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ABSTRACT 
 

Ships often have to pass each other in proximity in 
harbor area and waterways in dense shipping traffic 
environment. Hydrodynamic interaction occurs when 
a ship is overtaking (or being overtaken) or 
encountering other ships. Such an interactive effect 
could be magnified in confined waterways, e.g. 
shallow and narrow rivers. Since Yeung (1978) 
published his initial work on ship-interaction in 
shallow water, progress on unsteady interaction 
among multiple ships has been slow though steady 
over the following decades. With some exceptions, 
nearly all the published studies on ship-to-ship 
problem neglected free-surface effects, and a rigid 
wall condition has often been applied on the water 
surface as the boundary condition. When the speed of 
the ships is low, this assumption is reasonably 
accurate, as the hydrodynamic interaction is mainly 
induced by near-field disturbances. However, in many 
maneuvering operations, the encountering or 
overtaking speeds are actually moderately high 

(Froude number Fn>0.2, where �� ≡ �/���, U is 
ship speed, g the gravitational acceleration and L the 
ship length), especially when the lateral separation 
between ships is the order of ship length. Here, the far-
field effects arising from ship waves can be important. 
The hydrodynamic interaction model must take into 
account of the surface-wave effects.  
       Classical potential-flow formulation is only able 
to deal with the boundary value problem (BVP) when 
there is only one speed involved in the free-surface 
boundary condition. For multiple ships travelling with 
different speeds, it is not possible to express the free-
surface boundary condition by a single velocity 
potential. Instead, a superposition method can be 
applied to account for the velocity field induced by 
each vessel with its own and unique speed. The main 
objective of the present paper is to propose a rational 
superposition method to handle the unsteady free-
surface boundary condition containing two or more 

speed terms, and validate its feasibility in predicting 
the hydrodynamic behaviour of the ships during 
overtaking or encountering operations. The solution 
methodology used in the present paper is a three-
dimensional boundary-element method (BEM) based 
on a Rankine-type (infinite-space) source function, 
initiated introduced in Bai & Yeung (1974). The 
numerical simulations are conducted by using an in-
house developed multi-body hydrodynamic 
interaction program "MHydro". Waves generated and 
forces (or moments) are calculated when ships are 
encountering or passing each other. Published model-
test results are used to validate our calculations and 
very good agreement has been observed. The 
numerical results show that free-surface effects need 
to be taken into account for Fn > 0.2.   

 
INTRODUCTION 
 

Ship-to-ship interaction problem is a classical 
hydrodynamics problem which has been widely 
studied over the last few decades. No matter which 
kind of methods is used, at least one or more of the 
following important assumptions are often adopted to 
simplify the problem: 

1) The fluid is ideal and viscous effects are 
neglected. 

2) The speed is low and free-surface 
deformation effects are negligible (rigid-wall 
free-surface is applicable). 

3) The ships are slender. 
4) The shedding of cross-flow vorticity is either 

ignored, or idealized in a manner similar to 
thin-wing theory. 

       During1960s-1990s, the slender-body theory has 
been widely popular to predict the hydrodynamic 
interaction between multiple ships (Collatz, 1963; 
Tuck, 1966; Tuck and Newman, 1974; Dand, 1975; 
Yeung, 1975, 1978; Kijima and Yasukawa, 1985; 
Varyani et al., 1998). All of the assumptions 
mentioned above were adopted in the cited studies. 
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These assumptions significantly simplified the 
mathematical model and led to high-efficiency 
numerical calculations. For conventional ships 
travelling at relatively low Froude numbers, the 
numerical calculations based on strip theory showed a 
fairly good prediction of the sway force and yaw 
moment on ships during overtaking or meeting 
operations. To account for the three-dimensional 
effects and remove the geometrical idealization 
described in Assumption 3, Korsmeyer et al. (1993) 
adopted a three-dimensional panel method, which is 
applicable to any number of arbitrarily shaped bodies 
in arbitrary motions. Pinkster (2004) extended 
Korsmeyer’s method with implementation of a model 
to account for the free-surface effects partially. His 
model was restricted to simulating the effect of a 
passing ship on a moored ship. Only the low frequency 
seiche or solitary waves were taken into account, while 
the more important far-field waves or so-called Kelvin 
waves were neglected. Therefore, his conclusions on 
free-surface effects could not cover the general ship-
to-ship operations. More recently, three-dimensional 
panel method has been more commonly used (Söding 
and Conrad, 2005; Xiang and Faltinsen, 2010; Zhou et 
al., 2012; Xu et al., 2016). which began to investigate 
the effects of unsteady free-surface waves on the 
interaction forces. The general conclusion drawn from 
these studies is that the potential-flow solver could 
provide a good prediction of interaction forces on 
ships travelling at relatively low Froude numbers. 
Within this framework  there exist potential-flow 
codes such as Pinkster (2013) or Fenfach et al. (2011) 
that handle ships moving over sloppy bottom or 
harbour entrances.  Benefitted from improving CFD 
(Computational Fluid Dynamics) technology, viscous 
effects on ship-to-ship problem have been investigated 
using various turbulence models (Zou and Larsson, 
2013b; Jin et al., 2016; Sian et al., 2016, Meng and 
Wan, 2016). The free-surface effects are either 
neglected (Zou and Larsson, 2013b) or treated simply 
as a steady problem (Jin et al., 2016; Sian et al., 2016). 
In these Navier-Stokes model, few efforts were made 
to investigate the long-time unsteady free-surface 
waves produced by two or more ships moving with 
different speeds. The demand in computational power 
when more than one ship is passing can be the 
bottleneck if real-time applications should be needed. 
 

