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ABSTRACT  

Dendrimers have emerged as a powerful class of nanomaterials in the nanomedicine field due to their 

unique structural features: globular, well‐defined, highly branched and controllable structure, 

nanosize‐ scale, low polydispersity, and the presence of several terminal groups that can be 

functionalized with different ligands simulating the multivalency present in different biological 

systems. Although in its infancy, the application of dendrimers as therapeutics or theranostic tools in 

central nervous system (CNS) disorders is already significant and has opened promising avenues in 

the treatment of many conditions where the inherent “smartness” of the dendritic structures is being 

explored to effectively target the CNS. Here we present an overview of the past and future challenges 

of the use of dendrimers to respond to one of the ultimate challenges in the (nano)medicine field: to 

attain CNS repair and regeneration. 

Keywords: blood-brain-barrier (BBB), cell targeting, dendrimers, neurological diseases, 

neurodegenerative diseases, surface functionalization 

1. Considerations on Neurological Diseases 

According to the World Health Organization (WHO),1 it is estimated that 1 billion people worldwide 

are affected by a neurological disorder and, among these, 6.8 million people die every year as a result 

of these conditions. 

Central nervous system (CNS) disorders currently represent 7% of the global burden of disease when 

measured in disability-adjusted life-years (DALY) and, as the population ages, this is expected to 

rise.2 Pathologies of the CNS include vascular disorders such as ischemic stroke, structural disorders 

like spinal cord injury (SCI); infections such as meningitis; functional disorders such as migraines; and 

neurodegeneration such as Alzheimer's disease (AD). The common issue among them is the resulting 

neurological debilitation that typically occurs, reflecting to a high extent the limited capacity for the 

CNS to repair itself, especially at older ages.3 An injured neuron, either sensory, motor or 

interneuron, engages in an abnormal pathway that is difficult to overcome. The mechanism of 

neuronal dysfunction resulting from a trauma, neuronal degeneration, or demyelination, may involve 

alterations in ion channel activity, an imbalance in the membrane potential, oxidative stress, 

impaired mitochondrial function, cessation of neuronal communication, and ultimately death.4 

2. Overcoming Biological Barriers 

The early identification and diagnosis of a neuropathological status, as well as the protection and the 

recovery of the neuron and non‐neuronal cell population has been for long a critical challenge. 
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Nevertheless, the identification of CNS biomarkers of disease and cell ‐ related therapeutic 

molecules has tremendously increased over the past few years, which has led to another quest for 

the effective delivery of these therapeutic/diagnosis molecules to the afflicted neuronal and non‐

neuronal cells in a safe and controlled manner, as well as the fine‐tuning of the delivery profiles of 

therapeutics in a neuropathological scenario. This is extremely challenging because from the 

moment a therapeutic/diagnosis agent is administered until it reaches the target injured CNS cell, 

several barriers have to be overcome. 

The main and most‐studied barrier is the blood‐brain barrier (BBB). The BBB, also known as the 

neurovascular unit, is composed of brain capillary endothelial cells in association with astrocytes and 

pericytes, which together regulate relentlessly the bidirectional transfer of essential substances, 

while blocking the passage of harmful and foreign substances from the bloodstream to the CNS.5 

Molecules can cross the BBB by paracellular (i.e., between cells) or transcellular (i.e., across cells) 

diffusion. Because of the tight BBB junctions, paracellular diffusion does not occur to a great extent. 

For transcellular diffusion, different mechanisms are in place: a) receptor‐mediated endocytosis; b) 

carrier/transporter‐mediated endocytosis; c) adsorptive or fluid‐ phase endocytosis; and d) 

passive diffusion.6 It is recognized that the ability to enter the brain and the mechanism adopted are 

dependent on the molecule size, charge, and hydrophilicity. Only highly lipophilic molecules with a 

low molecular weight can passively diffuse across the brain capillary endothelial cells, while most of 

the high molecular weight and hydrophilic molecules cannot passively cross the BBB.7 Adsorptive 

mediated endocytosis contributes to the transport of positively charged substances, i.e., cationic 

molecules.8 For carrier/transporter ‐ mediated endocytosis, a form of facilitated diffusion, a 

molecule binds to a transporter on one side of the membrane resulting in the transport of the 

substance to the other side of the membrane, from high to low concentration. The receptor‐

mediated mechanism presumes the involvement of specific receptors expressed on the endothelial 

cells of the BBB.7 

Various strategies have been developed to enhance the ability of different compounds, otherwise 

excluded from the nervous tissue, to cross the BBB and enter the CNS when administered 

intravenously (i.v.).9 These can be divided into physiological methods, invasive techniques, 

nanomedicine approaches, or even combinatorial strategies. As a physiological approach, the 

receptor‐mediated delivery has been more explored where a specific ligand targeted to a particular 

receptor of the BBB is directly associated to the delivery molecule, significantly improving its entry 

into the CNS.10 Nanomedicine approaches take advantage of nanomaterials to serve as vectors for 

the agent of interest. Invasive approaches, like the disruption of the BBB by focused ultrasound, is a 

promising possibility,11 but its use must be carefully controlled to assure that the effect is transient 

and short in time so that it does not significantly increase the entry of plasma proteins and neurotoxic 

molecules, which may damage neuronal cells. Interestingly, in some CNS disorders, like stroke, the 

BBB is actually open in the area of the lesion in the aftermath of the insult12 for a period that can 

range from hours to a few days, which provides a natural window of opportunity for drug delivery. 

This is also the case in conditions that lead to an increased permeability of the BBB in the affected 

areas, such as sites of inflammation, infection, or tumors. In the latter case, the BBB is compromised 

for longer periods of time. 

An alternative to circumvent the BBB is to adjust the route of administration. There are various 

possibilities to administer a therapeutic drug in the body, which may occur locally or peripherally to 
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the intended target tissue/cell. However, there are always limitations associated to the procedure, as 

depicted in Figure 1. 

 

 

Figure1. Selected administration routes for dendrimers and other nanoparticles. The main 

advantages associated with each procedure are depicted in the green box and the main 

disadvantages in the red box 

 

The choice of the administration route has a profound effect not only on the accessibility of the drug 

to the target tissue/cell but also on its time of action and efficacy. To bypass the BBB there are various 

options such as an intracerebral (i.c.), subarachnoid, intraparenchymal, intrathecal, or intranasal 

delivery. Except for the intranasal delivery, the others are very invasive and not so prone to clinical 

translation. Nonetheless, they are effective and thus commonly found in pre‐clinical studies. Even 

so, the systemic administration route, such as i.v., continues to be the most used, despite the long 

pathway that the therapeutic/diagnosis molecules have to travel before reaching the CNS. Moreover, 

for systemic administrations there is a critical need to assure the protection and effective transport 

of the administered therapeutic agent (overcoming opsonization, immune recognition, and/or quick 

clearance). Finally, when a selected molecule reaches the nervous tissues, different cells are prone to 

uptake the delivered therapeutic. The ability to direct the therapy/diagnostic agent to a specific cell 
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type has obvious advantages and appropriate strategies are being pursued where targeting moieties 

are used. 

For the purpose of efficiently delivering a therapeutic and/or a diagnosis molecule to the CNS, 

engineered nanoparticles currently constitute one of the most powerful tools to cover some of the 

previously described requisites and to overcome cellular and extracellular barriers to delivery. An 

ideal nanocarrier for CNS therapeutic/diagnosis approaches should encompass a number of features, 

namely biocompatibility, the capacity to transport and protect its cargoes from degradation and/or 

rapid clearance (e.g., if systemically administered), the potential to reach the CNS, and specifically to 

target and deliver its cargo to the cell population of interest. Finally, biodegradability must also be 

equated, particularly in the context of regenerative therapies. Among the different delivery systems 

being explored—liposomes,13 polymeric micelles,14 linear polymers,15 quantum dots,16 iron oxide 

nanoparticles,17 and carbon nanotubes18—dendrimers/dendritic structures (Figure 2) are an 

emerging and particularly attractive class of nanocarriers for CNS drug delivery and diagnosis.19 
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Figure 2. Schematic representation of a dendrimer structure with three generations (G). 

 

In this review, we identify the currently existing dendritic systems, discussing their strengths and 

caveats in the context of attaining efficient therapeutic strategies for the treatment of neurological 

disorders. 

3. Dendrimers 

Dendrimers emerged from the “cascade molecules” , a new class of highly branched molecules 

initially reported by Vögtle et al. at the end of 1970.20 Then, Denkewalter, Tomalia, Newkome, 

Frechet, and coworkers further enlarged the complexity of these systems, giving rise to bigger 

structures, then renamed them as “dendrimers”.21 The word dendrimer comes from the Greek 

dendron (“tree” or “branch”) and meros (“part”), and refers to the characteristic organization of their 
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branched building units. Dendrimers consist of a) a bi‐ or multi‐functional central core, b) building 

units covalently attached to the central core and organized in layers called “generations” (G), and c) 

a large number of end functional groups on their periphery (Figure 2). 

