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Abstract. Since earthquake dynamic response analysis of large and complex structures are
computationally time demanding, efficient methods that can reduce the system order are of high
interest. In this sense, there are different methods available, which try to provide a proper equiv-
alent model. However, in the presence of nonlinearities in the structural elements, most of those
methods are ruled out due to their linear assumptions. Therefore, this contribution aims at pro-
viding an efficient strategy, which can reduce the order of the nonlinear structural model while
retaining important structural characteristics for further earthquake dynamic response analy-
sis. The model order reduction (MOR) strategy is developed based on the proper orthogonal
decomposition (POD) method to derive a set of nonlinear deterministic POD modes according
to the information of the response history (snapshots) of the full order structure under one or a
set of representative earthquake excitations. Subsequently, the POD modes are utilized to create
the reduced-order models of the structure subjected to different earthquake excitations. Then,
the reduced order models need substantially less amount of computational time in compari-
son to the full order models. This study presents the application results of the introduced new
strategy to a realistic building structure, which is base-isolated by means of frictional bearing
elements for better seismic performance. The results demonstrate accurate approximations of
the physical (full) responses by means of this new MOR strategy if the probable behavior of the
structure has already been captured in the POD snapshots.
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1 INTRODUCTION

The evaluation of the response history of a structure in the time domain is one of the main
topics in earthquake engineering and structural dynamics. Often it is common practice to create
simple structural models, e.g. multistory shear frames, which should be able to describe the
structural behavior and peculiarities of the real structure. This approach leads to useful results
for the investigation of rather simple and uniform structures in order to draw meaningful engi-
neering decisions regarding structural resistance. On the contrary, the analysis of complicated
systems can require the application of nonlinear high-order systems, as a characterization by
a low dimensional structural model could lead to an oversimplification, i.e. important motion
patterns could be ignored. Therefore, an effective strategy is to obtain a set of a low number of
“important” equations of motion that approximates the high-dimensional nonlinear dynamical
system as accurately as possible, that is, model order reduction (MOR).

The solution of the nonlinear set of equations of motion in the time domain is realized by
numerical algorithms, which require computational effort if the number of DOF is high. Even
the response calculation of linear systems can be expensive, as a factorization of the stiffness
matrix is necessary to solve the eigenvalue problem and calculate the natural modes of vibration.

An alternative is to replace a high-dimensional nonlinear set of equations of motion by a
reduced set, providing the main dynamic behavior of the system to reach the required level of
accuracy. MOR methods are used in many fields of research, where high-dimensional systems
are dealt. Some review papers of MOR, especially for structural dynamic applications, are
presented by Rega and Troga [3] and Koutsovasilis and Beitelschmidt [4] as well as the books
of Qu [2] and Schilders et al. [5]. The classical but also effective method of modal truncation
is well-known in the field of earthquake engineering, which is however mainly applicable to
linear systems.

This paper concentrates on a new MOR strategy based on the proper orthogonal decompo-
sition (POD) method. The POD provides a low dimensional uncorrelated description (basis
vectors), by which a high-dimensional correlated process, e.g. structural response, is spanned.
Firstly, it was used as a statistical formulation in the papers of Kosambi [6], Karhunen [7] and
Loeve [8]. Following this mathematical basis of the POD, which is also known as Karhunen-
Loeve Decomposition and Principal Component Analysis, was applied in many fields of re-
search, including turbulence and coherent structures, wind engineering, image processing and
structural dynamics.

The first paper regarding the field of structural dynamics was written by Cusumano et al.
[9] in the early 1990’s, who presented an experimental study of dimensionality in an elastic
impact oscillator. In the papers [10] and [11] of Feeny and Kappagantu a relation of the proper
orthogonal modes to normal modes of vibration is investigated. Then they used the POD as
they so call optimal modal reduction and exploit the benefits of the application of these modes
in comparison to the linear natural modes. Furthermore, Kappagantu and Feeny investigated
in [12] and [13] the dynamics of an experimental frictionally excited beam and they verified
that the proper orthogonal modes are efficient in capturing the dynamics of the system. Liang
et. al. [14] discuss the realizations of the POD, i.e. Karhunen-Loeve Decomposition, principal
component analysis and singular value decomposition and compare these three methods. Ker-
schen and Golivani [15] analyze the physical interpretation of the POD modes and its relation to
the singular value decomposition and in [16] they investigated POD based on auto-associative
neural networks.

