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Abstract: High operation and maintenance costs for offshore wind turbines push up the LCOE of offshore wind energy.
Unscheduled maintenance due to unanticipated failures is the most prominent driver of the maintenance cost which reinforces
the drive towards condition-based maintenance. SCADA based condition monitoring is a cost-effective approach where power
curve used to assess the performance of a wind turbine. Such power curves are useful in identification of wind turbine abnormal
behaviour. IEC standard 61400-12-1 outlines the guidelines for power curve modelling based on binning. However, establishing
such a power curve takes considerable time and is far too slow to reflect changes in performance to be used directly for
condition monitoring. To address this, data-driven, nonparametric models being used instead. Gaussian Process models and
regression trees are commonly used nonlinear, nonparametric models useful in forecasting and prediction applications. In this
paper, two nonparametric methods are proposed for power curve modelling. The Gaussian Process treated as the benchmark
model, and a comparative analysis was undertaken using a Regression tree model; the advantages and limitations of each
model will be outlined. The performance of these regression models is validated using readily available SCADA datasets from a
healthy wind turbine operating under normal conditions.

1 Introduction
Due to the global energy crisis and thrust for clean energy, the use
of wind energy has increased dramatically in recent times with both
onshore and offshore wind turbines in wide-scale use. To sustain
this growth, operation and maintenance (O&M) cost must be
reduced. A wind turbine comprises expensive components such as
a tower, blade, generator, etc. That makes replacement costly, and
moreover, unexpected failures of these components lead to turbine
downtime and thus increases the overall cost of energy. These
unexpected failures are considered as the most significant drivers
of O&M cost, particularly in case of offshore wind turbines due to
their remote locations and associated logistical issues. Authors of
[1] found that O&M costs make up 20–25% of the total lifetime
costs of an offshore wind farm. Reducing this cost via condition
monitoring is an essential target for research.

A Supervisory Control and Data Acquisition (SCADA) system
can provide significant information about wind turbine operation.
Condition monitoring based on SCADA data is a cost-effective
approach and an effective way to monitor turbines and pinpoint
potential failures and performance issues. SCADA data are
retrospectively analysed aiming to detect failures in advance before
they reach a catastrophic stage, [2]. For performance assessment of
a wind turbine, the wind industry commonly employs the power
curve. A wind turbine power curve is also useful in estimating
power for given wind speed. Accurate power curve modelling is
vital to the wind power provider's in the electricity market because
they must bear the penalty for underestimation of day-ahead or
hour-ahead energy generation [3]. The power curve role is also
significant in the identifying of abnormal status and facilitates
online condition monitoring which is vital for offshore wind farms
because of accessibility and oversight issues, [2, 4]. The power
curve provided by turbine manufacturers considers site-specific air
density and wind speed as input parameters, but in reality local
turbulence and the wear and tear of wind turbine components such
as rotor and gearbox also affects the power curve, and this
discrepancy between the empirical and the theoretical power
curves have been found, resulting in inaccurate power estimation,
[5]. Accurate of the power curve incorporating all influencing
parameters is a current emerging research area.

Many papers have published that seek an alternative approach
to power curve modelling, and these are fall broadly into two

categories: parametric and non-parametric methods. The
nonparametric approach often uses machine learning techniques
and performs typically better than parametric methods, [6, 7].
Advanced algorithms like the Genetic algorithm (GA) and particle
swarm optimisation are widely used parametric models, while
neural networks, k nearest neighbour clustering (kNN), fuzzy c-
means clustering and machine learning processes, such as Gaussian
Processes, are now finding application for non-parametric
approaches to wind engineering problems, as summarised in [8, 9].

A Gaussian process (GP), [10], is a data-driven non-parametric
machine learning method that is gaining in popularity in prediction
and forecasting related applications due to its simple concept and
parsimony in terms of the assumptions required to construct a
model as compared to other non-parametric methods (e.g. neural
network or fuzzy network), [11]. Moreover, a GP comes with
intrinsic confidence intervals that provide a natural way to estimate
the uncertainty associated with its estimations. Recent applications
of GP models to wind turbines well explained in [12–14].

This paper proposes an intelligent SCADA data-driven,
nonparametric approach to monitor the performance of turbine for
active condition monitoring. Two nonparametric methods namely;
Gaussian Process and Regression tree are used to estimate the
power curve of a wind turbine; then the comparative analysis is
undertaken to identify operational anomalies. GP and regression
models developed using evolutionary strategy algorithms, and then
the comparative analysis is undertaken regarding model fitting
accuracy and distribution function analysis. The paper will outline
the advantages and limitations of these techniques.

