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Summary 
 

This paper reviews the application of Rapid Distortion Theory (RDT) on transversely shear mean flows to the 

prediction of sound generated from solid surfaces imbedded in turbulent shear flows. This phenomenon is 

relevant to the so-called installation noise problem which has received considerable attention in recent 

years. A few representative results from applications that have appeared in the literature are also presented.  

 

 

1. Introduction 

         The focus of this paper is on the use of Rapid Distortion Theory (RDT) to predict the sound generated 

from solid surfaces imbedded in turbulent shear flows--a phenomenon that is relevant to the so-called 

installation noise, which has received considerable attention in recent years. 

RDT uses linearized equations to analyse rapid changes in turbulent flows such as those that occur when the 

flow interacts with solid surfaces. It applies whenever the turbulence intensity is small and the length (or time) 

scale over which the changes take place is short compared to the length (or time) scale over which the 

turbulent eddies evolve [1-5]. When interpreted asymptotically, these assumptions imply, among other things, 

that it is possible to identify a distance that is very (infinitely) large on the scale of the interaction, but still small 

on the scale over which the turbulent eddies evolve. The assumptions also imply that the resulting flow is 

inviscid and non-heat conducting and is, therefore, governed by the Linearized Euler Equations, i.e., the Euler 
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equations linearized about an arbitrary, usually steady, solution to the nonlinear  equations— customarily 

referred to as the base flow.  

           A large number of papers [4-7] have used locally homogenous RDT, which is a kind of local high-

frequency approximation first introduced by Moffatt [8] to study the turbulent motion on planar shear flows. The 

local nature of this approximation obviates the need for upstream boundary conditions. More general global 

solutions can be obtained by using Non-homogeneous RDT, which usually provides a more realistic 

representation of the turbulent interactions. Hunt [1] used non-homogeneous RDT to study the distortion of 

turbulence by an irrotational base flow. But his analysis was restricted to incompressible flows. Goldstein [2, 3] 

introduced a much simpler and more general formulation which accounted for compressibility effects and 

allowed the inclusion of an acoustic as well as a vortical component of the motion (as in the Kovasznay [9] 

decomposition). But more importantly, the inclusion of compressibility enabled the application of RDT to the 

prediction of the radiated sound field produced by the surface interactions. This is the main focus of the 

current paper, which is primarily concerned with the transversely sheared base flows that provide a good 

representation of rotational shear flows of current technological interest.  

           The general theory was developed in a series of papers by Goldstein [3, 10] who showed that the 

solution to the RDT problem can be expressed in terms of the solutions to an inhomogeneous Rayleigh’s 

equation and two convected quantities that can be specified arbitrarily.  Goldstein et al [11, 12] expressed  the 

pressure and transverse velocity fluctuations as the convolution product of the Rayleigh equation Green’s 

function and one of the arbitrary convected quantities, which allowed them to represent the Fourier transforms 

of these quantities as the product of a space-time Fourier transform of the Green’s function and the Fourier 

transform of the convected quantity. They then used this result to predict the acoustic spectrum of the sound 

produced by turbulence/solid surface interactions in planar mean flows. The experiments show that these 

acoustic fields are of low frequency and can therefore be calculated from the low frequency Green’s function. 

Goldstein et al [16] used these findings to extend the analysis of [11, 12] to transversely sheared mean flows 

of arbitrary cross section. They considered the case where the mean surface velocity was equal to zero so 

that there was no velocity discontinuity or wake downstream of the trailing edge that could support spatially 

growing instabilities and showed that the low frequency Green’s function is independent of the mean flow 

velocity profile and is therefore the same as the low frequency limit of the zero-mean flow Green’s function 

which can usually be found by using well known standard techniques. 

          An important consequence of the disparate length scales is that upstream boundary conditions can be 

imposed infinitely far upstream in a region where the flow is undisturbed by the interaction. The two arbitrary 

convected quantities do not decay at upstream infinity and can, therefore, be determined from these 

conditions.  But a major problem with this is that these quantities do not correspond to physically measurable 

variables and the causal RDT solutions for these variables decay at large upstream distances. Goldstein et al 

[12] showed that appropriate gradients of these quantities do not decay at upstream infinity, used this finding 

to relate these latter quantities to the arbitrary convected quantities and thereby developed physically 

realizable upstream boundary conditions for planar mean flows. Reference [16] extended these results to 

transversely sheared flows of arbitrary cross section. The present paper reviews these theoretical 
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developments, presents a few representative results from applications of the theory to the installation noise 

problem and discusses some additional applications of the theory to various noise generation problems that 

have appeared in the literature.  

