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ABSTRACT  

The development of scaffolds that combine the delivery of drugs with the physical support provided 

by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the 

incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres 

of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as 

a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by 

limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of 

dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced 



 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 

Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 

publications, please visit http://repositorio-aberto.up.pt/  

 

A
0

1
/0

0
 

fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution 

increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% 

ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the 

formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading 

efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of 

ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24 h. The 

release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to 

fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the 

drug released was demonstrated using human-derived macrophages. The release of prostaglandin 

E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-

CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this 

study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with 

anti-inflammatory properties. 

Keywords confocal Raman microscopy; drug delivery; electrospinning; ibuprofen; 

inflammation; nerve guide 

1. INTRODUCTION  

The first patent on electrospinning dates from 1934 by Formhals (1934). More recently, the technique 

was ‘reinvented’, becoming very popular for the preparation of tissue engineering scaffolds (Martins 

et al., 2007; Agarwal et al., 2009). Electrospinning allows the fabrication of nanofibrous scaffolds that 

can emulate the extracellular matrix, providing a biomimetic environment for cell growth, 

polarization and differentiation. In addition, a number of parameters in the electrospinning setup can 

be adjusted in order to modulate fibre diameter and orientation, as well as scaffold size and shape. 

The possibility of preparing aligned fibres has been especially explored in the context of nerve repair 

(Xie et al., 2010; Lee and Arinzeh, 2011). Previous reports show that neurons align their cellular 

processes in the direction of electrospun fibres in vitro (Corey et al., 2007; Yao et al., 2009). A similar 

outcome was observed in vivo, both in the peripheral (Yu et al., 2011; Jiang et al., 2012) and in the 

central nervous system (Hurtado et al., 2011). Electrospun scaffolds can also serve as drug delivery 

devices. Owing to the versatility of the electrospinning technique, different types of molecules can 

be incorporated in fibres. For nerve regeneration applications, fibres have been loaded with 

neurotrophins (Chew et al., 2005; Liu et al., 2012) or drugs, like 6‐aminonicotinamide, known to limit 

astrocyte proliferation (Schaub and Gilbert, 2011). To promote central nervous system regeneration, 

the combination of nanofibrous scaffolds with molecules that can locally hinder the inhibitory 

environment after a lesion is of particular interest (Liu et al., 2012).  

Inflammation is one of the secondary events activated after a central nervous system lesion and one 

of the most relevant targets in nerve regeneration strategies (Thuret et al., 2006; Fitch and Silver, 

2008). Although the role of inflammation in central nervous system regeneration is currently an issue 

of active debate (Chan, 2008; Schwartz et al., 2009), the results of clinical trials that involved 

assessment of drugs with described anti‐inflammatory properties, namely the antibiotic minocycline 

(Casha et al., 2012), support strategies targeting the modulation of the inflammatory response.  

This report proposes the incorporation of ibuprofen in electrospun fibres as a drug delivery system to 

enhance axonal regeneration in the context of a spinal cord lesion by limiting the inflammatory 
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response. Ibuprofen is a non‐steroidal anti‐inflammatory drug and its action is attributed to the 

inhibitory effect on cyclooxygenase (COX). This enzyme is responsible for the conversion of 

arachidonic acid in prostaglandins, the latter being associated with pain, fever and acute 

inflammatory reaction (Mitchell et al., 1993; Rainsford, 2009). In addition to the classical view of the 

action of ibuprofen, the release of prostaglandin E2 (PGE2) has been more recently associated with 

neuropathic pain after spinal cord injury (Zhao et al., 2007). Consequently, targeting the COX 

pathway is currently indicated as a new avenue to treat this condition (Ma et al., 2012), providing 

added value to the strategy proposed in this manuscript.  

Poly(trimethylene carbonate‐co‐ε‐caprolactone) [P(TMC‐CL)] is a biodegradable elastomer 

previously studied in the field of nerve regeneration research. The polymer possesses mechanical 

properties and a degradation profile appropriate to serve as nerve conduit (Pêgo et al., 2001, 2003) 

and it has shown to be able to support peripheral nerve regeneration in vivo (Vleggeert‐Lankamp et 

al., 2008). In the present work, it is proposed that P(TMC‐CL) serve as polymeric matrix for the 

delivery of ibuprofen. The optimization of electrospun P(TMC‐CL) fibre preparation, the 

incorporation of the drug and its release profile and bioactivity are investigated.  

