
Application of Ensemble Techniques in Predicting Object-Oriented

Software Maintainability

ABSTRACT

While prior object-oriented software maintainability literature

acknowledges the role of machine learning techniques as valuable

predictors of potential change, the most suitable technique that

achieves consistently high accuracy remains undetermined. With

the objective of obtaining more consistent results, an ensemble

technique is investigated to advance the performance of the

individual models and increase their accuracy in predicting

software maintainability of the object-oriented system. This paper

describes the research plan for predicting object-oriented

software maintainability using ensemble techniques. First, we

present a brief overview of the main research background and its

different components. Second, we explain the research

methodology. Third, we provide expected results. Finally, we

conclude summary of the current status.

CCS CONCEPTS
D.1.5 [Programming Techniques]: Object Oriented

Programming, D.2.2 [Software Engineering]: Design Tools and

Techniques --- object-oriented design method, K.6.4

[Management of Computing and Information Systems]:

System Management—Quality Assurance.

KEYWORDS

individual model; ensemble model; software maintainability;

prediction; Object-oriented system.

ACM Reference format:

EASE '19, April 15–17, 2019, Copenhagen, Denmark

© 2019 Copyright is held by the authors.

ACM ISBN 978-1-4503-7145-2/19/04.

https://doi.org/10.1145/3319008.3319716

1 Introduction

Software Quality Assurance (SQA) is defined as the group of

activities that guarantee software meets a certain quality level [1].

Software maintainability is one of the essential attributes in

evaluating the SQA, and it begins as soon as the system has been

produced. It has a vital role in enabling frequent changes to the

software to meet customer requirements, adapting to

environmental changes, accommodating new hardware or in

developing new features. Software maintenance consumes the

largest amount of cost, time and effort during the software

development life-cycle (SDLC) [2]. Jones reported that

maintenance was observed to consume about 75 % of total project

cost, and the cost of maintaining source code is ten times than the

cost of developing source code [3].

Controlling costs, time and effort are the significant components

for ensuring SQA. These are performed by determining

appropriate measures: as T. DeMarco [4] stated that “you cannot

control what you cannot measure”. Software metrics are

quantitative measures which may be employed to evaluate the

quality of the software. In particular, Object-Oriented (OO)

metrics are used to measure aspects of the source code of software

systems (e.g. cohesion, size and inheritance depth).

Consequently, several studies have employed a variety of OO

metrics to evaluate the concept of software maintainability, such

as Chidamber and Kemerer (C&K) metrics and Li and Henry

(L&H) metrics [2, 5]. For example, the L&H metrics can be

utilised as predictors of software maintenance effort as they have

been shown to exhibit a strong relationship with the number of

changes in the source code [2, 6-8]. Change maintenance effort is

a well-known software maintainability measure that calculates

the number of modifications made per class during the

maintenance period [2]. A higher number of changes requires

greater maintenance effort, which implies a lower level of

maintainability.

Object-oriented (OO) systems are structured around objects and

classes that have different characteristics (i.e. encapsulation,

coupling and inheritance). These systems are written in various

programming languages, such as Java, C++ and C#. Many OO

systems are available in open-source projects (e.g. Github or

SourceForge) and are used commonly by various organisations.

With the growing use of OO systems, organisations have needed

to further develop and change systems which in turn leads to an

increase in their complexity [9].

Much attention has been paid to predicting software

maintainability using machine learning techniques. Accurate

predictions help to play an increasingly important role in software

project management tasks: allocating developers; identifying

resources; supporting decision making; evaluating cost across

different projects and performing maintenance processes [10].

Hadeel Alsolai
1 Computer Science and Information system

Princess Nourah Bint Abdulrahman University

Riyadh, Saudi Arabia

2 Computer and Information Sciences

University of Strathclyde

Glasgow, United Kingdom

hadeel.alsolai@strath.ac.uk

Marc Roper

Computer and Information Sciences

University of Strathclyde

Glasgow, United Kingdom

marc.roper@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/222699633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This prediction can assist in gaining insights on likely future

maintenance, and can help in decreasing the total cost and overall

effort of the software project [11]. However, building an accurate

prediction model is a difficult task to achieve.

Several empirical studies have been performed to investigate

various types of individual machine learning models, including:

Neural networks [8]; Bayesian networks [6]; Linear regression

[12]; Multiple additive regression trees [7]; K-means clustering

[13]; Support vector regression [14]; and Multilayer perceptron

[15]. However, the prediction accuracy of these individual models

is disappointing and does not meet the criteria suggested by

MacDonnell and Kitchenham et al. [16, 17]. These criteria will be

explained in section 2.4.

