
Simulation-based Optimisation of
LCC-HVDC Controller Parameters using

Surrogate Model Solvers
Aaron S. C. Leavy and Lie Xu

Department of Electronic and Electrical Engineering
University of Strathclyde

Glasgow, United Kingdom
{aaron.leavy, lie.xu}@strath.ac.uk

Shaahin Filizadeh and Aniruddha M. Gole
Department of Electrical and Computer Engineering

University of Manitoba
Winnipeg, Canada

{shaahin.filizadeh, aniruddha.gole}@umanitoba.ca

Abstract—This paper proposes the use of surrogate model
optimisation methods to solve box constrained LCC-HVDC
controller tuning problems. The tuning problem is the selection of
the proportional-integral controller gains and voltage-dependant
current order limiter parameters of an LCC-HVDC link
subject to two operational scenarios and a set of large-signal
disturbances. The solvers using recently proposed surrogate
model methods performed either similarly to or significantly
better than solvers using mature methods of the types found
in PSCAD/EMTDC, thus confirming the suitability of these
surrogate model solvers for simulation-based optimisation of
LCC-HVDC controllers.

Index Terms—Controller tuning, expensive black-box
optimisation, LCC-HVDC, parameter selection, simulation-based
optimisation.

I. INTRODUCTION

Prudent design and operation of LCC-HVDC schemes
requires careful selection of controller parameters,
including: proportional-integral (PI) controller gains; and
voltage-dependant current order limiter (VDCOL) parameters.
These parameters strongly influence the dynamic behaviour
of HVDC schemes subjected to disturbances and set-point
changes, and therefore affect the in-service satisfactory
performance of those HVDC schemes.

Two feasible approaches to tuning these PI and VDCOL
parameters are: optimal control techniques using linearised
state-space models; or manual tuning via trail-and-error to find
feasible solutions. However linearised models cannot explicitly
model practical non-linear behaviours such as short-circuit
faults, while manual tuning methods are time inefficient.
Simulation-based optimisation represents a viable alternative
for tuning HVDC controller parameter values whilst
considering large-signal disturbances and non-linearities.

Simulation-based optimisation allows simulation
software—which can explicitly model these large scale
non-linear behaviours—to be incorporated into a mathematical
program to solve the optimisation problem. This allows the
modelling of transient behaviour within conventional
time-domain simulation programs—such as faults and

switching events—to be considered within the optimisation
process.

Simulation-based optimisation represents a special type
of optimisation problem. The optimisation solver provides
variable values to simulation software, which then runs a
simulation with parameters initialised with those values. The
simulation output is then assessed using a merit function to
return a value back to the optimisation solver, where this
value represents the objective function value. The solver uses
the objective function value to infer a new set of variable
values to test. This process is repeated until solver convergence
conditions are met. Note that in this paper, we use the term
solver to refer to the algorithm used to solve a mathematical
optimisation program.

The simulation represents an expensive black-box objective
function as viewed by the solver. The term expensive refers
to the computational resources required to perform the
simulation, which are significantly more than the resources
required by the solver itself. The term black-box means that the
output from the simulation cannot be written as an analytical
function of the simulation input variables; this also means that
the solver cannot make use of derivative information to help
choose variable values to test.

Past research effort has demonstrated the use of
simulation-based optimisation within power systems
engineering specifically. The prospect of such tooling
within PSCAD/EMTDC is explained in [1] and further
extended upon in [2].

In [1], two PI controller tuning problems are solved:
a DC-DC converter PI controller; and a LCC-HVDC link
model with three PI controllers—rectifier and inverter DC-side
current controllers, and an inverter extinction angle controller.
In [2], two other problems are explored. In the first problem,
three switching angles of a three-level voltage-source converter
are optimised. The second problem can be considered as an
extension of the DC-DC converter problem in [1], where the
DC-DC converter tuning problem in [2] considers selection
of plant values, and the converter’s switching frequency. In
both [1] and [2], all objective functions are based upon the
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integral of the square of the error (ISE) with respect to time
between an ordered and a measured quantity, e.g. ordered and
measured load current in the DC-DC converter problems.

