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Abstract
Agda’s standard library struggles in various places with n-
ary functions and relations. It introduces congruence and
substitution operators for functions of arities one and two,
and provides users with convenient combinators for manip-
ulating indexed families of arity exactly one.

After a careful analysis of the kinds of problems the unifier
can easily solve, we design a unifier-friendly representation
of n-ary functions. This allows us to write generic programs
acting on n-ary functions which automatically reconstruct
the representation of their inputs’ types by unification. In
particular, we can define fully level polymorphic n-ary ver-
sions of congruence, substitution and the combinators for
indexed families, all requiring minimal user input.

CCSConcepts •Theory of computation→Type struc-
tures; • Software and its engineering → Domain spe-
cific languages; Software libraries and repositories.

Keywords Dependent types, Arity-generic programming,
Universe polymorphism, Agda

ACM Reference Format:
Guillaume Allais. 2019. Generic Level Polymorphic N-ary Functions.
In Proceedings of the 4th ACM SIGPLAN International Workshop
on Type-Driven Development (TyDe ’19), August 18, 2019, Berlin,
Germany. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3331554.3342604

Introduction
For user convenience, Agda’s standard library has accumu-
lated a set of equality-manipulating combinators of vary-
ing arities (Section 1) as well as a type-level compositional
Domain Specific Language to write clean types involving
indexed families of arity exactly one (Section 2.1). None of
these solutions scale well. By getting acquainted with the
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unifier (Section 4), we can design a good representation of n-
ary function spaces (Section 5) which empowers us to write
generalised combinators (Sections 6 and 7) usable with mini-
mal user input. We then see how the notions introduced to
tackle our original motivations can be mobilised for other ef-
forts in generic programming from an arity-generic zipWith
(Section 8.2) to a direct style definition of printf (Section 8.3).
This paper is a literate Agda file1; we discuss some of the
more esoteric aspects of the language in Appendix A.

1 N-ary Combinators... for N up to 2
Agda’s standard library relies on propositional equality de-
fined as a level polymorphic inductive family. It has one
constructor (refl) witnessing the fact any value is equal to
itself.

data _≡_ {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

As one would expect from a notion of equality, it is con-
gruent (i.e. for any function equal inputs yield equal outputs)
and substitutive (i.e. equals behave the same with respect
to predicates). Concretely this means we can write the two
following functions by dependent pattern-matching on the
equality proof:

cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

subst : (P : A → Set p) → x ≡ y → P x → P y
subst P refl px = px

However we quickly realise that it is convenient to be able
to use congruence for functions that take more than one
argument and substitution for at least binary relations. The
standard library provides binary versions of both of these
functions:

cong2 : (f : A → B → C) →
x ≡ y→ t ≡ u→ f x t ≡ f y u

cong2 f refl refl = refl

subst2 : (R : A → B → Set p) →
x ≡ y → t ≡ u→ R x t→ R y u

subst2 P refl refl pr = pr

If we want to go beyond arity two we are left to either
define our own ternary, quaternary, etc. versions of cong
1The source code is available at https://github.com/gallais/nary
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and subst, or to awkwardly chain the ones with a lower arity
to slowly massage the expression at hand into the shape we
want. Both of these solutions are unsatisfactory.

Wish We would like to define once and for all two func-
tions congn and substn of respective types (pseudocode):

congn : (f : A1 → · · · → An → B) →
a1 ≡ b1 → · · · → an ≡ bn →

f a1 · · · an ≡ f b1 · · · bn

substn : (R : A1 → · · · → An → Set r) →
a1 ≡ b1 → · · · → an ≡ bn →

R a1 · · · an → R b1 · · · bn

2 Invariant Respecting Programs
A key feature of dependently typed languages is the ability
to enforce strong invariants. Inductive families [8] are es-
sentially classic inductive types where one may additionally
bake in these strong invariants. As soon as the program-
mer starts making these constraints explicit, they need to
write constraints-respecting programs. Although a lot of
programs are index-preserving, users need to be painfully
explicit about things that stay the same (i.e. the index being
threaded all across the function’s type) rather than being
able to highlight the important changes.

2.1 Working With Indexed Families
The standard library defines a set of handy combinators to
talk about indexed families without having to manipulate
their index explicitly. These form a compositional type-level
Domain Specific Language [11] (DSL): each combinator has
a precise semantics and putting them together builds an
overall meaning.
A typical expression built using this DSL follows a fairly

simple schema: a combinator acting as a quantifier for the
index (Section 2.1.1) surrounds a combination of pointwise
liftings of common type constructors (Section 2.1.2), index
updates (Section 2.1.3), and base predicates. This empowers
us to write lighter types, which hide away the bits that are
constant, focusing instead on the key predicates and the
changes made to the index.
Before we can even talk about concrete indexed families,

describe these various combinators, and demonstrate their
usefulness, we need to introduce the data the families in
our running examples will be indexed over. We pick List the
level polymorphic type of lists parameterised by the type of
their elements: it is both well-known and complex enough
to allow us to write interesting types.

data List (A : Set a) : Set a where
[] : List A
_::_ : A → List A → List A

The most straightforward non-trivial indexed family we
can define over List is the predicate lifting All which ensures

that a given predicate P holds of all the elements of a list.
It has two constructors which each bear the same name as
their counterparts in the underlying data: nil ([]) states that
all the elements in the empty list satisfy P and cons (_::_)
states that P holds of all the elements of a non-empty list if
it holds of its head and of all the elements in its tail.
data All (P : A → Set p) : List A → Set (a ⊔ p) where
[] : All P []
_::_ : P x → All P xs → All P (x :: xs)

Some of our examples require the introduction of Any,
the other classic predicate lifting on list. It takes a predicate
and ensures that it holds of at least one element of the list at
hand. Either it holds of the first one and we are given a proof
(here) or it holds of a value somewhere in the tail (there).
data Any (P : A→ Set p) : List A → Set (a ⊔ p) where
here : P x → Any P (x :: xs)
there : Any P xs→ Any P (x :: xs)

2.1.1 Quantifiers
We have two types of quantifiers: existential and univer-
sal. As they are meant to surround the indexed expression
they are acting upon, we define them as essentially pairs of
matching opening and closing brackets. The opening one
is systematically decorated with a mnemonic symbol: ∃ for
existential quantification,Π for explicit dependent quantifica-
tion and ∀ for implicit universal quantification. Additionally
we use angle brackets for existential quantifiers and square
brackets for universal ones, recalling the operators diamond
and box of modal logic.