The most researched dendrimers as vectors for CNS applications are the poly(amido amine) 

(PAMAM) dendrimers,22 but others like poly(propylene imine) (PPI),[10, 22, 23] poly(L‐lysine)‐

based (PLL),[22, 24] carbosilane,25 poly(ether)‐copoly(ester) (PEPE),26 phosphorus,27 poly(ether 

imine) (PETIM),28 and gallic acid−triethylene glycol (GATG) dendrimers29 have also been explored 

(Figure 3). These and other dendrimers present very appealing features to mediate the delivery of 

drugs and bioactives to the CNS due to their unique structural properties: a globular, well‐defined 

and very branched structure, as well as a low polydispersity, adaptable solubility, low viscosity, and 

controllable nanosize that allows for tight control and tuning of the size of the resulting dendritic 

nanoparticles (important when defining administration routes and/or the capacity to overcome 

certain biological barriers). Moreover, the abundance of peripheral functional groups allows the 

specific and controllable tethering of a great variety of bioactive ligands (Figure 4a), imitating the 

multivalency existing in several biological systems. In fact, this multivalency is the greater virtue of 

dendrimers. 
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Figure 3. Partial structure of some of the currently used dendrimers in CNS applications: a) PAMAM; 

b) PPI; c) GATG; d) PLL; e) carbosilane; f) phosphorous; g) PETIM; and h) PEPE dendrimers. 
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Figure 4. a) Dendrimer multifunctionalization and “dendritic box”. b) Dendritic nanoparticle (cargo = 

drug, nucleic acid, protein, peptide, among others). 

 

The enhanced effect that stems from the presentation of several and/or different bioactive molecules 

simultaneously at the same place causes an increase in the drug/ligand loading capacity that can 

contribute to the maintenance of drug levels in a therapeutically desirable range or an increase in the 

sensitivity and specificity of diagnostic systems. This high density of end functional groups also offers 

the possibility to link target molecules that can improve the delivery efficiency while decreasing side 

effects. Additionally, dendrimers can also cargo a molecule of interest by forming nanosized 

structures stabilized by non‐covalent interactions (Figure 4). From a biological point of view, 

dendrimers can be applied through a diversity of routes of administration.30 Furthermore, 

dendrimers present reduced macrophage uptake (particularly for lower generations/sizes), facile 

biological barrier crossing, and rapid cellular entry,31 all of which are tunable by changing the 

concentration, generation/molecular mass/size, and/or surface groups/charge of the dendrimers. 

All these properties make dendrimers very versatile and appealing nanocarriers, particularly 

presenting special advantages for transporting drugs across the BBB when in comparison with other 

nanomaterials. 

Dendrimers are synthesized through an iterative synthetic methodology that consists of a series of 

repetitive growth and activation steps. The two conventional approaches to synthesize dendrimers 

are the divergent and the convergent methods (Figure 5). 
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Figure 5. Classic strategies for the synthesis of dendrimers. 

 

The divergent synthesis (Figure 5a), also known as the “starburst” method or the “inside‐out” 

approach, was introduced by Vögtle20 and further developed by Tomalia[21] and Newkome.[21] It 

involves the growth of the dendrimers layer by layer from a multifunctional core site towards the 

periphery.32 The multifunctional core reacts with monomeric molecules or building units that 

contain one reactive and at least two inactive or protected branched sites to give the first dendritic 

layer or first generation dendrimer. Then, the surface/edge of the new molecule is 

activated/deprotected for subsequent reactions with more building units for expanding the 

dendrimers. The number of times this stepwise process is repeated will define the generation (G) 

number and, therefore, the dendrimer size. And it can be repeated several times until steric 

hindrances impede the reaction of all peripheral groups with more building units due to surface 

crowding for high generation dendrimers. Even so, this strategy has allowed for obtaining high 

generations in particular cases, namely, G9 for poly(phenylene) dendrimers,33 G10 for PAMAM,34 

G12 for phosphorus dendrimers,35 and even G13 for triazine dendrimers.36 The convergent approach 

(Figure 5b), established by Fréchet et al. in 1990,[21] can be considered as the reverse of the divergent 

approach. This strategy involves the synthesis of perfect branched and individual dendrons 

(dendrimer wedges), which finally are attached to a multifunctional core after 

activation/deprotection of their focal point, in an “inward” process.[32] 

The divergent strategy presents the disadvantage of building dendrimers with structural defects due 

to the higher number of reactions performed at the same time and therefore usually requires 

purification after each step.37 The probability of obtaining side‐products increases with generation, 

which further results in lower overall yields. Contrarily, in the convergent approach, since only a 

confined number of groups is active per step, the probability of structural defects is lower.37 

However, a major disadvantage is its low ability to produce dendrimers of higher generations due to 
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the steric hindrance between increased dendrons in the last step. Although an adequate choice of 

the multivalency and size of the core could reduce steric hindrance effects.37 

To conquer these drawbacks and the often tedious and time‐consuming processes of these classical 

strategies, new faster and simpler synthetic approaches have been reported, including “ click 

chemistry” ,38 “Lego”  chemistry,39 and accelerated,40 orthogonal40, 41 and chemo‐selective 

growth strategies,40 which render higher branching or number of terminal groups and reaction 

efficiency while reducing the number of reaction and purification steps. Methods that do not require 

any purification after each step because they only produce innocuous byproducts (e.g., water and 

sodium chloride), have been also reported.42 These improvements diminish the use of starting 

materials, chemicals, and side products. Consequently, these improved syntheses are less time‐ and 

cost‐consuming, as well as more environmentally friendly. 

In general, all these strategies yield products with well‐defined structures and low polydisperse 

sizes, which are quite engaging not only from a synthesis reproducibility point of view but also for 

reducing experimental variability in the different applications. In fact, this optimization and increased 

easy accessibility to more and more sophisticated dendrimers has led to the commercialization of 

different families of dendrimers while others are on the brink of this. As a consequence, the number 

of applications has exponentially increased, including biomedical ones. In fact, some diagnosis and/or 

in vitro dendrimer‐based technologies are already on the market. Namely, the Stratus® CS 

Instrument (Siemens Healthcare) that takes advantage of a PAMAM dendrimer‐based biosensor 

carrying a monoclonal sheep antibody for fast and accurate cardiac detention of patients with 

suspected myocardial ischemia and two PAMAM‐based transfection agents for in vitro assays 

(Superfect® (G6) and PriofectTM) marketed by Qiagen and Starpharma, respectively. A DNA chip 

(DendrisChipTM) based on phosphorous dendrimers has also been proposed by the biotech company 

Dendris for the detections of a broad range of viruses and pathogens with high sensitivity and 

specificity. Other dendrimers have already reached human clinical trial; such is the case for 

Gadomer®‐17 (also known as SH L 643 A; Schering AG), which is a PLL dendrimer holding 24 

gadolinium (III)‐DOTA chelate groups at its surface (commercial name Dotarem®; DOTA – 

1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). This was the first dendrimer‐based 

product entering into clinical evaluation as a blood pool contrast agent for magnetic resonance 

angiography.43 However, despite the promising early clinical results, Gadomer®‐17 clinical testing 

was not pursued further, although it is currently being commercialized as a pre‐clinical research 

contrast agent. In cancer therapy research, DEP™ docetaxel emerged as a dendrimer‐enhanced 

version of docetaxel (Taxotere®) for solid tumor treatment by systemic administration. In pre‐

clinical studies, DEP® docetaxel showed greater anti‐cancer effects as compared to Taxotere®, and 

thus it is now in phase I clinical trial in patients with advanced solid tumors.44 Finally, VivaGel® from 

Starpharma is a G4‐PLL‐based dendrimer formulated as a water‐based mucoadhesive gel to be 

delivered vaginally. This gel was approved by the Australian Therapeutic Goods Administration in 

2014 and gained European regulatory approval for topical treatment and rapid relief of bacterial 

vaginosis in 2015. Phase III clinical trials are ongoing to evaluate its potential in prevention of 

recurrent bacterial vaginosis.45 Vivagel® is also being investigated as vaginal microbicide to prevent 

the transmission of genital herpes (HSV‐2), human immunodeficiency virus (HIV) infections, and 

other sexually transmitted infections including human papillomavirus (HPV), the causative agent of 

cervical cancer.46 It is also being used as a condom coating due to its antiviral and antibacterial 

properties (only available for the Australian market at present).47 
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4. Dendrimers as CNS Delivery, Imaging and Diagnosis Systems 

Due to the easy tuning regarding composition, structure, and size, dendrimers are versatile systems 

to serve as vectors for numerous biomedical applications, including brain delivery and diagnosis. 

They are being explored as promising carriers of chemical drugs, therapeutic nucleic acids (NAs), 

proteins and peptides, as well as macromolecular contrast agents and biosensor platforms for CNS 

therapies, imaging, and diagnosis (Figure 4). The strategies of preparation of the bioactive‐

dendrimer systems are briefly discussed in the following paragraphs, according to the type of 

bioactive that is being linked/transported. 

4.1 Chemical Drug Delivery 

Dendrimers present optimal guest–host properties for accommodation of different chemical drugs. 

These can be contained inside dendrimers (“dendritic box”  model, Figure 4a)48 through non‐

covalent interactions: electrostatic,49 hydrogen bonding,26 and, mostly, hydrophobic interactions, 

as in the case of some anticarcinogenic drugs used for the treatment of brain tumors.[23, 26, 50] 

Alternatively, drug conjugation to the dendrimer can be pursued. The large density of different 

functional surface groups on dendrimers, namely hydroxyl‐, thiol‐, amine‐, carboxylic acid‐, 

azide‐ , allyl groups, and so on, provide a unique chance for ionic coordination51 or covalent 

attachment of drugs, which can be directly tied to the dendrimers through different linkages.[22, 52] 

The conjugation approach is very appealing because it further allows the engineering of drug delivery 

systems susceptible to stimuli by linking the drug through cleavable chemical (pH or redox sensitive) 

or enzymatic bonds.53 Therefore, a better control of the kinetics of drug release can be achieved.[22, 

52, 54] The major downside of this approach is the increased complexity in the chemical design of the 

conjugates, as well as the direct exposure of the bioactives to the tissue environment upon 

administration. On the contrary, simply entrapped drugs into the dendritic box stay more protected. 