The necessity to describe a high dimensional set by a small set of equations of motion, i.e.
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MOR, has aroused interests mainly in the last two decades in the field of earthquake engineer-
ing, some papers related to this issue are e.g. [27] and [28]. More specified to the related issue
Tubino et. al. [17] investigated the seismic ground motion of the support points of a structure
and denominate the POD as a very efficient tool to simulate multi-variate processes. Bucher
[32] examined the stabilization of explicit time integration methods for analysis of nonlinear
structural dynamics by modal reduction. Gutierrez and Zaldivar investigated in [30] how to
handle the stability problem of explicit time integration by modal truncation methods more re-
lated to problems in earthquake engineering and structural dynamics and following in [29], they
applied the Karhunen-Loeve Decomposition, which is formally identical to the POD analysis,
to capture the essential characteristics of nonlinear systems and provide experimental examples
conducted on a shaker table. Bamer and Bucher [18] developed a MOR strategy applying the
POD method for transient excited structures resting on one-dimensional friction elements. This
study presented a powerful combination of the POD and explicit time integration schemes.

The current work investigates the extension of the POD-based MOR strategy, which is ap-
plicable to nonlinear systems in contrast to the method of modal truncation. The new strategy
pursues the following objective: a low number of deterministic nonlinear modes (i.e. set of
POD modes) is determined that defines a representative characterization of the structural be-
havior. Therefore, due to the information content of the full or a part of the time response of
the structure to one representative excitation a set of deterministic modes, i.e. POD modes, is
evaluated. Subsequently, this set of modes is utilized to project the equations of motion of a
structure under different earthquake excitations onto POD coordinates and following an order
truncation is performed in a similar manner as the application of modal truncation to linear
systems.

It is attached importance to demonstrate this new strategy and its advantages on a practical
application. The method is applied to the dynamic model of a realistic building structure. The
building is erected on friction pendulum bearings for the sake of seismic isolation to minimize
the transferred acceleration to the building during an earthquake. A three-dimensional dynamic
model of the base isolated structure is derived by implementing the finite element model of the
structure and the bi-directional friction pendulum systems. The subsequent section deals with
the nonlinear dynamic model of the base-isolated structure. Following, the new POD-based
MOR strategy and the example of its practical application is provided. Finally, the discussion
on the results and conclusions are given.

2 Nonlinear model order reduction

The n-dimensional set of equations of motion of a structure with nonlinear material behavior
excited by horizontal components of ground acceleration is expressed as (cf. Chopra [20])

Mẍ + Cẋ + R(x) = −M (fxẍg + fyÿg) , (1)

where M and C are mass- and damping square matrices of order n and R(x) is the nonlinear
internal restoring force vector dependent on the displacement x with the dimension n × 1.
The right hand side of the set of equations of motion describes the earthquake excitation term,
while ẍg and ÿg denote the ground acceleration in x- and y-direction and fj, (j = x, y) are the
influence vectors in the corresponding direction. It is

fx(xi) = 1 , fy(yi) = 1 , i = 1...n , (2)

at the global x and y degrees of freedom of all nodes, whereas the other components of fx and
fy are zero. Thus, i describes the number of nodes of the FE discretized structure. This general
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approach indicates that in this paper the ground acceleration in the corresponding direction, i.e.
x-, y- or z-direction, is equal in all structural support points. In the following equations the term
on the right hand side of the set of equations of motion (1) is denominated by F(t), which has
the unit of a force.

Nonlinear systems, as they are depicted in Equation (1), have generally to be solved by the
application of a numerical algorithm, that is, a step by step procedure in the time domain in
order to obtain the response of the structure as a function of time. The necessity of application
of a numerical method inevitably leads to the existence of computational effort if n is a large
number. Therefore, the approximation by a low, dimensional description of the system seems
to be useful, i.e. the application of MOR.

The main goal of MOR techniques is primarily to define a transformation matrix T ∈
Rn×m, m � n to approximate the displacement vector x ∈ Rn through a reduced coordi-
nate vector qr ∈ Rm by the relation (cf. Koutsovasilis and Beitelschmidt [19])

x = Tqr , (3)

such that the dynamic properties of the system are preserved and the error is small. The notation
of the variable m ∈ N is the dimension of the reduced subspace.