The work in [3] studies the tuning of LCC-HVDC link
PI and VDCOL controllers subjected to multiple external
disturbances as well as a set-point change, to control ordered
DC-side current towards a set-point. The work in [3] may be
viewed as a natural extension to the LCC-HVDC link tuning
problem in [1], with consideration of external disturbances
and two separate operational scenarios. ISEs are used on
different parts of the ordered and measured variables’ time
series and combined together using weighting functions to
form a single objective function. The problems in [1]–[3]
are all considered as unconstrained optimisation problems
solved using a Nelder-Mead simplex solver [4] with initial
variable values selected through analytical approximations and
engineering judgement.

The recent work in [5] proposes a parallel surrogate
model solver strategy to find multiple local optima for
simulation-based optimisation problems, using the tuning
of a VSC-HVDC scheme’s PI controllers as an example
problem. The solver in [5] uses an initial sampling of the
problem space, thus requiring user-defined parameter sampling
ranges rather than a single initial point as in the earlier
works of [1]–[3]. Unconstrained surrogates are then fitted
to points near suspected local optima, and used to converge
to the optima through simulating proposed points from the
surrogates.

As a consequence of considering the work in [5], we
investigate the casting of the LCC-HVDC tuning problem
of [3] explicitly as a box constrained problem rather than an

unconstrained problem. In our paper, a region of the parameter
space need only be specified when solving box constrained
tuning problems, rather than a starting point in the case of
unconstrained tuning problems. This reduces the sensitivity
of the optimal solution to the quality of the practitioner’s
specified starting point and thus resists convergence to locally
optimal yet globally sub-optimal solutions.

Furthermore, we investigate the performance of other, more
recent surrogate solvers utilizing experimental designs similar
to the initial sampling step of the solver in [5] to solve
the explicit box constrained LCC-HVDC tuning problem. We
compare more recent solvers which have been proposed in
the literature with respect to the mature Nelder-Mead method
and genetic algorithm methods to show that the more modern
surrogate model solvers may be used to find superior optimal
solutions to the box constrained LCC-HVDC controller tuning
problem.

The contributions of this paper are:

1) demonstrating the tractable solution to the motivating
problem in [3] of tuning LCC-HVDC controllers with
respect to large transient disturbances, specifically when
the tuning problem is cast explicitly as a box constrained
optimisation problem;

2) the application of two solvers using recently
developed surrogate model strategies to HVDC
link simulation-based optimisation problems; and

3) statistical comparison of these surrogate model solvers
with two mature solvers used as benchmarks.

This paper is organised as follows. We describe our
motivating problem and its formulation as optimisation
Problems in Sections II and III, respectively. We explain
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Fig. 1. A LCC-HVDC link interconnecting two AC systems, with shunt filters. Vr = 345 kV and δr = 0◦. Vi = 230 kV and δi = 0◦ nominally. Circuit
breaker CB1 was used to apply the short circuit disturbances, and was normally open. When inverter system ESCR = 1.9; R1 = 1.1483 Ω, R2 = 2452.9 Ω,
L = 81.294 mH, with CB2 closed. When inverter system ESCR = 3.0; R1 = 0.056035 Ω, R2 = 121.73 Ω, L = 4.0344 mH, with CB2 open. Table I
states transmission lines’ Zr and Zi impedances. Transformer per unit series impedances were defined on the transformers’ ratings.



the four solvers that we studied in Section IV, their
implementation details in Section V, and how we assess them
in Section VI. Lastly, we provide results, discussion, and
conclusions in Sections VII, and VIII.

II. DESCRIPTION OF MOTIVATING PROBLEM

The HVDC link in this paper was comprised of
a 83.3 kV, 200 MW back-to-back LCC-HVDC link shown
in Fig. 1. The AC system at the link’s rectifier end was
connected through a 200 km transmission line to a 345 kV
remote AC system, with a source impedance such that the
rectifier effective short circuit ratio (ESCR) was 4.62. The
AC system at the link’s inverter end was connected through
a 160 km transmission line to a 230 kV remote AC system,
with a source impedance such that the inverter ESCR was
either 1.9 or 3.0. Each converter station had four shunt AC
filter banks, where each filter provided 30 MVAr of reactive
power at nominal 60 Hz frequency and AC-side voltage.