Nevertheless, a lower number of bioactives can be encapsulated, the guest molecules can 

prematurely diffuse out of the dendrimer, and/or their release kinetics cannot be strictly 

controlled.54 Since both approaches present their own pros and cons,55 some researchers have also 

evaluated the combination of both approaches simultaneously.54 

4.2 Nucleic Acid Delivery 

Cationic dendrimers have the ability to complex and protect NAs in compact structures called 

dendriplexes through electrostatic interactions.56 Because of this, dendrimers are also appealing 

non ‐ viral vectors that can help to surpass the different extra ‐  and intracellular barriers 

encountered in order to efficiently deliver exogenous therapeutic NAs, such as plasmids[10, 22] and 

siRNA,[22, 25] into CNS cells. Moreover, the possibility of multifunctionalization in dendrimers also 

allows using them to act as co‐delivery systems of different bioactive simultaneously. For instance, 

the delivery of NAs and chemical drugs has been explored, as will be detailed in section 6.[24] 

4.3 Protein and Peptide Delivery 

Although very scarcely explored yet, dendrimers have also been tested as protein57 and peptide58 

carriers. Concerning the delivery of proteins, the direct conjugation of the protein to the dendrimer 

is not suitable because of their similar molecular weights and sizes, so complexation and/or 

encapsulation are more adequate strategies. In the reported dendritic systems for protein or peptide 
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delivery, the main interactions established between the carrier and cargoes are electrostatic. 

Nevertheless, especially in the case of proteins, hydrophobicity was also found to play an important 

role in this process.59 To the best of our knowledge, for now, there is no report exploring dendrimers 

as delivery vehicles of protein or peptides in the context of CNS. 

4.4 Macromolecular Contrast Agents 

For brain medical diagnosis, an interesting case of dendrimer conjugation is the covalent attachment 

of diagnosis agents for the preparation of dendritic macromolecular contrast agents for X‐ray 

imaging, such as computed tomography (CT) and magnetic resonance imaging (MRI).19 The aim is 

to obtain large molecular weight contrast agents to improve the image contrast, stability, water 

solubility, biocompatibility, and pharmacokinetics, while minimizing toxicity and required dose. The 

most widely explored dendritic contrast agents for MRI are based on small paramagnetic 

gadolinium(III) chelates (Gd(III)‐DTPA (DTPA = diethylenetriaminepentaacetic acid, Magnevist®) 

and Gd(III) ‐ DOTA (Dotarem®)) conjugated to dendrimers.60 Additionally, organometallic 

complexes of dendrimers and dendritic nanoparticles with heavy isotopes of iodine have also been 

investigated as X‐ray contrast agents.61 Nevertheless, to the best of our knowledge, dendrimers 

have never been applied as X‐ray macromolecular contrast agents in the brain imaging context. 

Therefore, this would be an interesting application to be explored, since multivalent dendrimers 

represent one of the most appealing systems to take manifold contrast agent moieties,60, 62 as well 

as to concomitantly join target molecules, offering a sole chance to enhance site‐specific image 

contrast.63 

4.5 Biosensors 

The previously discussed guest–host properties of dendrimers also allow accommodating molecular 

probes, by encapsulation or covalent conjugation. This, together with the possibility of fine tuning 

and tighter control of their chemistry composition and architecture (i.e., core, backbone, and surface 

groups), make dendrimers very attractive platforms for the design and development of high 

sensitivity sensors.64 Moreover, dendrimers can help to surpass the problems related to the response 

variability due to the limited sensor molecule loading efficiency, limited accessibility of the probes, 

poor control over uniform spacing among the probes, and a loss of functionality due to irregular 

orientation of the probes. In fact, researchers have demonstrated that dendritic macromolecules 

show improved sensitivity and accessibility of the probe for the target analyte and high stability, 

minimize non‐specific binding, and provide a low variability in their response. Therefore, the 

development of dendrimer‐ based sensors is an advantageous way to obtain higher sensor 

performances and reduce the whole preparation cost. Dendrimers could, therefore, convert into very 

interesting tools for functional CNS imaging and diagnosis.65 

5. Tailoring Dendrimer ‐ Based Delivery Systems for CNS 
Applications: (Bio)functionalization, Targeting and Labeling 

The tunable chemistry of dendrimers permits a precise “chemical makeup” that allows the design, in 

principle, of an almost unlimited number of molecules. This, together with the possibility of an 

accurate chemical multi‐ decoration with several (bioactive) ligands and/or target molecules, 

permits dendrimers to act as “smart” nanosystems for the efficient and site‐specific delivery of 

several agents to the CNS. 
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5.1 (Bio)functionalization 

Depending on the desired application, target cells/tissue, type of administration, and characteristics 

of the bioactive to be linked and/or carried, dendrimers can be properly (bio)functionalized using 

different strategies. 

To interfere in Aβ‐amyloid fibril formation, which might represent a new method to address the key 

pathology in AD, amine‐terminated G4 and G5 PPI dendrimers were decorated with maltose and 

maltotriose by reductive amination in a one ‐ pot approach.[23] With the same objective, 

morpholine was introduced on the surface of G3 GATG by means of Cu(I)‐catalyzed azide‐alkyne 

cycloaddition (CuAAC, click chemistry).29 

In the context of drug release, previously mentioned strategies aimed to afford a control of kinetics 

of drug liberation have also been tested for brain delivery. For example, the anti‐carcinogenic 

doxorubicin (Dox) has been attached to G4 PAMAM dendrimers via an acid‐sensitive cis‐aconityl 

linkage[22] and to G3 dendrigraft poly(L‐lysine) (DGL) through pH‐trigged hydrazone bond,[24] 

what favors a fast Dox release in the acidic tumor environments. However, these acid‐ labile 

linkages are not an adequate approach for the treatment of CNS diseases, like neurodegenerative 

disorders, in which the pH persists neutral. Ester linkages are the preferred option in these cases 

and/or when a more prolonged drug release under acid and neutral pH is desired. Moreover, one can 

also play with the nature of the used linker/spacer to attach the drug to the dendrimer to further tune 

the hydrolysis rate of the ester group, and thus to maintain the drug release during the desired period 

of time. Iezzi et al. linked fluocinolone acetonide (a drug for attenuation of neuroinflammation in the 

retina) to hydroxyl‐terminated G4 PAMAM (G4 PAMAM‐OH) via an ester bond using a glutaric 

spacer, observing a sustained drug release for a period over 90 days.[22] On the contrary, Sk and co‐

workers used the ester strategy to link two anticancer drugs (estramustrine and podophyllotoxin) to 

the same type of dendrimer (G4 PAMAM‐OH) through a succinic acid linker, obtaining a sustained 

release during a significantly shorter time period (6 days).[52] 

In a similar manner, disulfide bonds were also explored as degradable (reductible) linkages through 

the use of different linkers/spacers. For instance, a small linker, namely succinimidyl 3‐ (2‐

pyridyldithio)propionate (SPDP), has been commonly explored to hang different brain drugs and/or 

bioactives to dendrimers via disulfide bonds. Such is the case of N‐acetyl cysteine (NAC)[22] 

(attenuator of neuroinflammation) and thiol‐ functionalizated valproic acid[22] (excitotoxicity 

attenuator), which were attached to G4 PAMAM dendrimers using this dithio‐spacer. On the other 

hand, Kaneshiro et al. used the dithio‐spacer (4‐succinimidyloxycarbonyl‐α‐methyl‐α‐[2‐

pyridyldithio]toluene) (SMPT) to hang Dox to G3 PLL dendrimers via the disulfide linkages strategy 

as well, where PLL was thiolated with 3‐mercaptopropanoic acid) a priori.[24] More stable amide 

bonds were used to link the anti‐carcinogenic curcumin and methotrexate to G3 and G5 PAMAM 

dendrimers, respectively, via the frequently used carbodiimide chemistry.[22, 66] Also, boron‐10‐

enriched methylisocyanato polyhedral borane anion was connected to G4 and G5 PAMAM via stable 

carbamide linkers in order to obtain the corresponding boronated dendrimers for neutron capture 

therapy (NCT) of brain tumors.[52, 67] 

5.2 Overcoming the BBB 
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Dendrimers can gain access to the CNS microenvironment by either passive or active targeting. The 

passive targeting can occur either as a result of the enhanced permeability and retention (EPR) effect 

or as a consequence of the selected administration route. The EPR effect relates to the propensity of 

molecules to preferentially accumulate at sites of increased vascular permeability, such as sites of 

inflammation, infection, or tumors. However, as previously mentioned, after certain insults (like in 

the case of stroke or a traumatic SCI) the BBB at the injury site is compromised for a limited period of 

time. Therefore, due to the EPR effect, systemically administered dendrimers have the potential to 

overcome the BBB and passively and effectively target the diseased brain. Nevertheless, the EPR‐

dependent molecule accumulation is slow, and thus only a small portion of the circulating molecules 

actually reaches tumors or sites of inflammation/infection, while the majority tends to accumulate in 

the liver and kidneys (filtering organs) or even in the lungs and heart in the case of large entities, like 

particulate systems. As previously mentioned, an additional strategy to surpass the BBB is to select 

an appropriate route of administration (Figure 1) that, per se, avoids this barrier. However, the 

invasiveness of some of these routes can be an obstacle. 

