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ABSTRACT 

While prior object-oriented software maintainability literature 

acknowledges the role of machine learning techniques as valuable 

predictors of potential change, the most suitable technique that 

achieves consistently high accuracy remains undetermined. With 

the objective of obtaining more consistent results, an ensemble 

technique is investigated to advance the performance of the 

individual models and increase their accuracy in predicting 

software maintainability of the object-oriented system. This paper 

describes the research plan for predicting object-oriented 

software maintainability using ensemble techniques. First, we 

present a brief overview of the main research background and its 

different components. Second, we explain the research 

methodology. Third, we provide expected results. Finally, we 

conclude summary of the current status. 
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1 Introduction 

Software Quality Assurance (SQA) is defined as the group of 

activities that guarantee software meets a certain quality level [1]. 

Software maintainability is one of the essential attributes in 

evaluating the SQA, and it begins as soon as the system has been 

produced. It has a vital role in enabling frequent changes to the 

software to meet customer requirements, adapting to 

environmental changes, accommodating new hardware or in 

developing new features. Software maintenance consumes the 

largest amount of cost, time and effort during the software 

development life-cycle (SDLC) [2]. Jones reported that 

maintenance was observed to consume about 75 % of total project 

cost, and the cost of maintaining source code is ten times than the 

cost of developing source code [3].  

Controlling costs, time and effort are the significant components 

for ensuring SQA. These are performed by determining 

appropriate measures: as T. DeMarco [4] stated that “you cannot 

control what you cannot measure”. Software metrics are 

quantitative measures which may be employed to evaluate the 

quality of the software. In particular, Object-Oriented (OO) 

metrics are used to measure aspects of the source code of software 

systems (e.g. cohesion, size and inheritance depth). 

Consequently, several studies have employed a variety of OO 

metrics to evaluate the concept of software maintainability, such 

as Chidamber and Kemerer (C&K) metrics and Li and Henry 

(L&H) metrics [2, 5]. For example, the L&H metrics can be 

utilised as predictors of software maintenance effort as they have 

been shown to exhibit a strong relationship with the number of 

changes in the source code [2, 6-8]. Change maintenance effort is 

a well-known software maintainability measure that calculates 

the number of modifications made per class during the 

maintenance period  [2]. A higher number of changes requires 

greater maintenance effort, which implies a lower level of 

maintainability. 

Object-oriented (OO) systems are structured around objects and 

classes that have different characteristics (i.e. encapsulation, 

coupling and inheritance). These systems are written in various 

programming languages, such as Java, C++ and C#. Many OO 

systems are available in open-source projects (e.g. Github or 

SourceForge) and are used commonly by various organisations. 

With the growing use of OO systems, organisations have needed 

to further develop and change systems which in turn leads to an 

increase in their complexity [9].  

Much attention has been paid to predicting software 

maintainability using machine learning techniques. Accurate 

predictions help to play an increasingly important role in software 

project management tasks: allocating developers; identifying  

resources; supporting decision making; evaluating cost across 

different projects and performing maintenance processes [10]. 

Hadeel Alsolai 
1 Computer Science and Information system 

Princess Nourah Bint Abdulrahman University 

Riyadh, Saudi Arabia 

2 Computer and Information Sciences 

University of Strathclyde 

Glasgow, United Kingdom 

hadeel.alsolai@strath.ac.uk 

Marc Roper 

Computer and Information Sciences 

University of Strathclyde 

Glasgow, United Kingdom 

marc.roper@strath.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/222699633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This prediction can assist in gaining insights on likely future 

maintenance, and can help in decreasing the total cost and overall 

effort of the software project [11].  However, building an accurate 

prediction model is a difficult task to achieve.  

Several empirical studies have been performed to investigate 

various types of individual machine learning models, including: 

Neural networks [8]; Bayesian networks [6]; Linear regression 

[12]; Multiple additive regression trees [7]; K-means clustering 

[13]; Support vector regression [14]; and Multilayer perceptron 

[15]. However, the prediction accuracy of these individual models 

is disappointing and does not meet the criteria suggested by 

MacDonnell and Kitchenham et al. [16, 17]. These criteria will be 

explained in section 2.4. 

In order to resolve the lack of consistent results in individual 

models, an ensemble machine learning model is introduced to 

investigate the potential for improving the accuracy prediction of 

individual models. The ensemble machine learning model is 

created from individual models in a heterogeneous (which 

integrates various types of individual models) or homogenous 

(which integrates the same types of individual model) fashion. A 

number of ensemble models have been investigated in relation to 

the problem of software defect prediction to improve their 

accuracy performance over individual models:  voting feature 

intervals [18]; combined defect predictor [19]; average 

probability ensemble [20]; bagging and boosting [21]; stacking 

[22]; and adaptive selection of classifiers in bug prediction [23]. 