Existential Quantifier In type theory, existential quan-
tifiers are represented as dependent pairs. We introduce Σ,
a dependent record parameterised by a type A and a type
family P. It has two fields proj1 for a value of type A and proj2
for a proof of type (P proj1). We can build and pattern-match
against pairs using the constructor _,_ and we can project
either of the pair’s components simply by using its field’s
name.
record Σ (A : Set a) (P : A → Set p) : Set (a ⊔ p) where
constructor _,_
field proj1 : A

proj2 : P proj1
The existential quantifier for indexed families is defined

as a special case of Σ; it takes the index Set implicitly.
∃⟨_⟩ : {A : Set a} (P : A → Set p)→ Set (a ⊔ p)
∃⟨ P ⟩ = Σ _ P

Using ∃⟨_⟩ we can write our first statement about an
indexed family: from the existence of a list such that P holds
of all its elements, we can construct a list of pairs of elements
and proofs that P holds for that value.
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toList : ∃⟨ All P ⟩ → List ∃⟨ P ⟩
toList ([] , []) = []
toList (x :: xs , p :: ps) = (x , p) :: toList (xs , ps)

Universal Quantifiers The natural counterpart of exis-
tential quantification is universal quantification. In type the-
ory this corresponds to a dependent function space. Here
we have room for variations and we can consider both the
explicit (Π[_]) and the implicit (∀[_]) universal quantifiers.
Π[_] : (I → Set p)→ Set (i ⊔ p)
Π[ P ] = ∀ i → P i

∀[_] : (I → Set p)→ Set (i ⊔ p)
∀[ P ] = ∀ {i}→ P i

Provided that a proposition holds of any value, we can
prove it will hold of any list of values by induction on such a
list. Because we perform induction on the list it is convenient
to take it as an explicit argument whereas the proof itself
can take its argument implicitly.
replicate : ∀[ P ]→ Π[ All P ]
replicate p [] = []
replicate p (x :: xs) = p :: replicate p xs

2.1.2 Pointwise Liftings
Pointwise liftings for an index type I are operators turn-
ing a type constructor on Sets into one acting on I-indexed
families by threading the index. They are meant to be used
partially applied so that both their inputs and their output
are I-indexed, hence the mismatch between their arity and
the number of places for their arguments.

Implication We start with the most used of all: implica-
tion i.e. functions from proofs of one predicate to proofs of
another.
_⇒_ : (I → Set p)→ (I → Set q)→ (I → Set (p ⊔ q))
(P ⇒ Q) i = P i→ Q i

The combinator _⇒_ associates to the right just like the
type constructor for functions does. We can write the ana-
logue of sequential application for applicative functors [14]
like so:
_<⋆>_ : ∀[ All (P ⇒ Q) ⇒ All P ⇒ All Q ]
[] <⋆> [] = []
(f :: fs) <⋆> (x :: xs) = f x :: (fs <⋆> xs)

Conjunction To state that the conjunction of two predi-
cates hold we can use the pointwise lifting of pairing.
_∩_ : (I→ Set p)→ (I→ Set q)→ (I→ Set (p ⊔ q))
(P ∩ Q) i = Σ (P i) λ _→ Q i

This enables us to write functions which return more than
one result. We can for instance write the type of unzip, the
proof that if the conjunction of P and Q holds of all the

elements of a given list then both P and Q in isolation hold
of all of that list’s elements.

unzip : ∀[ All (P ∩ Q) ⇒ All P ∩ All Q ]
unzip [] = [] , []
unzip ((p , q) :: pqs) = let (ps , qs) = unzip pqs

in (p :: ps) , (q :: qs)

Notice that we are using the conjunction combinator both
on predicates ranging over values and on ones ranging over
lists of values.

Disjunction To formally describe the disjunction of two
predicates, we need to define _⊎_ the type of disjoint sums
first. It has two constructors each of which corresponds to a
choice of one side of the sum or the other.

data _⊎_ (A : Set a) (B : Set b) : Set (a ⊔ b) where
inj1 : A→ A ⊎ B
inj2 : B→ A ⊎ B

The disjunction of two predicates is then the pointwise
lifting of _⊎_.

_∪_ : (I→ Set p)→ (I → Set q)→ (I → Set (p ⊔ q))
(P ∪ Q) i = (P i) ⊎ (Q i)

A typical use case for disjoint sums is the notion of de-
cidability: either a predicate or its negation holds. We can
formulate a general decidability result for All: if for any value
either P or Q holds then for any list of values, either (Any P)
or (All Q) holds.

decide : Π[ P ∪ Q ] → Π[ Any P ∪ All Q ]
decide pq? [] = inj2 []
decide pq? (x :: xs) with pq? x | decide pq? xs
... | inj1 px | _ = inj1 (here px)
... | _ | inj1 ap = inj1 (there ap)
... | inj2 qx | inj2 qxs = inj2 (qx :: qxs)

Here we did not limit ourselves to either P or its negation
but it is sometimes necessary to talk directly about negation.

Negation Traditionally negation is defined as functions
into the empty type ⊥. We start by defining it as the induc-
tive type with not constructor together with its elimination
principle (⊥-elim).

data ⊥ : Set where ⊥-elim : ⊥→ A
⊥-elim ()

Negation for a unary predicate P is then the unary predi-
cate which maps i to (P i→⊥).

¬_ : (I→ Set p) → (I→ Set p)
(¬ P) i = P i→⊥

The two predicate liftings All and Any interact in non-
trivial ways. For instance if we know that the negation of
P holds of any value in a given list then P can’t hold of all
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its elements. In other words: a single counter-example is
enough to disprove a universal statement.

notall : ∀[ Any (¬ P) ⇒ ¬ All P ]
notall (here ¬px) (px :: _) = ⊥-elim (¬px px)
notall (there ¬p) (_ :: ps) = notall ¬p ps

Notice that we are once more using the combinator we
just defined both on a predicate on values and one on lists
of values.

2.1.3 Adjustments To The Ambient Index
Threading the index is only the least invasive of the modes of
action available to us. But we can also more actively interact
with the ambient index either by ignoring it completely,
adjusting it using a function or overwriting it entirely. We
will not detail the last option as, as always, overwriting is
adjusting with a constant function.