This paper organised as follows: Section 1 is the introduction.
Section 2 describes the power curve modelling and the importance
of air density corrections. Section 3 describes the SCADA dataset
used and its pre-processing. Section 4 outlines the nonparametric
models and this section further divided into two subsections
explaining the Gaussian Process and Regression Tree models for
power curve estimation. Section 5 describes the comparative
analysis of the proposed models, and Section 6 concludes the
paper.

2 Power curve of a wind turbine
The wind turbine power curve is widely used to assess the
performance of wind turbines, and it describes the relationship
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between power production and hub height wind speed. Fig. 1
shows the raw data. This relationship is nonlinear and vital for
identifying the abnormal status of wind turbine due to failures and
or faults, [15]. With the help of a power curve, turbine power
output and energy production estimated without knowing detailed
knowledge of turbine operation and control. The performance of a
wind turbine can be modelled on either the turbine power curve or
the theoretical equation for power obtainable from the wind,
mathematically expressed by:

P = 0.5ρACp(λ, β)ν3 (1)

where ρ is air density (kg/m3), A is swept area (m2), Cp is power
coefficient of the wind turbine and ν is the hub wind speed (m/sec).
The power coefficient is the function of tip speed ratio (λ) and pitch
angle (β) and thus affects the power production of the wind turbine
along with wind shear, turbulence, and inflow angle, [15, 16]. 

SCADA data used in this study is from a pitch-regulated wind
turbine, and IEC standard 61400-12-1 recommends that air density
correction should be applied to the SCADA datasets for accurate
power curve modelling. The following formulas used for making
air density corrections:

ρ = 1.225 288.15
T

B
1013.3 (2)

and,

VC = VM
ρ

1.225

1
3 (3)

where VC and VM are the corrected and measured wind speed in
m/sec and the corrected air density is calculated by (2) where B is
atmospheric pressure in mbar and T the temperature in Kelvin. It is
worth highlighting that the wind site farms parameters: altitude and
ambient temperature affect the air density. In (3), B and T records
10-minute average values obtained from SCADA datasets of an

operational wind turbine. The calculated value of ρ is then used in
(3) to calculate the corrected wind speed (VC). This approach will
be used in the next section for developing the correct and error-free
power curve of a wind turbine using nonparametric models.

3 SCADA data pre-processing
A wind farm SCADA system provides valuable information, for
example, load history and operation of individual turbines without
additional cost. This makes SCADA based condition monitoring a
cost-effective approach. SCADA based modelling can be useful in
improving the overall health of a turbine as well as playing a
significant role in the identification of components failures. The
SCADA data used in this study are from an operational wind
turbine located in Scotland, UK. More than 100 different signals
included ranging from the timestamp, calculated values, set points,
measurements of temperature, current, voltage, wind speed, power
output, wind direction, and so on. The SCADA dataset used here
consists of 10-minute averages with maximum, minimum, and
standard deviation; the available data set corresponded to a full one
month of operation and divided into operational data, status data
and warning data.

SCADA data can include errors due to sensor failures and data
collection faults. Model fitting degraded by missing, invalid and
poorly processed SCADA data. Minimising such errors is an
essential requirement for accurate analysis. Data acquisition errors
and time-steps with missing or erroneous data steps excluded by
pre-processing of the SCADA data. Furthermore, the criteria
described in ref. [17] for example; such as timestamp mismatches,
out of range values, negative power values, and turbine power
curtailment can be used to remove misleading data. Despite
following such procedures, the resulting SCADA data is not
entirely free from error.

The data used in this paper is for a 2.3 MW Siemens turbine
and contains 4464 data points, beginning with time stamp
‘‘1/1/2012 00:00 AM’' and ending at time stamp ‘‘31/1/2012 23:50
PM’'. The data for this month of operation (unfiltered) shown in
Fig. 1. These measured data points became 1926 data points after
pre-processing (Table 1) and were used to develop nonparametric
power curve models in subsequent sections. Fig. 2 shows the
filtered and air density corrected (described in section 2) data. 

4 Power curve estimation using nonparametric
models
Nonparametric models are data-driven but not protected against
overfitting, and hence this issue needs particular attention. Cross-
validation is being used here to protect against overfitting by
partitioning the data set into folds and estimating the accuracy for
each of these. The primary objective of the cross-validation (CV)
analysis is to determine whether the developed model for curve
estimation is appropriate for power curve prediction independently
of the data set. This helps to estimate how accurately an estimated
model will perform for independent SCADA data sets. Here, the
monthly SCADA data is partitioned into approximately 20% and
80% for training and validation respectively. Fivefold cross-
validation was found to give satisfactory results. The approach
used in this study is similar to leave-p-out CV approach. These
techniques applied to both nonparametric models for better results.
The algorithms for power curve fitting using Gaussian Process and
Regression Tree described as follows.