Heterogeneous ensemble models have been proposed to increase 

accuracy prediction over individual models, such as a software 

maintainability evaluation model based on combining multiple 

classifiers [24]. In addition, homogeneous ensembles have been 

used for predicting software maintainability, such as weighted 

voting, majority voting, and hard instance [25]. However, it is 

noteworthy that the application and evaluation of ensemble 

models to predict software maintainability is very limited.    

The rest of this paper is organised as follows. Section 2 presents 

a brief description of the research background. Section 3 

highlights the research methodology. Section 4 provides expected 

results. Finally, the paper summary of the current status concludes 

in Section 5. 

2 Research background 

The research background includes six primary sections: OO 

systems, metrics, maintainability, datasets, building prediction 

models and evaluating prediction models. Each section presents 

an overview of related studies and describes the basic concepts of 

this research. 

2.1 Metrics  

Metrics are independent variables that capture features of 

software systems that can be used to build predictive models of 

software maintainability. Prior software maintainability studies 

utilized a wide variety of OO metrics: Oman and Hagemeister 

metrics [26]; Coleman et al metrics [27]; Genero et al metrics 

[28]; Welker et al metrics [29]; Misra metrics [30]. These studies 

confirmed a relationship between OO metrics and software 

maintainability. However, this relationship is considered 

nonlinear, complicated and of low accuracy [8].  OO metrics, 

which primarily include the C&K metrics  [5] and L&H metrics 

[2], have been used widely due to their strong relationship with 

software maintainability [6-8, 15, 25]. C&K includes six OO 

metrics: number of children (NOC), coupling between objects 

(CBO), response for a class (RFC), depth of the inheritance tree 

(DIT), weighted method per class (WMC) and lack of cohesion 

of methods (LCOM). L&H metrics [2] involve all C&K metrics 

except CBO and also include further metrics: abstract data type 

(ADT), message-passing coupling (MPC), lines of code (LOC), 

number of methods (NOM), number of semicolons in a class 

(SIZE1) and number of properties (SIZE2). In addition, Li and 

Henry introduced the CHANGE metric, which is a dependent 

variable to capture software maintainability prediction by 

computing the number of lines changed in the class during the 

maintenance process. 

2.2 Maintainability 

Maintainability is a dependent variable that may be determined 

by a wide variety of independent variables. The ISO/IEC 25010 

standard [31] defined a software quality model as a collection of 

attributes that include: efficiency, usability, suitability, 

compatibility, security, reliability, portability and maintainability. 

Therefore, maintainability is one essential attribute of software 

quality and is recognised as one of the most challenging 

measurements due to the problem of predicting activity in the 

future [32]. Software maintainability is described as the ability of 

a software system to be modified in order to develop, correct, 

adapt to changes in the environment or meet particular 

requirements. This description indicates that software 

maintainability relies on various aspects of software modification 

(i.e. adaptation, correction, improvement or prevention). 

Furthermore, the ISO/IEC 25010 standard categorized software 

maintainability into five major sub-characteristics: reusability to 

identify the level of the assets can be used to construct other 

systems, modularity to identify the level of component 

independence and the extent to which changes to one component  

impact on the rest of the system, analyzability to identify the ease 

with which the software may be analysed to  investigate (for 

example) the consequence of changes or diagnose problems, 

testability to identify the degree to which test criteria for a system 

can be established and tests to meet the criteria developed, and 

modifiability to identify the degree to which it is possible to 

modify the software product without degrading its quality. 

Studies have acknowledged various types of software 

maintenance measurements: adaptive maintenance effort [33], 

corrective maintenance effort [10] and maintenance time [34].  In 

several studies [6-8, 15], change maintenance effort is frequently 

chosen to calculate the number of changes made in the class 

during the maintenance period. This measurement is based on the 

CHANGE metric proposed in [2] and discussed in the 

introduction. 

2.3 Datasets 

Datasets compose many metrics that include independent and 

dependent variables. The datasets are split into a testing set to 



evaluate a prediction model and a training set to construct the 

model [35]. Alternatively, N-fold cross-validation is used to 

compare and evaluate between prediction models by dividing the 

dataset into ten folds equally. One of these folds is used to test 

model, and the remaining used to train model, where this process 

is iterated N times with different folds [36]. Moreover, the 

datasets include three major types: a public dataset, which is 

available to use (i.e. User Interface Management System (UIMS) 

and Quality Evaluation System (QUES) [2]; a partial dataset, 

which is extracted from available open-source software but 
unavailable to use, since the researcher does not provide it to the 

public (i.e. datasets extracted from 148 open-source system [12]); 

and a private dataset, which is extracted from a private system and 

unavailable to use (i.e. datasets extracted from private projects 

[10]).  This research plan will initially use the  UIMS and QUES 

datasets that have been widely used for predicting software 

maintainability, which makes our results comparable and 

repeatable [2]. Following this,  more recent and larger datasets, 

will be investigated to validate and support the previous result 

[37]. 

