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Abstract. In this paper, the CFD technology widely used in biomimetic applications is firstly 

reviewed in a brief manner. We then present two types of computational models employed in 

studies of ray-finned fishes: single-fin model and body-fin model. The single-fin models 

capture some key features possessed by real fish fins, such as anisotropic property, flexible 

rays and actively controlled curvature. In the body-fin models, the fish motion can be either 

prescribed or predicted. Fish models with prescribed motions are usually employed to provide 

insights in the hydrodynamics while those models with predicted motions can be used to 

investigate the stability and maneuvering problems. 
 

1 INTRODUCTION 

With over 500 million years of evolution, fishes have diversified into a great variety of 

aquatic habitats and display a diversity of locomotion modes. It is not surprising that 

engineers seek inspirations from fish when designing autonomous underwater vehicles. 

Among all kinds of fishes, the ray-finned fishes distinguish themselves from others by the 

presence of multiple fins featured by the soft membrane embedded with bony rays. By the 

effective coordination of body and multiple fins, ray-finned fishes exhibit great abilities in the 

locomotion, maneuvering and stabilizing, which inspired a further industry development in 

underwater vehicles. Therefore, the study on the ray-finned fishes is attracting increasing 

attention due to its promising application in the design of underwater vehicles. 

Generally, the study methods of ray-finned fishes can be divided into two groups: physical 

experiment and numerical modeling. The physical experiments can be carried out with either 

live fishes or robotic models (see some reviews in [1]–[6]). However, for experiments with 

live fishes, the effects of individual traits are difficult to be isolated and the fishes are limited 

to extant species. The mechanical fish models can be good alternatives to live fishes for 

research; however, they are constraint by the availability of practical materials. Compared 

with physical experiments, numerical simulations have the following advantages: 1) it is able 

to explore large parameter matrix; 2) it could provide holographic information of the flow 

field; 3) it is able to examine ‘what if’ type of questions. Therefore, numerical modeling has 

become an indispensable approach for the functional study of fish locomotion. 

In this paper, we mainly focus on the numerical simulations of the ray-finned fish. The 

CFD technology (including flow models, moving mesh and coupling methods) commonly 
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used in simulations of biomimetic problems is briefly reviewed in Section 2. Then we present 

two types of computational models for the functional study of ray-finned fishes in Section 3. 

Conclusions are given in the final section. 

2 CFD TECHNOLOGY 

With the rapid advancement in high-performance computers and the availability of 

sophisticated numerical methods, CFD simulation is playing more important role in scientific 

research as well as industrial applications. The CFD simulations have the advantages in 

providing both spatially and temporally resolved, detailed flow field analysis [7], which may 

provide insights into physical problems. In this section, the various flow models, mesh 

manipulation approaches and coupling methods with other fields are briefly reviewed. 

2.1 Flow modeling 

(1) Inviscid flow 

The inviscid flow simulations are computationally inexpensive and allow researchers to 

quickly estimate the fluid load and other flow features in a large parameter space. However, 

these methods possess inherent weakness due to the neglect of viscous effects. This is because 

the fact that most of biomimetic flows are often dominated by flow separation as well as 

vortex interactions, which are resulted from viscous effects. Thus, the absence of the flow 

viscosity may lead to inaccurate results. Examples of using these methods to study 

biomimetic problems can be found in [8]–[11]. 

(2) Viscous flow 

Within the context of biomimetic flows, the dynamics of the viscous fluid is governed by 

Navier-Stokes equations. The inclusion of the viscosity leads to more complicated flow 

phenomena (e.g., boundary-layer separation, transition and turbulence) and makes the 

simulation of fluid dynamics much more difficult, especially the modeling of turbulence. For 

certain circumstances at low and intermediate Reynolds number regimes, the turbulent effect 

is trivial, i.e., laminar simulations are sufficient, see example in [12]–[16]. For cases where 

the turbulence plays an important role (e.g., Reynolds number is of order of 10
4
 or greater), 

proper turbulence models (e.g., RANS, DES, LES) must be used [17]–[19]. 

2.2 Mesh manipulation 

To numerically solve the Navier-Stokes equations, a grid system is usually needed for 

discretization. For biomimetic problems which usually involve large body motions and/or 

deformations, the grid for CFD simulations also needs to be deformed or regenerated in order 

to deal with the moving boundaries. Generally, three types of grid systems are often used for 

the simulations of biomimetic flows: body-fitted grid, overset grid and Cartesian grid. 