 

2. Basic equations 

        Goldstein et al [11] show that the pressure fluctuation p  produced at the observation point 

 1 2 3, ,x x xx  by the interaction of the arbitrary convected disturbance   1c T Ty U / y , y    

with solid surfaces embedded in the transversely sheared mean flow   ,0,0TUv y of an inviscid, non-

heat conducting ideal gas is given by 

                                         
 

1|,  , , ,  

T

c T

TT V

y
p t G t d d

U
   




    

 
 x y x y y

y
                           (2.1) 

where  1 2 3, ,y y yy is a Cartesian coordinate system with streamwise and transverse components, 1y   and

 2 3,T y yy respectively,   1c T Ty U / y , y  can be specified as an upstream boundary condition and 

 |, ,G ty x denotes the Green’s function that satisfies the inhomogeneous  Rayleigh  equation  

                                                        
3

0

3
| G , ,

D
L t t

Dt
     y x y x                                          (2.2) 

where 

                                          
2

2

2
20 0

1

2
j ji i

D D U
L c

D D y y y
c

y y

  
  

    

  


  
                                          (2.3) 

is the Rayleigh operator. The first two arguments of  , | ,G ty x represent the independent variables and 

the second two represent the source variables,T denotes a very large but finite time interval, V  is a region 

of space bounded by cylindrical (i.e., parallel to the mean flow) surface(s) S  that can be finite, semi-infinite 

or infinite in the streamwise direction and  ˆ ˆ
inn = is the unit outward-drawn normal to S . The analysis is 

somewhat unconventional in that the direct Green’s function, G, now plays the role of an adjoint Green’s 

function in the solution for p’. See also [11].  

          The operators   

                                           0 0

1 1

,     T T

D D
U U

D y Dt t x 

   
   
   

y x                                      (2.4) 

denote the convective derivatives,  2 2

Tc c y  denotes the mean sound speed and  |, ,G ty x satisfies 

the boundary condition 

                                                     |, , 0  for t S  y x y                                                                        (2.5) 

where     is determined to within an arbitrary convected quantity by                                   
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   2
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2

| |, , , ,
ˆ ,j

j

D t G t
n c

D y

 



 




y x y x
                                                        (2.6)  

on any solid (impermeable) surfaces S  that are present in the flow, along with the jump conditions 

                                            

                                                             00  for TG S      y                                                         (2.7) 

across the resulting downstream wakes (or vortex sheets): where 0S  denotes the surfaces of discontinuity 

and   denotes the jump in the indicated quantity across these surfaces. The mean velocity profiles can be 

discontinuous across the wakes which can then support additional spatially growing instability waves that 

can be generated by imposing a Kutta condition at the trailing edge or suppressed by imposing a 

boundedness requirement. 

          Equation(2.1), which can be used to predict the sound generated by turbulence interacting with solid 
surfaces, is a generalization of the well-known Ffowcs Williams and Hall [13] formula (equation 6 in their paper) 
for the sound produced by the interaction of turbulence with an edge. A major difference between the present 
result (equation(2.1)) and the Ffowcs Williams and Hall [13] equation is that mean flow interaction effects are 
now explicitly accounted for—which is an important consideration at the high Mach numbers of interest in 
aeronautical applications. But there are even more significant differences between these results because 
(unlike the present solution) the Ffowcs Williams and Hall formulation cannot be used to predict the source 
convection velocity, to which the calculations show great sensitivity, and does not account for trailing edge 
vortex shedding--which is known to have a strong effect on the directivity of the sound field.  

         The density-weighted transverse velocity perturbation u  is given by 

                                                
1 1

i i

i i

U U
u u u

U y U y


 
 
   

                                                        (2.8) 

where     

 

                                                 1 2 3 1 2 3, , , ,  u u u v v v    u                                                                (2.9)  

denotes the mass flux perturbation with  T  y  being the mean flow density and 

                                                                1 2 3, ,  v v v   v                                                                          (2.10) 

being the actual velocity perturbation. The pseudo-density-weighted transverse velocity perturbation iu  is 

given by                                       

                     
 