The projection of the nonlinear system defined by Equation (1) onto that subspace leads to
another second-order ordinary differential equation (cf. Koutsovasilis and Beitelschmidt [19])

mrq̈r + crq̇r + r = fr , (4)

where mr = TTMT, cr = TTCT ∈ Rm×m are mass- and damping matrix and fr =
TTF(t) ∈ Rm×1 is the force vector in the reduced subspace. It should be noted that the re-
duced system matrices mr and cr are generally not diagonal. The vector of the restoring forces
in the reduced subspace is

r = TTR(x) = TTR(Tqr) . (5)

Consequently, one necessity of nonlinear MOR is the evaluation of the vector of the restoring
forces in the physical (full) coordinate at every time step.

3 The proper orthogonal decomposition and nonlinear modes

Modal truncation is a widely-used tool and an effective method for order reduction of linear
systems in the field of earthquake engineering. An accurate approximation of the response
history is achieved by applying a small number of lower structural modes proportional to the
number of degrees of freedom. In this work, the objective is to find a new strategy that is
applicable to nonlinear systems in a similar manner to modal truncation. The approach is to
define a set of deterministic modes that can be evaluated from the information of an existing
response history of the structure. Consequently, this set of modes contains nonlinear motion
patterns if the structure shows nonlinear response behavior to the excitation.

The proposed strategy is established based on the theory of the POD method. Generally, the
POD ([2], , [14], [21], [22], [23], [24]) is a straightforward approach to obtain a low-dimensional
uncorrelated process from a correlated high dimensional or even infinite-dimensional process.
Holmes et al. [24] examined the theoretical background of the POD and its properties pro-
foundly. In the following, the mathematical basics of the POD are discussed shortly, but as the
paper is more targeted to the strategic approach in earthquake engineering, the dealing of the
mathematical background and the numerical problems are limited to an essential minimum.
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The aim of the POD is to find a set of ordered orthonormal basis vectors in a subspace so
that samples in a sample space are expanded in terms of l basis vectors in an optimal form. This
means that the POD is able to find an orthonormal basis, which describes an observation vector
in a subspace better than any other orthonormal basis can do. A measure for this problem is the
mean square error (cf. Qu [2])

E
{
‖x− x(l)‖2

}
≤ E

{
‖x− x̂(l)‖2

}
, (6)

where x ∈ Rn×1 is the random vector, x(l) is the approximation of this random vector in an
l-dimensional POD subspace and x̂(l) is the approximation of the random vector by any other
possible orthonormal basis. Therefore, the random vector can be expressed as (cf. Qu [2])

x = Φpqp , Φp = [ϕp,1, ϕp,2, ..., ϕp,s] and qp = [qp,1, qp,2, ..., qp,s] , (7)

where ϕp,i are the POD modes and qp,i denote the coordinates in the POD subspace and s
is the number of realizations of the random vector (also called snapshots). This leads to an
optimization problem with the following objective function (cf. Qu [2])

ε2(l, t) = E
{
‖x− x(l)‖2

}
→ min (8)

subject to the orthonormality condition (cf. Qu [2])

ϕT
p,iϕp,j = δij (i, j = 1, 2, ..., s) . (9)

The transformation into the l-dimensional POD subspace is a truncation of the first l lower POD
modes (cf. Qu [2])

x(l) ≈ Φpqp , Φp = [ϕp,1, ϕp,2, ..., ϕp,l] , l < s� n . (10)

In structural dynamics, systems are discretized in space and time and the random vector is
realized by s observations at different time instances (cf. Han and Feeny [25])

Xs = [xt1 ,xt2 , ...,xts ] =

 x1(t1) · · · x1(ts)
· · · · · · · · ·
xn(t1) · · · xn(ts)

 . (11)

These observation vectors xti are called snapshots and, therefore, in the literature often the
observation matrix Xs is called snapshot matrix containing s snapshots (observations). xti can
be measurements or solution vectors of a dynamical system at different time instances ([21]).
If µ is the expectation of all observations, then the sample covariance matrix Σs of this random
vector, which is realized by the observation matrix, is defined by (cf. Kerschen et. al. [26])

Σs = E{(x− µ)T (x− µ)} . (12)

The POD modes and the POD values are defined by the eigensolution of the sample covariance
matrix. If the data have zero mean, the covariance matrix is (cf. Kerschen et al. [26])

Σs =
1

s
Xs

TXs (13)

and the POD is realized by the singular value deStructurescomposition (SVD) of the observation
matrix Xs. The POD modes ϕp,i are equal to the left singular vectors and the POD values λp,i to
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mode 1 mode 2 deformation state

Figure 1: Appropriate mode superposition

mode 1 mode 2 deformation state

Figure 2: Inappropriate mode superposition

the singular values of Xs, which are all real and positive and arranged in a rectangular diagonal
matrix in descending order. The energy, which is contained by the snapshot matrix, is defined
by the summation of the POD values, i.e. V =

∑s
i=0 λp,i. As a consequence, the energy ratio

of the ith POD mode is (cf. Kerschen et al. [26])

Vi =
λp,i∑s
i=0 λp,i

. (14)

In structural dynamics applications the sum of only a few POD values often captures 99.99
percent of the total energy included in the observation matrix, which reflects the big advantage
of the POD, i.e. the property of optimality with respect to energy in a least square sense.

