim Pr

{( 1) , , ( , )}

 ( ) ( ) ( )

( ) ( 1) ( ) ( ) ,

( 1) , , 1,..., .

f

k

T
t

t

k T

kT

k T

k T X kT X X t t t X t
f t

k T X X X t X t t tt

R t f f t d

f t R k T f F t d

t k T kT k n

  

  

 →

−

−

−   +  +   
=  

 −  +   +   

= −

+ − − −

 − =





 (5) 

The probability that the system fails in (( 1) , )k T kT−  is 

( )

( ) ( )( )

( ) ( )( )

( ) ( )

( 1)

1 3 2 3 2
( 1) ( 1)

1 3 3

3 1 2
( 1)

1 3 3

1 3 1 3

Pr{( 1) } ( )

( ) ( ) ( ) ( ) ( )

  ( 1) ( ) ( 1)

( ) ( ) ( )

  ( 1) ( ) ( 1)

( 1) ( 1) ( ) ( )

f

kT
k

f T
k T

kT t

k T k T

kT

k T

k T T kT f t dt

f R t f t f t F t d dt

R k T F kT F k T

R kT f F kT d

R k T F kT F k T

R k T R k T R kT R kT

   

  

−

− −

−

−   =

= − − −

+ − − −

= −

+ − − −

= − − −



 



3 1 2
( 1)

  ( ) ( ) ( ) .
kT

k T
R kT f R kT d  

−
− −

 (6) 
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0 (k-1)T kT

X1
X2

τ t

X3

(a)

0 (k-1)T kT

X1
X2

τ t

(b)
X3

0 (k-1)T kT

X1
X2

t

(c)
X3

 

Fig.3 Renewal of the system due to a failure of the system. (a) Failure is due to failure 

mode 1. (b) and (c): Failure is due to failure mode 2. 

3.2 Expected length and cost of a renewal cycle  

With the above analysis, the expected length of a renewal cycle, cT  , can be 

obtained as 

( 1)
1 1

1 3 3 1 2
0 ( 1) ( 1)

1

( ) ( ) ( )

        ( ) ( ) ( ) ( ) ( ) .

f

n n kT
k

c c T
k T

k k

nnT kT t

k T k T
k

E T kTP T kT tf t dt

R t R t dt R t f R t d dt  

−
= =

− −
=

= = +

= + −

 

  

 (7) 

The term
1

1
( )

n

ck
kTP T kT

−

=
=   corresponds to the contribution of the detected 

defective state of failure mode 1, ( )cnTP T nT=   denotes the contribution from the 

preventive replacement and 
1 ( 1)

( )
f

kTn k

Tk k T
tf t dt

= −
   represents the contribution due to the 

failure renewal. 
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With the corresponding probabilities derived in Section 3.1, the expected cost in a 

renewal cycle can be readily obtained as 

( )

( )

( )

1

1

1

1

3 1 1 2
( 1)

1

3 1 3 1 2
( 1)

1

( ) ( ) ( ) ( 1) ( )

            ( 1) Pr{( 1) }

( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( ) ( )

  

n

c I R c I R c

k

n

I F f

k

n kT

I
k T

k

n kT

R
k T

k

E C kC C P T kT n C C P T nT

k C C k T T kT

C R kT R kT f t R kT t dt

C R nT R nT R kT f t R kT t dt

−

=

=

−

−
=

−
=

= + = + − + =

+ − + −  

= + −

 
+ + − 

 





 

 

3 1 3 1 2
( 1)

1

1 ( ) ( ) ( ) ( ) ( ) .
n kT

F
k T

k

C R nT R nT R kT f t R kT t dt
−

=

 
+ − − − 

 
 

 (8) 

Here,
1

1
( ) ( )

n

I R ck
kC C P T kT

−

=
+ =  represents the expected cost attributable to the 

inspection (the cost of k  inspections) and a replacement when the defective state of 

failure mode 1 is detected, ( )( 1) ( )I R cn C C P T nT− + =  corresponds to the expected 

cost of the preventive replacement together with the expected cost of ( 1)n−  

inspections before it and ( )
1

( 1) {( 1) }
n

I F fk
k C C P k T T kT

=
− + −     corresponds to 

the scenario that the system fails, including the expected cost of the inspection before 

failure and the expected cost caused by failure. 