       The unsteady free-surface wave effect is not 
essential when the encountering or overtaking speed is 
low. However, in the waterways with dense shipping 
traffic, the encountering or overtaking speed is not 
always low. As shown in Figure 1, the far-field waves 

                                                           
1https://www.google.co.uk/maps/@51.9005594,4.368
8259,390m/data=!3m1!1e3?authuser=1  

generated by the encountering ships are obviously 
observed. A strong unsteady interaction between ships 
can be excited by the unsteady free-surface waves. 
Furthermore, the existence of the river banks traps the 
waves from propagating to either sides, which makes 
the interference problem more complicated. 
Therefore, the rigid free-surface condition is not 
capable of predicting the hydrodynamic interactions 
induced by far-field waves. A new approach is 
proposed to deal with the free-surface boundary 
condition. 

 
 

 

Figure 1: A satellite image taken from the Google 
Earth database showing the wave interference effect in 
confined waterways. (a) Two ships in overtaking 
operation in Nieuwe Maas, The Netherlands1; (b) 
Encountering ships in Amsterdam–Rhine Canal, The 
Netherlands2.  

The main challenge of imposing a non-rigid free-
surface condition arises from the speed term in the 
body boundary condition (See Eq. (16) later). For 
multiple ships travelling with various speeds, it is not 
possible to express the free-surface boundary 
condition by a single velocity potential (unless one 
uses a earth-fixed coordinate system as in Yeung 
(1975)). A superposition method, however, can be 
applied to account for the velocity potentials induced 
by each vessel with its own, unique speed. In order to 
account for the different speeds appearing in free-
surface boundary condition, Yuan et al. (2015) 
proposed an uncoupled method based on the 
superposition principle. Therein, the speed difference 
of two ships was assumed to be small. Thus, the free-

2https://www.google.co.uk/maps/@52.0098121,5.165
8702,427m/data=!3m1!1e3?authuser=1  
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surface condition could be treated (arguably) as 
steady-state problem. This method is not applicable to 
predict the interaction forces when ships’ speeds are 
not the same, or when two ships are moving towards 
each other. In these cases, the unsteady effect becomes 
essential and the time-dependent terms must be taken 
into account. In the present study, we will extend 
Yuan’s method to the time domain and discuss the 
importance of free-surface effects on multi-ship 
problem. 
 
THE BOUNDARY-VALUE PROBLEM 
 

 

Figure 2: Coordinate systems. 

Consider N ships moving at speeds Uj (j = 1, 2, 
…, N) with respect to a space-fixed reference frame 
� = (�, �, �) in an inviscid fluid of depth h as shown 
in Figure 2. A right-handed Cartesian coordinate 
system �� = (��, ��, ��) (j = 1, 2, …, N) is fixed to each 

ship with its positive xj-axis pointing towards the bow, 
positive z-axis pointing upwards and zj = 0 being the 
undisturbed free-surface. Let Φ (x, t) be the velocity 
potential describing the disturbances generated by the 
forward motion of the ships and ζ (x, y, t) be the free-
surface elevation. In the fluid domain, the total 
velocity potential Φ satisfies the Laplace equation 
 

                           (1) 

The fluid pressure, �(�, �), is given by Euler’s 
integral: 
 

        (2) 

where ρ is the fluid density, p0 is the atmospheric 
pressure, which is used as a reference pressure and 
assumed to be constant. Assuming there is no 
overturning and breaking waves on the free-surface, 
we can use this Eulerian description of the flow to 
describe the free-surface motion. The free-surface 

elevation is given by z = ζ (x, y, t). A fluid particle on 
the free-surface is assumed to stay on the free-surface, 
which leads to the following kinematic free-surface 
boundary condition:  
 

, on z = ζ                      (3) 

The material derivative in Eq. (3) is given by: 
 

                          (4) 

The dynamic free-surface condition is that the 
fluid pressure equals the constant atmospheric 
pressure p0 on the free-surface, with the position of the 
free-surface being unknown. According to the Euler’s 
integral Eq. (2), the dynamic free-surface boundary 
condition can be written as: 
 