In Table I, the long-line corrected series resistances, series
inductances, and shunt capacitances are given for transmission
lines Zr and Zi shown in Fig. 1. Indices r and i refer to the
rectifier and inverter systems respectively, while + and 0 refer
to the positive and zero sequence values respectively.

The link used a marginal current control method with
DC-side current, DC-side voltage, and extinction angle error
loops at both the inverter and the rectifier, as shown in Fig. 2.
The link used VDCOLs at both the rectifier and inverter
to reduce ordered DC-side current at their corresponding
converter station when measured DC-side voltage reduced
below a threshold.

The VDCOL characteristic used ordered DC-side current
ramp up and ramp down rate limiters in conjunction with

TABLE I
AC-SIDE TRANSMISSION LINE POSITIVE AND ZERO SEQUENCE

IMPEDANCES AT POWER FREQUENCY

Resistances (Ω) Inductances (mH) Capacitances (µF)

Rr,+ 6.9653 Lr,+ 197.11 Cr,+ 2.3573
Ri,+ 7.4485 Li,+ 198.35 Ci,+ 1.5222
Rr,0 65.74 Lr,0 664.17 Cr,0 1.5285
Ri,0 58.246 Li,0 611.17 Ci,0 1.1491

a steady-state piecewise-linear voltage-current characteristic.
Both the inverter and rectifiers used the same VDCOL design;
the DC-side current margin was used to separate the VDCOL
characteristics between the rectifier and inverter to ensure a
single steady state operating point.

The optimisation problems we used to compare the solver
methods are controller tuning problems of a LCC-HVDC link
model similar to those in [3]. The controller parameters to be
optimised were: PI controller proportional gain and integral
time constant; and VDCOL upper DC-side voltage breakpoint
and current ramp up and down rate limits. These variables
were tuned with respect to external disturbances and a power
set-point change. The disturbances included: inverter AC-side
voltage magnitude and phase deviations and recoveries; and a
short circuit fault at the inverter AC-side busbar. We studied
two Problems: one where only PI controller gains were tuned,
and another where PI controller gains and VDCOL parameters
were tuned simultaneously. The Problems’ objective was to
control a measured DC-side power towards an ordered value.
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Fig. 2. Control diagram of converter controllers. Measured extinction angle γ was the minimum of the extinction angles measured from that converter
station’s thyristor bridges. Ordered delay angle α∗ was sent to both thyristor bridges of that converter station. PDC

∗ = 1 pu, γ∗ = 18◦, and VDC
∗ = 1 pu

nominally. At the rectifier; ∆IDC = 0 pu, ∆VDC = 2 pu, and αUB = 90◦ and αLB = 5◦. At the inverter; ∆IDC = 0.1 pu, ∆VDC = 0 pu, and
αUB = 180◦ and αLB = 90◦. Vh, I′up, I′dn, Kp, and τint were optimisation problem variables; each converter station had unique Kp and τint, but Vh,
I′up, I′dn were shared between both converters.



III. DESCRIPTION OF OPTIMISATION PROBLEMS

We focus on the motivating problem of selecting controller
parameters for a back-to-back LCC-HVDC scheme, which
we consider mathematically as a m-variable box constrained
optimisation problem in the form of (1), where x ∈ Rm,
f : Rm 7→ R. f is assumed to be non-smooth and non-linear.

min f (x) , s.t. XLB ≤ x ≤ XUB (1)

We define the error signal e in (2) as the difference
between ordered and measured DC-side powers PDC

∗

and PDC , respectively. Note that the error e was in
general a function of time t, and parametrised by controller
parameters x, a particular combination of disturbances and
set-point changes d, and operational scenario s. Measured
DC-side power was simply calculated from the measured
DC-side voltage and current via PDC = VDC · IDC .