3.3 Optimal solution 

Let ( ) ( ), cg T n E T= and ( ) ( ), ch T n E C= . We can have the following properties 

in terms of ( ),g T n  and ( ),h T n . 

Proposition 1. ( ),g T n  is monotonically increasing and bounded with respect to 𝑛. 

In addition, 

( ) ( )3
0

,
nT

g T n R t dt   

Detailed proof is shown in Appendix A. With Proposition 1, we can easily have
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( ) ( )3lim ,
n

g T n E T
→

  . Therefore, when the preventive replacement is postponed, the 

expected cycle length will always increase; however, the maximum will not exceed the 

expectation of 𝑋3, i.e., it is bottlenecked by failure mode 2.  

Proposition 2. ( ),h T n  is monotonically increasing and bounded with respect to 𝑛. 

( ) ( )
( )1

3
0

,
n T

I
F

C
h T n R t dt C

T

−

 +  

Detailed proof is shown in Appendix B. Proposition 2 implies that when the 

preventive replacement is postponed, the possibility that the system is renewed by a 

failure is increased, which in turn increases the cost resulting from failures. On the 

contrary, the possibility that the system is renewed by a replacement is decreased, and 

the expected cost of replacements is decreased. Nevertheless, the postponed preventive 

replacement always increases the expected inspection cost, since it extends the expected 

length of the renewal cycle. We can also have  

( )
( )3

lim ,
I

F
n

C E X
h T n C

T→
 +  

As for the inspection period 𝑇 , the corresponding derivatives of ( ),g T n  and 

( ),h T n can be obtained after tedious derivations. For ( ),g T n , we have 

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )( )
( )

1 3

3 1 2
1

1
1 3 2

1

,

1 1 1

T

kT

n
k T

kT
k

k T

g T n nR nT R nT

kR kT f t R kT t dt

k f k T R t R t k T dt

−

=

−

 =

 −
 

+  
− − − − − 
 






 

For ( ),h T n , we have 
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( )

( )

1

3 1

1

1

1 3 3 1

1

, ( ) ( )

( ) ( ) ( ) ( )

n

T I n

k

n

F R n

k

h T n C A kf kT R kT

C C A kf kT R kT nf nT R nT

−

=

−

=

 
 = − + 

 

 
+ − − + 

 





 

where 

( ) ( ) ( ) ( ) ( ) ( )
( )( )

( ) ( )( ) ( ) ( )

3 1 2 3 1 2
1 1

1
1 2 31 1

kT kT

n
k T k T

n

k

kf kT f t R kT t dt kR kT f t f kT t dt
A

k f k T R T R kT

− −

=

 − + −
 =
  − − − 

 
  

Then, based on ( ),n g T n , ( ),nh T n , ( ),T g T n  and ( ),T h T n , the optimal 

inspection and replacement strategy can be readily found. Let

( ) ( ) ( ) ( ), , , / ,f T n ECR T n h T n g T n= = , we can have 

( ) ( ) ( )
( )

( )

( )

( )

, 1 ,
, , 1 ,

, 1 ,
n

h T n h T n
f T n f T n f T n

g T n g T n

+
 = + − = −

+
 

( )
( ) ( ) ( ) ( )

( )( )
2

, , , ,
,

,

T T

T

h T n g T n g T n h T n
f T n

g T n

 −
 =  

Based on ( ),n f T n  and ( ),T f T n  , the optimal ( ),T n   that minimizes 

( ),ECR T n  can be obtained straightforward. As 𝑛  is discrete, we can first find an 

optimal 𝑇𝑛
∗ that minimizes ( ),f T n  for fixed 𝑛, and then find the optimal 𝑛∗ that 

minimizes ( )*,nf T n . Carrying on this procedure iteratively, we can find the optimal

( )* *,T n . 