2.4 Building prediction models 

Many types of individual machine learning models, such as 

Neural networks [8], Bayesian networks [6], Linear regression 

[12], Multiple additive regression trees [7], K-means clustering 

[13], Support vector regression [14], and Multilayer perceptron 

[15] have been built to predict software maintainability.  

However, despite the large number of studies and models created, 

only a limited number of these have achieved a reasonable level 

of predictive accuracy, but fail to meet the criteria of an accurate 

prediction model, which is pred(.30) ≥0.70 [16] or pred(.25) 

≥0.75 or/and MMRE ≤ 0.25 [38]. Furthermore, determining the 

best technique among individual models is difficult because the 

performance of these techniques relies on the dataset used. 

Therefore, it is clear that there is a great need to advance the 

performance of the individual models, and one way of achieving 

this is by building ensemble modes. The ensemble model may be 

heterogeneous, which merges various types of individual models 

(i.e. software maintainability evaluation model based on multiple 

classifiers combination [24]) or a homogenous, which merges the 

same types of individual models (i.e. weighted voting, majority 

voting, and hard instance [25]). This research plan will evaluate 

and compare the application of bagging and additive regression 

as an example of the homogenous ensemble model and stacking 

as an example of the heterogeneous ensemble model. 

2.5 Evaluating prediction models 

Evaluation of prediction models is a vital part of any machine 

learning problem in order to compare performance between 

several models and measure the accuracy of the model in 

predicting software maintainability. Several evaluation 

measurements have been proposed in the literature to assess 

prediction models in the software engineering domain [38]. 

Usually, regression problems used residuals or prediction error 

[39], while classification problems utilised confusion matrices 

[40]. Some of the most frequently used evaluation measurements 

have become de-facto standards to measure prediction accuracy, 

namely the mean magnitude of relative error (MMRE) and 

Pred(q), which is the proportion of instances in the dataset where 

the MRE is less than or equal a defined value (q) [17]. Further 

baseline measurements can be used to evaluate the performance 

of the predictors with the dependent variable, e.g. the sample 

mean  [41] or the sample median [42]. 

3 Research Methodology 

The fundamental objective of this research is to provide the 

software project manager with the ability to predict software 

maintainability accurately using ensemble techniques. To achieve 

this objective, several research questions are generated, which 

need to be addressed to face challenges in this research.  

RQ1) What are the individual prediction models used to predict 

software maintainability? And what is the best performing 

individual prediction model? 

RQ2) What are the ensemble prediction models (heterogeneous 

and homogeneous) used to predict software maintainability? And 

which is the best performing ensemble prediction model? 

RQ3) How much can ensemble models increase or decrease the 

performance of individual models? 

RQ4) What are the software maintainability datasets that 

available to use? 

4 Expected results 

An investigation of software maintainability prediction using 

ensemble techniques may provide several results. First, it enables 

the empirical exploration of the positive impact of ensemble 

models (heterogeneous and homogeneous), and assessment the 

extent to which these ensemble models provide an improvement 

in the accuracy prediction over individual models. Second, it 

enables the comparison between the proposed ensemble models 

with previous studies conducted on the most popular software 

maintainability datasets to determine whether these models 

achieve higher accuracy than the previous studies. Thirdly, it 

enables the critical validation of the proposed ensemble models 

by applying these models to numerous and extensive datasets of 

software maintainability extracted from open-source software 

projects or gathered from public repositories. 

5  Summary of the current status 

This paper presents a research plan to predict software 

maintainability of the OO system using ensemble techniques. The 

basic concept of our research background was provided, then the 

explanation of the research methodology was demonstrated. 

Finally, the expected results are determined. The proposed study 

provides the foundation to identify the main research components 

and detect further interesting direction studies in the software 

maintainability prediction field. Furthermore, it can be used as our 

guide through my PhD study. Our findings will appear in 

publications of future experiments to investigate the ability of the 

ensemble models to improve accuracy prediction of software 

maintainability over individual models. 

Currently, we have completed the systematic literature review to 

analyse different applied machine learning models; also I have 

published the first set of the experiment results that evaluated the 

ability of bagging models to increase accuracy prediction over 

individual models [44]. In addition, we have extended this 



experiment to include more models and use the UIMS dataset. We 

also have achieved some progress in the second experiment that 

comprises large datasets, in particular the bug prediction datasets 

[37]. In the future, we plan to explore other software 

maintainability measurements and build prediction models using 

their datasets. 
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