Constant Although we have so far only manipulated in-
dexed families, some of our function’s arguments or its result
may not depend on the index. The constant indexed family
is precisely what we need to represent these cases.

const : Set a→ (I→ Set a)
const A i = A

We can for instance prove that if the constantly false pred-
icate (const ⊥) holds true of all the elements of a list then
said list is the empty list. We use a section (i.e. a partially
applied infix operator) of propositional equality to formulate
that conclusion. In the proof we do not need to consider the
_::_ case: Agda automatically detects that it is impossible.

empty : ∀[ All (const ⊥) ⇒ (List A ∋ []) ≡_ ]
empty [] = refl

Note that we had to add a type annotation to []: the type
of the index of the predicate defined using const is an im-
plicit polymorphic argument and so is the type of elements
in List’s nil constructor. Agda can infer that these two im-
plicit arguments are equal but needs to be given enough
information to figure out what it ought to be. In type theory,
an identity function is a fine definition of a type annotation
operator:

_∋_ : (A : Set a) → A → A
A ∋ a = a

Update On the other end of the spectrum, we have oper-
ations which update the ambient index using an arbitrary
function. The notation _⊢_ is inspired by the convention
in type theory to consider that proofs in sequent calculus
are written in an ambient context and that we may use a
turnstile to describe the addition of newly-bound variables
to this context (see e.g. Martin Löf’s work [12]).

_⊢_ : (I→ J) → (J→ Set p) → (I→ Set p)
(f ⊢ P) i = P (f i)

Stating that a function operating on lists is compatible
with All is a typical use case of such a combinator. If the
function at hand is called f then the convention in the stan-
dard library is to call such a proof f+ as it makes f appear in
the conclusion. We pick concat (whose classic definition is
left out) in this concrete example.

concat+ : ∀[ All (All P)⇒ concat ⊢ All P ]
concat+ [] = []
concat+ ([] :: pxss) = concat+ pxss
concat+ ((px :: pxs) :: pxss) = px :: concat+ (pxs :: pxss)

2.2 Working With Multiple Indices
We started by showing both the type and the implementation
of each of our examples. Although convenient at first to build
an understanding of which arguments are explicit and which
ones are implicit, we are in the end only interested in the
way combinators let us write types. In this section, we focus
on the types and only the types of our examples.

The combinators presented earlier are all available in the
standard library. As we have demonstrated, they work really
well for unary predicates. Unfortunately they do not scale
beyond that. Meaning that if we are manipulating binary
relations for instance we have to explicitly introduce one
of the indices and partially apply the relations in question
before we can use our usual unary combinators. This leads
to cluttered types which are not much better than their fully
expanded counterparts.
Let us look at an example. We introduce Pw (for “point-

wise”) the relational equivalent of the predicate lifting Allwe
have been using as our running example so far. The inductive
family Pw is parameterised by a relation R and ensures its
two index list are compatible with R in a pointwise manner.
If both lists are empty then they are trivially related ([]);
otherwise we demand that their heads are related by R and
their tails are related pointwise (_::_).

data Pw (R : A → B→ Set r) :
List A → List B → Set (a ⊔ b ⊔ r) where

[] : Pw R [] []
_::_ : R x y→ Pw R xs ys→ Pw R (x :: xs) (y :: ys)

To state the relational equivalent to All’s _<⋆>_ using our
combinators for unary predicates, we need to partially apply
Pw to xs to make it a predicate as well as explicitly use a
λ-abstraction to build the relation corresponding to the fact
that R implies S.

_<⋆>_ : ∀[ Pw (λ x → R x ⇒ S x) xs ⇒
Pw R xs ⇒ Pw S xs ]

Ideally we could have instead used binary version of the
combinators for unary predicates we saw earlier and have
simply written:

_<⋆>_ : ∀[ Pw (R ⇒ S) ⇒ Pw R ⇒ Pw S ]
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We could duplicate the definitions for unary predicates
and have equivalent combinators for binary relations how-
ever this will create two new issues. First, the day we need
a library for ternary relations we will have triplicated the
initial work. Second, we would have two sets of definitions
with identical names meaning they cannot be both imported
in the same module without clashing thus forcing users to
manually disambiguate each use site.

Wish We would like to define once and for all n-ary quan-
tifiers, pointwise lifting of common type constructors, and
adjustment functions.

3 Plan
We can start to draw out the structure of our contribution
now that we have a good idea of the current state of the art,
its limitation, and the extensions we want to see. Here are
the key points we deliver:

Reified Types We come up with a representation of n-ary
functions which is as general as possible: the domains should
be allowed to be different types, even types defined at differ-
ent universe levels.

Semantics We give a semantics taking a reified type and
computing its meaning as a Set at some universe level. This
level also needs to be computed from the description.

Invertible The representation and its semantics are unifier
friendly. That is to say that if using a combinators yields a
constraint of the form “this type is the result of evaluating
the representation of an n-ary function type”, then Agda will
be able to reconstruct the representation and discharge the
constraints without any outside help.

Applications Lastly we deliver the two wishes we formu-
lated earlier by actually implementing the n-ary versions of
cong, subst, and the various combinators for manipulating
indexed families.

4 Getting Acquainted With the Unifier
Unification is the process by which Agda reconstructs the
values of the implicit arguments the user was allowed to
leave out [1]. It is one of the mechanisms bridging the gap
between the source program which should be convenient
for humans to read, write, and modify and the fully explicit
terms in the internal syntax.

It is important to build a good understanding of the prob-
lems the unifier can easily solve to be able to write com-
binators usable with minimal user input. Indeed if we can
anticipate that an argument can be reconstructed, we may
as well make it implicit and let Agda do the work.

Notations We write ?a for a metavariable, e[?a1, · · · ,?an]
for an expression e containing exactly the metavariables ?a1

to ?an , c e1 · · · en for the constructor c applied to n expres-
sions and lhs ≈ rhs to state a unification problem between
two expressions lhs and rhs.

Unification Tests We can easily trigger the resolution of
unification problems by writing unit tests in the source lan-
guage. We can force Agda to introduce metavariables by
using an underscore (_) as a placeholder for a subterm and
use refl at the proof of a propositional equality to force it to
unify the two expressions stated to be equal. For instance
in the following test we force Agda to check that (?A → ?B)
can be unified with (N→ N).

_ : (_→ _) ≡ (N→ N)
_ = refl

To express problems where a single metavariable is used
multiple times, we can use a let binder. For instance, we can
indeed unify (?A → ?A) with (N→ N).

_ : let ?A = _ in (?A → ?A) ≡ (N→ N)
_ = refl

Whenever Agda cannot solve a metavariable by unifica-
tion it is highlighted in yellow like so: _ . Whenever Agda
cannot satisfy a unification constraint raised by the use of
refl, it will also highlight it in yellow like so: refl .

Let us now look at the various scenarios in which it is easy
for the unifier to decide whether a constraint is satisfiable.