4. Maintenance model with imperfect inspections 

In this section, we consider the effect of imperfect inspections ( 1  ). Denote 

dN  as the number of inspections taken to detect the defective state after the occurrence 

of a defective state. Obviously, dN   follows the geometric distribution
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( ) 1(1 )i

dP N i  −= = −   (Williams & Hirani, 1997). Similar as in Section 3, we 

consider the following three exhaustive renewal scenarios: (1) the renewal results from 

the detection of the defective state; (2) the renewal results from the preventive 

replacement at the nth inspection; and (3) the renewal cycle results from a failure.  

(1) Consider the first scenario (where a defective state is discovered at the kth inspection, 

1,2, , 1k n=  − ). Here, the system does not fail, but rather falls into the defective state 

before kT . In addition, we have 1 /dN k X T= −    , where x    gives the maximum 

integer not bigger than x . The occurrence probability of this scenario can be obtained 

as 

( )    3 1 2 1 1

/ 1

3 1 2
0

3 1 2
( 1)

1

Pr Pr , , /

                 ( ) ( ) ( )(1 )

                 ( ) ( ) ( )(1 ) .

c d

kT k t T

k iT
k i

i T
i

P T kT X kT X X kT X kT N k X T

R kT f t R kT t dt

R kT f t R kT t dt

 

 

− −  

−

−
=

= =   +   = −   

= − −

= − −





 
(9) 

(2) Consider the second scenario (where the system is replaced at the nth inspection if 

no failure occurs and no defective state is detected before nT  ). The event that no 

defective state is detected consists of two scenarios: the system is in the normal state, 

or the system is in the defective state but has not been discovered. Clearly, we have

1 /dN n X T −    , denoting that no defective state is detected before nT  given that 

the system is in the defective state. The probability of this event can be obtained as 

( )  

( ) ( ) 

( )

3

1 2 1 1 1

/ 1

3 1 2 1
0

3 1 2 1
( 1)

1

Pr

    Pr , , /

( ) ( ) ( )(1 ) ( )

( ) ( ) ( )(1 ) ( ) .

c

d

nT n t T

n iT
n i

i T
i

P T nT X nT

X X nT X nT N n X T X nT

R nT f t R nT t dt R nT

R nT f t R nT t dt R nT





− −  

−

−
=

= = 

 +    −    

= − − +

 
= − − + 

 





 (10) 

(3) Consider the third scenario (where either failure mode 1 or failure mode 2 leads to 

system failure). The PDF that a failure occurs by time ,( 1) kt k T t T −  is expressed 

as 
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( )

( )

( )

( )

1 2 1 3 1

1 2 1 3

0
1 2 1 1 3

1 2 1 3

( , ), ( 1) , , 1 /

( , ), ( 1) ,1
( ) lim Pr

, ( 1) , 1 / , ( , )

, ( 1) , ( , )

        

f

d

k

T
t

d

X X t t t X k T X t N k X T

X X t t t t X k T X t
f t

t X X t X k T N k X T X t t t

X X t X k T X t t t

 →

 +  +   −   − −   
 
 +  +    −   

=  
  +   −  − −  +    

 
 +   −  +   

=

( )( )

1

3 1 2
( 1)

1

3 1 2
( 1)

1

3 1 2
( 1)

1

3 1 1 2
( 1)
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(11) 

If   is set to 1 for perfect inspection, the failure probability density of Eq. (11) is 

identical to that of Eq. (5). 

The renewal is resulted from either preventive replacement or corrective 

replacement due to unexpected failures. After some simplifications, the expected length 

of a renewal cycle is expressed as 
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The expected cost in a renewal cycle can be obtained as  
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 (13) 

With the expression of ( )cE T  and ( )cE C , we can derive the ELRCR according to 

Eq. (2). Then, with the given T  and n , one can easily calculate the corresponding 

long-run cost rate. The optimal ( , )T n 
  that minimizes the ELRCR can be easily 

derived with numerical methods. The current model can be extended to the cases with 

arbitrary preventive replacement interval and with time-dependent inspection 

probability. We present these extensions in Appendix C and Appendix D for 

compactness of the paper. 