Practically, nonlinear effects must be sufficiently captured in the snapshot matrix (11) de-
rived from the representative earthquake exciStructurestation. This is in order to create the
capability of providing the possible nonlinear responses that can appear in the response history
of the structure excited by another earthquake event. Consequently, nonlinear effects that are
not contained in the snapshot matrix, such as plastic hinges or nonlinear sliding of a friction iso-
lator cannot be displayed in the system response. This issue is depicted qualitatively in Figures
1 and 2. Two fictitious deformation states of a simple surrogate model are shown. Obviously,
the two deterministic modes in Figure 1 are sufficient in order to represent the deformation state
of the model. On the contrary, the set of deterministic modes is insufficient to represent the
deformation state in Figure 2 and, consequently, the existing set of modes must be expanded by
an additional mode in order to ensure a representation of the correct deformation state. Related
to this paper, the conclusion is to capture nonlinear structural reactions in the snapshot ma-
trix in order to provide accurate approximations of the structural response excited by different
earthquake events.

Structures

4 The new strategy

In this strategy, a snapshot matrix, which contains information about the response of the
structure including nonlinear actions, must be found. Therefore, the set of full-order equations
of motion of a structure is integrated numerically over the time history of the whole or a part
of a representative earthquake excitation and the snapshots are selected from a chosen amount
of response vectors, i.e. the displacement vectors at different time instances. Evaluation of the
snapshot matrix comprises the time-consuming part of this MOR approach, therefore, the most
customary and time-saving approach is to integrate over a small time window in the beginning
of a representative earthquake excitation. Nevertheless, in order to increase the probability of
recording sufficient linear and nonlinear response patterns, it seems to be reasonable to spread
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Figure 3: Approach of the new strategy

the snapshot records in equidistant time instances over the whole time history of the earthquake
response. Additionally, it is of highest advantage to evaluate the full solutions to more than one
earthquake event and spread the snapshots over all of the response histories. This procedure
increases the probability of capturing all necessary motion patterns in order to provide an accu-
rate representation by the reduced set of equations. Different earthquake excitations can affect
nonlinearities, such as plastic hinges, at different parts of the structure. However, the goal is to
define as much nonlinear effects as possible in order to be prepared to assemble an adequate
reduced order model of Structuresthe structure excited by new earthquake excitations.

The transformation matrix Φp, containing the POD modes is calculated from the snapshot
matrix by applying the SVD algorithm. Afterwards the transformation into the reduced sub-
space is performed in the same manner, if the classical method of modal truncation would be
applied to a linear system. The low-order set of equations of motion is then

M̃q̈P + C̃q̇P + R̃ = F̃ , (15)

where M̃ = ΦT
PMΦP and C̃ = ΦT

PCΦP are mass- and stiffness matrices and F̃ = ΦPF is
the excitation vector in the POD reduced subspace. The reduced vector of the inner restoring
forces R̃ is still dependent on the displacement in the physical coordinate x,

R̃ = ΦT
PR(ΦPqP) = ΦT

PR(x) . (16)

Consequently, the vector of the inner restoring forces R(x) has to be evaluated from the physical
model in the full-order coordinates in every calculation time step. Furthermore, the equations
of motion in the reduced-order set are not decoupled and have to be solved numerically. Finally,
after the time integration procedure is conducted, the solution vector qP dependent on time is
transformed back into the physical coordinate x. A visualization of this approach is depicted in
Figure 3.