4.1 Instantiation
The simplest case the unifier can encounter is a problem of
the form ?a ≈ e[?a1 · · · ?an] where ?a does not appear in
the list [?a1, · · · ,?an]. The unifier can simply instantiate the
metavariable to the candidate expression.

For instance in the following test you can see that neither
the underscore on the left-hand side nor the refl constructor
is highlighted in yellow. Meaning that the metavariable on
the left was indeed solved (by instantiating it to the expres-
sion on the right-hand side) and that the constraint induced
by the use of refl was thus satisfied. The problem itself is
under-constrained so it is not surprising that the right-hand
side lights up.

_ : _ ≡ ( _ → _ )

_ = refl

4.2 Constructor Headed
The second case where the unifier can easily make progress
is a unification problem between to constructor-headed ex-
pression c e1 · · · em ≈ d f1 · · · fn .

Success Either the constructors c and dmatch up, we learn
that m equals n and we can reduce the problem to unifying
the constructors’ respective arguments by forming the new
unification problems (e1 ≈ f1) · · · (em ≈ fn ).
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In the following example, Agda sees that both expressions
have _→_ as their head constructor, proceeds to unify N
with itself on the one hand (which succeeds because both
have the same head constructor and they do not have any
arguments) and N with ?A on the other (which succeeds by
instantiation).

_ : (N→ _) ≡ (N→ N)
_ = refl

Failure Or c and d are distinct and we can immediately
conclude that unification is impossible. We cannot write an
expression in Agda demonstrating this case as it leads to a
type error in the language. Trying to form the unification
problem N ≈ (?A→ ?B) would raise such an error because
N and _→_ are distinct head constructors.

4.3 Avoid Computations...
In general unification problems involving computations are
undecidable. We can easily construct a total simulation func-
tion sim for Turing machines which takes in as arguments
the code for an arbitrary program prg and a natural number
n and returns 0 if and only if the program runs for exactly
n steps before stopping and 1 otherwise. Forming a con-
straint like sim prg _ ≈ 0 is effectively asking whether the
program prg terminates. It is clearly impossible to write a
unifier solving all problems of this form.

4.4 ... In Most Cases
Although unification problems involving computations will
in general fail to produce solutions, there are exceptions.

Disappearing Problem The first favourable case is a La-
palissade: stuck function applications which are guaranteed
to go away in all cases of interest to us are never a problem.
This is true whenever we know that in all use cases the con-
crete values at hand will allow evaluation to reveal enough
constructors for unification to succeed.
To demonstrate this phenomenon we introduce a type

nary of n-ary functions on natural numbers. It is parame-
terised by the return type of the n-ary function and defined
by induction on n.

nary : N→ Set→ Set
nary zero A = A
nary (suc n) A = N→ nary n A

In general, it is impossible to solve the unification con-
straint nary ?n ?A ≈ (N→ A). If the natural number is not
specified then nary is stuck. And there is no hope to solve this
problem; indeed there are two solutions (?n could be either 0
or 1) because every unary function is also a nullary symbol
whose type is a function type. As explained earlier, Agda
communicates to us this failure to solve the two metavari-
ables passed to nary as arguments by highlighting them in

yellow. The constructor refl is also highlighted as the source
of the unification constraint that could not be satisfied.

_ : nary _ _ ≡ (N→ A)

_ = refl

If the natural number argument is however a concrete
value then nary evaluates fully and Agda is able to recon-
struct A by unification. In the following two examples we
unify (N→ N) with (N→ ?A) on the one hand and ?A on
the other. Both unification problems succeed without any
issue.

_ : nary 1 _ ≡ (N→ N)
_ = refl

_ : nary 0 _ ≡ (N→ N)
_ = refl

This observation is language independent. It will directly
influence our encoding: we expect our users to only ever use
our generic congruence combinator with concrete arities.
A representation defined by induction on such a natural
number would therefore work well with the unifier.

Invertible Problem The second case in which we may en-
counter unification problems involving stuck computations
and still see Agda find a solution is more language depen-
dent but just as principled. Whenever the stuck function
is defined by a set of equations whose right-hand sides are
clearly anti-unifiable, we can invert it.
For instance if the Set parameter to nary is known to be

N then the right-hand side of the first equation is N and the
second’s one has the shape (N→ _). These two are clearly
disjoint and so Agda can invert nary and figure out that the
arity we left out in the following example is 1.

_ : nary _ N ≡ (N→ N)
_ = refl

If we had passed (N→ N) instead as the second argument
to nary then the two right-hand sides would not have been
obviously disjoint and Agda would have given up on trying
to invert nary.

_ : nary _ (N→ N) ≡ (N→ N)

_ = refl

These two examples tell us that we can hope to leave out
a function’s arity entirely if we statically know its codomain
and it has a shape clearly anti-unifiable with the right-hand
sides of our semantics of reified function types. Note in par-
ticular that combinators acting on relations (cf. Section 2.1)
are manipulating functions whose codomain is always of
the shape (Set _) which is clearly disjoint from (_→ _). We
ought to be able to define their n-ary counterparts without
having to mention n explicitly.

5 Representing N-ary Function Types
Now that we understand how the unifier works, we can
design a generic representation and its semantics (called J_K
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here for convenience) so that whenever we have a constraint
of the form J ?r K ≈ (N → Set), it can easily lead to the
reconstruction of the representation ?r.

User Input As we have just seen, a binary function type
(A→ B→ C) with codomain C can also be seen as a unary
function type with codomain (B → C). As a consequence in
the general case there is no hope to get Agda to reconstruct
the representationwe have inmindwithout passing it at least
a little bit of information. The least we can do is tell Agda
the arity of the function. From this single natural number
we will compute the shape of the whole representation.

Unification As we have just seen, if we want Agda to re-
construct the representation from a unification constraint
then our best hope is that the semantics function evaluates
fully and simply disappears. This means in particular that
it should not get stuck on a pattern-matching analysing the
representation. This can be achieved with certainty by con-
straining our representation to only be built up from things
we either will not pattern-match against (e.g. Sets) or type
constructors which enjoy η-equality (i.e. for which values
can always be made to look like they are in canonical form).
Just like the representation, the semantics will have to be
computed entirely from the natural number corresponding
to the function’s arity.
From these two observations, we decide that our repre-

sentation will be parameterised by a natural number which
we will use to compute a number of right-nested products.

Right-Nested Products The two basic building blocks of
right-nested products are a binary product _×_ and the unit
type ⊤.