2 Materials and methods 

2.1 Polymer synthesis 

Poly(trimethylene carbonate‐co‐ε‐caprolactone) was prepared by ring‐opening polymerization as 

previously described (Pêgo et al., 2001). In brief, ε‐caprolactone (CL) (Merck, Darmstadt, Germany) 

was dried overnight (calcium hydride; Sigma‐Aldrich Química, Sintra, Portugal) and distilled before 

the polymerization with trimethylene carbonate (TMC, used as received from Boehringer Ingelheim, 

Ingelheim am Rhein, Germany). Polymerization was carried out in evacuated and sealed glass 

ampoules using stannous octoate (Sigma‐Aldrich) as catalyst (2 × 10–4 mol per mol of monomer). 

After 3 days of reaction at 130 °C the polymer obtained was purified by dissolution in chloroform 

(BDH‐Prolabo, Carnaxide, Portugal) and subsequent precipitation into a tenfold volume of ethanol 

(96%, v/v; AGA, Prior Velho, Portugal). The chemical composition of the copolymer was assessed by 
1H nuclear magnetic resonance (NMR) and found to contain 11% mol of TMC, which is in accord with 

the monomer ratio charged (10% mol TMC). The molecular weight of the obtained polymer was 

determined by size exclusion chromatography using chloroform as the mobile phase. The average 

molecular weight was found to be 8.2 × 104 g/mol and the polydispersity index was 1.61.  

2.2 P(TMC‐CL) and ibuprofen‐loaded P(TMC‐CL) fibre preparation 
by electrospinning 

Initially, a range of electrospinning parameters was assessed. The parameters tested included 

polymer concentration in the electrospun solution (6–10%, w/v), polymer solvent [dichloromethane 

(DCM; Merck), chloroform (Sigma‐Aldrich) and N,N‐dimethylformamide (DMF), Merck)], flow rate 

(0.1–1.5 ml/h), and electric field applied (0.5–1 kV /cm). Based on the morphology of the fibres 

obtained (data not shown) the selected conditions for the subsequent experiments were: P(TMC‐CL) 

solutions (10%, w/v) dispensed at a flow rate of 1 ml/h using a syringe pump (Ugo Basile, Italy); an 

electric field (Gamma High Voltage source; Ormond Beach, FL, USA) of 1 kV/cm applied between the 

spinneret (inner diameter 0.8 mm) and a flat copper plate (15 × 15 cm) separated by 14 cm; DCM and 

DMF mixtures used as solvent at the volume ratios of 1:0, 6:1, 3:1 and 1:1. Fibres were collected into 
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an aluminium foil for 1–1.5 h. After vacuum drying (vacuum oven, Raypa, Barcelona, Spain) for 24 h, 

14 mm discs were punched out from the electrospun membranes and stored at room temperature 

(20‐25 °C) until further use.  

Ibuprofen‐loaded fibres were obtained by adding 5% and 10% of ibuprofen powder (w/w of polymer) 

to the polymer solution 5 h before electrospinning. Pharmaceutical grade ibuprofen (purity > 99%) 

was kindly supplied by Sérgio Simões (Bluepharma, Coimbra, Portugal). 

2.3 Fibre characterization 

2.3.1 Fibre morphology 

Fibre morphology was analysed by scanning electron microscopy (SEM). A low vacuum (5 kV) 

Phenom™ G2 (Phenom‐World, Eindhoven, the Netherlands) and a Quanta 400FEG ESEM (FEI, 

Eindhoven, the Netherlands) microscopes were used. Fibre diameter was quantified from SEM 

micrographs using image analysis software (Image J, version 1.39; NIH, Bethesda, MD, USA). Fibre 

mean diameter and fibre diameter distribution were calculated from at least 100 measurements from 

three independent samples. 

2.3.2 Drug loading efficiency 

1H NMR spectroscopy was used in order to quantify ibuprofen in the P(TMC‐CL) electrospun meshes. 

The analyses were performed in an AVANCE III 400 spectrometer (Bruker Corporation, Barcelona, 

Spain), operating at 400 MHz. The 1H chemical shifts were internally referenced to the 

tetramethylsilane (TMS; Eurisotop, Saint‐Aubin, France) signal (0.00 ppm) for spectra recorded in 

CDCl3 (Sigma‐Aldrich). Ibuprofen‐loaded P(TMC‐CL) fibres were dissolved in CDCl3 before analysis. 