Therefore, to overcome these drawbacks, dendrimers can be actively functionalized on their surface 

with targeting ligands that selectively guide their binding to receptors or specific molecules 

overexpressed at the target cell, tissue, or organ.68 In this regard, several BBB receptor‐mediated 

transport mechanisms have been exploited as the route for CNS access. The brain capillary 

endothelial cells, as well as many malignant tumor cells, overexpress transferrin receptors (TfR), 

which renders the transferrin (Tf) family as useful targeting ligands to facilitate the BBB transport or 

gain access to brain tumors. The Tf family is a group of glycoproteins with the ability to bind and 

transport non‐heme iron, although some homologues have evolved different functions.69 Huang 

et al. targeted a poly(ethylene glycol) (PEG)‐modified G5 PAMAM (G5 PEG‐PAMAM) dendrimer 

with Tf that was able to transport NA to the brain following an i.v. administration.70 In another study 

from Somani et al., a Tf‐bearing G3 diaminobutyric PPI dendrimer (DAB) was able to increase the 

dendrimer cellular uptake and transgene expression by cancer cells overexpressing TfRs, as 

compared to non‐functionalized dendrimers, both in vitro and in vivo after an i.v. injection.[10] 

Using the same G5 PEG‐PAMAM, Huang et al. also explored the use of lactoferrin (Lf), a single‐

chain iron‐binding glycoprotein, as a brain targeting ligand. These authors demonstrated the 

improved ability of Lf‐functionalized/targeted complexes to cross an in vitro BBB model, as well as 

their in vivo brain targeting ability via an i.v. administration, in comparison with their non‐

functionalized or Tf‐conjugated counterparts.71 The dual brain targeting was also investigated by 

the combined use of Tf and wheat germ agglutinin (WGA) or tamoxifen (TAM). WGA is a lectin with 

a strong affinity to the brain capillary endothelial cells and tumor cells, but with a low affinity for 

normal tissues. Likewise, TAM is an estrogen receptor modulator with a suggested improved BBB 

transport. Both the Tf/WGA and Tf/TAM modified PAMAM dendrimers showed a synergistic BBB 

targeting effect and, therefore, a higher BBB transportation and payload release to the avascular C6 

glioma spheroids in vitro.[22, 50] Despite the success of all the examples described above, the use of 

Lf and Tf as targeting ligand can be compromised by the competition with their endogenous 

equivalents. In this regard, other recent studies have demonstrated the use of HAIYPRH (T7) peptide 

to specifically target the TfR with a similar affinity as Tf.72 Moreover, T7 peptide and Tf bind to 

distinct sites on the TfR and thus, they do not compete for the receptor binding. Using a PEGylated 

G3 DGL dendrimer modified with the T7 peptide, the Jiang group has demonstrated the brain‐

targeted delivery of anti‐tumoral therapeutics in an orthotopic human glioma model, providing new 

therapeutic opportunities to brain tumor treatment.[24] 
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Apart from the Tf family of ligands, additional brain targeting molecules have been probed. 

Angiopep‐2 is a peptide that binds to the low‐density lipoprotein receptor‐related protein 1 

(LRP1) that is ubiquitously expressed in the CNS and takes advantage of a receptor‐mediated 

transcytosis mechanism to cross the BBB. This peptide possesses a higher BBB penetration capability 

than other proteins, such as Tf and Lf. Angiopep‐2 has been used to mediate the target delivery of 

PAMAM and DGL dendritic structures in CNS disorders, such as brain cancer or Parkinson disease 

(PD).[24, 73] In another study, a 29‐amino‐acid peptide derived from the rabies virus glycoprotein 

(RGV29) was shown to be an effective brain targeting ligand as well. In a similar manner to its parent 

protein, RVG29 peptide binds specifically to the nicotinic acetylcholine receptor (nAchR) present on 

neuronal and brain capillary endothelial cells, and when linked to the surface of PAMAM it was able 

to mediate in vivo the efficient dendriplex accumulation and reporter gene expression in the brain 

upon i.v. administration.74 

From the point of view of the chemical strategies explored to attach the discussed targeting moieties 

to dendrimers, less labile bonds (like carbamates, amides, imines, and thioethers, among others) 

than those used in the majority of the cases described for the biofunctionalization/drug conjugation 

have been explored. In fact, the most commonly used strategy to tether the above‐mentioned brain 

targeting ligands to dendrimers was through the widely known bifunctional PEG presenting N‐

hydroxysuccinimide (NHS) and maleimide (MAL) as terminal groups (NHS‐PEG‐MAL). This 

approach supposes the establishment of an amide bond between the dendrimer and PEG dendrimer, 

and of a thiosuccinimide linkage between the PEG and the protein/peptide.[22, 24, 70, 71, 73-75] The 

exploration of PEG as a linker has several functions: on one hand, it forces the exposure of the 

targeting moiety, and on the other hand, it improves biocompatibility, provides longer circulation 

times, and reduces immunogenicity while increasing water‐solubility and enhancing the structural 

stability of the targeted systems. Although this is the most resourced strategy to tether targeting 

moieties to dendrimers, there are also few groups that have explored alternative approaches. For 

instance, in the aforementioned work from Somani et al., Tf was attached to G3 DAB via a dimethyl 

suberimidate (DMSI) cross‐ linking agent.[10] Also, it is worth mentioning the particular case 

reported by Li et al. where the dendrimer was used as a “dendritic box” to entrap TAM, used here as 

a targeting moiety.[22] 

5.3 Tumor Cell Targeting at the CNS Level 

In tumors, the EPR effect appears and the BBB permeability increases mainly as a consequence of 

cancer angiogenesis and extensive production of vascular mediators that facilitate extravasation. 

The newly formed vessels are usually abnormal and present large fenestrations. Consequently, in 

such settings, dendritic structures or dendritic‐based nanoparticles with suitable size, less than 100 

nm,76 can enter the brain tissue via endothelial gaps. Once within brain tissue, dendrimers for anti‐

tumoral therapy should recognize their target—brain tumor cells. For this, several groups have 

explored a number of brain‐tumor‐targeting ligands that specifically bind to different proteins on 

the surface of brain tumor cells. The most studied are the epidermal growth factor receptors (EGFR), 

integrins, and extracellular matrix (ECM) modulators. 

The EGFR and its mutant isoform EGFRvIII are transmembrane receptors expressed at high levels in 

various types of tumors, including brain tumor cells. The cetuximab (C225) antibody, specific for both 

wild‐type EGFR and EGFRvIII, has been probed for glioma targeting by Barth and colleagues. They 

reported the efficacy of C225‐PAMAM dendrimers carrying around 1100 boron atoms (B1100), 
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i.c. ‐ administered by convection ‐ enhanced delivery (CED), to significantly increase B1100 

accumulation in brain tumor tissues in comparison to healthy brain tissues, assuring the success of 

boron neutron capture therapy.[67] Moreover, they also demonstrated that direct i.c. administration 

of C225‐conjugated PAMAM‐methotrexate dendrimers by CED to glioma‐bearing rats resulted 

in a specific molecular targeting of the tumor.66 Other EGFR/EGFRvIII targeting moieties also 

investigated include monoclonal antibody specific to EGFRvIII, such as the EGF[52] and L8A4.[67] In 

these cases, the approach followed to decorate G4 and G5 PAMAM dendrimers with the brain‐

targeted antibodies, consisting of the aforementioned SPDP linker together with a N‐ (K‐

maleimidoundecanoic acid)hydrazide (KMUH).[52, 66, 67] PAMAM dendrimers were 

functionalizated with thiols through the attack of its primary amines to the succinimidyl group of the 

SPDP, while maleimides were introduced in the antibodies via the KMUH linker. Then, targeted 

dendrimers were obtained by reaction between both groups (thiols from PAMAM and maleimides 

from antibodies). 

Integrin expression, particularly integrin αvβ3, is prominent in glioma tumors but not on normal brain 

cells. The cyclic arginine–glycine–aspartic acid (RGD) peptide and its analogs have been widely 

investigated as ligands for integrin and, therefore, for glioma targeting strategies. Previous studies 

showed that i.v.‐ administered RGD‐modified dendrimers are capable of enhancing tumor 

penetration and accumulation, resulting in a general anti‐tumor effect of the chemotherapeutic 

drug Dox.[22, 24] 

Chlorotoxin (CTX) is a 36 amino‐acid peptide purified from the Leiurus quinquestriatus scorpion 

venom that binds with high affinity to the matrix metalloproteinase‐2 (MMP‐2) preferentially 

up‐regulated in tumor cells of the neuro‐ectodermal origin. Huang et al. exploited the PAMAM‐

CTX conjugates to carry a plasmid encoding for tumor‐necrosis‐factor‐related apoptosis‐

inducing ligand (TRAIL) into intracerebral glioma‐bearing mice. Upon intratumoral administration, 

these conjugates were able to increase their accumulation in brain tumor tissues and provoke a more 

widely extended apoptosis as compared to the group of animals treated with the commercially 

available drug temozolomide (chemotherapy drug).[75] 

Other studies exploited the potential of using D‐glucosamine as both BBB permeability enhancer 

and tumor targeting agent,26 as well as the use of cationic arginine residues,77 thiamine,[23] 

polysorbate 80 surfactant,[23] and the fibrin‐binding peptide CREKA,[22] as brain tumor targeting 

molecules. 