We obtain the binary product as the non-dependent special
case of Σ we introduced in Section 2.1.1. We did not mention
it at the time but record types in Agda enjoy η-rules. That is
to say that any value p of type (Σ A P) is definitionally equal
to (proj1 p , proj2 p).
The unit type is defined as a record with no field. Every

value of type ⊤ is equal to the canonical value tt.

record ⊤ : Set where
constructor tt

Even though⊤ is defined as a Set, we will sometimes need
to use it at a higher level. The usual solution is to manually
lift it to the appropriate level. Because Lift is also a record, it
will not get in the way of reconstruction.

record Lift ℓ (A : Set a) : Set (ℓ ⊔ a) where
constructor lift
field lower : A

Level Polymorphism To achieve fully general level poly-
morphism, we need all the domains of our function type
to be potentially at different levels. Luckily the notion of
Level in Agda is a primitive Set and we can thus manipulate

them just like any other values. In particular we can define
containers storing them. Our first definition called Levels
defines an n-tuple of Levels by induction on n.

Levels : N→ Set
Levels zero = ⊤

Levels (suc n) = Level × Levels n

Heterogeneous Domains Before we can generate the big
right-nested n-tuple packaging the function’s domains, we
need to compute the level at which it is going to live. The
definition of Σ makes clear that the product of two types
living respectively at level a and b sits at level (a ⊔ b) i.e. the
least upper bound of a and b. We define

⊔
as the general-

isation of the least upper bound operator to (Levels n) by
induction on n.⊔

: ∀ n → Levels n→ Level⊔
zero _ = 0ℓ⊔
(suc n) (l , ls) = l ⊔ (

⊔
n ls)

Knowing that (Set a) sits at level (suc a), it is natural to
declare that our n-tuple of sets defined at various Levels will
be defined at the successor of the generalised least upper
bound of these Levels.

Sets : ∀ n (ls : Levels n) → Set (Level.suc (
⊔

n ls))
Sets zero _ = Lift _ ⊤
Sets (suc n) (l , ls) = Set l × Sets n ls

We can now encode an n-ary function space as essentially
a collection ls of (Levels n) together with a corresponding
n-tuple of type (Sets n ls) for the domains, and a level r and
a (Set r) for the codomain.

Semantics This encoding has a straightforward semantics
by induction on n and case analysis on the (Sets n ls) argu-
ment. A zero-ary function type is simply the codomain whilst
a (suc n)-ary one is a unary function type whose codomain
is the n-ary function type obtained by induction hypothesis.

Arrows : ∀ n {ls} → Sets n ls → Set r→ Set (r ⊔ (
⊔

n ls))
Arrows zero _ b = b
Arrows (suc n) (a , as) b = a→ Arrows n as b

If we look carefully at this definition we can notice that
the function Arrows may only ever get stuck if the natural
number is not concrete. Even though we do take the Sets
argument apart, it is a product type and thus enjoys η-rules.
We have achieved the degree of unifier-friendliness we were
aiming for.

Our first example is a 2-ary function: our favourite indexed
family All. The last element of the telescope, a value whose
type is a lifted version of the unit type, can be inferred by
Agda so we leave it out.

_ : Arrows 2 ((A→ Set p) , List A , _) (Set (p ⊔ a))
_ = All
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6 Combinators for Indexed Families
Now that we have our generic representation of n-ary func-
tion types, we can finally start building the n-nary counter-
parts of the combinators we discussed at length in Section 2.1.

6.1 Quantifiers
If we already know how to quantify over one variable, we
can easily describe how to quantify over n variables by in-
duction over n. This is what quantn does. Provided a (level
polymorphic) quantifier Q and a Set-valued n-ary function f,
we distinguish two cases: if n is 0 then the function is already
a Set and we can return it directly; otherwise we use Q to
quantify over the outer variable which we call x and proceed
to quantify over the remaining variables in (f x) by using the
induction hypothesis.

quantn : (∀ {i l} {I : Set i}→ (I→ Set l)→ Set (i ⊔ l)) →
∀ n {ls} {as : Sets n ls} →
Arrows n as (Set r) → Set (r ⊔ (

⊔
n ls))

quantn Q zero f = f
quantn Q (suc n) f = Q (λ x → quantn Q n (f x))

We can define the specific instances of n-ary quantification
we are interested in by partially applying quantn with the
appropriate concrete quantifiers. Because we are dealing
with Set-valued functions, we can leave their arity as an
implicit argument and let Agda infer it at use site. In all cases
we give them the same name as their unary counterparts as
they can be used as drop-in replacements for them.

We start with the n-ary existential quantifier defined using
the unary quantifier we introduced in Section 2.1.1.

∃⟨_⟩ : Arrows n {ls} as (Set r) → Set (r ⊔ (
⊔

n ls))
∃⟨_⟩ = quantn Unary.∃⟨_⟩ _

Similarly we can define the explicit and implicit universal
quantifiers.

Π[_] : Arrows n {ls} as (Set r) → Set (r ⊔ (
⊔

n ls))
Π[_] = quantn Unary.Π[_] _

∀[_] : Arrows n {ls} as (Set r) → Set (r ⊔ (
⊔

n ls))
∀[_] = quantn Unary.∀[_] _

6.2 Pointwise liftings
Pointwise lifting of a binary function can be defined uni-
formly for any operation of type (A → B → C) and any pair
of n-ary functions whose domains match and codomains are
respectively A and B. It is defined by induction on the arity
n of the input functions.

lift2 : ∀ n {ls} {as : Sets n ls} → (A → B → C) →
Arrows n as A→ Arrows n as B → Arrows n as C

lift2 zero op f g = op f g
lift2 (suc n) op f g = λ x → lift2 n op (f x) (g x)

From this very general definition we can recover the com-
binators we are used to. For each one of them we are able
to leave out the arity argument thanks to the observation
we made in Section 4.4: Set and (?A → ?B) are anti-unifiable
and Agda is therefore able to reconstruct the arity for us!

Implication is the lifting of the function space.

_⇒_ : Arrows n {ls} as (Set r) → Arrows n as (Set s) →
Arrows n as (Set (r ⊔ s))

_⇒_ = lift2 _ (λ A B→ (A→ B))

Conjunction is the lifting of pairing.

_∩_ : Arrows n {ls} as (Set r) → Arrows n as (Set s)→
Arrows n as (Set (r ⊔ s))

_∩_ = lift2 _ (λ A B→ (A × B))

Disjunction is the lifting of the sum type.