1 , | , ,   for   2,3

T

i i c T

T
T V

y
u G t d d i

U


 
        

 
  y x y y

y
          (2.11) 

with  |, ,iG ty x determined in terms of  the three-dimensional gradient  |, , / iG t x  y x  of    

 |, ,G ty x  by               

                                  0
| |, , , , ,   for 1,2,3i

i

D
G t G t i

Dt x


    


y x y x                                      (2.12) 
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          It is often desirable to identify the acoustic and hydrodynamic components of the motion in the 

aeroacoustic applications referred to above. But, as is well known, it is impossible to unambiguously 

decompose the unsteady motion on a transversely sheared mean flow into acoustic and hydrodynamic 

components. We can however require that the hydrodynamic component do not radiate any sound at 

subsonic Mach numbers, with all the acoustic radiation being accounted for by the remaining non-

hydrodynamic component. This can be accomplished by dividing the Rayleigh equation Green’s function 

 , | , tG y x  that appears in the solution (2.1) into two components, say 

                                                     0
|, , , | , , | ,

s
G t G t G t    y x y x y x                                  (2.13)  

where    0
|, ,G ty x denotes a particular solution of Eq. (2.2) which can either be  defined on all space or, 

be required to satisfy appropriate boundary conditions on a streamwise extension of the bounding surface S   

that extends from minus to plus infinity in the streamwise direction. This decomposition implies the 

decomposition  

                                                      0
|, , , | , , | ,

s

i i iG t G t G t    y x y x y x                                 (2.14) 

 of the Greens function derivative (2.12) and  the decomposition  

                                               
0

, , ,
s

p t p t p t   x x x                                                                (2.15) 

for the pressure fluctuation, where 
   
0

,p t x , which is given by (2.1) and (2.2) with  |, ,G ty x  replaced 

by    0
|, ,G ty x , does not produce any acoustic radiation at subsonic Mach numbers and can, therefore, 

be identified with the hydrodynamic component of the unsteady motion. The ‘scattered component’

   |, ,
s

G ty x , satisfies the homogeneous Rayleigh’s equation along with appropriate inhomogeneous 

boundary and jump conditions on the streamwise discontinuous surfaces S  and 0S and the corresponding 

‘scattered solution’
   ,
s

p t x therefore, accounts for all of the acoustic components of the motion. 

          The decomposition(2.14) implies the decomposition 

                                                  0
,   2,3, , ,s

i i iu it u t u t  x x x                                               (2.16) 

of the transverse density weighted pseudo-velocity perturbation  ,iu tx  where    0 ,iu tx  is given by (2.11) 

with  |, ,iG ty x  replaced by    0
|, ,iG ty x . 

3. The pressure spectrum  

Taking the Fourier transform of equations (2.1), (2.11) and(2.12), using the convolution theorem and noting 

that G satisfies the inhomogeneous Rayleigh equation (2.2) and, therefore depends on   and t only in the 

combination t   shows that  
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                                      1
2 / 0

|: 2 : , / ,T

T

i x U

T T T T

A

p e G U d


      
y

x y x y y y                 (3.1)  

and       

                   1 / 0
|: 2 : , / , ,   for  2,3T

T

i x U

i i T T T T

A

u e G U d i


       
y

x y x y y y       (3.2) 

where 
T

A  denotes the cross section of the volumeV ,    : lim : ;
T

T


x x    for 
 0

= , ,ip u                     

                         
1 1

: , , ,    : , ,
2 2

T T

i t i t

i i

T T

p T e p t dt u T e u t dt  
 

 

   x x x x                      (3.3)    

                                                   0 1
 : , ,

2

T

i z

T c T

T

T e z dz 




  y y                                                (3.4)  

and  

                    
2

1 1

1

| : , | : , ,  2,3T i T T

i

U i G k G k i
x x

  
   

  
x y x y x                                (3.5) 

where  

                 
 

     1 1 1

1 12

1
; , , ,

2

i k y x t

TG k e G t d dy

 
    

 

   


 y x y x                                (3.6)  

satisfies the Rayleigh equation  

                                                              
 

 
2

2
2

T TG
 

 


x y
L                                                                 (3.7) 

and  

                  
 

 

 

222
12

2 2

1 1

/
1 2,3     

/ 1 / 1j j

c kc
j

y yk U k U

  
     
     

L                              (3.8) 

is the reduced Rayleigh operator. 