Characteristic peaks from ibuprofen and P(TMC‐CL) were used to identify both species. The drug 

loading efficiency was calculated from the ratio between the area of the signal at δ = 2.45 ppm 

corresponding to the CH2 group of ibuprofen (2H), and the area of the peak corresponding to the 

resonance of the α‐methylene (δ = 2.30, 2H, CH2) of polymeric caprolactone.  

2.3.3 Ibuprofen distribution in P(TMC‐CL) fibres 

Ibuprofen powder and P(TMC‐CL) fibres prepared from 1:0 and 3:1 DCM–DMF mixtures with and 

without ibuprofen incorporated (5%, w/w, of polymer) were analysed using Fourier transform 

infrared spectroscopy (FTIR) and confocal Raman microscopy. 

The FTIR characterization was performed using a Perkin Elmer 2000 spectrometer (Perkin Elmer, 

Waltham, MA, USA) and an attenuated total reflectance (ATR) accessory (SplitPea™; Harrick 

Scientific, Pleasantville, NY USA), provided with a silicon internal reflection element and configured 

for external reflectance mode, where the spectra were acquired from a 200 µm diameter sampling 

area. A nitrogen purge was performed before each experiment. All samples were run at a spectral 

resolution of 4/cm and 200 scans were accumulated in order to obtain a high signal‐to‐noise level. 

The band at 1675–1775/cm was deconvoluted by applying the derivative and curve fitting algorithms 

using peakfit from AISN Software (Florence, Oregon, USA). Initial peak positions were obtained from 

second derivative spectra of the raw data. A Lorentzian band‐shape was used to fit the contours.  
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Confocal Raman microscopy analyses were performed using a LabRAM HR 800 confocal Raman 

microscope system (Horiba Jobin Yvon, Lille, France) comprising a spectrometer and a fully 

integrated Olympus BX41 confocal microscope (Olympus Iberia, S.A.U., Lisboa, Portugal). Raman 

spectra were generated using a 514 nm laser diode as excitation source, focused on the sample with 

a × 100 objective, a confocal hole of 100 µm and an exposure time of 100 s. For the experimental 

setup used, the spatial resolution is between 0.5 µm and 1 µm. The scattered light was dispersed by 

a grating with 1800 lines/mm (Jobin‐Yvon) at 4/cm spectral resolution. Spectral analysis was carried 

out using labspec5 software (Horiba Jobin Yvon). Imaging experiments on fibres were performed by 

scanning the laser beam over the region of interest and accumulating a full Raman spectrum at each 

pixel. Raman images were constructed by plotting the integrated intensity of the vibrational bands 

of interest as a function of position. For these experiments, fibres with a diameter > 2 µm were 

selected and step size for data acquisition was approximately 0.6 µm. The spectral range measured 

was 1400–1800/cm and the mapping area varied according to the fibre dimension.  

2.4 Drug‐release studies 

The amount of ibuprofen released from the electrospun P(TMC‐CL) fibres was evaluated as follows. 

Samples loaded with 5% of ibuprofen (w/w of polymer) were incubated at 37 °C and 120 rpm (Orbital 

Shaker Oven; IKA, Staufen, Germany) in phosphate buffered saline (PBS) at the final concentration 

of 5 mg/ml (mass of fibres/volume of PBS). At defined time‐points (0.5, 1, 2, 4, 6, 8, and 24 h) the 

releasing medium was refreshed. Ultraviolet/visible spectroscopy (UV/Vis) at 230 nm (SynergyMx; 

Biotek, Carnaxide, Portugal) was used to monitor the amount of ibuprofen released. Values were 

interpolated from an ibuprofen calibration curve (see the Supporting Information, Figure S4). 

Cumulative release was calculated relative to the maximum loading of 5% (w/w of polymer). The drug 

release kinetics was analysed using the Higuchi simplified model:  

Mt/M∞ = k√t                                                    (1) 

Where Mt/M∞ epresents cumulative ibuprofen release, t is time of incubation and k is a constant 

reflecting the design variables of the system (Siepmann and Peppas, 2001).  

2.5 Biological effect of ibuprofen on human macrophages 

2.5.1 Peripheral blood‐derived monocyte isolation 

Human peripheral blood‐derived monocytes were isolated from Buffy coats (kindly donated by 

Instituto Português do Sangue, Porto, Portugal) by negative selection using Rosettesep™ (StemCell 

Technologies, Grenoble, France) as previously described (Oliveira et al., 2012). A day after isolation, 

adherent cells were collected applying a 5 mm solution of ethylenediamine tetraacetic acid (EDTA; 

BDH‐Prolabo) and reseeded on glass coverslips at a cell density of 1.25 × 105 cells/cm2. The cell 

population contained > 70% of CD14 positive cells and no contamination by CD3‐positive T 

lymphocytes, as determined by flow cytometry (Oliveira et al., 2012). Cells were allowed to 

differentiate in RPMI medium (Gibco, Life technologies S.A., Madrid, Spain) supplemented with 10% 

of heat‐inactivated (56 °C, 30 min) fetal bovine serum (Lonza, Barcelona, Spain) for additional 8 days. 