 

5. Case Study 

Infusion pumps are important equipment to pump fluids for patients. Infusion 

pumps contain a variety of types, among which the widely used type is the peristaltic 

pump. A peristaltic pump usually suffers two failure modes. One is due to the battery 

which is routinely checked up of its voltage, the other is the electrical parts failure which 

cannot be monitored. The battery goes through a degradation process before failure, 

which can be described with a delay-time failure model, while the electrical parts are 

subject to sudden failures (Wang, 1992). Under the proposed framework, we use 1X  
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and 2X  to denote the duration of the normal state and the deterioration state of the 

battery and 3X  to denote the lifetime of the electrical parts. The three variables are 

assumed to follow Weibull distributions ( ) ( ) 1 exp / i

i iF x x


= − −  , where the 

distribution parameters are as given in Table 1. The inspection cost, replacement cost 

and failure cost are set as 10IC = , 100RC = and 800FC = , respectively. 

Table 1 Distribution parameters for lifetime distributions of the peristaltic infusion pump. 

i 1 2 3 

βi 1.5 1.2 2 

ηi 2 1 2.5 

 

5.1 Illustration of the model proposed in Section 3 

With the given parameter setting, the optimal inspection interval and preventive 

replacement interval are obtained as ( , ) (0.23,6)T n  = . This indicates that the optimal 

inspection interval is 0.23 and that preventive replacement should be carried out at the 

sixth inspection if no failure occurs before it. The expected cycle length and the 

expected cycle cost are ( ) 0.6165cE T =   and ( ) 98.28cE C =  , respectively, while the 

optimal ELRCR is ( , ) 152.2ECR T n  = . Fig.4 shows how the ELRCR varies in terms 

of n and T. 
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Fig.4 Variation of ELRCR in terms of n and T  

To show the influence of the cost parameters on the optimal inspection and maintenance 

strategy, Fig. gives the variation of the optimal ( , )T n 
  and ( , )ECR T n 

  for 

different inspection cost IC  and replacement cost RC . It is shown that the optimal 

inspection interval T 
  increases monotonically with IC  , indicating that the 

inspection tends to be less frequent as the unit inspection cost increases. In addition, the 

optimal inspection interval T 
 decreases with the replacement cost RC . Actually, the 

cost for inspection is relatively cheaper when the cost for replacement increases, thus it 

justifies a smaller inspection interval. More frequent inspections (i.e., a smaller 
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inspection interval) can attenuate the risk of system failure and thus reduce the 

maintenance cost, which is more effective for the system with a higher replacement 

cost. In contrast, as the inspection becomes less frequent, n  decreases to ensure that 

the risk of failure due to failure mode 1 can be controlled under a certain level. With an 

increased inspection interval, the number of inspections should be decreased so as to 

balance the probability of failure. This logic is illustrated in the middle panel of Fig., 

where the optimal preventive replacement interval n  decreases with the inspection 

cost IC   and decreases with the replacement cost RC  . Clearly, ELRCR always 

increases with IC  and RC . 
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Fig.5 Variation of the optimal ( , )T n 
 and the optimal ELRCR with respect to the 

inspection cost IC  for different RC . 

5.2 Illustration of the model proposed in Section 4 

Consider the case with imperfect inspections. The probability of detection is set as 

0.7 = . In this setting, the optimal inspection interval T 
 and the optimal preventive 

replacement cycle n   are obtained as ( , ) (0.27,5)T n  =  . The associated expected 

cost in a renewal cycle ( )cE C  and length of a cycle length ( )cE T  are obtained as 

( ) 118.7cE C =  and ( ) 0.7431cE T = , respectively. The optimal ELRCR is achieved as

( , ) 159.8ECR T n  = . Fig.6 presents how the ELRCR varies with different n and T. 
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Fig.6 Variation of ELRCR with respect to n and T  