e (t;x, d, s) = PDC
∗ (t;x, d, s)− PDC (t;x, d, s) (2)

We define a function ÎSE as being the approximate ISE of
the error function e, calculated using the trapezoidal rule with
fixed interval lengths. We simply summed the approximate
ISEs of all operational scenarios s in the set of operational
scenarios S to give the overall objective function f in (3).

f (x; d) =
∑
s∈S

(
ÎSE [e (t;x, d, s)]

)
(3)

In our studies, S was a set with two members: one for
an inverter AC system with ESCR = 1.9 and another
with ESCR = 3.0. These scenarios were realised by
manipulating the inverter remote AC system source resistances
and inductance, and the switching in or out of a single inverter
AC-side harmonic filter.

A. Problem 1: PI Controller Tuning

With reference to Figs. 1 and 2, in Problem 1 we tuned only
the four PI controller parameters subjected to the following
combination of power set-point changes and disturbances at
simulation time step t as follows:

1) t = 0.1 s: δi = −7.5 deg;
2) t = 0.6 s: δi = 0.0 deg;
3) t = 1.1 s: Vi = 0.93 pu;
4) t = 1.6 s: Vi = 1.0 pu;
5) t = 2.1 s: PDC

∗ = 0.5 pu;
6) t = 2.6 s: PDC

∗ = 1.0 pu;
Problem 1 can be considered as a specific realisation

of (1) with XLB = [0.01, 0.01, 0.01, 0.01], XUB =
[1.0, 1.0, 1.0, 1.0], and x = [Kr,p, τr,int,Ki,p, τi,int].

B. Problem 2: PI Controller and VDCOL Tuning

In Problem 2, we tuned the four PI controller parameters as
in Problem 1 as well as the three VDCOL parameters for both
inverter and rectifier VDCOLs with reference to Figs. 1 and 2,
subjected to the following combination of set-point changes
and disturbances:

1) t = 0.1 s, θi = −7.5 deg;

2) t = 0.6 s, θi = 0.0 deg;
3) t = 1.1 s, Vi = 0.93 pu;
4) t = 1.6 s, Vi = 1.0 pu;
5) t = 2.1 s, PDC

∗ = 0.5 pu;
6) t = 2.6 s, PDC

∗ = 1.0 pu;
7) t = 4.0 s, CB1 closed;
8) t = 4.01667 s, PDC

∗ = 0.0 pu;
9) t = 4.05 s, CB1 opened;

10) t = 4.05667 s, PDC
∗ = 1.0 pu;

Problem 2 can be considered as a particular realisation
of (1) with x =

[
Kr,p, τr,int,Ki,p, τi,int, Vh, I

′
up, I

′
dn

]
,

XLB = [0.01, 0.01, 0.01, 0.01, 0.52, 0.667, 0.667] and XUB =
[1.0, 1.0, 1.0, 1.0, 0.95, 66.7, 66.7].

Note that this approach tuned both converters’ PI controller
and VDCOL parameters simultaneously. This is in contrast
with the approach taken in [3] which tuned PI parameters
first, fixed the PI parameters at their optimal values, and then
tuned the VDCOL parameters.

After the fault application at t = 4.0 s, note that the link
power transfer was reduced to zero after one cycle. Once
the fault was cleared, the link ordered power transfer was
then returned back to nominal after waiting one cycle after
fault clearance. The purpose of this transient ordered power
reduction was to reduce the contribution to the objective
function value due to a large unavoidable tracking error caused
by the fault application. During the fault, no DC-side power
could be transferred as the fault caused zero AC-side voltage
magnitude. Hence the fault-on period would contribute a large
and almost static integral error to the objective function value,
which could not be reduced by the choice of optimisation
variables.

In our work, we do not remove the inverter AC-side busbar
from service on clearance of the fault—this is a simplification
from a realistic power system, where a busbar fault would be
cleared by switching out the busbar.