(1) Body-fitted grid 

A body-fitted grid, which conforms to the wet boundaries of the body, can be either 

structured or unstructured. A structured grid can only be composed of hexahedral cells and all 

grid cells are organized in such a way that they can be accessed via i, j, k indices in three 
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directions. However, generating a single structured grid for a complex geometry is 

challenging and even impossible. To tackle this problem, a multi-bock structured grid is 

usually generated for complex geometries, where the computational domain is decomposed 

into large hexahedral blocks which are discretized using structured grid method. Nevertheless, 

multi-block grid generations for complex geometries still require plenty of time and user 

experience. On the contrary, unstructured grids which consist of cells of arbitrary shapes are 

more suitable for complex geometries. In unstructured grids, all cells must be arranged into a 

one-dimensional array and a connectivity list which provides the information of number of 

neighbors and their corresponding positions is also required. 

For biomimetic systems which involve only small or medium body deformations, moving 

grid algorithms for both structured and unstructured can be adopted. However, for the 

problems involving large body deformations and/or multiple bodies in relative motion, the 

CFD grids need to be regenerated, which usually requires much additional computational 

efforts. 

(2) Overset grid 

The concept of overset grid was initially proposed to alleviate the complexity of generating 

structured grids over complex geometries and handle cases involving multiple bodies with 

relative motion [20]. It was then extended to unstructured grids [21]. In overset grids, the 

complex geometry is usually decomposed into several components and a body-fitted subgrid 

is generated for each component. To establish the connectivity and then interpolate flow 

variables between different subgrids, an additional piece of code is needed. The creation of 

the domain-connectivity could be a time-demanding process, especially for unsteady flow 

simulations. Besides, overset grid methods do not solve the problems associated with large 

body deformations due to the fact that a body-fitted grid is generated for each component. A 

compromise solution is to combine the overset grid method with the remesh technique, where 

only subgrids involving large deformations need to be regenerated. Examples using overset 

grid methods to study biomimetic problems can be found in [14]–[16]. 

(3) Cartesian grid 

The immersed boundary method solves the Navier-Stokes equations on stationary 

Cartesian grids, which requires no mesh deformation or regeneration when dealing with 

moving boundaries. Therefore, this method is well suited for bio-hydrodynamic flow 

simulations involving complex geometries and large body deformations (see examples in [12], 

[13], [22], [23]). 

2.3 Multi-physics coupling 

Many biological systems contain flexible structures, where the fluid-structure interaction 

may play an important role. To simulate the problems involving elastic structures, the CFD 

solvers need to be coupled with structural solvers. The coupling is usually accomplished 

within a partitioned framework, where the flow and solid equations are discretized and solved 

independently. With a partitioned method, the coupling can be either explicit [24] or implicit 

[25]. The advantages of using explicit schemes are implementing simplicity and 

computational efficiency, because no sub-iteration is required within each time step. However, 
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the numerical stability of explicit method is strictly limited by a stability condition [26]. To 

remove the stability condition, the implicit coupling methods must be employed. But the 

implicit schemes introduce sub-iteractions within one time step to achieve the equilibrium at 

the fluid-structure interface, which greatly increases the computational cost. For examples of 

biomimetic simulations involve fluid-structure interactions, please refer to [8], [9], [11], [14], 

[16], [23]. 

In some studies, researchers are more interested in self-propelled swimming, where CFD 

solvers need to be coupled with body-dynamics (BD) or multi-body-dynamics (MBD) codes 

[15], [27]. The coupling can be explicit or implicit, similar with the methods discussed above. 

3 COMPUTATIONAL MODELS OF FISH LOCOMOTION 

Morphologically, ray-finned fishes usually possess a flexible body with several different 

fins which can be categorized into two groups: median fins (dorsal, ventral and caudal) and 

paired fins (pectoral and pelvic). By coordinating the body undulation and fin movements, 

ray-finned fishes are able to generate locomotion force in various directions, thus can achieve 

high controllability and maneuverability to engage with the aquatic environment. Generally, 

the numerical studies of the ray-finned fish can be classified into two groups: (1) Single-fin 

model. This model focuses on the dynamics of an isolated fish fin. (2)  Body-fin model. This 

model contains both the body and fins in order to investigate the possible body-fin and fin-fin 

interactions. 