,  on z = ζ             (5) 

By applying Taylor series expanded about z = 0 
and only keeping the linear terms, the dynamic and 
kinetic free-surface conditions can be linearized as 

, on z = 0                       (6) 

, on z = 0                            (7) 

Combining Eq. (6) and (7), we obtain the free-
surface boundary condition: 

, on z = 0                   (8) 

It should be noted the free-surface elevation ζ can 
be found from Eq. (7) when the velocity potential Φ is 
known. On the wetted hull surface, the no-flux 
boundary conditions are used, and the following 
‘exact’ boundary condition can be formulated: 

on Bj, where j = 1, 2, …, N       (9) 

where ∂/∂n is the derivative along the normal vector 
� = (��, ��, ��) on the hull surface. We choose the 

normal vector to point outwards of the fluid domain.  
Assuming the disturbance of the fluid is small, we 

represent the total velocity potential produced by the 
presence of all ships in the fluid domain in a space-
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fixed frame to satisfy the following superposition 
principle: 
 

,  j = 1, 2, …, N             (10) 

where Φj (x, t) is the velocity potential produced by the 
presence of ship j moving with Uj, while the remaining 
ships are momentarily stationary in this frame. For the 
linear problem, the body-fixed coordinate system �� =

(��, ��, ��) (j = 1, 2, …, N) is used to solve the BVP for 

N vessels in concurrent motion. The relation between 
the body- and space-fixed coordinate system is 
straightforward, viz. 
 

,  j = 1, 2, …, N                (11) 

Let ϕj (xj, t) represents Φj (x, t) in the body-fixed 
coordinate system, the following relation can be 
obtained 

                    (12) 

The velocity potential ϕj  satisfies the Laplace 
equation and body ‘exact’ boundary condition: 
 

,  j = 1, 2, …, N               (13) 

, on Bi, i, j = 1, 2, …, N      (14) 

The Kronecker delta δij is defined by: 

                              (15) 

Substituting Eq. (12) into the linearized free-
surface condition in Eq. (8), we obtain the linearized 
free-surface condition in the body-fixed coordinate 
system  

, on z = 0 

(16) 

The boundary condition on the sea bottom and 
side walls, if any, can be expressed as: 
 

                               (17) 

Besides, a radiation condition is imposed on the 
control surface to ensure that waves vanish at 
upstream infinity 
 

          (18) 

where ζj is the wave elevation as seen in the j-th body-
fixed frame and is given by Eq. (30). 
 
NUMERICAL SOLUTION 
 
Eqs. (13) - (18) define a complete set of BVP. Each 
one of BVP is time-dependent but can be solved 
individually and independently; only a single speed of 
ship j appears in the free-surface condition in Eq.(16). 
The coupled problem is decoupled into N independent 
BVPs. At each time instant, the BVP in Eqs. (13) - (18) 
can be solved numerically. Following the work of 
Hess & Smith (1964), the boundaries are discretized 
into a number of quadrilateral panels with constant 
source density  σ(ξj), where �� = (��, ��, ��) is a 

position vector on the boundaries in the j-th body-fixed 
frame and the free-surface (Bai & Yeung, 1974). Let 
�� = (��, ��, ��) denote a point inside the fluid domain 

or on the boundary surface, the velocity potential ϕ can 
be expressed by a source distribution on the boundary 
of the fluid domain  

,  j = 1, 2, …, N             

(19) 

where G=1/r is the Rankine-type source function, with 
r being the distance between ξj and xj. More detailed 
numerical implementation on the solution of BVP can 
be found in Yuan et al. (2014b). The same in-house 
developed program MHydro is deployed in the present 
study as the framework to investigate ship 
hydrodynamics in restricted waterways. Special care 
should be taken to implement a suitable open 
boundary condition to satisfy Eq. (18). In numerical 
calculations, the computational domain is always 
truncated at a distance away from the ship hull. In 
general, waves will be reflected from the truncated 
boundaries and contaminate the flow in the 
computational domain. In the present study, a second-
order upwind difference scheme is applied on the free-
surface to obtain the time and spatial derivatives: 
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 (20) 

Here k refers to the panel number. According to 
Bunnik (1999) and Kim et al. (2005), Eq. (18) can be 
satisfied consequently by applying Eq. (20). It should 
be noted that a second-order upwind difference 
scheme is applied at each body-fixed frame locally. 
This is essential to deal with ships travelling towards 
opposite directions.  