With regards to the chemical approach for carrying out the targeting in these last few examples, while 

RGD peptide,[22, 24] CREKA[22] and CTX[63] were linked via the well‐known and previously 

described NHS‐PEG‐MAL strategy to the dendrimers, glucosamine and some hydroxylated target 

molecules, such as polysorbate 80 and thiamine, were conjugated to G2 PEPE and G5 PPI dendrimers 

by using disuccinimidyl carbonate26 and carbonyl diimidazol (CDI),[23] respectively. 

5.4 In Vitro and In Vivo Tracking 

In order to follow the biodistribution of the dendritic delivery systems in vitro and in vivo, these can 

also be tagged with fluorescent dyes or radioactive atoms. Among the fluorescent dyes, the most 

widely used are fluorescein,[22] Cyanine 5 (Cy5),[22] boron‐dipyrromethene (BODIPY),[70, 73, 75] 

and rhodamine26 derivatives, although others labels like Alexa Fluor® 647 or IR783 have also been 
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used.4, 78 Nowadays, all these fluorescent dyes are sold with suitable functional groups to obtain an 

easy and stable attachment to the different terminal dendritic groups. In the majority of the cases 

summarized in this review, the most used ways to tag the dendrimers were based on carbodiidime, 

NHS, and isothiocyanate chemistry. 

To track the in vivo distribution of the dendritic systems, these can also be radiolabeled. Examples 

include the G5 PAMAM70, 74 and G3 DGL[22] dendrimers, which were radiolabeled with 125I via the 

commonly used 125I‐Labeled Bolton‐Hunter reagent. 

6. Applications of Dendrimers in the CNS 

The incidence of CNS diseases, especially those related to aging, has sharply increased in recent years 

due to the increment in life expectancy. This has put great pressure in the development of CNS 

therapeutics and its effective delivery. 

To support the use of dendrimers as promising delivery vectors to the CNS it is important that their 

mechanism of action is understood. To investigate the uptake of dendrimers specifically by the key 

cellular unit of the nervous system—the neuron—the process and kinetics of internalization of these 

macromolecules has been studied. Different endocytic mechanisms for PAMAM dendrimers have 

been observed in hippocampal neuronal cell cultures, including clathrin‐ and caveolae‐mediated 

internalization.79 The process appears to be dependent on the chemical surface modification of the 

PAMAM, as described by Hugh and colleagues, where unmodified (positively charged) and folic acid 

decorated dendrimers were internalized by both clathrin and caveolae endocytosis, while neutral and 

anionic dendrimers were not internalized. This lack of neuronal association observed for the latter 

has been explained by differences in the dendrimers' net charge. Functionalization of 50% of the 

amine surface groups with PEG led to neutral dendrimers, while the modification of 30% of amine 

surface groups with acrylate anionic groups rendered negatively charged dendrimers. In this context, 

another study has addressed the uptake of nanoparticles composed of 

carboxymethylchitosan/PAMAM dendrimers (CMCht/PAMAM) in CNS neuronal and mixed glial cell 

cultures. The results showed that, similarly to what was observed for all three glial cell types 

(oligodendrocytes, astrocytes, and microglia), hippocampal neurons were able to internalize 

dendrimers periodically given to the cultures for 1 week.80 The distinct rates of internalization were 

attributed to differences in proliferation, endocytic capacity, and different functions of each cell type; 

for example, the highest internalization for microglia was attributed to its phagocytic function. 

As previously commented, with the aim to increase the efficiency in crossing the BBB, dendrimers 

can be targeted with specific BBB ligands. This was illustrated in the case of PAMAM modified with 

the Angiopep‐2, a peptide recognized by the LRP1, which is abundantly present in the BBB 

endothelial cells.[73] This strategy resulted in an increased accumulation of the dendrimers in the 

mouse brain, 2 hours after i.v. administration, when compared to the unmodified PAMAM. However, 

the contribution of the PEGylation was not assessed in this study. Different brain structures were 

then analyzed, and while PAMAM was present at the cortex and caudate putamen, PAMAM‐

Angiopep was additionally present at the hippocampus and substantia nigra. 

When reaching the CNS after successfully crossing the BBB, the dendriplexes/nanoparticles must 

move through cells and tissues, i.e., these must diffuse through the parenchyma. A very interesting 

study using G4 PAMAM and 2‐hydroxydodecyl modified G4 PAMAM (C12‐PAMAM) dendrimers 
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showed that the 25% surface amine groups modification with this C12‐lipid induced in vitro toxicity 

and prevented parenchymal diffusion in vivo, while G4 PAMAM was most adequate for penetrating 

the brain parenchyma without causing toxicity or interfering with neural activity, as demonstrated 

by electrophysiological studies.4 

In the following paragraphs, the dendrimer‐based therapeutic and theranostics explored so far in 

the context of CNS are reviewed and discussed in detail. 

6.1 Vascular Diseases 

Treating neuronal damage after a cerebrovascular accident is a challenging issue and for this reason 

it is considered a major vascular disease. A cerebrovascular accident occurs due to an occlusion of a 

major artery (ischemic stroke) or rupture of a blood vessel (hemorrhagic stroke). In both cases, the 

therapeutic options available are reduced. Further challenges result from the limited window of 

opportunity to interfere with the pathological mechanism and the difficult access of therapeutics to 

the afflicted neurons. 

A recognized experimental model for ischemic stroke is to transiently occlude the middle cerebral 

artery with a monofilament.81 This and other models82 have allowed the study of neuroprotective 

therapies based on, for example, RNA interference (RNAi) strategies. An and colleagues reported the 

delivery, by a tail vein injection, of apoptosis signal‐regulating kinase 1 (Ask1) shRNA plasmid using 

a G3 DGL dendrimer with the aim to interfere with the mitogen‐activated protein kinase (MAPK) 

cascade signaling pathway after transient ischemia.83 To target the dendriplexes to the brain, DGL 

was decorated with dermorphin (an m‐opiate receptor agonist), which significantly elevated the 

relative accumulation of shRNA plasmid in the brain as followed by in vivo bioimaging. Nanoparticles 

were detected in ventricle, hippocampus, cortical layer, substantia nigra, and corpus striatum. As a 

measure of neuroprotective effect, the cerebral infarct volume was analyzed, resulting in a decreased 

value that reflected the efficient decrease of Ask1 expression by RNAi. Other similar NA‐based 

neuroprotective strategies in ischemia have been performed by means of arginine‐modified 

PAMAM dendrimers (e‐PAM‐R) as vectors for the high mobility group box 1 (HMGB1) siRNA 

delivery after intranasal administration,[22] and also by the use of carbosilane dendrimers to deliver 

hypoxia‐inducible factor (HIF1‐alpha) siRNA after induced hypoxia in cultured cortical neurons as 

a proof of concept.[25] Moreover, a PAMAM‐dexamethasone conjugate to deliver the heme‐

oxygenase‐1 (HO‐1) gene into the ischemic brain by stereotaxic injections was also reported.[22] 

In this study, dexamethasone was used to convey anti‐ inflammatory effects84 and also to 

simultaneously aid gene delivery as it binds to glucocorticoid receptor complexes, increasing nuclear 

localization.85 Overall, the outcome of the therapies was very positive, since the dendrimers showed 

a superior performance when compared with commercial transfection agents, as well as a 

therapeutic effect with a significant decrease in infarct volume, which opens new possibilities for 

gene therapy in stroke using dendrimers as delivery vectors. 

Another example from Kannan and co‐workers shows the use of a G4 PAMAM‐OH to reach the 

injured brain after global ischemia induced by hypothermic circulatory arrest in a canine model.[22] 

Upon i.v. administration, biodistribution studies revealed the dendrimers' presence in brain regions 

vulnerable for glutamate excitotoxicity, such as the hippocampus, cerebellum, and cerebral cortex. 

It was observed that dendrimers were selectively taken up in the injured hippocampal dentate 

granule cell layer, in cerebellar Purkinje and granule neurons, and in microglia. This study associates 
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excitotoxicity with dendrimer neuronal uptake, which is relevant for reaching the injured neuron 

population and ultimately in novel nanomedicine‐based therapies. 

6.2 Neurodegenerative Diseases 

Millions of people are affected worldwide by neurodegenerative diseases, being AD and PD the 

diseases with the higher incidence. The risk of developing a neurodegenerative condition increases 

dramatically with age. This is a commonly accepted reality for AD, which occurs due to the amyloid 

beta (Aβ) accumulation in the brain, leading to dementia. The number of patients and relatives 

affected, directly or indirectly, is enormous and, therefore, the research efforts on AD are vast. In the 

field of dendrimer‐based nanomedicine, AD fulfils a big piece of the research focus. For example, 

different studies have addressed the effect of distinct dendrimers on Aβ formation envisaging a 

future application on AD therapy. By using cationic phosphorus dendrimers[27] or the GATG 

dendrimers decorated with terminal morpholine groups,29 the interaction with Aβ was detected, 

and a closer inspection showed alterations in the aggregation pathway. Dendrimers influence on Aβ 

aggregation and disruption of mature fibrils prompted a study in a neuroblastoma cell line where a 

G3 PLL dendrimer was able to protect cells from Aβ toxicity and in vivo studies, using rats after 

unilateral intracerebroventricular injection, showed the presence of these dendrimers in different 

brain cell populations, like the hippocampal and cortical neurons.[24] This should have implications 

in AD pathology because the widespread localization of the dendrimers should be able to reach the 

disperse Aβ brain accumulation, impairing the amyloidogenic cascade and decreasing the 

pathological process. Also in AD research, sialic acid‐PAMAM conjugates were prepared to mimic 

the cell surface gangliosides known to have affinity for Aβ. This resulted in a lower toxicity induced 

by Aβ, leading to higher cell viability in a differentiated neuronal cell culture since the sialic acid‐

PAMAM functioned as a sequestering agent for A β .86 This suggests that specific dendrimer 

modifications may further enhance their ability to interact with abnormal Aβ. Another study using 

PPI glycodendrimers with either an electroneutral or a cationic maltose shell reduced in vitro the 

neurotoxicity of Aβ.[23] These two PPI maltose dendrimers reach the brain when administered 

intranasally and decrease the total burden of Aβ in transgenic AD mice. However, the PPI dendrimer 

with a cationic maltose shell induced an unexpected and unexplained cognitive decline in non‐

transgenic control mice. On the other hand, the electroneutral maltose dendrimer did not show any 

harmful effects to the mice used in this study. This highlights the fact that it is always important to 

exclude possible neurotoxic effects and, preferably, to perform tests using different methodologic 

approaches as well as assessments at different time points. 