_∪_ : Arrows n {ls} as (Set r) → Arrows n as (Set s)→
Arrows n as (Set (r ⊔ s))

_∪_ = lift2 _ (λ A B→ (A ⊎ B))

Negation is obviously not a binary operation. In practice,
rather than having multiple ad-hoc lifting functions for var-
ious arities we have a fully generic liftn functional which
lifts a k-ary operator to work with k n-ary functions whose
respective codomains match the domains of the operator. Its
type could be summarised as:

liftn : ∀ k n.
(B1 → · · · → Bk → B)→
(A1 → · · · → An → B1) →

...
(A1 → · · · → An → Bk )→
(A1 → · · · → An → B)

The thus generalised definition has a fairly unreadable
type so we leave this formal definition out of the paper.
Curious readers can consult the accompanying code. We can
evidently use liftn with k equal to 1 to lift negation from an
operation on Set to an operation on Arrows.

¬_ : Arrows n {ls} as (Set r)→ Arrows n as (Set r)
¬_ = liftn 1 _ (λ A → (A →⊥))

6.3 Adjustments To The Ambient Indices
We now have obtained the generalised versions of the index-
threading combinators we wanted. We can similarly define
a number of index-altering combinators. The first two are
the n-ary versions of the two operators we described in
Section 2.1.3.

Lifting amere value to a constant n-ary function is amatter
of composing const with itself n times.

constn : ∀ n {ls} {as : Sets n ls}→ B → Arrows n as B
constn zero = id
constn (suc n) = const ◦ (constn n)
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Updates are a bit more subtle: now that we are not limited
to a single index, we can choose which index should be
updated. We expect the user to provide a natural number n
to target a specific index, the type of the combinator then
clearly states that n sets are skipped, the target is updated
and the rest of the type is unchanged.

_%=_⊢_ : ∀ n {ls} {as : Sets n ls} → (I→ J)→
Arrows n as (J→ B)→ Arrows n as (I→ B)

zero %= f ⊢ g = g ◦ f
suc n %= f ⊢ g = (n %= f ⊢_) ◦ g

The added complexity of working with n-ary relations
means that we have more interesting operators than simply
the generalised version of the ones we had introduced for
unary predicates.

We may for instance want to map a unary function on the
result of an n-ary one. Note that this empowers us to partially
apply any n-ary function to a value x in its k-th argument
by choosing to see it as a k-ary function and mapping (_$ x)
on it.

mapn : ∀ n {ls} {as : Sets n ls}→
(B → C)→ Arrows n as B→ Arrows n as C

mapn zero f v = f v
mapn (suc n) f g = mapn n f ◦ g

7 Congruence and Substitution
So far the types we have ascribed our combinators for n-ary
relations were fairly tame. Things get a bit more complicated
when dealing with congruence and substitution: we will
not be able to write these functions’ types directly. Both
definitions follow the same structure: we start by computing
the operation’s type by induction andwe can then implement
the operation itself.

7.1 Congruence
The type of congruence mentions only one function. How-
ever it is applied to two distinct lists of values to form the
left-hand side and the right-hand side of the conclusion. As
a consequence when we compute the type we take two func-
tions as inputs and use one to apply to the arguments meant
for the left-hand side and the other for the ones meant for
the right-hand side of the equation.
Congruence for two 0-ary functions collapses to simply

propositional equality of the two constant values.
Congruence for two (suc n)-ary functions f and g amounts

to stating that for any pair of equal values x and y we expect
that (f x) and (g y) are congruent.

Congn : ∀ n {ls} {as : Sets n ls} {R : Set r} →
(f g : Arrows n as R)→ Set (r ⊔ (

⊔
n ls))

Congn zero f g = f ≡ g
Congn (suc n) f g = ∀ {x y}→ x ≡ y → Congn n (f x) (g y)

The congruence lemma is then obtained by stating that
the n-ary function f is congruent with itself. We prove it by
induction on n, pattern-matching on the proofs of equality
as we go along.

congn : ∀ n {ls} {as : Sets n ls} {R : Set r}→
(f : Arrows n as R) → Congn n f f

congn zero f = refl
congn (suc n) f refl = congn n (f _)

7.2 Substitution
The definition of Substn is identical to that of Congn ex-
cept that we now consider predicates rather than arbitrary
functions. The base case is therefore dealing with P and Q
being two Sets rather than two values at a given type. As a
consequence we demand a function transporting proofs of P
to proofs of Q rather than a proof of equality.

Substn : ∀ n {ls} {as : Sets n ls}→
(P Q : Arrows n as (Set r)) → Set (r ⊔ (

⊔
n ls))

Substn zero P Q = P→ Q
Substn (suc n) P Q = ∀ {x y}→ x ≡ y → Substn n (P x) (Q y)

Substitution acts on n-ary relations. Recalling our obser-
vation made in Section 4.4 that Agda can easily reconstruct
the arity of Set-valued functions, we can make n an implicit
argument.

substn : ∀ {n r ls} {as : Sets n ls}→
(P : Arrows n as (Set r))→ Substn n P P

substn {zero} P x = x
substn {suc n} P refl = substn (P _)

8 Further Generic Programming Efforts
The small language we have developed to talk about n-ary
functions can be used beyond our first few motivating exam-
ples of congruence, substitution, and combinators to define
types involving relations. We detail in this section various
results that fall out naturally from this work. We start with
generic currying and uncurrying, and then use these to de-
fine an n-ary zipWith and revisit printf in direct style.

8.1 Product and (Un)Currying
Wegave in Section 5 a semantics to our reified types as proper
n-ary function types. We can alternatively interpret a Sets
as a big right-nested and ⊤-terminated product containing
one value for each Set. We once more proceed by induction
on n.

Product : ∀ n {ls}→ Sets n ls → Set (
⊔

n ls)
Product zero _ = ⊤

Product (suc n) (a , as) = a × Product n as

We can convert back and forth between a unary function
whose domain is a Product of Sets and an n-ary function
whose domains are the same sets. These conversion functions
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correspond to currying and uncurrying. Both curryn and
uncurryn are implemented by structural induction on n and
in terms of their binary counterparts. In the base case, the
function is either applied to tt or uses const to throw away a
value of type ⊤; this is an artefact of the fact our definition
of Product is ⊤-terminated

curryn : ∀ n {ls} {as : Sets n ls}→
(Product n as→ R)→ Arrows n as R

curryn zero f = f _
curryn (suc n) f = curryn n ◦ curry f

uncurryn : ∀ n {ls} {as : Sets n ls}→
Arrows n as R → (Product n as → R)

uncurryn zero f = const f
uncurryn (suc n) f = uncurry (uncurryn n ◦ f)

⊤-free Variant In practice users do not tend to write ⊤-
terminated right-nested products. As a consequence it is
convenient to have a definition of Product which has a spe-
cial case for Sets of size exactly 1 returning the Set without
pairing it with ⊤. This makes curryn and uncurryn more
useful overall. Most generic functions however are easier to
implement using the ⊤-terminated version of Product. In
our library we provide both as well as conversion functions
between the two interpretations.