IV. DESCRIPTIONS OF TESTED SOLVER METHODS

We studied four solver strategies, all of which were
initialised using an experimental design. All solver
implementations were set to terminate on a given maximum
evaluation budget. Note that all solvers apart from Solver GA
allowed restarting during the solution process; this allowed
extra experimental designs to be undertaken when objective
function values appeared to be converging. Restarting allowed
further exploration of the problem space within the defined
evaluation budget.

A. Initial Experimental Design

The initial experimental design was a 22 point symmetric
Latin hypercube (SLH) design [6]. Latin hypercube designs
may be used to maximise the explored volume in a problem
space for a given number of points. As the objective function is
a black-box, the initial experimental design provides an initial
exploration of the box constrained problem space so that the
solvers had good coverage of the problem space on which to
start their solution process.



B. Solver MARS

This solver used a surrogate model to approximate the
expensive objective function. An initial experimental design
provided a set of initial points and corresponding objective
function values, which were then used to fit the surrogate
model. A sampling strategy then used the fitted surrogate
model to find a small number of new, promising points to then
be evaluated through the expensive objective function. If the
solver detected solution convergence but still had remaining
evaluations available, it would restart by performing a new
22 point experimental design within the remaining evaluation
budget. This allowed efficient use of expensive objective
function evaluations since the surrogate was cheap to evaluate,
with the result of the expensive evaluation being used to
update the surrogate model. This process continued until the
evaluation budget was completely used.

The sampling strategy we used to find promising candidate
points from the fitted surrogate model was dynamic coordinate
search using response surface models (DYCORS), specifically
DYCORS-LMSRBF from [7]. Multivariate adaptive regression
splines (MARS) [8] formed the surrogate model.

C. Solver GPR

This solver’s architecture was almost identical to that of
Solver MARS, but with one difference. We used a Gaussian
process regression (GPR) [9] surrogate model for Solver GPR
as opposed to the MARS surrogate model in Solver MARS.

D. Solver NM

This solver used an initial experimental design to sample
the expensive objective function in the same manner as
Solvers MARS and GPR. The m + 1 points with the best
objective function values for a m-variable problem were
then used to construct the m + 1 initial vertices used by a
Nelder-Mead solution algorithm [4], which is an unconstrained
method. To implement support for box constraints, we used
a variable transformation method shown in (4) and (5) to
transform the i-th external problem variable xi bounded by
upper bound XUB

i and lower bound XLB
i , to and from internal

variable yi used within the Nelder-Mead solver algorithm.

yi = arcsin

(
2 · xi −XLB

i

XUB
i −XLB

i

− 1

)
(4)

xi =
XUB

i −XLB
i

2
(sin (yi) + 1) +XLB

i (5)

E. Solver GA

This solver used a real-valued genetic algorithm, where:
selection was via a tournament; mutations were normally
distributed perturbations; crossovers were implemented using
a linear combination of parents at a uniformly randomly
generated cutting point; and there was a single elite population
member.
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Fig. 3. Indicative flowchart of the simulation-based optimisation procedure;
note the delineation between the Python interpreter process and the
PSCAD/EMTDC process.

V. IMPLEMENTATION DETAILS

The HVDC link electrical equipment and controllers
along with AC systems and plant were implemented in
PSCAD/EMTDC version 4.6.2 for all simulations. All
solvers were implemented using Python version 3.5.5.
We used pySOT [10] to implement all experimental
designs in all solvers. All solvers apart from Solver NM
were implemented using pySOT. Fig. 3 indicates the
simulation-based optimisation procedure we used in our work.

For Solver GA, modifications of the code from pySOT
were performed to allow termination at a given evaluation



budget, and to avoid repeated function evaluations of the
elite population member. Solver NM was implemented using
modified code from scipy [11], where the modifications were
to incorporate the variable transformations of (4) and (5).
The termination condition of the Nelder-Mead algorithm in
Solver NM was set to an absolute objective function value
tolerance of 0.01. All four solvers’ parameters were otherwise
set to default values in all cases.