The first remarkable advantage of this procedure is not only, as the matter of fact, the low-
dimensional matrix operations, but more importantly is the substantial numerical benefit when
applying an explicit time integration scheme such as the central difference method. The critical
time step ∆tcr, which is 2π

ωn
, is inversely proportional to the highest eigenfrequency ωn. Con-

sequently, for finely meshed structures a large number of loops has to be executed in order to
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perform the full time integration procedure to solve the equation of motion (1). On the contrary,
the critical time step of the POD reduced system described in equation (15) is much larger and,
therefore, the number of calculation time steps is much smaller, which requires a fraction of
computational effort compared to full-order system. These numerical issues are discussed in
a similar manner by Gutierrez and Zaldivar [30] applied to modal truncation. For the numeri-
cal benefit of the combination of the POD with explicit numeric time integration, the reader is
referred to Bamer and Bucher [18]. The second big advantage of the new strategy is that the
actual time consuming process, which is the evaluation of the snapshot matrix, is only executed
once at the beginning of the whole calculation procedure. This a priori assumption of nonlinear
mode patterns makes sense if the excitations show physical “similarities”, which is the case in
earthquake analysis, where a considerably small number of lower modes is mainly affected.

5 Practical application

In addition to dealing with the development of the introduced POD-based MOR approach,
it is within this section to represent the application of the new proposed MOR strategy on a
realistic example. For this purpose, a dynamic structural model of a medical complex, according
to its constructional plan, was derived. A schematic three-dimensional sketch of the building is
depicted in Figure 4.

Figure 4: Three-dimensional visualization of the building construction

As shown in Figure 4, the building structure exhibits complex geometries. As a result, it
seems to make sense to discretize the geometry by a finite element model in order to capture
the main dynamic specifications.
If such a structure with medical function is located in an earthquake prone region, one way to
improve its seismic performance can be realized through base isolation by means of frictional
pendulum bearings. Consequently, the analytical simulations demand large computational time
and storage due to the presence of nonlinearity imposed by those frictional isolators. In the
following, firstly, the structural system specifications and implementation of frictional bearings
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are presented. Then, the displacement responses to a set of six earthquake events are evaluated.
The numerical evaluations compare the new introduced strategy, as an alternative means, with
the iterative Newmark integration scheme, which is known as an efficient and exact method.

5.1 Structural system and model specifications

The building structure consists of three wings, referred to as wing I, II and III. Figure 5
shows a schematic sketch of the ground plan of the building containing the basic dimensions.
The floor slabs of each wing are separate from the others except for the basement slab, which
is indiscrete over all three wings. This means that all three wings are coupled through this slab
and they work all together during earthquake excitations. However, the distance between the
wings, which are connected by the basement slab, is about 1.5 meters, consequently, contact
problems induced by ground motion are not considered in the computations.
The grid indicates the location of the columns and the binding beams, and the red lines indicate
the location of the shear walls, which are responsible for the lateral reinforcement. The regular
distance between the columns is 6.5 [m]. The building structure has three stories below the
ground level, while the highest parts of the building above ground level have 13 stories and
the remaining parts have eight stories including the basement levels. Therefore, the plan of the
structure is irregular along its height along with the irregularities in the horizontal area. The
dashed lines define the area, where the building is only located below the ground. The height of
one story is three meters; this leads to a total construction height of 42 meters.

Below the three stories at the basement level, there is the indiscrete slab on the top of the
isolators at level of −9.00 [m]. Below this slab, along each of the columns, a single friction
pendulum (FP) bearing system is attached. Figure 6 depicts a part of the cross section A-A of
the basement level shown in Figure 5. The horizontal diameter of the FP system is 2.00 meter.
Thus, the dimension of the quadratic cross section of the columns in the basement and FP story
is 2.00× 2.00 [m2], while in the remaining stories the columns are modeled as quadratic cross
sections with the dimensions 0.40 × 0.40 [m2]. All FP bearings have the same radius of the
concave surface, which is equal to 3.00 meters.

A representative full-scale finite element model of the building structure was created in the
software package slangTNG [39]. The shear walls and slabs were modeled by shell/plate ele-
ments and the columns and beams by beam elements. A linear elastic material was considered
for the modeling purpose (Young’s modulus E = 3.5 · 1010 [ N

m2 ], Poisson’s ratio ν = 0.3 [−],
density ρ = 2500 [ kg

m3 ]). Nonlinear FP elements, whose implementation in slangTNG is pre-
sented in section 5.2, are assigned below the lowest basement plate of the structure. The total
number of degrees of freedom is 33000.