8.2 N-ary Zipping Functions
Some functions are easier to write curried but nicer to use
uncurried. This is the case with zipWithn , the n-ary version
of the higher-order function which takes a function and two
lists as inputs and produces a list by processing both lists in
lockstep and using the function it was passed to combine
their elements. Using ellipses, we would write its type as:

zipWithn : ∀ n. (A1 → · · · → An → B)→
List A1 → · · · → List An → List B

To formally write this type, we need to explain how to
map a level polymorphic endofunctor on Set (here: List) over
a (Sets n ls). We proceed by induction on n.

_<$>_ : (∀ {l}→ Set l→ Set l)→
∀ {n ls}→ Sets n ls → Sets n ls

_<$>_ f {zero} as = _
_<$>_ f {suc n} (a , as) = f a , f <$> as

As explained earlier it is vastly easier to implement the
function using the uncurried type, and to then recover the
desired type by invoking generic (un)currying in the appro-
priate places. The functionwewant is therefore implemented
in term of an auxiliary definition called zw-aux.

Implementation The auxiliary definition is still a bit in-
volved so we detail each equation of its definition below. We
start with its type first.

zw-aux : ∀ n {ls} {as : Sets n ls} →
(Product n as → R) →
(Product n (List <$> as)→ List R)

When n is 0, a Haskeller would typically return an infinite
list containing the value f repeated. However this is not
possible in Agda, a total language [17]: all the lists have to
be finite. Our only principled option is to return the empty
list.

zw-aux 0 f as = []

Because the behaviour of the 0 case is less than ideal, we
bypass it every time except if zipWithn is explicitly called
on 0. This is done by having a special case for n equals 1. In
this situation, we can get our hands on a function f of type
((A × ⊤) → R) and a List A and we need to return a List R.
We map a tweaked version of the function on the list.

zw-aux 1 f (as , _) = map (f ◦ (_, tt)) as

The meat of the definition is in the last case: we are given
a function ((A × A0 × · · · × An) → R), a list of As and a
product of lists (List A0 × · · · × List An). We massage the
function to obtain another one of type ((A0 × · · · × An)→
(A → R)) which we can combine with the product of lists
thanks to our induction hypothesis. This gives us back a list
of functions of type (A→ R). We can conclude thanks to the
usual binary zipWith to combine this list of functions with
the list of arguments we already had.

zw-aux (suc n) f (as , ass) = zipWith _$_ fs as
where fs = zw-aux n (flip (curry f)) ass

8.3 Printf
The combinators we have introduced also make it easy to
implement printf in direct style as opposed to the classic
accumulator-based definition [4, 7]. We effectively produce
a well typed version of the ill typed intermediate function
Asai, Kiselyov, and Shan consider in their derivation of a
direct-style implementation using delimited control [3].
We work in a simplified setting which allows us to focus

on the contribution our n-ary combinators bring to the table.
Our printf will only take natural numbers as arguments and
we will not worry about defining the lexer transforming a
raw String into a Format, that is to say a list of Chunks
each being either a Nat corresponding to a “%u” directive
(i.e. unsigned decimal integer) or a Raw string.

data Chunk : Set where
Nat : Chunk
Raw : String → Chunk

Format : Set
Format = List Chunk

Our notion of Format is not intrinsically sized but we do
need to know how many arguments our printf function is
going to take if we want to use the machinery for n-ary func-
tions. We assume the existence of a size function counting
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the number of Nat in a Format. We also assume the existence
of 0ℓs, a (Levels n) equal to 0ℓ everywhere. Using these we
can give Format a semantics as a Sets of arguments printf
will expect. To each Nat we associate a N constraint, the
other Chunks do not give rise to the need for an input.

format : (fmt : Format)→ Sets (size fmt) 0ℓs
format [] = _
format (Nat :: f) = N , format f
format (Raw _ :: f) = format f

The essence of printf is then given by a function assemble
which collects a list of strings from various sources. When-
ever the format expects a natural number, we know we got
one as an input and can show it. Otherwise the raw string to
use is specified in the Format itself as an argument to Raw.

assemble : ∀ fmt → Product _ (format fmt) → List String
assemble [] vs = []
assemble (Nat :: fmt) (n , vs) = show n :: assemble fmt vs
assemble (Raw s :: fmt) vs = s :: assemble fmt vs

The toplevel function is obtained by currying the compo-
sition of concat and assemble.

printf : ∀ fmt→ Arrows _ (format fmt) String
printf fmt = curryn (size fmt) (concat ◦ assemble fmt)

We can check on an example that we do get a function
with the appropriate type when we use a concrete Format
(here the one we would obtain from the string "%u < %u").

lessThan : N→ N→ String
lessThan = printf (Nat :: Raw " < " :: Nat :: [])

And that it does produce the expected string when run on
arguments.

_ : lessThan 2 5 ≡ "2 < 5"

_ = refl

9 Conclusion, Related and Future Work
We have seen that Agda’s standard library defines a useful
couple of functions to produce proofs of equality as well as
a type-level domain specific language to manipulate unary
predicates. We then got acquainted with the unifier and the
process by which a unification constraint can lead to the
reconstruction of a function’s implicit arguments. Based on
this knowledge we have designed a representation of n-ary
function types particularly amenable to such reconstruc-
tions. This allowed us to define n-ary versions of congru-
ence, substitution as well as the basic building blocks of the
type-level DSL for relations we longed for. The notions in-
troduced to set the stage for these definitions were already
powerful enough to allow us to revisit classic dependently
typed traversals such as an n-ary version of zipWith, or
direct-style printf. This work has now been merged in the

Agda standard library and will be part of the released ver-
sion 1.1 (see modules Data.Product.Nary.NonDependent,
Function.Nary.NonDependent, and Relation.Nary for li-
brary code and Text.Printf for one application).