4.1 Gaussian process

A Gaussian Process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution; it is a
nonlinear, nonparametric model useful in representing dependent
data observed over the period. A GP defines a prior over functions,
which converted into a posterior over functions and mathematically
a GP is a distribution over the functions. GP entirely specified by a
mean function and a covariance function, If m(x) is the mean
function and k(x, x′) is the covariance function of a real process,
then the desired function f (x) is defined as:

Fig. 1  Measured power curve
 

Table 1 SCADA dataset description
Start timestamp End timestamp Measured

data
Filtered
data

1/1/201200:00 AM 31/1/201223:50 PM 4464 1926
 

Fig. 2  Pre-processed power curve
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f (x) ∼ GP(m(x), k(x, x′)) (4)

where k is the covariance function that has an associated
probability density function:

P(x; m, k) = 1

(2π)
n
2 k

1
2
exp − 1

2(x − m)Tk−1(x − m) (5)

where |k| is defined as a determinant of k, n is the dimension of
random input vector x, and m is mean vector of x. The term under
exponential i.e. 1/2(x − m)Tk−1(x − m) represents an example of a
quadratic form.

The covariance function defines the covariance between
random variables that relate to multivariate Gaussian distribution;
its appropriate selection is vital for model accuracy. There are
numerous possible covariance functions available, and suitability
of these depends on the model application, see for example [10,
18]. For this paper, the squared exponential covariance function
(kSE) is used which is technically a smooth sample function (ie
infinitely differential) defined as:

kSE(x, x′) = σ f
2exp − (x, x′)2

2l2 (6)

As already described, the SCADA data contains noise and
measurement error that affects the covariance function (kSE) and
hence it is wise to add a noise term to the covariance function in
order to compensate for the effects of this additional uncertainty.
To make, the covariance function more representative (5) is
modified:

kSE(x, x′) = σ f
2exp − (x, x′)2

2l2 + σn
2δ(x, x′) (7)

where σ f
2  and l are known as the hyper-parameters. σ f

2  describe the
signal variance and l is a characteristic length scale which
describes how quickly the covariance decreases with the distance
between points. Using the squared exponential covariance function,
a monthly GP predicted power curve algorithm has been realised in
MATLAB [19]. In Fig. 3, the comparison between measured and
estimated power curve shows that the GP provides an effective
estimation of the power curve. 

Model residuals defined as the difference between measured
and estimated values; its analysis is essential for understanding the
behaviour of a GP model. A residual plot is shown in Fig. 4 as a
time series and indicates that the estimated GP values are generally
close to measured values. Theoretically, the residuals of a GP
model should have a Gaussian distribution. To confirm this, the
frequency distribution is shown in Fig. 5 together with a fitted
Gaussian distribution and, as expected, the distribution of GP
residuals is close to being Gaussian. 

4.2 Regression tree

A regression tree/decision tree is a data-driven, nonparametric
machine learning approach. It falls under the family of
classification and regression trees (C&RT) and is a recursive
partitioning method useful for estimating continuous dependent
variables regression and categorical predictor variables for
classification. Breiman, [20], developed the classic C&RT
algorithm in 1984. The use of decision trees has grown due to its
ease of implementation and interpretation as compared against
alternative quantitative data-driven tools. It has proved useful in
wind turbines condition monitoring applications such as detecting
faults, errors, damage patterns, anomalies and abnormal operation.
Regression trees are easy to interpret and gives fitting and
estimation results quickly with low memory requirements. Basic
Regression tree theory is described in refs. [20, 21] and used for
power curve estimation as described below.

A Regression tree may be considered a variant of decision trees,
designed to approximate real-valued functions and built through a

process known as binary recursive partitioning, which is an
iterative technique that splits the SCADA datasets into partitions or
branches, and then continues splitting each partition into smaller
groups as the method moves up each branch [20]. In this study, a
decision tree with binary splits for regression adopted. Training
data points initially grouped into the same partition and then
regression tree algorithm begins allocating the data into the first
two partitions or branches, using every possible binary split on
every field. To minimise the squared deviations from the mean in
the two partitions, the decision tree split, and then it applied to each
of the new branches, and this process continues until it gives a
satisfactory result as per described criterion in ref. [22].