VI. ASSESSMENT STRATEGY

The stochastic nature of the solvers required statistical
methods to competently compare the relative performance of
the solvers. We used a pairwise comparison approach: since
we studied four solvers, there were six possible comparisons
to be made between pairs of solvers. We used a nonparametric
bootstrap method to compare the mean optimal solution
objective function values of the four solvers to detect if their
was a statistical difference between a pair of solver means.

We performed 30 independent optimisation runs of each
solver on both Problems. For each solver, we therefore
had: two samples (one each per Problem) where each
sample contained 30 observations. Each observation was the
objective function value of the returned optimal solution.
We set a maximum evaluation budget of 200 evaluations
of the simulation model for each solver, thus the observed
objective function value was the lowest found within the
200 evaluations. We then used these samples to determine if
there was a statistical difference between the sample means of
two solvers for the same Problem.

The solver computational time was negligible for all
solvers and so their contribution to the overall optimisation
computational time was small compared to the objective
function evaluations. Solvers that performed significantly
better within 200 objective function evaluations were therefore
assumed to be significantly better options with respect to
overall solution time.

The aim of the nonparametric bootstrap method was to infer
the population difference δ between two solvers’ expected
values µ of the objective function at the optimal solutions.

We assume that the optimal solution objective function
value of a particular solver for a Problem is a random
variable W , with an unknown distribution F , and an excepted
value E [W ] = µ1. Similarly, another solver applied to the
same Problem returns an optimal solution objective function
value which is another random variable V , with its own
unknown distribution G, and an excepted value E [V ] = µ2.

Our approach was to make inferences about the population
parameter δ, where δ = µ1 − µ2. As µ1, µ2, and
therefore δ were population parameters and thus unknown,
we used sampling with subsequent bootstrap re-sampling to
estimate confidence intervals for δ for each of the six solver
comparisons.

We draw a sampleW of optimal solution objective function
values for one solver by sampling from F . The sample W
is a set, where W = {wk : k ∈ N}, N = {1, 2, ..., n},
and n = 30. We then draw a sample V of optimal solution

objective function values for the other solver by sampling
from G. The sample V is also a set, where V = {vk : k ∈ N}.

We then produce a set W∗ of a very large number B
of re-samples W∗b of W by uniform re-sampling with
replacement; where B = 105, W∗b is the b-th re-sample of W ,
and W∗b = {W∗1 ,W∗2 , ...,W∗B}. We generate a similar set V∗
of re-samples V∗b from V . Note that each W∗b and V∗b are of
cardinality n, i.e. the cardinality of the samples W and V .

We then calculate a statistic set Q∗ from the sets of
re-samples W∗ and V∗ as in (6).

Q∗ =
{
1

n

(∑
W∗b −

∑
V∗b
)
−

1

n

(∑
W −

∑
V
)
: b ∈ {1, 2, ..., B}

}
(6)

We define the quantile function Ĵ (p), which returns
the quantile for a specified probability p using a linear
interpolation method—specifically Definition 7 from [12]—on
the empirical cumulative distribution of Q∗. Ĵ (p) may then
be used to estimate a confidence interval for δ, the difference
in the expected values of the two solvers. For a confidence
level of 95%, the estimated lower δLB and upper δUB bounds
of δ are given by (7) and (8) respectively.

δLB =
1

n

(∑
W −

∑
V
)
− Ĵ (0.975) (7)

δUB =
1

n

(∑
W −

∑
V
)
− Ĵ (0.025) (8)

VII. RESULTS AND DISCUSSION

Figs. 4, 5, and 6 show selected system variables over time
for both Problems when ESCR = 3.0 for the best found
optimal solution in all 30 runs per solver. Trace colour darkens
where the grey traces overlap. Traces appear thick due to ripple
in both the DC-side current and DC-side voltage. Disturbances
in the variables over time coincide with the applied external
disturbances and ordered power set-point changes listed in
Sections III-A and III-B.