Another possible application of dendrimers in neurodegenerative diseases has been explored in the 

context of PD. PD is a degenerative neurological disorder which affects neurons expressing dopamine 

in the substancia nigra of the brain, leading to motor symptoms. The therapeutic effect of human‐

glial‐cell‐line‐derived neurotrophic factor (hGDNF) complexed with a G5 PAMAM and targeted 

with Lf has been assessed in two different PD models (the 6‐hydroxydopamine (6‐OHDA) and the 

rotenone‐ induced chronic model).[22, 75] Behavior recovery with improvement of locomotor 

activity, reduction of dopaminergic neurodegeneration, and enhancement of monoamine 

neurotransmitter levels were achieved after i.v. administration, without changes in 

monocytes/macrophage levels as a toxicity evaluation parameter. Another strategy in PD for 

effective brain‐targeting gene delivery is the use of DGL bound with the angiopep‐2 ligand 

recognized by the LRP1, which is widely expressed on BBB endothelial cells. Multiple intraperitoneal 

injections of nanoparticles transporting a gene encoding for hGDNF resulted in improved locomotor 
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activity without changes in body weight.[24] All these reports show promising data in the treatment 

of PD. 

6.3 Neuroimmunomodulation 

The noteworthy ability of PAMAM dendrimers to target neuroinflammatory cells, even without 

specific ligands, has led to some interesting applications.22 As an example, the therapeutic NAC was 

delivered i.v. in a rabbit model of cerebral palsy using PAMAM as delivery vector. NAC in a soluble 

form did not show protective effects, while a lower dose of NAC associated to G4 PAMAM‐OH 

dendrimer was able to protect the brain by specifically reaching activated microglia and astrocytes, 

diminishing neuroinflammation and, consequently, protecting neurons.[22] This was ultimately 

shown to increase motor function of the animals. Moreover, this study also suggests that besides the 

influence of surface modifications that dictate the interactions of the dendrimers with distinct cells, 

the disease state and stage of pathology may as well influence the extent of the dendrimers uptake 

by different cells. The same compound, NAC, was also systemically delivered by PAMAM‐OH 

dendrimers in a mouse model of neonatal brain injury showing a shift in dendrimer co‐localization 

during the first 5 days from astrocytes and oligodendrocytes to activated microglia.[22] 

Unfortunately, the neuronal population was not assessed in this study. 

Vaccines for CNS infections are another area where dendrimers have been applied with interest. This 

is the case for rabies, a neurotropic infection, where PETIM dendrimers were selected to complex 

with the rabies virus glycoprotein gene.28 These dendriplexes were used to immunize mice after 

intramuscular administration with success since the viral titters of the nanoformulation were 

significantly increased when compared to control mice immunized with only the plasmid‐based 

rabies vaccine. Additionally, after an intracerebral rabies virus challenge, mice treated with the 

dendriplex showed 100% survival in contrast to the 60% survival for the control delivery without the 

dendrimer. 

6.4 Neuroinfection 

Dendrimers are also recognized in various publications as having therapeutic activity against prion 

diseases.[22, 27, 87] This disease in humans, called Creutzfeldt–Jakob disease (CJD), is caused by the 

accumulation of abnormal prion proteins that usually affect the occipital cortex, cerebellum, and 

supranuclear pathways leading to CNS dysfunction. In these studies, different dendrimers (PAMAM, 

PPI, PEI and with different generations ranging from G3 to G5) were used. Dendrimers have been 

found to be beneficial in this context by eliminating prion protein in scrapie form from cells, although 

requiring high density of reactive surface groups in the dendrimer composition irrespective of its 

charge as stated by McCarthy and colleagues.88 

Also regarding infection, HIV‐1 can cause dementia when the virus reaches the CNS. Antiretroviral 

therapy does not reach the CNS as readily as to other systems,89 which has an impact on the CNS 

infection. The use of gene therapy with siRNA delivery mediated by dendrimers has been 

investigated. Carbosilane dendrimers were already successfully evaluated in different in vitro 

experiments for the delivery of siRNA to decrease viral activity[25] as well as in vivo, after a retro‐

orbital vein injection, showing a very good biodistribution in the brain.[25] However, it remained to 

be determined if in vivo these dendriplexes would achieve gene‐silencing levels similar to what was 

observed in human primary astrocytes cultures. 
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6.5 CNS Tumors 

In the CNS, diverse tumors can be found, which include various gliomas, meningioma, choroid plexus 

carcinoma, medulloblastoma, and others, depending on the localization and the cell type from which 

it arises. Some have a very poor prognosis, such as the glioblastoma multiforme, the most malignant 

form of brain tumors. The use of dendrimers as delivery vectors for anti‐cancer therapy, including 

brain tumors, is extensive, as previously referred. The radioisotope boron‐10 was one of the first 

cargos delivered by dendrimers to brain tumors90 and although the in vitro results were promising in 

vivo, the study showed no specificity to the brain tumor cells, which is crucial in tumor therapy, that 

is, the requirement for selective cancer cell targeting. Therefore, different strategies were then 

employed such as the use of VEGF co‐delivered in boronated dendrimers91 and, onwards, the use 

of selective tumor‐ targeting moieties became common in dendrimer‐ based anti‐ cancer 

therapies. Various agents have been delivered or co‐delivered with dendrimers, such as the 

cytotoxic drug methotrexate,66 Dox,50 docetaxel,[23] or paclitaxel.92 Also, therapeutic genes in 

brain cancer such as apoptin,93 interferon beta (IFN‐β),77 and pORF‐hTRAIL[24] have also been 

delivered through dendrimers. The latter study, performed by Jiang group, is particularly interesting 

because it proposed a co‐delivery system administered by i.v. injection, combining both gene and 

chemotherapy. Another interesting use for dendrimers in brain tumors is the application of 

polyvalent, dendrimer‐bearing, magnetic nanoparticles (“dendriworm”), to deliver EGFR siRNA in 

a transgenic murine model of glioblastoma.94 For dendriworms development, cystamine core G4 

PAMAM dendrimers were reduced, yielding thiol dendrons. Then, amine‐modified, cross‐linked 

strings of spherical iron oxide nanoparticles coated with a biocompatible polymer (Dextran), named 

“nanoworms”, were prepared. Finally, reduced dendrons and nanoworms were conjugated using the 

heterobifuctional SPDP linker.94 Initially, dendriworms were administered via tail vein injections, but 

in this manner they accumulated significantly in the lungs. Subsequently, dendriworms were applied 

by CED. This methodology is highly invasive; nevertheless, the delivered dendriworms could diffuse 

in the brain parenchyma and deliver siRNA into the tumor cells, leading to significant gene 

suppression. 

As already referred, a systemic delivery of dendrimers has been successful in various brain tumor 

models.[22, 75] A pharmacokinetic study using PAMAM ‐ OH dendrimers showed a tumor 

accumulation only 15 min after tail vein injection, and it reached a peak concentration at 8 hours. The 

presence of the fluorescently labelled dendrimers was sustained for at least 48 hours.[22] Moreover, 

the dendrimers homogeneously distributed throughout solid tumor and gradually accumulate in 

tumor‐associated microglia/macrophages, which might be relevant for the further delivery of 

immunomodulatory molecules. 

6.6 Spinal Cord Injury 

SCI after a mechanical trauma causes major disabilities in virtually all physical and functional systems. 

Furthermore, the majority of affected people are young adults, which puts extra pressure in the 

treatment and rehabilitation process. Various therapies are in the forefront trials and, as recently 

stated, the therapy should encompass a combinatorial approach to a recognized multifactorial 

problem.95 A dendrimer‐based nanomedicine approach with all the advantages previously stated 

may be the most appropriate choice in SCI because it can offer multifunction abilities. Nevertheless, 

such studies have not been explored much to date. 
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In the literature, a surface ‐ engineered CMCht/PAMAM dendrimer was used to deliver a 

corticosteroid in a SCI animal model.96 This was performed by a local injection, 1 mm rostral and 1 

mm caudal, to the partially hemisected spinal cord lesion, which allowed for a sustained and 

controlled release in glial cells at the injury site for 14 days. There was also an improvement in the 

functional outcome of the injured rats. Before in vivo administration, cytotoxicity was evaluated 

without significant effects in non‐neuronal cells. 

Other studies are now anticipated in the area of SCI therapies using dendrimers as the deliver vector, 

possibly carrying a combination of therapies intended to achieve neuroprotection and/or 

neuroregeneration effects. 