For each individual velocity potential ϕj, the 
BVP is unsteady due to the time-dependent terms in 
Eq. (16). In previous studies on ship-to-ship 
interaction problem (Yeung, 1978; Yeung and Tan, 
1980; Xu et al., 2016), within the framework of 
potential-flow theory, the BVP was not solved in time 
domain as the free-surface condition was assumed to 
be rigid. It was solved independently at each 
individual time step. The unsteady effect was only 
considered in the pressure calculations in Eq. (27). The 
unsteady interaction forces calculated in these studies 
are not exactly ‘unsteady’, since the velocity potential 
at each time step is not time dependent. The velocity 
potential obtained at tn is not related to that obtained at 
tn-1, and it will also not determine that at tn+1. In the 
present study, the unsteady BVP will be solved in time 
domain by an iteration scheme. The essential steps are: 

1. Determine the initial condition. We assume 
that at the initial stage of ship-to-ship 
operation, the moving ships are sufficiently 
far apart so that their interactions are 
negligible. Thus, the time dependent terms 
are removed from the free-surface condition 
in Eq. (16), and we have 

          (21) 

Here (��
�)∗ is the time-independent velocity 

potential at the time step k. The 

computational domain and the corresponding 

panel distribution at each time step k can be 

constructed and the steady BVP in Eqs. (13) 

to (15), (21), (17) and (18) can be solved 

straightforwardly by using the Rankine 

source panel method. The time-independent 

velocity potential (��
�)∗ can be obtained, 

which will be used as the initial guess to 

calculate the time derivatives of unsteady 

velocity potential ��
� in Eq. (22). 

 

2. By applying the second-order backward 
difference scheme, the time derivatives in Eq. 
(16) can be calculated according to the 
following formulas 

 (22) 

3. Substituting Eq. (22) into Eq. (16), the 
following time-domain free-surface 
condition can be obtained 

 (23) 

Solving the unsteady BVP in Eqs. (13) to (15)

, (23), (17) and (18), we can obtain the 

unsteady velocity potential ��
�. Residual 

errors of time derivatives of �(��
�)∗ − ��

�� 

can be evaluated. If �(��
�)∗ − ��

�� < �, the 

iteration stops and ��
� will be used to 

calculated the pressure and wave elevation. 

Otherwise, (��
�)∗ in Eq. (22) will be replaced 

by the newly obtained ��
�, and the iteration 

continues until �(��
�)∗ − ��

�� < �. It is 

known that the iterative scheme has 

advantages of high accuracy and good 

numerical stability. 

Once the unknown potential ϕj is solved on the 
plane z = 0 and on the body Bj, the unsteady pressure 
components under its individual coordinate system 
can be obtained from linearized Bernoulli’s equation 
using numerical differentiation: 

 ,  j = 1, 2, …, N 

 (24) 

We should point out that because of the first 
unsteady term in Eq. (24), the total pressure p in 
coordinate system �� cannot be expressed directly as 

the sum of all the pressure components in their local 
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frames. To transfer the pressure from coordinate 
system �� to ��, the following relation needs to be 

observed 

, i, j = 1, 2,…, 

N (25) 

It should be noted that the partial derivative 
symbol of the first term in Eq. (24) is retained to make 
it consistent with Eq. (12) where the potential is 
expressed in the body-fixed coordinate system ��. But 

here the body-fixed coordinate system �� turns out to 

be in the reference frame for the other body-fixed 
coordinate system ��. Hence, �∅�/��	is actually 

calculated as a total derivative by using Eq. (25). The 
unsteady pressure in coordinate system �� ( i = 1, 2, 
…, N, i ≠ j ) can then be ‘transferred’ to �� as: 

 

 (26) 

Note the subtle differences between Eq. (24) and 
(26). The total pressure p in coordinate system �� can 

be written as 

 , i, j = 1, 

2, …, N   (27) 

Integrating the pressure over the hull surface, we 
can express the forces (or moments) on the i-th hull 
induced by the j-th ship as: 
 

, j = 1, 2, …, N                 (28) 

where k = 1, 2, …, 6, representing the force in surge, 
sway, heave, roll, pitch and yaw directions, and 

                     (29) 

The free-surface elevation can be obtained from 
dynamic free-surface boundary condition in Eq. (7). 
Similar to the pressure expression, the unsteady wave 

elevation in coordinate system �� ( i = 1, 2, …, N, i ≠ j 
) can be transferred to �� as: 

, i, j = 1, 2, …, N (30) 

The total wave elevation in coordinate system �� 

can be written as  

, i, j = 1, 2,…, N (31) 

We note that we have not imposed a Kutta 
condition at the stern, as a first approximation, or 
equivalently, the stern is pointed. 
 
VALIDATIONS OF NUMERICAL MODEL 
 

The convergence study is carried out on two identical 
Wigley III hulls in head-on encounter. We calculate 
the lateral force and wave elevation to exam the 
convergence of the superposition method with 
different time steps (Δt). The panel size to ship length 
ratio at each Froude number is fixed at Δx/L=1/κ. The 
time then can be non-dimensionalized by  
 

                   (32) 

 
 

 

 
 

 
 
Figure 3: Convergence study on two identical Wigley 
III hulls (Journee, 1992) in head-on encounter with 
dt/B=2, dt being the lateral separation between two 
ships (a) Sway force; (b) wave profile at the center line 
between two ships at the moment of side-by-side 
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configuration (dl=0). The black, red and blue cures 
correspond to Fn=0.1, 0.2 and 0.3 respectively. CY and 

Cζ is non-dimensionalized by 
�

�
���|����| and by 

2�|����|/� respectively. 
 