To estimate the power curve, the root node down to a leaf node
methodology outlined above used. The leaf node contains the
estimated value, and here a minimum leaf size of 30 has been used
to prevent overfitting while delivering an accurate estimate of the
power curve. Using training datasets, the estimated value of each
leaf node is calculated using [20, 23] and the outcome compared
with the measured power curve. The algorithm realised in
MATLAB; Fig. 6 shows the result. Since creating a decision tree is
very complicated, especially for large datasets like the one used in
this study. It needs many branches and makes the overall model
complex and time consuming to compute. Moreover, the estimated
decision tree based power curve reliability depends on feeding the
exact internal and external information at the onset. Hence the
effect of a small change in input data can cause a substantial
change in the tree and makes the modelling process potentially

Fig. 3  Measured and GP estimated power curve comparison
 

Fig. 4  GP residuals time series plot
 

Fig. 5  GP residuals histogram fitting
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unstable. Even though decision trees follow natural relationships
between events, it is difficult to plan for contingencies that arise
from a decision process, and such oversights can lead to severe
decisions. To solve this issue, Random Forest techniques have
proposed that combine many decision trees based on slightly
different versions of the dataset, see [21]. Random Forest
modelling is out of the scope of this study but would address in
future work. 

The obtained residuals of the decision/regression tree model
shown as a time series in Fig. 7. The corresponding distribution
function showed in Fig. 8 and, like the GP model roughly has the
form of a Gaussian distribution. 

5 Manuscript preparation comparative analysis of
the two models
Nonparametric models are The GP and regression tree (RT) based
power curves compared to assess their respective fitting accuracy.
Fig. 9 and 10 compare the power curve estimates. The two
approaches give very similar results, and statistical analysis is
required to differentiate them. 

Statistical performance indicators used to evaluate the
goodness-of-fit of the models described as follows. The root mean
square error (RMSE) has been used as a standard statistical metric

to measure model performance, [24], and widely used to quantify
the magnitude of the residuals; it defined as:

RMSE = Σi = 1
n (yi′ − yi)2

n
(8)

The mean absolute error (MAE) is widely used as an error
assessment indicator to facilitate comparison with existing models
and signifies the closeness of estimated results with observed
values and mathematically expressed as:

MAE = Σi = 1
n abs(yi′ − yi)

n
(9)

where y′ are the estimated values for n different predictions, and y
are the measured values.

Another commonly used statistical measure is the coefficient of
determination (R2) which describes how close the data are to the
fitted regression, [24], it is defined as: R2 = 1 − (SSE/TSS); where
SSE is the sum of squared errors, and TSS is the total sum of
squares. (Table 2 summarises these error statistics for the two
models. It is found that GP model performs better than the
regression tree, although it is more time consuming to calculate. 

6 Conclusion and future work
In this paper, two SCADA based nonparametric models for the
wind turbine power curve proposed. Power curve modelling using
a Gaussian Process model with squared exponential covariance
function is simple and straightforward. Though GP power curve
model accuracy can degrade with a large number of data points,
and a low number of data points may yield poor estimation, a
useful compromise has found here. The GP power curve has been
compared with a regression tree/decision tree model and found to

Fig. 6  Measured and Regression tree estimated power curve comparisons
 

Fig. 7  Residual plot in time series
 

Fig. 8  Residual plot in time series
 

Fig. 9  Nonparametric Power Curve models
 

Fig. 10  Estimated power comparison in time series
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be superior as given by the statistical performance indicators
summarised in Table 1. Even though the time taken to run and
evaluate the power curve algorithm is faster for the regression tree,
it suffers from overfitting while the GP model strikes a right
balance between algorithm smoothness and model optimisation
time. In both nonparametric models, a cross-validation analysis
was performed for accurate wind power curve prediction and to
prevent overfitting. The regression tree model comes with
limitations such as complexity, high computational cost and
instability that summarised in [20, 25]. To overcome these issues,
the tree-ensemble method can be used and analysed. Furthermore,
the regression tree estimated output is not continuous (see Figs. 6
and 9) though it can minimise by using gradient boosting and
boosted regression trees (BRT), see [26], but not discussed in this
paper. Uncertainty analysis measures the degree of ‘wrongness’ of
nonparametric models and traditionally described by a loss and
cost function which is useful for developing efficient anomaly
detection algorithms for wind turbines. The Gaussian Process
models come with intrinsic confidence intervals that define the
uncertainty of the models while this is difficult to estimate in
regression tree approach. Future work will focus on comparative
performance validations of the tree-ensemble technique, Gaussian
Process models, and also other advanced nonparametric models,
for condition monitoring of a wind turbine.
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