6.7 Other CNS Disorders 

As observed in previous examples, the PAMAM dendrimers are usually the first choice as a delivery 

vector. In accordance, G4 PAMAM‐OH dendrimers have been applied in two rat models of retinal 

degeneration, resulting in cellular localization in activated microglia without the need of a cell specific 

ligand.[22] The drug fluocinolone acetonide, covalently conjugated to this dendrimer, as detailed 

above, was released in a sustained manner and, after a single retinal administration, dendrimers 

remained in the target cells for a remarkable period of over one month, effectively reducing 

inflammation. Such a controlled release is impressive and very appealing for this and other 

therapeutic purposes. 

6.8 Macromolecular Contrast Agents and Nanosensors 

Dendrimers are regarded in many different perspectives, depending on its function. Either they are 

being explored as vectors for delivery, antiviral agents, or even detoxifying compounds. Dendrimers 

have also been considered as macromolecular contrast agents and nanosensors for non‐invasive, 

advanced neuroimaging. This was explored in the field of CNS bioimaging, with an optical 

paramagnetic contrast agent based on a G5 PAMAM dendrimer, which was successfully applied in a 

glioblastoma mice model.97 Such use may have impact in delineating the brain tumor for surgical 

removal. Regarding potential brain tumor diagnosis applications, a more efficient contrast agent 

based on Gd‐DTPA for MRI that used DGLs was developed. For tumor specificity, the CTX peptide 

was used to target the nanoparticles, showing an ability to preferentially bind tumor cells. 

The application of dendrimers as nanosensors was demonstrated using a G2 PEG‐PAMAM for 

fluorescence sensing, which allowed monitoring changes of brain pH in vivo, as it was shown in a mice 

model of epilepsy.98 This new dendrimer‐based sensor can have various applications depending on 

the conjugated sensing fluorophores, which should be relevant for dynamic in vivo measurements of 

various CNS disorders. 

Also, a sodium‐sensing nanosensor was produced that demonstrated efficacy in imaging neuronal 

activity in brain slices65 and appeared better than available ion‐sensitive probes based on small 

fluorescent dyes. 

In a model of spinal cord contusion injury, the use of G1 fluorescent phosphorus‐based dendrimers 

was useful in following bone‐marrow‐derived macrophages because such dendrimers are readily 

internalized and maintained by these inflammatory cells. After injection at the subarachnoid space, 
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the macrophages were detected at the lesion site, and the dendrimers allowed assessing its 

phenotypic status because spectral changes in the phosphorus dendrimer emission profile were 

observed and related to the macrophage polarization physiology.99 

7 Challenges and Future Perspectives 

Dendrimers are nanosized materials that, due to their particular controlled globular structure, 

nanosize, multivalency, and low polydispersity are emerging in a large number of biomedical 

therapeutic applications. Besides the diagnosis and/or in vitro dendrimer‐based products already in 

the market, dendritic systems have already reached the clinical evaluation as contrast‐enhancer 

magnetic resonance imaging agents (Gadomer®‐17), anti‐microbicides (Vivagel®), and drug 

carriers for solid tumors therapy (DEP™ docetaxel). Notwithstanding, despite all these documented 

applications, the use of dendrimers within the CNS is still in its infancy and there are no reports of 

marketed products or current clinical trials using dendrimers for CNS diseases therapy. 

One of the most significant challenges in CNS disease therapy is the ability of therapeutic bioactives 

to permeate the BBB and reach CNS in an adequate bioavailability.100 Due to their controllable 

nanosize, several reports have recognized the ability of dendrimers to permeate this barrier and gain 

access to the CNS after systemic administration. Moreover, dendrimers have not only shown 

potential to act by itself as therapeutic or theranostic agents but also as vectors for the protection 

and delivery of bioactives to the CNS (as summarized in Table 1). However, the proper in vivo 

dendrimer biodistribution and safety profile is yet to be determined in depth, which may hinder their 

passage for clinical evaluation. 

Nonspecific dendrimer toxicity is closely related to its internal chemical composition, size, 

generation, and concentration, but it is mostly influenced by the nature of the surface terminal 

groups. In general, unmodified cationic dendrimers are more cytotoxic than their anionic or neutral 

counterparts.101 Likewise, higher concentrations and generations of unmodified cationic 

dendrimers display an inherently greater cationic surface charge and, therefore, a marked cytotoxic 

and hemolytic effect.102 However, there is still some inconsistency in the literature regarding the 

impact of the generation of a specific dendrimer on its toxicity profile. Namely, some authors have 

shown that low generations of PAMAM and PPI dendrimers are not toxic in vivo4, 103 (even if 

preliminary in vitro data has pointed to some toxicity profile),56 while others have reported a toxic 

profile for the same dendrimers.104 This stresses the need for optimizing the dendrimer 

composition, generation, dosage, and administration route, as well as to assess the safety and 

effectiveness at different time points after administration. 

Previous studies showed that unmodified cationic dendrimers, as well as other cationic 

macromolecules, strongly interact with the negatively charged cell membranes, which may 

destabilize membrane integrity followed by leakage of intracellular components that leads to cell 

death and toxicity.105 Moreover, when systemically administered, the cationic terminal groups of 

unmodified dendrimers can interact with red blood cells (RBCs), which may result in hemolysis. 

Similarly, such cationic dendrimers can also influence hematological parameters such as white blood 

cell (WBC) and RBC counts and morphology, hemoglobin content, and hematocrit and mean 

corpuscular hemoglobin (MCH) values.106 Thus, the prevention of strong electrostatic 

interactiTableons of dendrimers or bioactive/dendrimer system with cellular membranes by use of 

neutral or anionic dendrimers and/or by surface engineering (e.g., by the well‐known PEGylation 
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and/or carbohydrate coating) is a step that must be carefully considered to minimize nonspecific 

toxicity. 

For instance, Greish et al. compared the toxicity profile of hydroxyl and carboxyl‐ terminated 

PAMAM dendrimers with the amine‐terminated counterparts. Both neutral hydroxyl and anionic 

carboxyl‐terminated PAMAM dendrimers showed a decrease in their cytotoxic profile, with no 

evidence of causing protein opsonization or blood hemolysis, as compared to amine‐terminated 

PAMAM.[101] The same findings were corroborated by others.107 Overall, these studies 

demonstrate that the use of neutral and anionic dendrimers together with surface engineering 

strategies are key tools to enhance biocompatibility and reduce the overall immunogenicity of these 

systems. Additionally, another strategy capable of modulating the biocompatibility of dendritic 

systems is the optimization of their size. As previously discussed, the size of dendrimers or 

dendrimer/bioactive systems can be finely tuned to maximize, for example, the EPR effect or rapid in 

vivo clearance, accordingly to the proposed application. 

Dendrimers' biodistribution is predominantly modulated by their size and surface chemistry. While 

smaller dendrimers present short circulation times and are more quickly cleared by renal filtration, 

bigger dendrimers are slowly eliminated from the circulation and are more efficiently taken up by 

macrophages, leading to increased reticulo‐endothelial system (RES) clearance.108 Moreover, 

cationic dendrimers have the potential to interact more strongly with vasculature of highly perfused 

organs, which increases their clearance rate from the circulation as compared to anionic 

equivalents.[107] 

The above‐mentioned surface engineering with shielding agents or targeting ligands may not only 

aim at diminishing the charge‐dependent toxicity but also increase water solubility and circulation 

time (especially when systems modified with anti‐biofouling polymers, like PEG, are explored) 

while minimizing off‐target effects by enhancing the systems targeting potential and payload 

efficacy. For example, Zhu and co‐workers demonstrated that increasing the degree of PEGylation 

in PAMAM dendrimers can reduce liver and spleen accumulation and general toxicity, prolong the 

circulation time, and enhance the accumulation in tumor tissue of the PEGylated dendrimers 

conjugates, as compared to their unmodified equivalents.[22] The impact of dendrimer PEGylation 

on its biodistribution and circulation time was recently corroborated by Kojima et al.109 Moreover, 

other promising anti ‐ biofouling/non ‐ fouling polymers have recently emerged as possible 

alternatives to PEG, namely zwitterionic polymers,110 poly(2 ‐ oxazoline)s,[110, 111] 

poly(peptoids),[110] and poly(carbonates),112 among others. Although there are already a few works 

in which some of these polymers are linked to dendritic structures,[110, 111] further studies are 

expected to test the favorable properties of these alternative polymers when attached to dendrimers. 

Similarly, Kesharwani et al. compared the tumor targeting potential and respective toxicity profile of 

three different ligand‐conjugated PPI dendrimers with the corresponding plain (unmodified) PPI 

counterparts. They observed that the receptor conjugated PPI dendrimers not only showed 

enhanced tumor ‐ targeting potential, but also significantly diminished hemolytic toxicity as 

compared with the plain PPI dendrimers.113 

Within the CNS applications, the BBB permeation ability of dendrimers can be seen as a double‐

edged sword. While the enhanced BBB permeation may increase the bioavailability of therapeutic 

bioactives within the CNS, it can also increase the risks of overexposure of target cells to the 
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therapeutic bioactives and dendrimers and, consequently, result in CNS toxicity. This cell toxicity is a 

feature commonly associated with the use of non‐biodegradable dendrimers. Non‐biodegradable 

dendrimers have the potential for long‐term accumulation within lysosomes or cytoplasm and thus 

exhibit undesired cytotoxicity effects, which may be the case for reactive oxygen species (ROS) 

production and decreased metabolic activity.114 Therefore, to prevent dendrimer 

bioaccumulation‐associated toxicity, the use of biodegradable dendrimers is strongly encouraged 

in a biomedical scenario.115 Such dendrimers should degrade into smaller fragments under 

physiological conditions, which can be excreted or eliminated through metabolic pathways. 