In the present study, κ=60 was found adequate to 
obtain a convergent result. The results shown above in 
Figure 3 confirm the convergence of the present 
superposition method by reducing the time-stepping. 
It should be noted that the convergence becomes 
slower as the encounter speed increases. 

 

Model-test data on ship-to-ship interaction with 
different speeds as a parameter is rather rare. To run 
the tests, an auxiliary carriage must be installed, in 
addition to the main tow carriage. Therefore, the 
encountering tests were not included in Oltmann 
(1970). In the present study, as another check, the 
benchmark data published by Vantorre, et al. (2002) is 
used to validate the numerical results of encountering 
cases. Two ship models with scale factor 1/75 are used 
for encountering or overtaking tests (referred as Model 
D and Model E). The main particulars of Model D 
(j=2) and Model E (j=1) in model scale can be found 
in Table 1. In the model test, Model E was towed by 
the main carriage along the center line (y = 0) of the 
tank, while Model D was towed by an auxiliary 
carriage. The transverse separation is dt = BD + 0.5BE 
and the water depth d is 0.248m.  

Table 1: Main particulars of Model D and Model E in 
Vantorre et al (2002). 

 Model E (j=1) Model D (j=2) 

Length (m) LE = 3.824 LD  = 3.864 

Breadth (m) BE = 0.624 BD = 0.55 

Draft (m) TE  = 0.207 TD = 0.18 

Block coefficient  CBE = 0.816 CBD = 0.588 

 

 
Figure 4: Panel distribution on partial computational 
domain. There are 9,950 panels distributed on the 
entire computational domain: 1,900 on the wetted 
body surface of Model E, and 2,170 on the wetted 
body surface of Model D, 5,880 on the free-surface. 
The free-surface is truncated at 2LE upstream and 2LE 
downstream with regard to the body-fixed frame on 
Model E. 

 
Figure 4 shows the mesh distribution on the 

partial computational domain when Model E 
encounters Model D. It should be noted that the side 
walls of the tank are not modeled.  In order to reduce 
the panel number, the free surface is truncated at 
0.27LE and 0.42LE laterally with regard to Model D 
and Model E respectively. In calm water test, it has 
been proved by Yuan and Incecik (2016b) that the side 
wall effects are negligible at dsb / L > 0.25 and Fn < 
0.25. It should also be noted that in the encountering 
simulation, the longitudinal separation dl is measured 
in body-fixed frame on Model E. The longitudinal 
separation between two ships at the moment shown in 
Figure 4 has a positive sign. The time step ∆t in the 
numerical calculation is 0.18s. The numerical results, 
as well as the experimental measurements, are shown 
in Figure 5.  

Figure 5 shows the interaction forces on Model 
E at Fn=0.039 encountered by Model D at Fn=0.078. 
These two case studies aim to validate the feasibility 
of the present superposition method in simulating the 
ships moving in opposite directions. In this validation 
case, the forces on both ships are calculated 
numerically. However, only the forces on Model E, 
which was towed by the main carriage, were measured 
in model tests. Generally, the agreement between 
present potential-flow solver (MHydro) and 
experimental measurement is very good. It indicates 
the potential flow method is applicable for predicting 
the hydrodynamic interactions between two ships with 
different speeds.  

It is observed from Figure 5a that the resistance 
(F1) is overestimated by the present potential-flow 
solver, even though the viscous effect is not taken into 
account. It indicates the hydrodynamic interaction 
force plays a dominant role in total resistance, and the 
frictional component due to the viscosity is negligible. 
The negative values shown in Figure 5a represent the 
resistance that is opposite to the moving direction, 
while the positive values represent a thrust which is 
the same as the moving direction. An interesting 
finding is that a very large thrust force is observed at 
dl / LE = -0.5 during the encountering maneuvering. 
Physically it can be explained that before encountering 
(0 < dl / LE < 1), the presence of the other moving 
vessel stops the water from spreading evenly into the 
surrounding field. As a result, the pressure distributed 
over ship bow increases. At the same time, the 
pressure distributed over ship stern retains the same 
level. An increased resistance is expected by pressure 
integral. After encountering (-1 < dl / LE < 0), the high 
pressure area transfers to the ship stern, which will 
correspondingly lead to a propulsive force.  