5.2 Dynamic model of the frictional pendulum element

This is to present how the frictional pendulum (FP) element in the finite element model
of the structure behaves. The geometrical diagram of the FP element, which is realized as
a spherical shell, is defined in Figure 7. As depicted, R denotes the radius of the concave
spherical surface and the origin of the local coordinate system is chosen to be in the center
of the sphere. The position vector of the slider is described by U = [u, v, w]T . Since the
desired behavior of the FP element is an in-plane elasto-plastic bidirectional action, the change
of the vertical position w can be neglected. Accordingly, the displacement of the FP element is
reduced to an in-plane motion defined only by the components u and v, i.e. U = [u, v]T . This
simplification makes sense as the radiusR is much larger relative to the horizontal displacement
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Figure 5: Schematic ground plan, building construction (units in meters), output node 1 [19.5, 0.0,−9.5]T [m]

Figure 6: A schematic cutout of the vertical section A-A of the basement levels presented in Figure 5 (units in
meters)
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|U| ≈
√
u2 + v2. The equivalent representation of such an element together with the acting

forces on it is represented in Figure 8.
The horizontal force equilibrium of the dynamical system is

FFr + Fk = Fex , (17)

where FFr and Fk are the elasto-plastic frictional- and centring force and Fex = [Fx, Fy]
T ac-

counts for the interacting horizontal force, which couples the FP element to the super structure.
Following, the force equilibrium is split into two parts as two dynamic situations can occur:
situation stick and situation slide. The force equilibrium during the situation stick yields to

Fex = k1

{
u
v

}
︸ ︷︷ ︸

Fk

+ k2

{
∆u
∆v

}
︸ ︷︷ ︸

FFr

if |Fex − Fk| < µN . (18)

This relation renders a linearly-elastic system, where the friction coefficient µ must be a value
between 0 and 1 (about 0.04 for a realistic implementation of the friction bearing) and the nor-
mal contact force N acts orthogonal to the contact area of the slider and the concave surface.
The vector ∆U = [∆u,∆v]T defines the radial distance with respect to the current sticking
point of the slider if the sticking condition is true.
During the situation slide the FP element is described by the following horizontal force equilib-
rium

Fex = k1

{
u
v

}
︸ ︷︷ ︸

Fk

+
µN

|U̇|

{
u̇
v̇

}
︸ ︷︷ ︸

FFr

if |Fex − Fk| ≥ µN , (19)

where U̇ = [u̇, v̇]T is the velocity vector.
In both relations, i.e. Eq. (18) and Eq. (19), the centring force |Fk| = k1r = k1

√
u2 + v2 acts

linearly orthogonal to the vertical axis through the deepest point of the surface and the center of
the sphere. The fact that the centring force is linear indicates that the spherical shell of the real
system is approximated by the paraboloid, whose potential energy increases with W

R
r in radial

distance from the deepest point, i.e. the stiffness is inversely proportional to the radius of the
sphere k1 = W

R
.

The frictional force FFr is modeled either linearly elastic or elastic-perfectly plastic as pre-
sented in Eqs. (18) and (19), respectively. Note that the force corresponding to ∆U accounts
for the elastic behavior of the bearing coating material, in a small elastic range (situation stick,
Eq. (18)) and acts towards the current location of the slider (not the center of the concave
sphere). Generally, the implementation of a realistic model requires k2 to be much larger than
k1, i.e. k2 � k1. During the situation slide, the frictional force acts in opposite direction to
the velocity with the magnitude (perfectly plastic) µN . This is discussed in Eq. (19). Another
point regarding Eq. (18) is that the reacting force N is assumed to be constant throughout the
calculation procedure. This is justified by the following reasons: Firstly, just x and y compo-
nents of the exciting ground motion are taken into account for the computations. Secondly, the
motion has already been simplified to be planar and therefore no additional force component
due to vertical motion is generated. Finally, in our preliminary analysis, the uplift force on the
isolator slap was observed to be extremely small in comparison with the downward force due
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U = (u,v ,w )x
y

z
R

Figure 7: Geometric definitions of the FP element

Fk

FFr

slider (contact unit)W

Fx

Fy

Figure 8: Internal specifications of the FP element; Fx,
Fy , N , recentering force Fk, friction force FFr

Event year location nt T d M PGA
Bam 2003 Iran 1995 19.95 - 6.6 7.16

Imperial Valley 1979 California / Huston Road 3905 39.05 10 6.5 4.79
Landers 1992 California / Barstow 4932 49.32 36 7.3 4.13

Loma Prieta 1989 California / Gilroy 2507 25.07 12 7.0 9.51
North Palm Springs 1986 California / Palm Springs 6009 60.09 6.7 6.0 9.99
Northridge Rinaldi 1994 California / Newhall 1200 12.00 6.7 6.7 5.23

Table 1: Earthquake excitation list; nt [−] number of time steps, T [s] duration of the record, d [km] distance from
epicenter, M moment magnitude, PGA [m/s2] peak ground acceleration

to the weight of the structure. Considering the above-mentioned fact together with the force
diagram given in in Figure 8, follows that the normal contact force N is approximately constant
and equal to the weight induced force of the super structure, W , i.e, N = W in Eq. (19).