From the perspective of how the swimming motion is dealt with, the numerical studies of 

fish locomotion can also be divided into two major categories: (a) swimming with a 

prescribed motion; (b) self-propelled swimming, where the swimming speed and motion 

trajectory are treated as unknown variables predicted by the CFD simulation. 

3.1 Single-fin model 

The internal structures of fish fins are biologically complicated. They are composed of thin 

and soft membranes stiffened by bony fin rays. The bending stiffness of the membrane is 

negligible, thus the rigidity of a fin is primarily determined by the embedded rays. Due to the 

non-uniformity of bending stiffness of each ray and the difference between different rays, a 

ray-strengthened fin displays anisotropic structural properties [1]. Besides, each ray can be 

activated individually via the sophisticated musculature system attached to the rays. Moreover, 

a fin ray has a bio-laminar design and embedded tendons, which allow fishes to actively 

control the curvature and rigidity of each ray [28]. These features enable fishes to accomplish 

multi-degree-of-freedom (DOF) controls over the fin surfaces. However, these unique 

features are difficult to be modeled numerically. Traditionally, the fish fins are modeled as a 

rigid or elastic plate with two DOF motions (e.g., heave and pitch) [29]–[31]. But these 

models are considered to be oversimplified, thus may severely compromise the evaluated 

performance. In the present section, we present several numerical models working towards 

including some main characters of ray-supported fins. 

Figure 1 illustrates several numerical fin models: (a) a rectangular ray-supported caudal fin; 

(b) a trapezoid ray-supported caudal fin; (c) a ray-supported pectoral fin; (d) a complex 

pectoral fin reconstructed from experimental measurement. With the rectangular caudal fin 

model (Figure 1 (a)), Shi et al. [16] presented a fluid-structure interaction model for the ray-
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supported fish fins and studied the effects of various spanwise stiffness distributions on the 

propulsion performance of the caudal fin. In their study, the flow field was simulated by 

solving the unsteady Navier-Stokes equations while the rays were represented by nonlinear 

beams. The Reynolds number was fixed at Re=1000, thus no turbulence model was used. The 

fin was actuated by a sinusoidal sway motion at the front end and was deformed passively. 

The numerical results from their study indicated that the uniform stiffness distribution 

eventually led to a ‘cupping’ deformation and performed the best in terms of thrust generation 

and propulsion efficiency. The ‘cupping’ deformation induced by a cup stiffness distribution 

seemed to be over-cupped, thus experienced a rapid drop in thrust and propulsion efficiency at 

higher flexibility. 

 

(a) 
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U∞ 

Ray 1 

Ray 11 

c 

c 

x (b) 

(c) (d) 
 

Figure 1 Various ray-fin models. (a) Caudal fin model of Shi et al. [16]. (b) Caudal fin model of Zhu and Shoele 

[8]. (c) Pectoral fin model of Shoele and Zhu [9]. (d) Pectoral fin model of Mittal et al. [22]. 
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Zhu and Shoele [8] [9] developed two ray-strengthened fin models for a caudal fin with a 

combined sway and yaw motion (Figure 1 (b)) and a pectoral fin in labriform swimming 

(Figure 1 (c)). In both fin models, a potential flow solver was coupled with nonlinear beam 

models which structurally represented the fin rays. The general conclusions of their studies 

are that flexible rays are able to increase the propulsion efficiency and reduce the lateral force 

generation. Besides, the sensitivity of the fin performance to kinematic parameters is reduced 

due to the anisotropic property of the fin. In their pectoral fin case, they also found that with a 

reinforced leading edge, the performance of the pectoral fin was further improved. However, 

in their studies, the flow was assumed to be inviscid. Thus, the vortices shed in locations other 

than the trailing edge were not considered, which may lead to inaccurate result. 

 

(a) (b) 

   

          

(c) 

  
   

     

(d) (e) 

Cupping 

Undulation 

 

Figure 2 Time-averaged (a) thrust coefficient, (b) propulsion efficiency and (c) lift coefficient as a function of 

maximum phase lag φMAX in an actively controlled caudal fin. (d) Iso-surfaces of vorticity magnitude behind the 

fin. (e) Vorticity fields behind the fin. The contours display y-component of the vorticity within y = ymax plane. 