 

Compared with the scenario of perfect inspection in Section 5.1, the existence of 

imperfect inspection leads to a larger ELRCR. This is because the failed detection of 

the defective state increases both the renewal cycle length and the maintenance cost in 

a renewal cycle. In contrast, the preventive replacement interval n  is smaller, as the 

imperfect inspection increases the risk of failure; thus, the system should be 

preventively replaced more frequently. In addition, we plot the variations of ( , )T n 

and the corresponding ( , )ECR T n 
 with respect to different inspection cost IC  and 

replacement cost RC , as shown in Fig.. It is obvious that ( , )ECR T n 
 increases with 

the inspection cost IC  and replacement cost RC . However, the monotonic trend of 

the optimal preventive replacement interval n  and optimal inspection interval T 
 is 

not as apparent as that for the basic model of Section 3. It can be seen that n  decreases 

with IC  and T 
 increases with IC . Yet, the trend with respect to RC  is somewhat 

obscure, especially for the case where the inspection cost IC  is small. 
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Fig.7 Variation of the optimal ( , )T n 
 and the optimal ELRCR with respect to IC  

and RC  for imperfect inspection. 

To investigate the effect of   on the optimal maintenance policy, we plot the 
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variation of the optimal ( , )T n    and the corresponding ( , )ECR T n    with the 

detection probability  , as shown in Fig.. From Fig., we can see that ( , )ECR T n 
 

decreases monotonically with respect to  , which indicates that an improved detection 

accuracy contributes to the reduction of maintenance cost. The optimal inspection T 
 

shows a non-increasing trend with  , while the optimal preventive replacement cycle 

n   shows a non-decreasing trend with   . This is because, when the detection 

probability is small, inspection should be carried out less frequently as the effect of 

inspection is not significant. Instead, more effort should be placed on the preventive 

replacement, and a more frequent preventive replacement is advocated. The sensitivity 

analysis on    implies that companies should pay more effort into improving the 

detection accuracy, so as to reduce the maintenance cost. 
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Fig.8 Variation of the optimal ( , )T n 
 and the optimal ELRCR with respect to the detection 

probability  . 

5.3 Comparison with block replacement and age-based maintenance  

To show the effectiveness of the proposed maintenance policy, we compare the 

proposed maintenance policy with two traditional maintenance policies: block 

replacement and age-based maintenance policy. Block replacement policy implies that 

the system is replaced at failure, while no preventive replacement and inspection is 

implemented to prevent unexpected failures. With the block replacement policy, the 

expected length of a renewal cycle is 1.727 and the ELRCR is obtained as 

463.22ECR = .  

Age-based maintenance indicates that the system is replaced either at failure or at 
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a specific age. Fig. 7 shows how the ELRCR varies with different replacement age. It 

can be observed that the optimal age-based maintenance policy is achieved when the 

replacement age is 0.73. The expected length of a renewal cycle and the expected cost 

in a renewal cycle are given as 0.7014 and 183.94, respectively. The optimal ELRCR 

is obtained as * 262.23ECR = . Compared with these two maintenance policies, it can 

be concluded that the proposed maintenance policy is more effective in reducing the 

maintenance cost. In addition, the results imply the importance of inspection for a 

system with the delay-time failure mode. 

 

Fig.4 ELRCR for an age-based maintenance policy. 

6. Summary and final remarks 

This paper considered a single-unit system subject to two failure modes, where one 

failure mode can be modeled by a two-stage delay-time model and the other by a 

traditional hard failure. For practical systems that consist of multiple failure modes, 

these failure modes with delay-time could be aggregated as one mode, whilst those 

failure modes that do not have any detectable defective states before failure could be 

aggregated as the other mode. Periodic inspections were conducted to detect the 

possible defective state of the system, and preventive replacements were implemented 

to mitigate the failure caused by the catastrophic failure mode. We formulated this 
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maintenance model and studied the impact of the inspection interval and preventive 

replacement time on the system performance. Our initial model was then further 

extended to account for imperfect inspections. The optimal maintenance strategy was 

investigated and illustrated through a case study of peristaltic infusion pump. 