The FP bearing element governed by Eqs. (17) to (19) has been implemented in the software
package slangTNG [39]. For a comparable study on this implemented friction pendulum sys-
tem, the experimental work of Mosqueda et al. [40] is suggested. For additional information
about friction pendulum systems the reader is referred to the relevant literature (e.g. [33], [34],
[35], [36], [37] and [38]). More detailed examination of this topic would lead beyond the scope
of this paper, which should focus more on the methodical extension of the new MOR strategy
as well as the application on a complex realistic system.

5.3 Numerical evaluation

The evaluation of the introduced MOR strategy is dealt with displacement response cal-
culations of the building structure to six different earthquake excitations. The earthquake
records are applied in fault-parallel and fault-normal directions. The excitation set includes the
Bam earthquake (2003) in Iran and the following five representative events in California, US:
Northridge Rinaldi (1994), Imperial Valley (1979), Landers (1992), Loma Prieta (1989), North
Palm Springs (1986). Table 1 presents a list of the events taken from the Pacific Earthquake
Engineering Research Center (PEER) [31]. Fault-parallel is defined in x- and fault-normal in y-
direction. Concerning the Bam event only a one-dimensional record was accessible, therefore,
an excitation angle of 30 degrees with respect to the x-axis was chosen. Calculation outputs are
presented including the displacement translational response, namely the degree of freedom x of
the red marked node in Figure 5. This is the horizontal component of response in x-direction of
the slider of the FP element. Additionally, the response regarding in-plane motion of the slider
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in x- and y-direction are provided. The output node is called “node 1” and has the coordinates
[19.5, 0.0,−9.5]T [m], this is depicted in Figure 5. This node defines the location of a moving
friction pendulum, it therefore shows directly the nonlinear response behavior of the system.

The method, according to Section 4, begins with the earthquake dynamic analysis of the
structure under representative excitation. Therefore, the response XBam = [x1,x2, ...,xm] of
the full system to the Bam earthquake is evaluated. This full system response is evaluated
applying the Newmark method. The response history in x-direction of node 1 (output node) is
depicted in the left subplot of Figure 9. The motion of the slider is shown in the right subplot of
Figure 9.
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Figure 9: Response functions to the Bam earthquake excitation, full Newmark response and reduced POD re-
sponse; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, displace-
ment x and y of node 1

The snapshot matrix XS is assembled by taking into account 400 snapshots in equidistant
time intervals spread over the whole displacement response history to the Bam earthquake ex-
citation. It is essential to capture the main deformation behavior of the system in this stage,
otherwise certain deformation states cannot be constituted by the set of linearly independent
vectors (c.f. Figure 2), i.e. the sliding process, as can be seen in Figure 9, has to be recorded
in the snapshot matrix. Afterwards, the evaluation of the left singular vectors of the snapshot
matrix leads to the POD modes and its singular values to the POD values in descending order.
The sum of all POD values define the total energy content of the snapshot matrix. Hence, the
number of POD modes that have to be taken into account in order to capture 99, 99 percent of
the total energy was evaluated to be 31. A plot of the first 31 singular values (POD values)
dependent on the corresponding energy content is shown in Figure 10.

The physical equation of motion is now transformed into the 31-dimensional POD subspace
and integrated over the whole time history by application of the explicit central difference
scheme. Transformation back into the physical coordinate x produces the POD-based response
of the structure. The integration time step for the reduced time integration is 5 · 10−3 seconds,
which is equivalent to the time step of the Newmark integration scheme, which is applied for the
calculation of the exact response. In the response analysis of the reduced order system via cen-
tral difference no iteration is needed and only a fractional amount of storage compared to the full
Newmark method is required. Note that the critical time step of the central difference scheme
for the full system is 10−7 seconds. Therefore, concerning the basic central difference method,
an immense speed-up factor of 104 is achieved. Within the presented examples generally a min-

8564



F. Bamer, A. Kazemi Amiri and C. Bucher

0 5 10 15 20 25 30 35 40 45 50
0

25

50

75

100

number POD value [−]

E
n
er
gy

[%
]