During the encountering process, the symmetry 
of the flow with respect to the starboard and the port 
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side is violated by the presence of the other vessel. The 
maximum asymmetric flow is observed when the 
midships of the two ships are aligned (dl / LE ≈ 0), and 
the suction force reaches its peak value (see Figure 
5b). The pressure distribution is not only asymmetric 
with respect to port and starboard, but also with respect 
to the bow and the stern. Consequently, a yaw moment 
will be induced, as shown in Figure 5c. Generally, 
there are four peaks of yaw moment during passing 
and encountering maneuvering, which appear at dl / LE 
≈ -0.6, dl / LE ≈ -0.1, dl / LE ≈ 0.4 and dl / LE ≈ 0.9. 
Based on these peaks, some empirical formulas were 
established to model the interaction moment (Vantorre 
et al., 2002; Varyani et al., 2002; Lataire et al., 2012). 
However, as the number of the peaks is not 
predictable, the applicability of such empirical 
formulas is limited. It should be noted that in ship-
bank and ship-lock problem, the potential flow method 
fails to predict the sign of the yaw moment because of 
the weak lifting  force caused by cross-flow effects at 
the  stern 

 

 
 

 
 

 
Figure 5: (a) The resistance, (b) the sway force and (c) 
the yaw moment on Model E (j=1) at Fn=0.039 
encountered by Model D (j=2) at Fn =0.078. The 
positive dl values denote that Model D is in the 
upstream side of Model E. As Model D moves to the 

downstream side, dl becomes negative. EFD results are 
published by Vantorre et al. (2002). 
 

(Yuan, Yu, and Incecik, 2016a). However, in ship-to-
ship problem, the hydrodynamic interaction is much 
more important than the cross-flow effects 

 
DISCUSSIONS ON FREE-SURFACE EFFECTS 
 

The predictions of the yaw moment by a potential-
flow solver are therefore reliable. After the 
aforementioned validations against physical model 
tests, the present superposition method was extended 
to investigate the free-surface effects. Here, we study 
the interactions between two identical Wigley III hulls 
in head-on encounter. The geometry of the hull can be 
found in Journee (1992).   
Figure 6 shows the panels distributed on the partial 
computational domain. The panel number per ship 
length κ=60. Δt=2t’ is applied in all of the numerical 
simulations reported below. We computed the 
interaction forces in 6DoF (6 Degrees of Freedom), as 
well as the total wave elevation. 
 

 
 
Figure 6: Panel distribution on the computational 
domain of two identical Wigley III hulls in head-on 
encounter with Fn=0.3, dt/B=2, and dl/L=1. There are 
17,760 panels distributed on the entire computational 
domain: 600 on the wetted body surface of each hull 
and 16,560 on the free-surface. The computational 
domain is truncated at 2L upstream, 2L downstream 
and 0.5L laterally with regard to the body-fixed 
reference frame.  
 
 

Figure 7 shows the results of the lateral (sway) 
forces on two identical Wigley III hulls in head-on 
encounter with dt/B=2. Here we compare the results 
obtained by using three different methods. In the first 
method, the encountering problem is treated as a 
"steady problem," with the steady linearized free-
surface condition applied. Mathematically, in the 
pressure calculation, the first term in Eq. (27) is not 
used. Meanwhile, the first two time-dependent terms 
in Eq. (16) are also not taken into account.  It has been 
found to be an efficient method to deal  with the   
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Figure 7: Sway force acting on two identical Wigley 
III hulls in head-on encounter with dt/B=2. (a) Fn=0.1; 
(b) Fn=0.2; (c) Fn=0.3. dl/L=0 corresponds to the 
moment t=ts, when the midships of the two ships are 
aligned. dl/L>0 corresponds to t<ts, dl/L<0 corresponds 

to t>ts. CY is non-dimensionalized by 
�

�
���|����|. 

LFC indicates that the linearized free-surface 
condition is used; RFC indicates that the rigid-wall 
free-surface condition is used. 
 

 
steady-state type problems, e.g., interactions between 
two ships travelling with the same speed (Yuan et al., 
2015), or between the hulls of a catamaran or trimaran 
(Shahjada Tarafder and Suzuki, 2007). In the second 
method, the encountering is treated as a full unsteady 
problem, while the rigid condition is applied on the 
free surface.  Mathematically, the free-surface 
condition in Eq. (16) is replaced by an impermeable 
boundary condition. The BVP therefore is solved as a 
steady problem with no memory effects. The only 
unsteady effects are reflected by the time-derivative 