The fin models of Shi et al. [16], Zhu and Shoele [8], [9] captured some important features 

(e.g., ray-strengthened, anisotropic materials, flexible rays) of fish fins while also utilized 

simplified geometries and kinematics, thus they cannot reproduce some complicated fin 

motions of live fish. To investigate the hydrodynamics of real fish fins, Mittal et al. [22] 

numerically examined the hydrodynamics of a pectoral fin (Figure 1 (d)). In their model, the 

geometry and kinematics were reconstructed from experimental measurements and the flow 

field was simulated with a Cartesian-grid-based immersed-boundary solver. They found that 

the thrust generated by the highly deformable pectoral fin was positive in a complete motion 

cycle, indicating a superior capacity of thrust generation compared with traditional flapping 

foils. 
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As discussed previously, fishes are able to actively change the curvature of the rays due to 

the bi-laminar structure. To take this into consideration, we further developed a caudal fin 

model with active control based on the work of Shi et al. [16].The fin rays are actuated by a 

sinusoidal swaying motion at the front ends and a distributed external force along each ray 

mimicking the pulling effect from tendons. All the rays have the same normalized bending 

stiffness (Kb = 2.0) and mass ratio (m
*
 = 0.2). The phase lag between the sway motion and the 

external force of the i
th

 ray is defined as φi. By designing specific distributions of φi, different 

caudal fin deforming patterns can be achieved, including the undulating motion which cannot 

be accomplished via solely passive deformations. Some preliminary results from our 

simulations are presented in the present paper. 

Figure 2 (a-c) demonstrate the time-averaged thrust coefficient CT, propulsion efficiency η 

and lift coefficient CZ associated with three deforming patterns (uniform, cupping and 

undulating) as a function of the maximum phase lag φMAX, which is defined as φMAX = max{φi}. 

The passive deformation case (labeled as ‘Uniform Passive’ in Figure 2) is also included for 

comparison. It can be observed that with active control, the propulsion performance of all 

types of deformations considered here is improved. The exceptions are that for actively 

controlled uniform deforming pattern (labeled as ‘Uniform’ in Figure 2), both CT and η drop 

below the value of the passive case when φMAX are at larger values. The cupping and 

undulating deformations outperform the passive case within the phase lag range studied 

herein. Especially at high phase lags where the thrust and efficiency of the uniform 

deformation start to drop significantly, both cupping and undulating deformations still show 

promising performance. Another advantage of the undulating deformation over the others is 

that it can generate considerable lift force in vertical direction (see Figure 2 (c)), which is 

believed to play an important role in fish’s maneuver behaviors. A closer inspection of Figure 

2 (c) reveals that by varying the phase lag distribution, the caudal fin can change both the 

magnitude and the direction of the vertical force, which means that fishes can play with the 

vertical force for maneuvering while maintaining a higher thrust for propulsion. 

Figure 2 (d) and (e) show the vorticity fields behind the flexible caudal fin. It can be 

observed that for both deformations, vortex rings are generated behind the fin. The cupping 

deformation produces symmetrical wake while the wake generated by the undulation 

deformation is asymmetrical. This inclined wake is responsible for the production of net force 

in vertical direction. 

3.2 Body-fin model 

Previous experimental studies [32], [33] demonstrate that the vortices shed from the dorsal 

and anal fins could significantly alter the flow experienced by the caudal fin. Therefore, it is 

very necessary to investigate the performance of the whole fish with multiple fins, which may 

involve complicated body-fin and fin-fin interactions. Here, we present two typical body-fin 

models, as shown in Figure 3. In both models, the geometries and kinematics were 

reconstructed from experimental data. The major difference between the two models was the 

approach used to deal with the swimming motion. In the first model (Figure 3(a)), the fish 

was tethered swimming with a constant current speed [13] and the motion was prescribed, 

while in the second model (Figure 3(b)), the fish was self-propelled, where the motion was 

resolved using a MBD algorithm  [27]. 
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(b) 

(a) 

 

Figure 3 Computational body-fin models reconstructed from experiments. (a) Crevalle Jack (Caranx hippos) fish 

[13]. (b) Pufferfish [27]. 

With the body-fin model shown in Figure 3(b) and the MBD algorithm developed in Ref. 