In order to resolve the lack of consistent results in individual

models, an ensemble machine learning model is introduced to

investigate the potential for improving the accuracy prediction of

individual models. The ensemble machine learning model is

created from individual models in a heterogeneous (which

integrates various types of individual models) or homogenous

(which integrates the same types of individual model) fashion. A

number of ensemble models have been investigated in relation to

the problem of software defect prediction to improve their

accuracy performance over individual models: voting feature

intervals [18]; combined defect predictor [19]; average

probability ensemble [20]; bagging and boosting [21]; stacking

[22]; and adaptive selection of classifiers in bug prediction [23].

Heterogeneous ensemble models have been proposed to increase

accuracy prediction over individual models, such as a software

maintainability evaluation model based on combining multiple

classifiers [24]. In addition, homogeneous ensembles have been

used for predicting software maintainability, such as weighted

voting, majority voting, and hard instance [25]. However, it is

noteworthy that the application and evaluation of ensemble

models to predict software maintainability is very limited.

The rest of this paper is organised as follows. Section 2 presents

a brief description of the research background. Section 3

highlights the research methodology. Section 4 provides expected

results. Finally, the paper summary of the current status concludes

in Section 5.

2 Research background

The research background includes six primary sections: OO

systems, metrics, maintainability, datasets, building prediction

models and evaluating prediction models. Each section presents

an overview of related studies and describes the basic concepts of

this research.

2.1 Metrics

Metrics are independent variables that capture features of

software systems that can be used to build predictive models of

software maintainability. Prior software maintainability studies

utilized a wide variety of OO metrics: Oman and Hagemeister

metrics [26]; Coleman et al metrics [27]; Genero et al metrics

[28]; Welker et al metrics [29]; Misra metrics [30]. These studies

confirmed a relationship between OO metrics and software

maintainability. However, this relationship is considered

nonlinear, complicated and of low accuracy [8]. OO metrics,

which primarily include the C&K metrics [5] and L&H metrics

[2], have been used widely due to their strong relationship with

software maintainability [6-8, 15, 25]. C&K includes six OO

metrics: number of children (NOC), coupling between objects

(CBO), response for a class (RFC), depth of the inheritance tree

(DIT), weighted method per class (WMC) and lack of cohesion

of methods (LCOM). L&H metrics [2] involve all C&K metrics

except CBO and also include further metrics: abstract data type

(ADT), message-passing coupling (MPC), lines of code (LOC),

number of methods (NOM), number of semicolons in a class

(SIZE1) and number of properties (SIZE2). In addition, Li and

Henry introduced the CHANGE metric, which is a dependent

variable to capture software maintainability prediction by

computing the number of lines changed in the class during the

maintenance process.

2.2 Maintainability

Maintainability is a dependent variable that may be determined

by a wide variety of independent variables. The ISO/IEC 25010

standard [31] defined a software quality model as a collection of

attributes that include: efficiency, usability, suitability,

compatibility, security, reliability, portability and maintainability.

Therefore, maintainability is one essential attribute of software

quality and is recognised as one of the most challenging

measurements due to the problem of predicting activity in the

future [32]. Software maintainability is described as the ability of

a software system to be modified in order to develop, correct,

adapt to changes in the environment or meet particular

requirements. This description indicates that software

maintainability relies on various aspects of software modification

(i.e. adaptation, correction, improvement or prevention).

Furthermore, the ISO/IEC 25010 standard categorized software

maintainability into five major sub-characteristics: reusability to

identify the level of the assets can be used to construct other

systems, modularity to identify the level of component

independence and the extent to which changes to one component

impact on the rest of the system, analyzability to identify the ease

with which the software may be analysed to investigate (for

example) the consequence of changes or diagnose problems,

testability to identify the degree to which test criteria for a system

can be established and tests to meet the criteria developed, and

modifiability to identify the degree to which it is possible to

modify the software product without degrading its quality.

Studies have acknowledged various types of software

maintenance measurements: adaptive maintenance effort [33],

corrective maintenance effort [10] and maintenance time [34]. In

several studies [6-8, 15], change maintenance effort is frequently

chosen to calculate the number of changes made in the class

during the maintenance period. This measurement is based on the

CHANGE metric proposed in [2] and discussed in the

introduction.