As a direction for future study, the two-stage failure process in this paper can be 

extended to a three-stage failure process to enable more accurate modeling. 

Additionally, since the real-world applications generally do not function over an infinite 

time horizon, the model could be adapted to a finite interval. The dependence between 

the two failure modes could also be considered in the future. Moreover, failure-inducing 

inspection is another potential extension, which can be used for multi-component 

systems. 
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Appendix A: Proof of Proposition 1 

It is straightforward to have the derivative of ( ),g T n with respect to n as 

( ) ( ) ( )

( ) ( ) ( ) ( )( )( )1

3 1 1 2

, , 1 ,

0

n

n T t

nT nT
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= + −  
 

On the other hand,   
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Appendix B: Proof of Proposition 2 

The derivative of ( ),h T n  with respect to n can be obtained as 

( ) ( ) ( )

( ) ( ) ( ) ( )
( )( )

( )
( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( )
( )

3 1 1 2
1

1 3 1 3

1

3 1 2

, , 1 ,

1 1

0
1 1

n

nT

I
n T

n TF R

nT

h T n h T n h T n

C R nT R nT f t R nT t dt

R nT R nT R n T R n T

C C
R n T f t R n T t dt

−

+

 = + −

= + −

 − + +
 + − 
 − + + −
 





 

Meanwhile, we have 

( ) ( ) ( ) ( ) ( )
( )( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )
( )

1

3 1 1 2
1

1

1 3 3 1 2
1

1

1 3 3 1 2
1

1

1 1

3 1 3
0

1

,

1

1

n kT

I
k T

k

n kT

R
k T

k

n kT

F
k T

k

n n T
I

I F F

k

h T n C R kT R kT f t R kT t dt

C R nT R nT R kT f t R kT t dt

C R nT R nT R kT f t R kT t dt

C
C R kT R k T C R t dt C

T

−

−
=

−
=

−
=

− −

=

= + −

 
+ + − 

 

 
+ − − − 

 

 − +  +

 

 

 

 

 

 

Appendix C: Maintenance model with arbitrary preventive replacement 

interval 

Let the preventive replacement period RT  be an arbitrary value where RT T . 
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As the system has to be replaced by time RT , the maximum number of inspections is 

/RT T    . A renewal cycle ends with either preventive replacement or corrective 

replacement, and we now consider all the possible scenarios this entails.
 

(1) A defective state is discovered at the kth inspection ( , /1,2, rTk T=     ). In this 

case, we have 1 /dN k X T= −    . The occurrence probability of this scenario can be 

readily obtained by Eq. (9), with the constraint that k is limited as , /1,2, rTk T=     . 

(2) The system is replaced by time RT  if no failure occurs and no defective state is 

detected before RT . If the system is in the defective state but has not been identified by 

inspections, we have 1/ /d RN T T X T −        . The probability of preventive 

replacement at time RT  can be obtained as 

( )  

( ) ( ) 

( )

3

1 2 1 1 1

/ /

3 1 2 1
0

Pr

  Pr , , / /
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T T T t T

R R R

P T T X T

X X T X T N T T X T X T

R T f t R T t dt R T
−      

= = 

 +    −        

= − − +

 
 

(3) A failure occurs if no defective state is discovered and no preventive replacement is 

implemented. The PDF that a failure occurs by time t ( )Rt T  is expressed as 
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Accordingly, the expected length of a renewal cycle is  
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The expected cost in a renewal cycle is  
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Appendix D: Maintenance model with time dependent detection 

probability  

If the inspection accuracy is dependent on the time from the initial point of defective 

stage to the time of inspection, denoted as ( )t , we can obtain the maintenance cost 

and length in a similar way as in Section 4. The probabilities of the renewal from 

inspections and failures are expressed in the following equations.  
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. 

Based on the above equations, the expected length and cost of a renewal cycle can be 

readily obtained.  
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