We include Figs. 4, 5, and 6 to show that all four solvers are
capable of solving the box constrained Problems effectively,
with the best solutions giving broadly qualitatively consistent
time domain responses between solvers. Note that the best time
domain responses per solver for ESCR = 1.9 are similarly
consistent.

Fig. 7 details the observed statistical difference between
solver sample means with corresponding estimated 95%
confidence intervals, for the optimal solutions provided by
each solver within 200 evaluations. In Fig. 7, a confidence
interval not spanning zero indicates significant difference
between two solvers. Differences above zero indicate the
second named solver as superior, since a positive difference
in mean optimal solutions suggests the first named solver
typically returns larger optimal solution values than the second
named solver. For example, Solver GPR is superior to Solver
GA for Problem 1, but is similar for Problem 2.
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Fig. 4. DC-side power over time.
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Fig. 5. DC-side voltage over time.
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Fig. 6. AC-side voltage magnitude at the inverter AC-side busbar over time.

For Problem 1, both Solvers GPR and MARS perform
better than Solver GA. However, Solvers GPR and MARS are
similar, and Solver NM is similar to all three other Solvers.
In Problem 2, only Solvers GA and GPR are similar; all
other Solver comparisons show significant differences between
means. Solver MARS outperforms all other Solvers, while
Solvers GA and GPR outperform Solver NM.

Qualitatively, the solvers’ relative performances are very
close for Problem 1 where only the PI controller parameters
are tuned. However, relative performances are much more
disparate for the more difficult Problem 2 where PI
and VDCOL parameters are tuned together.

At no point did either Solvers NM or GA perform
significantly better than Solvers MARS or GPR for either
Problem. Our results suggest that for the Problems we studied,
practitioners should be confident in using Solvers MARS or
GPR in place of the benchmark methods of Solvers GA
and NM.

Fig. 8 shows the best found optimal solution objective
function value sample mean and 95% confidence interval
of the expected value with respect to simulation evaluation
number, for each of the four solvers. Note that these statistics
are different from those shown in Fig. 7; we include Fig. 8
to show that all four solvers are similar in terms of sample
means of best found values when performing evaluations even
though significant differences are observed between solvers’
mean optimal solutions.



GA
GPR

GA
MARS

GPR
MARS

NM
GA

NM
GPR

NM
MARS

−0.02

0.00

0.02

0.04

S
ta

ti
st

ic
a
l

D
iff

er
en

ce
o
f

S
o
lv

er
M

ea
n

O
p

ti
m

a
l

S
o
lu

ti
o
n

s Problem 1: PI Controller Tuning

GA
GPR

GA
MARS

GPR
MARS

NM
GA

NM
GPR

NM
MARS

Comparison

−0.25

0.00

0.25

0.50

0.75

1.00

S
ta

ti
st

ic
a
l

D
iff

er
en

ce
o
f

S
o
lv

er
M

ea
n

O
p

ti
m

a
l

S
o
lu

ti
o
n

s Problem 2: PI Controller and VDCOL Tuning

GPR
MARS

−0.002

−0.001

0.000

Fig. 7. Comparisons of difference in mean optimal solutions between pairs
of solvers. Points are observed differences in sample means; intervals are the
estimates of the difference in expected values at the 95% confidence level.

VIII. CONCLUSIONS

Tuning of LCC-HVDC link controller parameters is
important to ensure adequate operation of the link during
normal set-point changes and disturbances. Surrogate model
methods are used in this paper to optimize these controller
parameters as box constrained, simulation-based optimisation
problems. Using the integral-square-error between ordered
and measured HVDC link power transfer, the firing angle PI
controller and VDCOL parameters are optimized using time
domain simulations, considering: power set-point changes,
inverter AC-side voltage disturbances, and an inverter AC-side
short circuit fault. The MARS and GPR surrogate model
methods provided similar or significantly better optimal
solutions when compared to the mature solver methods that we
used as benchmarks. This paper demonstrates the increasing
competitiveness of simulation-based optimisation as a tool
for efficiently solving parameter selection problems in power
system engineering, particularly where non-linear behaviour
such as large power system transients must be considered.
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