          Since high Reynolds number turbulent flows are usually time stationary [14] it is reasonable to assume 

that the source function  ,c T  y is a stationary random function of  [15] and it follows from equation 

(2.1) that the pressure fluctuation  ,p t x should also be a function of this type. The main focus in 

aeroacoustics applications is on computing the pressure spectrum which is then given by [15]                                                                    

                                                                      

            1
, , 2 lim : , : , / 2

2

i

T
I e p t p t d p T p T T     











      x x x x x            (3.9) 

where the  bracket denotes the time average 
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                                      
1

, lim ,
2

T

T
T

p p p p d
T

      



     x, x x, x                                    (3.10) 

 Inserting the solution (3.1) into (3.9) shows that                     

   

           1

2

1/ 1/
| |

2

: , / : , / ,T T

T T

i x U U

T T T T T T T T

A A

I

e G U G U S d d




   
   

 

 
y y

x

y x y y x y y y y y

   (3.11)    

and, therefore, that the pressure spectrum depends on the turbulent fluctuations only through source 

spectrum 

      
1

, ,
2

i

T T c T c TS e t t d    






 y y y y     

                                                           0 0
2 lim : , : , / 2T T

T
T T T





          
y y                       (3.12) 

where 
   0

: ,T T y  is given by(3.4). 

4. Upstream Boundary conditions 

        The decomposition (2.13) implies the decomposition 

                                                                            
   0 s

                                                                         (4.1) 

where the symbol   is used to denote the Fourier transformed pressure fluctuation  : ,p T x  , density 

weighted velocity perturbation  : ,i Tu x or the reduced Rayleigh equation Green’s functions 

 1
| : ,

T
G ky x  and  1

| : ,
TiG ky x , with the 

   0

1| : ,TG ky x component of  1| : ,TG ky x  either 

defined on all space or required to satisfy                                                                                     

                                    
 

   0

12

1

|
ˆ

: , 0,   for  
j

T T T

jT

n
G k C

yk U


 

  

y x y
y




                              (4.2) 

 (where TC  denotes the bounding curve/curves that generate the doubly infinite surface/surfaces that 

extend S from 1
y    to 1

y   ). The streamwise homogeneous Green’s functions    0

1| : ,TG ky x 

and    0

1| : ,i TG ky x  will then depend on 1y and 1x only in the combination 1 1x y and we can, therefore, 

write 

                                            0 0

1 1| |: , : , ,T T TG k G k y x y x                                                             (4.3) 
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                                                0 0

1 1| | .: , : ,i T i T TG k G ky x y x                                                          (4.4) 

     Reference [16] shows that   

                                    0

1 12

1

1
, / ,  as i i T Tu t t x U x

x
  x x , xU                                               (4.5) 

and, therefore, that 

                      
 

 0

12

1

/
1

: , ,  for 2,3  as 
T

i i T

Ui x

u i x
x

e


   

x

x xU                                   (4.6) 

where  i Tz , xU  is a function of the indicated arguments and    0
,i T xU  is its Fourier transform.  

Reference [16] also shows that the unknown convected quantity   1 / ,c T Ty U  y y  can be determined 

from the transverse hydrodynamic components  0
,  2,3iu i   of the density-weighted transverse velocity 

perturbation, ,  2,3iu i   at upstream infinity by imposing the upstream boundary condition 

   
 

2
02

1

1 1

1
+O  as c c

u y
y U y


 

 
   

   
                                                                

                                                                
2 2

1 14 2
/ , ,   as  ,k T

k

c U
y U y

U y




 
  

 
yU                  (4.7) 

where 

                                                            
2 2

2

2 2

2 3y y


 
  

 
                                                                              (4.8) 

and  

                                                              
 

 0
0

.   k

k

uU
u

y U




 

                                                                      (4.9) 

And it, therefore, follows from(2.8) that 
 

                        
2 2

1 14 2

1

/ , ,  as  ,c
T

c dU
u y U u y

y U du


 
   

 
yU





                          (4.10) 

                                                                                       k

k

u

y u




 

U
U                                                                                 (4.11) 

when the level surfaces of  U U u , say   constantTu y , are more or less concentric and form an 

orthogonal coordinate system with some function  Tv y .The transverse velocity perturbation u  then 

denotes  the velocity component perpendicular to these surfaces.  

But equations (3.4), (4.7) and (4.10) imply that 
   0

: ,T T y   is related to the upstream transverse velocity 

coefficient  , T yU  (in the, as yet, arbitrary orthogonal curvilinear co-ordinate system  , Tu v y ) by 

                                 
     

2
0 2

4
: , ; ,T T

i c dU
T u T

U U du
  y yU


                                  (4.12) 
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where 

       

                                       
1

2
; , , .