Limitations We are relying heavily on two key features of
Agda that are not implemented in other dependently typed
languages as far as we know.
First, Levels are a first class notion: they can be stored in

data structures, passed around in functions and computed
with just like any other primitive type. Unlike other prim-
itive types (e.g. floating point numbers), it is not possible
to perform case analysis on them. Other dependently typed
languages may not be too keen on adopting this extension
given that its meta-theoretical consequences are currently
unknown. We recommend that they use meta-programming
instead to duplicate this work: programs written in Meta-
Coq [2, 16] can for instance explicitly manipulate universe
levels.
Second, Agda’s unifier has a heuristics that attempts to

invert stuck functions when solving constraints. As we have
explained in Section 4.4 this heuristics is principled: if it
succeeds, the generated solution is guaranteed to be unique.
We hope that our detailed use-case incites other languages
to consider adopting it.

Codes for N-ary Function Types We can find in the liter-
ature various deep [18] and shallow [13, 19] embeddings of
polymorphic types and a fortiori of n-ary function types in
a dependently typed language. However none of them are
fully level polymorphic and most only consider the repre-
sentation as a secondary requirement, their focus being on
certifying equivalent programs in Generic Haskell [10]. We
however care deeply about level polymorphism as well as
being unification-friendly to minimise the reification work
the user needs to do.

Telescopes The lack of dependencies between the various
domains and the codomain of our Arrows is flagrant. A nat-
ural question to ask is how much of this machinery can be
generalised to telescopes rather than mere Sets without in-
curring any additional burden on the user. From experience
we know that it is sometimes wise to explicitly use the non-
dependent version of an operator (e.g. function composition)
to inform Agda’s unifier that it is only looking for a solution
in a restricted subset.

Datatype genericity Our implementation of an n-ary ver-
sion of zipWith started as an example of the types and ac-
companying generic programs one can write with our li-
brary. It demonstrates that the notions introduced for our
purposes can be useful in a more general context. This result
is not new either with or without dependent types [9, 13]. It
can however be extended as previous efforts in dependently
typed programming have demonstrated: Weirich and Cas-
inghino’s work [19] on arity-generic but also data-generic
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programming suggests we should be able to push this fur-
ther. Their development predates the addition of universe
polymorphism to Agda and although the traversals are ad-
equately heterogeneous, their approach would not scale to
universe polymorphic functions.

Parametricity as a derivation principle Some of the ex-
amples we have used could have been obtained “for free” by
parametricity: All and Pw are respectively the predicate and
the relational inductive-style translations of the definition of
List. The function replicate defined in Section 2.1.1 is a conse-
quence of the abstraction theorem corresponding to the pred-
icate interpretation and a similar free theorem stating that
if a relation is reflexive then so is its pointwise lifting could
have been derived for Pw. Bernardy, Jansson, and Paterson’s
work on parametricity for dependent types [5] makes these
observations formal and generalises these constructions to
all inductive types and n-ary relational liftings.
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definitions; green marks constructors; pink is associated to
record fields and corresponding projections.

A.2 Universe levels
Agda avoids Russell-style paradoxes by introducing a tower
of universes Set0 (usually written Set), Set1, Set2, etc. Each
Setn does not itself have type Setn but rather Setn+1 thus
preventing circularity.

We can form function types from a domain type in Setm
to a codomain type in Setn . Such a function type lives at
the level corresponding to the maximum of m and n. This
maximum is denoted (m ⊔ n).

An inductive type or a record type storing values of type
Setn needs to be defined at universe level n or higher. We can
combine multiple constraints of this form by using the max-
imum operator. The respective definitions of propositional
equality in Section 1 and dependent pairs in Section 2.1.1 are
examples of such data and record types.
Without support for a mechanism to define level poly-

morphic functions, we would need to duplicate a lot of
code. Luckily Agda has a primitive notion of universe levels
called Level. We can write level polymorphic code by quan-
tifying over such a level l and form the universe at level l
by writing (Set l). The prototypical example of such a level
polymorphic function is the identity function id defined as
follows.
id : ∀ {l} {A : Set l}→ A → A
id x = x

A.3 Meaning of Underscore
Underscores have different meanings in different contexts.
They can either stand for argument positions when defining
identifiers, trivial values Agda should be able to reconstruct,
or discarded values.

A.3.1 Argument Position in a Mixfix Identifier
Users can define arbitrary mixfix identifiers as names for
both functions and constructors. Mixfix identifiers are a gen-
eralisation of infix identifiers which turns any alternating
list of name parts and argument positions into a valid iden-
tifier [6]. These argument positions are denoted using an
underscore. For instance ∀[_] is a unary operator, (_::_) corre-
sponds to a binary infix identifier and (_%=_⊢_) is a ternary
operator.

A.3.2 Trivial Value
Programmers can leave out trivial parts of a definition by us-
ing an underscore instead of spelling out the tedious details.
This will be accepted by Agda as long as it is able to recon-
struct the missing value by unification. We discuss these use
cases further in Section 4.

A.3.3 Ignored Binder
An underscore used in place of an identifier in a bindermeans
that the binding should be discarded. For instance (λ _ → a)
defines a constant function. Toplevel bindings can similarly
be discarded which is a convenient way of writing unit tests
(in type theory programs can be run at typechecking time)
without polluting the namespace. The following unnamed
definition checks for instance the result of applying addition
defined on natural numbers to 2 and 3.
_ : 2 + 3 ≡ 5
_ = refl

A.4 Implicit Variable Generalisation
Agda supports the implicit generalisation of variables ap-
pearing in type signatures. Every time a seemingly unbound
variable is used, the reader can safely assume that it was
declared by us as being a variable Agda should automati-
cally introduce. These variables are bound using an implicit
prenex universal quantifier. Haskell, OCaml, and Idris behave
similarly with respect to unbound type variables.

In the type of the following definition for instance, A and
B are two Sets of respective universe levels a and b (see
Appendix A.2) and x and y are two values of type A. All
of these variables have been introduced using this implicit
generalisation mechanism.
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

If we had not relied on the implicit generalisation mecha-
nism, we would have needed to write the following verbose
type declaration.
cong : ∀ {a b} {A : Set a} {B : Set b} {x y : A}→

(f : A → B) → x ≡ y → f x ≡ f y

This mechanism can also be used when defining an induc-
tive family. In Section 2.1, we introduced the predicate lifting
All in the following manner. The careful reader will have no-
ticed a number of unbound names: a, A, p in the declaration
of the type constructor and x and xs in the declaration of the
data constructor _::_.
data All (P : A → Set p) : List A → Set (a ⊔ p) where
[] : All P []
_::_ : P x → All P xs → All P (x :: xs)
This definition corresponds internally to the following

expanded version (modulo the order in which the variables
have been generalised over).
data All {a p} {A : Set a} (P : A → Set p) :

List A → Set (a ⊔ p) where
[] : All P []
_::_ : ∀ {x xs}→ P x → All P xs → All P (x :: xs)
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