[27], we investigated the effect of fin flexibility on the performance of a self-propelled 

pufferfish. We found that the fish with flexible fins is able to swim approximately twice faster 

than that with rigid fins, which is attributed to a higher acceleration and a longer accelerating 

process, as shown in Figure 4 (a). Besides, the flexible fins could reduce the power 

consumption, thus resulted in an increase of efficiency. Figure 4 (b) illustrates the time-

averaged total force TF . The total force TF of a pufferfish with flexible fins is larger than that 

with rigid fins, which indicates that the fish with flexible fins has a longer acceleration 

process. The total force decreases to zero after some motion periods, indicating that the fish 

reaches its cruising stage. Figure 4 (c) demonstrates the instantaneous wake structures for 

rigid and flexible fin cases. It is observed that the vortices generated by the rigid fins are more 

scattered in lateral directions, which contributes less to thrust generation and leads to higher 

power consumption. For the flexible fins, the vortices are shed from the fin tips and convert 

quickly to the downstream, thereby producing larger thrust force. 

It should be noted that the modeling tool developed in our previous work [27] is quite 

versatile, which is capable of solving a variety of biomimetic problems, e.g., a swimmer with 
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rigid undulatory body and an integrated system with both undulatory body and flexible fins. 

One advantage of our modeling tool based on multi-body dynamics algorism is that it can 

handle self-propel swimming with multiple degrees of freedom. This feature allows us to 

study the stability and maneuvering problems of complex bio-inspired underwater robots. 

Currently, the integration of the MBD tool with a controlling strategy (e.g., PID controller) is 

under development at our research group. The integrated code can be used to investigate the 

possible body and/or fin kinematics to achieve better stability or maneuver behaviors under 

various flow environments. The insights shed from our single-fin model may provide valuable 

guidance on the design of the fin kinematics used in our more complicated body-fin model. 

 

(a) (c) 

(c) 

   

Rigid Fin 

Flexible Fin 

 

Figure 4 (a) Swimming speed evolutionary history for rigid and flexible fins. (b) Time histories of cycle-

averaged total force. (c) Instantaneous vortex topology. 

4 CONCLUSIONS 

Fishes exhibit remarkable stability, controllability and maneuverability when swimming in 

aquatic environment, which inspires engineers to design fish-like underwater vehicles. 

Among a variety of fish swimming modes, some ray-finned fishes primarily rely on their fins 

for locomotion, which provide a promising prototype for underwater robot design. Generally, 

three study methods for ray-finned fishes are available nowadays, namely physical 

experiments with live fishes, physical experiments with robotic fishes and numerical 

modeling. Each method has its merits and drawbacks. Numerical simulations have the 
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advantages of providing detailed flow field data and exploring a larger parameter matrix, thus 

have become an indispensable approach for the study of biomimetic problems. 

With different numerical tools, studies on ray-finned fishes can be categorized into two 

groups: single-fin model and body-fin model. The fins of ray-finned fishes possess distinctive 

features e.g., a thin and soft membrane strengthened by bony rays, anisotropic material 

property, individual actuation of each ray as well as actively controllable ray curvature and 

stiffness. Despite the complex design of ray-supported fish fins, there are still studies 

attempting to consider some of the key characters mentioned above [8], [9], [16], [22]. The 

important conclusions from their research are: 1) the ray flexibility may reduce the sensitivity 

of fin’s propulsion efficiency to the kinematics such as frequency and amplitude. 2) 

Appropriate cupping deformations can reduce the power expenditure of a caudal fin. 3) 

Actively controlled undulating motion can generate a vertical force which could be used for 

fish maneuvering while retaining a high thrust and efficiency. These insights may provide 

valuable guidance for the design of underwater vehicles. 

To investigate the possible body-fin or fin-fin interactions, a body-fin model needs to be 

used. The body-fin model can swim either with a prescribed motion or with a self-propelled 

motion. The former case (prescribed motion) is usually used to study the complex 

hydrodynamics of a whole fish under steady swimming mode or maneuver behaviors, which 

could enrich our understanding of fish locomotion. The later case (self-propelled), however, 

allows researchers to investigate the stability and controllability problems of robotic fishes. 

The self-propelled body-fin model can also be used to explore the possible fish kinematics to 

keep stability under different flow environments and accomplish various maneuver behaviors 

if integrated with a proper control strategy. 
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