T

i

T T

T

T e d


   



 y yU U                                                        (4.13) 

5. Modelling of physically realizable source spectrum  
         The time average 

       1 1, : / , / ,T T T T T Ty U y U        y y y y y yU U  

                                                        1 1/ /T T T Ty U y U        , y y y , yU U            (5.1) 

of   1 / ,T Ty U  y yU will exist and be independent of   when U  is a stationary function of   and 

hence also of   1 / Ty U  y [15].  It therefore follows that 

       1 1 1

1
exp / / / ,

2
T T T Ti y U y U y U







      y y y yU  


 

                       
   

1 2

; , ; ,
/ , 2 lim .

2

T T

T
T

T T
y U y d

T

 
   



 




    
y y

y
U U

U               (5.2)   

 And equations (4.12), (3.12), (4.10) and(5.2) then show that the source spectrum  T TS y y  of the 

convected quantity c , is related to the normal velocity-like fluctuation   1 / , Ty U u  yU  by   

 
   

   

   2 2

2

3 3

T T

T T

c c dU u dU u
S u u

U u U u du du
   

y y
y y   

                                                                   

                                                                 1 1exp / / , : ,T T T Ti y U y U d   




     y y y y             (5.3) 

 

when the level surfaces of  U U u , say   constantTu y , are more or less concentric and form an 

orthogonal coordinate system with some function  Tv y .  

            But the cross correlation  , :T T  y y  of the upstream normal velocity fluctuation needs to be 

specified before the source spectrum and therefore pressure spectrum can actually be calculated.   

Goldstein et al [16] show that an appropriate model for  , :T T  y y  is    

            4

2, :T T T T T T TA l U U     y y y y y y y  
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                                  
22 2

2 2 3 3 1 1 0exp , / / /f l l y U u y U u                                  (5.4) 

where the amplitude  TA y is expected to vanish as 0,T  y , 0 2 3, ,l l are constants, 

                                                                                  0                                                                       (5.5) 

and 

                                                                       2 3,    ,u u v v                                                           (5.6) 

And since 
2c  is constant in transversely sheared flows, equation (27) of reference [27] can be used to show 

that the spectrum (5.3) of this quantity is given by  

     
   

2
4 2 2
2 2 2

/ /
, : , ,

dU du dU du
S u u v v l c A u v u u

U u U u
 

 
      

  

 

           1 1
22/ / 2

2 2 3 3 1 1 0

1
exp , / / /

2

i y U u y U u
e f l l y U u y U u d
    





                  

                
     

2
4 2 2 20
2 12 2 2

/ /
, 1

1

fdU du dU du
l A u v c u u K f

U u U u
 

  
      

  
          (5.7) 

 where 1K denotes the modified Bessel function of the second kind and    2 2 3 3, , ,A u v f l l  are 

arbitrary functions that can be chosen to model the experimental data. 

6. Calculating the Green’s function                           

            It is of course necessary to determine the Green’s function before equation (3.11)can be used to carry 
out numerical computations.. This must in general be done numerically and the calculations, which tend to 
be very sensitive to the boundary conditions, frequently require great care-especially when mean flow is 
discontinuous downstream of the trailing edge and therefor contains shear layers that can support spatially 
growing instability waves.  The Wiener-Hopf technique [29] can often be used to minimize these difficulties, 
but numerical computations are in most cases still required. Baker and Peake [30] developed efficient 
numerical algorithms for carrying these out.   
          However, as noted as noted in the introduction, the sound generated by the solid surface interactions 
turns out to be of low frequency in most applications of technological interest-which means that the low-
frequency Green’s function can be used in the calculations.  Goldstein et al [12, 16] analyzed the sound 
produced by the interaction of a jet with the trailing edge of a flat plate. Their analysis was restricted to the 
case where the mean surface velocity was equal to zero so that there was no velocity discontinuity or wake 
downstream of the trailing edge that could support spatially growing instabilities and the local trailing edge 
behaviour was, therefore, similar to the zero mean flow case. They found that the low-frequency Green’s 
functions for this interaction do not involve any instabilities  and turn out to be the same as the low-
frequency limit of the zero-mean-flow Green’s functions, when expressed in terms of the streamwise 
wavenumber, 1k . The results are still dependent on the mean flow because the Green’s function is evaluated 

at   1 / Tk U y   in the final formula.  