2.3 Datasets

Datasets compose many metrics that include independent and

dependent variables. The datasets are split into a testing set to

evaluate a prediction model and a training set to construct the

model [35]. Alternatively, N-fold cross-validation is used to

compare and evaluate between prediction models by dividing the

dataset into ten folds equally. One of these folds is used to test

model, and the remaining used to train model, where this process

is iterated N times with different folds [36]. Moreover, the

datasets include three major types: a public dataset, which is

available to use (i.e. User Interface Management System (UIMS)

and Quality Evaluation System (QUES) [2]; a partial dataset,

which is extracted from available open-source software but
unavailable to use, since the researcher does not provide it to the

public (i.e. datasets extracted from 148 open-source system [12]);

and a private dataset, which is extracted from a private system and

unavailable to use (i.e. datasets extracted from private projects

[10]). This research plan will initially use the UIMS and QUES

datasets that have been widely used for predicting software

maintainability, which makes our results comparable and

repeatable [2]. Following this, more recent and larger datasets,

will be investigated to validate and support the previous result

[37].

2.4 Building prediction models

Many types of individual machine learning models, such as

Neural networks [8], Bayesian networks [6], Linear regression

[12], Multiple additive regression trees [7], K-means clustering

[13], Support vector regression [14], and Multilayer perceptron

[15] have been built to predict software maintainability.

However, despite the large number of studies and models created,

only a limited number of these have achieved a reasonable level

of predictive accuracy, but fail to meet the criteria of an accurate

prediction model, which is pred(.30) ≥0.70 [16] or pred(.25)

≥0.75 or/and MMRE ≤ 0.25 [38]. Furthermore, determining the

best technique among individual models is difficult because the

performance of these techniques relies on the dataset used.

Therefore, it is clear that there is a great need to advance the

performance of the individual models, and one way of achieving

this is by building ensemble modes. The ensemble model may be

heterogeneous, which merges various types of individual models

(i.e. software maintainability evaluation model based on multiple

classifiers combination [24]) or a homogenous, which merges the

same types of individual models (i.e. weighted voting, majority

voting, and hard instance [25]). This research plan will evaluate

and compare the application of bagging and additive regression

as an example of the homogenous ensemble model and stacking

as an example of the heterogeneous ensemble model.

2.5 Evaluating prediction models

Evaluation of prediction models is a vital part of any machine

learning problem in order to compare performance between

several models and measure the accuracy of the model in

predicting software maintainability. Several evaluation

measurements have been proposed in the literature to assess

prediction models in the software engineering domain [38].

Usually, regression problems used residuals or prediction error

[39], while classification problems utilised confusion matrices

[40]. Some of the most frequently used evaluation measurements

have become de-facto standards to measure prediction accuracy,

namely the mean magnitude of relative error (MMRE) and

Pred(q), which is the proportion of instances in the dataset where

the MRE is less than or equal a defined value (q) [17]. Further

baseline measurements can be used to evaluate the performance

of the predictors with the dependent variable, e.g. the sample

mean [41] or the sample median [42].

3 Research Methodology

The fundamental objective of this research is to provide the

software project manager with the ability to predict software

maintainability accurately using ensemble techniques. To achieve

this objective, several research questions are generated, which

need to be addressed to face challenges in this research.

RQ1) What are the individual prediction models used to predict

software maintainability? And what is the best performing

individual prediction model?

RQ2) What are the ensemble prediction models (heterogeneous

and homogeneous) used to predict software maintainability? And

which is the best performing ensemble prediction model?

RQ3) How much can ensemble models increase or decrease the

performance of individual models?

RQ4) What are the software maintainability datasets that

available to use?

4 Expected results

An investigation of software maintainability prediction using

ensemble techniques may provide several results. First, it enables

the empirical exploration of the positive impact of ensemble

models (heterogeneous and homogeneous), and assessment the

extent to which these ensemble models provide an improvement

in the accuracy prediction over individual models. Second, it

enables the comparison between the proposed ensemble models

with previous studies conducted on the most popular software

maintainability datasets to determine whether these models

achieve higher accuracy than the previous studies. Thirdly, it

enables the critical validation of the proposed ensemble models

by applying these models to numerous and extensive datasets of

software maintainability extracted from open-source software

projects or gathered from public repositories.

5 Summary of the current status

This paper presents a research plan to predict software

maintainability of the OO system using ensemble techniques. The

basic concept of our research background was provided, then the

explanation of the research methodology was demonstrated.

Finally, the expected results are determined. The proposed study

provides the foundation to identify the main research components

and detect further interesting direction studies in the software

maintainability prediction field. Furthermore, it can be used as our

guide through my PhD study. Our findings will appear in

publications of future experiments to investigate the ability of the

ensemble models to improve accuracy prediction of software

maintainability over individual models.