Despite the intensive evaluation of dendrimers in the past few years, much research remains to be 

done to allow the ready translation of these nanoconstructs into clinically useful CNS nanomedicines. 

It is now clear that the potential benefit of dendrimers is closely linked to their physicochemical 

properties, which should be modulated in accordance with the proposed therapeutic application. 

However, this review clearly depicts the poor variability of dendrimer classes that underwent 

preclinical evaluation. For application in the CNS, the majority of the dendrimers used were based 

only in 3 main families: PAMAM, PPI, and PLL dendrimers. Consequently, future developments 

towards the design of more biocompatible and biodegradable dendrimers, novel linker technologies, 

as well as novel targeting agents that can collectively result in the improvement of dendrimer‐based 

systems bioavailability at the target tissues, are eagerly awaited. Furthermore, efforts on the 

development of efficient multigram synthesis to fulfill the pharmaceutical industry demand, as well 

as green synthetic routes, will also be important to the field. Minimizing the use and generation of 

hazardous substances would have an impact not only in environmental terms but would also 

contribute to improvements in terms of purification processes and biocompatibility. The design of 

such improved systems will therefore require additional efforts to better understand the 

dendrimer‐cell/body interaction, as well as their in vivo fate. Nevertheless, resolution and lack of 

sensitivity of currently available bioimaging tools remains a caveat when studying nanosystems 

behavior at the whole‐body scale.116 At present, the field has been limited to the evaluation of 

overall biodistribution/accumulation in key organs, time of clearance, systemic inflammatory 

reaction and associated toxicity. 

When considering the CNS, the possibility to explore several routes of administration (Figure 1) opens 

new avenues to improve the efficiency and, when applicable, the targeting of the treatment. 

However, for many neurological disorders the etiology and the specificities of the disease are yet 

poorly understood. So, the field will have to be constantly fed from the progress achieved at the 

fundamentals of neuroscience and neurology. 

All in all, successfully bringing forward dendrimers as powerful tools in the treatment of CNS diseases 

will definitely require a multi‐ and interdisciplinary effort due to the uniqueness and paramount 

importance of this system. 

In conclusion, dendrimers can be used in the CNS with various purposes, not only to deliver active 

therapeutic molecules but also to assess brain function and to diagnose CNS diseases or even to 

perform a combination of these purposes. Such a remarkable ability highlights their tremendous 

potential as a precise theranostic multifunctional agent, which we predict in the future to be 

extended to other unexplored CNS disorders. 
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Table 1. Overview of dendrimer applications in the context of the CNS 

Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

Vascular diseases 

Ischemic stroke 
PAMAM 

(G2, G4) 
n.a. 

HMGB1 

siRNA, 

pHO‐1 

Reduction of 

infarction in the 

ischemic brain 

[22]  

 DGL (G3) 
Dermorphi

n 

anti‐Ask1 

shRNA 

Preferable 

accumulation and 

gene transfection 

in brain 

83 

    

Significant 

reduction of 

cerebral infarct 

area 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0083
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

Hypoxia‐mediated 

neurotoxicity 

Carbosilan

e (G2) 
n.a. 

HIF1‐α 

siRNA 

In vitro selective 

block of HIF 
[25]  

Hypothermic 

circulatory arrest 

PAMAM 

(G4) 
n.a. VPA, NAC 

Injured BBB 

crossing and 

localization in 

injured 

hippocampal 

dentate granule 

cells, cerebellar 

Purkinje and 

granule cells and 

microglia 

[22]  

    
Improvement of 

neurobehavioral 

outcomes 

 

Neurodegenerative diseases 

Alzheimer 
PPI (G4, 

G5) 
n.a. n.a. 

Bind to Aβ 

affecting its 

aggregation 

process and 

attenuate Aβ 

induced 

neurotoxicity both 

in vitro and in vivo 

[23]  

 
GATG (G3) 

   
29  

 
PAMAM 

(G0, G3, 

G4) 

   
86, 117 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0029
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0086
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0117
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

 Phosphoru

s (G3, G4) 
   [27]  

 DGL (G3, 

G5) 
   [24]  

Parkinson 
PAMAM 

(G5) 

Lf, 

Angiopep‐2 
phGDNF 

Brain‐targeted 

gene delivery 

promoted long‐

term and effective 

neuroprotection in 

a Parkinson 

disease animal 

model 

[22, 24, 75]  

 
DGL (G3) Angiopep‐2 phGDNF 

 
[24]  

Neuroimmunomodulation 

Cerebral palsy 
PAMAM 

(G4) 
n.a. NAC 

Accumulation in 

activated 

microglia and 

astrocytes 

[22]  

    

Suppression of 

neuroinflammatio

n accompanied 

with motor 

function 

improvement 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0024
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0024
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0075
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0024
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

Ischemia‐induced 

white matter injury 

PAMAM 

(G4) 
n.a. NAC 

Attenuation of the 

pro‐inflammatory 

response while not 

impacting the 

anti‐inflammatory 

response 

[22]  

Vaccines 
PETIM 

(G4) 
n.a. pIRES‐Rgp 

Produce an earlier 

onset of a high‐

tittered protective 

antibody response 

28  

Neuroinfection 

Prion disease 
PAMAM 

(G4, G5) 
n.a. n.a. 

General decrease 

of prion proteins, 

both in vitro and in 

vivo 

[22, 87, 88]  

 PPI (G4, 

G5) 
   

[22, 88]  

 
Phosphoru

s (G3, G4, 

G5) 

   
[27]  

HIV‐1 infection 
Carbosilan

e (G2) 
n.a. 

Rev AON, 

GEM91 

AON, anti‐

TAR AON, 

p24 siRNA, 

nef siRNA 

and Cox‐2 

siRNA 

General decrease 

of antiviral activity 

both in vitro and in 

vivo 

[25]  

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0028
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0087
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0088
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0088
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0025
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

Cancer 

Glioma/Glioblastom

a 

PAMAM 

(G3, G4, 

G5) 

Tf/TAM, 

RGD, L8A4, 

EGF, C225, 

Tf/WGA, 

CTX, 

CREKA, 

arginine, 

Angiopep‐2 

Dox, MTX, 

B1100, 

PODO, EM, 

PTX, 

curcumin, 

pORF‐

TRAIL, 

pEGFP, 

pSiLuc, 

pRFP, 

pGL2, 

pGL3, 

pORF‐IFN‐

β, GFP 

siRNA, Luc 

siRNA, 

Enhanced 

penetration and 

accumulation in 

brain tumor tissue 

[22, 50, 52, 

66, 67, 73, 

75, 77, 92-

94, 118]  

    Anti‐tumor effect  

 PEPE (G2) 

D‐

glucosamin

e 

MTX  26  

 
PPI (G5) 

P80, 

thiamine 
DTX, PTX 

 
[23]  

 
DGL (G3) 

T7 peptide, 

cyclic RGD 

pORF‐

TRAIL, 

Dox, Luc 

siRNA 

 
[24]  

Spinal cord injury 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0050
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0052
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0066
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0067
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0073
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0075
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0077
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0092
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0094
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0118
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0026
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0024
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

Spinal cord 

hemisection 

PAMAM 

(G1.5) 
n.a. MP 

Effective 

improving of 

functional 

outcome after 

administration 

and 

internalization in 

the spinal cord 

tissue of partially 

hemisected rats 

96  

Other applications 

Retinal 

degeneration 

PAMAM 

(G4) 
n.a. FA 

Accumulation in 

the outer retina 

within activated 

microglia without 

active targeting 

[22]  

    

Neuroprotection 

with attenuation 

of 

neuroinflammatio

n 

 

BBB permeation 

and brain 

transfection 

PAMAM 

(G4, G5) 

Angiopep‐

2, Tf, Lf, 

RVG29 

pEGFP, 

pGL2, pCN‐

Luci, 

HMGB1 

shRNA 

Proof of concept: 

cellular 

endocytosis 

mechanism, in 

vitro BBB 

permeation ability 

and transfection 

efficiency 

[70, 71, 73-

75, 119]  

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0096
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0070
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0071
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0073
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0075
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0119
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Application 
Dendrimer 

family 

Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

 PPI (G3, 

G4) 
Tf 

pCMVsport 

β‐gal, 

pCMV‐

tdTomato 

 
[10, 23]  

 
DGL Leptin 30 pRFP 

 
[22]  

Toxicity 
PAMAM 

(G4) 
n.a. n.a. 

Proof of concept: 

in vitro and in vivo 

toxicity 

4, 78 

Contrast agents and nanosensors 

Contrast agents 
PAMAM 

(G5) 
Angiopep‐2 

Rhodamine

, Cy5.5 and 

Gd(III)‐

DOTA 

Conjugation of 

MR and optical 

reporters to be 

used as contrast 

agents. Ability to 

circumvent the 

blood brain 

barrier (BBB) and 

visualize brain 

tumors with high 

sensitivity in vivo 

97 

Sensor 

PAMAM 

(G2, G4.5, 

G5) 

n.a. 

Fluorescein

, 

rhodamine, 

CoroNa 

(Green or 

Red) 

Ability to monitor 

changes of 

neuronal activity 

and brain pH 

65, 98 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0004
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0078
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0097
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0065
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0098
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Targeting 

ligand 

Bioactive 

agent 
Remarks 

Reference

s 

 Phosphoru

s (G1) 
n.a. 

Fluorophor

e (Em 485 

nm) 

Ability to sensor 

macrophage 

phenotype 

99  

 

 

 

 

 

 

 

  

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201700313#adfm201700313-bib-0099
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