term in Eq. (27). Nearly all the published studies on 
the ship-to-ship problem are based on this partially 
unsteady (Yeung, 1978; Korsmeyer et al., 1993; Zhou 
et al., 2012; Xu et al., 2016). The advantage of this 
rigid-free-surface method is obvious. As an imaging 
technique can be applied on the free surface, it does 
not require panels to be distributed on the free surface. 
It significantly reduces the panel number, herein 
reducing the calculation time to solve the BVP. 
However, this method is only applicable when the 
speed of the ships is low. The third method proposed 
by the present study takes all the unsteady effects into 
account. The time derivatives in both Eq. (16) and Eq. 
(27) are considered. The BVP is solved in the time 
domain by using an iteration scheme. The advantage 
of this fully unsteady method is that it can predict the 
hydrodynamic interaction induced by the ship-
generated waves. But the panels must be distributed on 
the free-surface, which not only increases the total 
mesh number, but only add difficulties to construct the 
computational domain at each time step. To deal with 
this issue, we developed a dynamic meshing technique 
to generate the mesh automatically at each time step. 
With regard to the computational time, the third 
method takes longer than the other two methods. But 
within the framework of potential-flow theory, the 
computational time is still very satisfactory. Most of 
the computational efforts are spent on generating the 
so-called coefficient matrix (Hess and Smith, 1964) 
Even though it involves time iteration, the coefficient 
matrix retains unchanged. The time scale to solve the 
unsteady BVP for each time step is few minutes. 

The results shown in Figure 7 clearly 
demonstrate the effects of unsteady pressure and 
unsteady free surface. Here, we note that the unsteady 
pressure term in Eq. (27) is very important at all the 
range of encountering speeds, while the free-surface 
effect is only important when the encounter speed is 
moderate or high. Ignoring the unsteady pressure term 
in Eq. (27) will lead to mis-estimation of the 
interaction force. At Fn = 0.1, the free-surface 
elevation and hydrodynamic interaction are mainly 
determined by the near-field (non-wave-like) 
disturbances. The rigid free-surface condition (RFC) 
is adequate to predict the interaction forces, as shown 
in Figure 7a. As the Froude number increases to Fn 

=0.2, the far-field waves become manifest, and the 
interaction force oscillates correspondingly, as shown 
in Figure 7b. However, at Fn =0.2, the interaction is 
still dominated by the near-field disturbance. The 
contribution of the force induced by far-field waves is 
smaller than that induced by the near-field 
disturbance. The fluctuations due to the far-field 
waves will not deviate from the near-field induced 
forces. The interaction force predicted by rigid free-
surface condition is symmetric with respect to dl/L=0. 

-0.1

-0.05

0

0.05

0.1

0.15

-2 -1 0 1 2

C
Y

dl/L

Unsteady +
LFC

Unsteady +
RFC

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-2 -1 0 1 2

C
Y

dl/L
λ/L 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-2 -1 0 1 2

C
Y

dl/L

Attraction 
  

Repulsion  

(a) 

(b) 

(c) 



- 10 - 

 

But this symmetry property is altered by the presence 
of the far-field waves. As the far-field waves could not 
propagate ahead of the ship, the free-surface effect 
cannot be observed before the encountering taken 
place (dl/L>1). As the encountering ships are 
maneuvering to each other’s wake region, the free-
surface effect can then be observed, and some wave-
induced fluctuations can be observed at dl/L<1 
correspondingly. These fluctuations will not disappear 
(but the amplitude will decrease) after the 
encountering operation. The relationship between the 
near- and far-field induced force is very similar to that 
between low- and wave-frequency surge or sway 
motions of a floating structure in irregular waves 
(Yuan et al., 2014a). The free-surface effect becomes 
even more significant at Fn = 0.3. The force amplitude 
induced by the far-field waves is larger than that 
induced by the near-field disturbance, as shown in 
Figure 7c. There are only three peaks induced by near-
field disturbance. However, the peaks altered by the 
far-field waves are unpredictable. Therefore, the 
empirical formulae based on low speed model 
(Vantorre et al., 2002; Varyani et al., 2002; Lataire et 
al., 2012) are not applicable to predict the interaction 
forces when the wave effects become important. It can 
be concluded that the free-surface effects must be 
taken into account at Fn > 0.2.  

 
Figure 8 and Figure 9 show the effect of 

encountering speed and lateral separation on the 
interaction forces in 6 DoF. When the lateral clearance 
between two ships is small (dt/B=2), both near-field 
and far-field disturbance can be observed. However, 
only the far-field wave disturbance can be observed at 
high speed encountering when the lateral clearance 
becomes large (dt/B=10). In a practical maneuvering 
operation, a large lateral clearance encountering is 
more likely to occur. Due to the free-surface waves, 
the unsteady interactive forces will affect the 
maneuverability of a ship in the confined waterways.  

 

 

 
 

 

  
 

 
 

 
 

 
 

 

Figure 8: Forces and moments acting on two identical 
Wigley III hulls in head-on encounter with dt/B=2. (a) 
Surge force; (b) sway force; (c) heave force; (d) roll 
moment; (e) pitch moment; (f) yaw moment. Forces 

are non-dimensionalized by 
�

�
���|����| and 

moments are non-dimensionalized by 
�

�
����|����|. 
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Figure 9: Forces and moments acting on two identical 
Wigley III hulls in head-on encounter with dt/B=10. 
(a) Surge force; (b) sway force; (c) heave force; (d) roll 
moment; (e) pitch moment; (f) yaw moment.  