            Goldstein et al [12, 16] used this result it to predict the sound field produced by planar and circular 
jets, respectively, interacting with the trailing edge of a semi-infinite flat plate and Goldstein et al [16] 
extended the results to higher frequencies by replacing the low frequency limit of the zero mean flow 



11 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

Green’s function by the zero mean flow Greens function itself and thereby increased the range of 
frequencies over which noise predictions could be made.  

7. Applications of theory to the prediction of noise 
              Olsen and Boldman [17] measured the sound produced by a round jet interacting with the trailing 

edge of a flat plate whose leading edge was located inside the nozzle and compared their results with the 

RDT analysis developed in [3]. They showed that the theory accurately predicted the shape of the radiation 

pattern and its change with jet velocity and that alternative theories [13], which did not account for the 

effect of velocity gradients at the noise source (e.g. [18], [19]), did not. (The theory was not complete enough 

to predict absolute levels at that time.) They concluded that these gradients must be accounted for in order 

to accurately predict the radiated sound.  

            Ayton and Peake [20] used an earlier version of the theory developed in [10] to analyze the high 
frequency sound produced by the interaction of a gust with an airfoil embedded in a turbulent shear flow. 
They also found that the mean shear had a large effect on the far field directivity. Baker and Peake [21] use 
the more highly developed version of the theory given in [12] to analyze of the effect of boundary layer shear 
on trailing edge noise. Baker and Peake [28] extended the theory of reference [3] to slowly varying mean 
flows. 

           As noted above reference [12] used further developments of the theory to study the noise produced 

by the large aspect ratio rectangular jet interacting with the trailing edge of a flat plate shown in figure 1.  

                                 

 

               Figure 1 rectangular jet interacting with the trailing edge of a flat plate 

They used experimental data to model the turbulence correlation function within the jet and the result was 

used to calculate the acoustic spectrum. The computations were found to be in excellent agreement with 

data taken at NASA Glenn research center [22-25]. Comparisons were carried out over a broader range of 

polar angles and three different Mach numbers. Details of the flow and source models are given in [12].Some 

typical results are shown in figure 2                                     
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a)                                                                                                           b)                                                                                                 

Figure 2. Comparisons of RDT solution for planar jet with experimental data of Brown [23] for the power 

spectral density, PSD, of the far-field pressure fluctuation vs. Strouhal number, St, based on jet exit 

velocity and equivalent nozzle diameter at polar angles a) 095   and b) 0105   measured from the 

downstream jet axis. Acoustic Mach number based on jet exit velocity is 0.9. From reference[12]. 

               Reference [16] used the theory along with the low frequency Green’s function to predict the sound 

field produced by the circular jet interacting with the trailing edge of a semi-infinite flat plate shown in figure 

3. But the formulas obtained in that reference are quite general and should apply to many different flow 

configurations, such as the multiple jet configuration shown in figure 4. Computations were again carried out 

over a broader range of azimuthal angles and three different Mach numbers. Good agreement was obtained 

in this case as well. Some typical results are shown in figure 5.   

                                                                                                 

                 Figure 3 Round jet interacting with the trailing edge of a flat plate  
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       Figure 4 Supersonic cruise concept aircraft with top mounted engines.  Ramakrishnan et al NASA CR- 

2018-219936 [26] (provided by Dr. James Bridges) 

 

                     

a)                                                                                                     b) 

Figure 5 - Comparison of composite RDT solution for round jet with experimental data of Brown [23, 24] 

for the power spectral density, PSD, of the far-field pressure fluctuation vs. Strouhal number, St, based on 

jet exit velocity and nozzle diameter at polar angles: a) 075   and  measured from the downstream jet 

axis. Acoustic Mach number based on jet exit velocity is 0.9.  From reference [16}.              

8. Conclusions 

         The results described in this paper are applicable to a wide range of flow-surface interaction problems 

and can be extended to more complicated geometries and surface boundary conditions, such as deformable 

plates which could be of interest in optimisation studies for reducing edge-generated noise. 

         It has frequently been argued that instability modes, or more generally coherent structures, are the 
main source of sound in turbulent shear flows [31]. Relevant theories have been developed for supersonic 
[32, 34] and subsonic [34, 35] jets. But the instability waves on a parallel mean flow don’t actually radiate any 
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sound at subsonic Mach numbers. It is only the modulation of those waves by viscous and nonlinear 
processes that actually produce acoustic radiation. The continuous spectrum can also represent the coherent 
structures. We believe that that this part of the spectrum which has many more components than the 
discrete modes provides the best representation of the turbulence. 
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