Figure 10: Number of POD values (singular values)

imum speed up factor of about 2 compared to the Newmark algorithm is achieved. However, it
has to be added that for this type of nonlinearity, the Newmark integration scheme appears to
have a relative slow convergence rate. As a consequence, the computational time by applying
the Newmark method can exceed to a period of time, which is comparable if the full central
difference integration scheme is applied or even to infinite period of time, if there is no conver-
gence. Following, the new integration strategy gains the benefit of both of the two algorithms,
i.e. central difference and Newmark, which is stability without requiring iteration algorithms.
The red dashed line in Figure 9 (response to the Bam excitation) shows the response obtained
by the new POD strategy, which approximates the full Newmark response accurately. This is
not surprising as the snapshots are taken in equidistant time intervals spread over this whole
response history. The derived POD transformation matrix, which is the set of POD modes, is
now applied to reduce the order of the set of equations for the structure excited by the rest of the
presented earthquake events presented in Table 1. It means that the time integration in the full
(physical) space no longer has to be performed. As for the next transformations into the POD
space only one transformation matrix is applied. This strategy is here called universal POD
method. Now this approach unveils its similarities to the method of modal truncation, which is
mainly applicable to linear systems. Figures 11, 12, 13, 14 and 15 compare the displacement
responses applying the new MOR strategy and the Newmark scheme.

Accurate approximations are achieved by means of the proposed MOR strategy. The re-
sponse to the Imperial Valley earthquake (Figure 11), the Landers earthquake (Figure 12) and
the North Palm Springs earthquake (Figure 14) were highly accurate, when the proposed MOR
strategy was applied. Concerning the response functions of the Loma Prieta (Figure 13) and the
North Palm Springs excitation (Figure 15) small variations concerning the full and the reduced
solutions can be observed. This is because the responses to those excitations include deforma-
tion states that are not captured in the snapshot matrix and, hence, not in the universal POD
modes (POD transformation matrix) and thus cannot assemble the exact response history.

6 Conclusions

In this paper, a model order reduction (MOR) strategy, which is applicable to the dynamic
response analysis of linear and nonlinear structural systems was presented. Usually, the analysis
of building structures with complex geometries makes the engineer to create a finite element
model with a large number of degrees of freedom, which is associated with computational
effort in the response analysis. Therefore, the goal of this paper is to provide a new practical
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Figure 11: Response functions to the Imperial Valley excitation, full Newmark response and universal reduced
POD response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider,
displacement x and y of node 1
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Figure 12: Response functions to the Landers excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1
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Figure 13: Response functions to the Loma Prieta excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1
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Figure 14: Response functions to the North Palm Springs excitation, full Newmark response and universal reduced
POD response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider,
displacement x and y of node 1

8567



F. Bamer, A. Kazemi Amiri and C. Bucher

0 12
-0.3

0

0.3

time [s]

x
1
[m

]

-0.3 0 0.3
-0.3

0

0.3

x1 [m]

y 1
[m

]

Newmark

POD

Figure 15: Response functions to the Northridge excitation, full Newmark response and universal reduced POD
response; left subplot: displacement x of node 1 dependent on time; right subplot: movement of the slider, dis-
placement x and y of node 1

model order reduction strategy that is simple in application, but also very effective even in the
presence of nonlinearities for problems in the field of earthquake engineering and structural
dynamics. This strategy is extended based on the proper orthogonal decomposition (POD)
method to derive a proper transformation matrix in order to transform the nonlinear systems
into another low-dimensional subspace, which demands considerably less computational effort
for the response calculation. Once the transformation matrix is derived, the approach of the
strategy is similar to the method of modal truncation for linear systems.

In addition to the development of the MOR strategy, its application for the response cal-
culation of a realistic numerical nonlinear example is demonstrated. The example is the dis-
placement response calculation of a building structure serving as a medical complex, which is
base-isolated by friction pendulum bearing systems excited by six earthquake excitations. In
order to evaluate the accuracy of the introduced approach, the exact structural responses were
also calculated by the iterative Newmark method in the full order (physical) coordinates. Nu-
merical evaluations show that accurate approximations can be achieved if nonlinear response
patterns of the structure are already captured in the POD snapshots to extract the transformation
matrix. The advantage of this strategy is that obviously the transformation matrix is derived
just once and it can be used for response calculation of the structure under different earthquake
excitations.

Another substantial advantage of the introduced MOR concerns the speed of the response
calculations. Firstly, compared to the basic central difference algorithm, the new introduced
strategy has a much larger critical time step. Secondly, compared to the Newmark method,
which allows usually larger time steps, no iteration procedure is required.
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