 
Figure 10 shows the wave profile at the moment 

when the midships of two Wigley hulls are aligned. 
The ‘Steady’ indicates the first two terms in Eq. (16) 
are ignored, while ‘Unsteady’ indicates the BVP is 
solved fully in the time domain by using an iteration 
scheme. At low Froude number Fn=0.1, the unsteady 
effect on free-surface condition is not essential. As the 
wave elevation is dominant by the near-field 
disturbance, the wave-like fluctuations can hardly be 
observed at low forward speed. At moderate Froude 
number, the unsteady effect becomes manifest, 
especially at the gap between two aligned ships (-
0.5<x/L>0.5). as the Froude number increases to 
Fn=0.3, the difference between ‘Steady’ and 
‘Unsteady’ can be observed in a wider range of x/L, 
especially at the bow (x/L=0.5) and stern (x/L=-0.5) 
areas. Figure 11 shows the wave elevation 
components obtained by the present superposition 
principle. It should be noted that the total wave 
elevation presented in Figure 11c is not the simple 
superposition of the waves produced by two individual 
hulls moving towards opposite direction. When we 
calculate the wave elevation produced by B1, the 

presence of B2 is also considered, treated as an 

obstacle, by being momentarily stationary in the body-
fixed frame of B1. Therefore, the diffraction and 

reflection by B2 is considered in the present study. 

These reflected waves can be seen clearly from Figure 
11a and b. 
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Figure 10: Wave profiles at the center line between 
two identical Wigley III hulls in head-on encounter 
with dt/B=2, dl/L =0 and Fn=0.3. The black, red and 
blue curves correspond to Fn=0.1, 0.2 and 0.3 
respectively. 
 
 
 
 
 

 
Figure 11: Waves produced by two Wigley III hulls in head-on encounter with dt/B=2, dl=0 and Fn=0.3. (a) Cζ1, 
the waves produced by B1 moving at Fn=0.3 while B2 is momentarily stationary in the body-fixed frame of B1; (b) 

Cζ2, the waves produced by B2 moving at U2 while B1 is momentarily stationary in the body-fixed frame of B2; 

(c) Cζ, the total waves superposing Cζ1 and Cζ2; (d) Wave profile at the centre line between two hulls shown in 
(a), (b) and (c). x in the abscissa of (d) refers to the midship-to-midship distance between the left-moving ship 
and the encountered ship. 
 
CONCLUSIONS 
 

A linearized free-surface boundary condition was used 
to solve the BVP involved in multiple bodies 
travelling with various speeds. Based on superposition 
principal, the traditional coupled BVP could be 
decoupled into N (assuming there are N bodies) sets of 
independent unsteady BVPs, which can be solved 
individually in the ime domain. The advantage of this 
decoupled method is that the free-surface boundary 
condition can be taken into consideration for each set 
of the independent BVPs. Thus, the unsteady 
hydrodynamic interaction problem can be solved in a 
fully unsteady manner, and the far-field wave effect 
can be accounted for fully.  

The present formulation provides an effective 
way to predict the free-surface effects, with particular 
application for calculating the lateral interaction force 
on arbitrary number of ships, each with its own speed. 
By integrating the present superposition method into a 

Rankine source (simple-source) panel code, we 
calculated the unsteady hydrodynamic interaction 
forces and wave elevation when two ships were under 
passing, overtaking and encountering operations. 
Experimental measurements confirm the applicability 
of the present approach. Numerical results indicate the 
near-field disturbances are the most important 
component of the interaction force when the 
encountering speed is low. As the encountering speed 
increases, the interaction force induced by the far-field 
waves becomes manifest gradually. It was found the 
free-surface effects must be considered at Fn > 0.2 for 
slender ships. For blunt-body ships, the lower limit of 
Froude number is smaller.  When the encountering 
speed reaches Fn = 0.3, the free-surface effect becomes 
the dominant component. The interaction force 
induced by the divergent waves could reach a very 
large value, which may cause ship accidents, such as 
grounding, capsizing or collisions. By increasing the 
separation distance between encountering ships could 
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reduce the interaction amplitude, but not significantly. 
At high encountering speed, the free-surface must be 
taken into account even though the lateral separation 
between ships is large. 

The superposition method proposed in the present 
study is not limited to solving the unsteady interaction 
problem between ships. It can also be applied to 
predict the hydrodynamic interactions between 
competitive swimmers in a swimming pool, or 
between aquatic animals swimming near the free 
surface. The present approach provides a rational and 
rapid (real-time level) tool for analyzing and 
computing interaction effects, without going through a 
lengthy detailed CFD type computations, which would 
be prohibitively slow (e.g., Zou and Larsson (2013a)) 
and have yet reached a state to effectively model 
unsteady multi-body interaction. 
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