Currently, we have completed the systematic literature review to

analyse different applied machine learning models; also I have

published the first set of the experiment results that evaluated the

ability of bagging models to increase accuracy prediction over

individual models [44]. In addition, we have extended this

experiment to include more models and use the UIMS dataset. We

also have achieved some progress in the second experiment that

comprises large datasets, in particular the bug prediction datasets

[37]. In the future, we plan to explore other software

maintainability measurements and build prediction models using

their datasets.

ACKNOWLEDGMENTS

The author would like to thank her supervisor, Dr. Marc Roper,

for his feedback, advice and recommendations to achieve this

work. This paper was supported by Princess Nourah bint

Abdulrahman University and the University of Strathclyde.

REFERENCES
[1] N. E. Fenton and M. Neil, "A critique of software defect prediction models,"

IEEE Transactions on software engineering, vol. 25, no. 5, pp. 675-689, 1999.

[2] W. Li and S. Henry, "Object-oriented metrics that predict maintainability," The

Journal of Systems & Software, vol. 23, no. 2, pp. 111-122, 1993.

[3] C. Jones, "The economics of software maintenance in the twenty first century,"

Unpublished manuscript. http://citeseerx. ist. psu. edu/viewdoc/summary,

2006.

[4] T. DeMarco, Controlling Software Projects: Management, Measurement, and

Estimates. Prentice Hall PTR, 1986.

[5] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented

design," IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476-

493, 1994.

[6] C. van Koten and A. R. Gray, "An application of Bayesian network for

predicting object-oriented software maintainability," Information and Software

Technology, vol. 48, no. 1, pp. 59-67, 1// 2006.

[7] M. O. Elish and K. O. Elish, "Application of TreeNet in Predicting Object-

Oriented Software Maintainability: A Comparative Study," in 2009 13th

European Conference on Software Maintenance and Reengineering, 2009, pp.

69-78.

[8] M. M. T. Thwin and T.-S. Quah, "Application of neural networks for software

quality prediction using object-oriented metrics," Journal of Systems and

Software, vol. 76, no. 2, pp. 147-156, 5// 2005.

[9] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,

"Metrics and laws of software evolution-the nineties view," in Proceedings

Fourth International Software Metrics Symposium, 1997, pp. 20-32.

[10] A. De Lucia, E. Pompella, and S. Stefanucci, "Assessing effort estimation

models for corrective maintenance through empirical studies," Information and

Software Technology, vol. 47, no. 1, pp. 3-15, 2005.

[11] M. Riaz, E. Mendes, and E. Tempero, "A systematic review of software

maintainability prediction and metrics," in Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 367-377: IEEE Computer Society.

[12] Y. Zhou and B. Xu, "Predicting the maintainability of open source software

using design metrics," Wuhan University Journal of Natural Sciences, journal

article vol. 13, no. 1, pp. 14-20, February 01 2008.

[13] J.-C. Chen and S.-J. Huang, "An empirical analysis of the impact of software

development problem factors on software maintainability," Journal of Systems

and Software, vol. 82, no. 6, pp. 981-992, 2009/06/01/ 2009.

[14] C. Jin and J.-A. Liu, "Applications of support vector mathine and unsupervised

learning for predicting maintainability using object-oriented metrics," in

Multimedia and Information Technology (MMIT), 2010 Second International

Conference on, 2010, vol. 1, pp. 24-27: IEEE.

[15] S. K. Dubey, A. Rana, and Y. Dash, "Maintainability prediction of object-

oriented software system by multilayer perceptron model," SIGSOFT Softw.

Eng. Notes, vol. 37, no. 5, pp. 1-4, 2012.

[16] S. G. MacDonell, "Establishing relationships between specification size and

software process effort in CASE environments," Information and Software

Technology, vol. 39, no. 1, pp. 35-45, 1997/01/01/ 1997.

[17] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd, "What

accuracy statistics really measure [software estimation]," IEE Proceedings -

Software, vol. 148, no. 3, pp. 81-85, 2001.

[18] A. T. Mısırlı, A. B. Bener, and B. Turhan, "An industrial case study of classifier

ensembles for locating software defects," Software Quality Journal, vol. 19, no.

3, pp. 515-536, 2011.

[19] A. Panichella, R. Oliveto, and A. De Lucia, "Cross-project defect prediction

models: L'union fait la force," in Software Maintenance, Reengineering and

Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE

Conference on, 2014, pp. 164-173: IEEE.

[20] I. H. Laradji, M. Alshayeb, and L. Ghouti, "Software defect prediction using

ensemble learning on selected features," Information and Software

Technology, vol. 58, pp. 388-402, 2015.

[21] Y. Zhang, D. Lo, X. Xia, and J. Sun, "An Empirical Study of Classifier

Combination for Cross-Project Defect Prediction," in 2015 IEEE 39th Annual

Computer Software and Applications Conference, 2015, vol. 2, pp. 264-269.

[22] J. Petri, #263, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, "Building

an Ensemble for Software Defect Prediction Based on Diversity Selection,"

presented at the Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, Ciudad Real, Spain,

2016.

[23] D. D. Nucci, F. Palomba, R. Oliveto, and A. D. Lucia, "Dynamic Selection of

Classifiers in Bug Prediction: An Adaptive Method," IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 202-212,

2017.

[24] F. Ye, X. Zhu, and Y. Wang, "A new software maintainability evaluation

model based on multiple classifiers combination," in 2013 International

Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering

(QR2MSE), 2013, pp. 1588-1591.

[25] R. Malhotra and M. Khanna, "Particle swarm optimization-based ensemble

learning for software change prediction," Information and Software

Technology, vol. 102, pp. 65-84, 2018/10/01/ 2018.

[26] P. Oman and J. Hagemeister, "Metrics for assessing a software system's

maintainability," in Software Maintenance, 1992. Proceedings., Conference

on, 1992, pp. 337-344: IEEE.

[27] D. Coleman, D. Ash, B. Lowther, and P. Oman, "Using metrics to evaluate

software system maintainability," Computer, vol. 27, no. 8, pp. 44-49, 1994.

[28] M. Genero, M. Piattini, E. Manso, and G. Cantone, "Building UML class

diagram maintainability prediction models based on early metrics," in Software

Metrics Symposium, 2003. Proceedings. Ninth International, 2003, pp. 263-

275: IEEE.

[29] K. D. Welker, P. W. Oman, and G. G. Atkinson, "Development and application

of an automated source code maintainability index," Journal of Software:

Evolution and Process, vol. 9, no. 3, pp. 127-159, 1997.

[30] S. C. Misra, "Modeling Design/Coding Factors That Drive Maintainability of

Software Systems," Software Quality Journal, vol. 13, no. 3, pp. 297-320,

2005.

[31] O. i. d. normalisation, Systems and Software Engineering: Systems and

Software Quality Requirements and Evaluation (SQuaRE): System and

Software Quality Models. ISO/IEC, 2011.

[32] M. Dagpinar and J. H. Jahnke, "Predicting maintainability with object-oriented

metrics -an empirical comparison," in 10th Working Conference on Reverse

Engineering, 2003. WCRE 2003. Proceedings., 2003, pp. 155-164.

[33] F. Fioravanti and P. Nesi, "Estimation and prediction metrics for adaptive

maintenance effort of object-oriented systems," IEEE Transactions on

Software Engineering, vol. 27, no. 12, pp. 1062-1084, 2001.

[34] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, "Predicting maintenance

performance using object-oriented design complexity metrics," IEEE

Transactions on Software Engineering, vol. 29, no. 1, pp. 77-87, 2003.

[35] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer

Science & Business Media, 2011.

[36] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation

and model selection," presented at the Proceedings of the 14th international

joint conference on Artificial intelligence - Volume 2, Montreal, Quebec,

Canada, 1995.

[37] M. D. Ambros, M. Lanza, and R. Robbes, "An extensive comparison of bug

prediction approaches," in 2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010), 2010, pp. 31-41.

[38] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering metrics

and models. Benjamin-Cummings Publishing Co., Inc., 1986, p. 396.

[39] F. Mosteller and J. W. Tukey, "Data analysis and regression: a second course

in statistics," Addison-Wesley Series in Behavioral Science: Quantitative

Methods, 1977.

[40] T. Fawcett, "An introduction to ROC analysis," Pattern recognition letters, vol.

27, no. 8, pp. 861-874, 2006.

[41] M. Jorgensen, "Experience with the accuracy of software maintenance task

effort prediction models," IEEE Transactions on software engineering, vol. 21,

no. 8, pp. 674-681, 1995.

[42] E. Mendes and B. Kitchenham, "Further comparison of cross-company and

within-company effort estimation models for web applications," in Software

Metrics, 2004. Proceedings. 10th International Symposium on, 2004, pp. 348-

357: IEEE.

[43] D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study,"

Journal of artificial intelligence research, vol. 11, pp. 169-198, 1999.

[44] H. Alsolai, "Predicting Software Maintainability in Object-Oriented Systems

Using Ensemble Techniques," in 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2018, pp. 716-721: IEEE.

http://citeseerx/