Ten days after isolation, monocyte‐derived macrophages were stimulated with 10 ng/ml 

lipopolysaccharide (LPS; Sigma) for 72 h. Specific cell treatments were performed after LPS 

activation.  
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2.5.2 Cell culture 

The effect of ibuprofen on macrophage metabolic activity was assessed by means of a resazurin‐

based assay. In brief, different ibuprofen solutions in ethanol–water mixtures (7:3) were prepared and 

added (5 µl) to the cell culture media (500 µl) in order to obtain a final drug concentration ranging 

from 0.001 mg/ml to 1 mg/ml. Cell metabolic activity was evaluated at 24 h and 72 h after treatment. 

At the defined time‐point cells were incubated (4 h, 37 °C) with a resazurin (Sigma‐Aldrich) solution 

(0.1 mg/ml, in PBS) and the fluorescence (λex = 530 nm, λem = 590 nm) in the cell culture medium was 

measured (SynergyMx; Biotek). Results are represented as percentage of cell viability relative to cells 

treated with equal volume of the ibuprofen solvent (5 µl).  

In order to evaluate the bioactivity of ibuprofen released from P(TMC‐CL) electrospun fibres, fibre 

discs (14 mm) were incubated with macrophages for 72 h. The fibres tested were prepared from 1:0 

DCM–DMF solutions loaded with 5% ibuprofen (w/w of polymer). The punched discs weighed 

between 0.9 mg and 3 mg. Fibre sterilization was performed by irradiating (gamma rays, 25 kGy, 60Co 

source) samples previously packed under vacuum. Fibre discs were suspended in the well without 

direct contact with the cells. Macrophages treated with ibuprofen in the medium (final concentration 

0.1 mg/ml), as well as cells cultured in presence of unloaded P(TMC‐CL) fibres, were used as control.  

2.5.3 Immunofluorescence 

To analyse cell morphology, macrophages were fixed with 4% (w/v) paraformaldehyde (Merck) and 

immunostained for α‐tubulin and F‐actin as follows. Cell external fluorescence was quenched by 

treating the cells with 50 mm NH4Cl for 10 min. Subsequently, cells were permeabilized with 0.1% 

(v/v) Triton X‐100 (in PBS) for 5 min. After washing with PBS, cells were incubated with 5% (w/v) 

bovine serum albumin (BSA; Sigma‐Aldrich) in PBS for 30 min and, thereafter, incubated with the 

primary antibody mouse anti‐α‐tubulin (1:4000; Sigma‐Aldrich) for 1 h. Subsequently, cells were 

thoroughly washed and incubated with Alexa Fluor 594 goat anti‐mouse IgG (1:1000; Invitrogen, Life 

technologies Madrid, Spain) for 45 min. F‐actin was stained for 15 min using 5 µm Phalloidin‐FITC 

(Sigma‐Aldrich). Cells were washed with PBS and mounted on Vectashield with 4′,6‐diamidino‐2‐

phenylindole (DAPI; Vector Laboratories, Peterborough, UK). Samples were observed under an 

inverted fluorescence microscope (Axiovert 200; Zeiss, Oberkochen, Germany).  

2.5.4 PGE2 and quantification of cytokines  

At the defined time‐point (72 h after treatment), cell culture supernatants were collected and, after 

centrifugation (16000 g, 4 °C, 10 min) to remove cell debris, stored at –20 °C for posterior analysis. 

The concentration in the cell culture supernatant of PGE2 (Cayman Chemical, Ann Arbor, MI, USA), 

interleukin 6 (IL‐6), IL‐10 and tumour necrosis factor‐α (TNFα) were quantified by enzyme‐linked 

immunosorbent assay (ELISA; Biolegend, San Diego, CA, USA) following the manufacturer's 

instructions. Results are presented normalized for the total protein content in the cell culture 

medium, as determined by the DC protein assay (Bio‐Rad, Amadora, Portugal).  

2.6 Statistical analysis 

Statistical analysis was performed using prism 5.0 software (GraphPad, La Jolla, CA, USA). Statistical 

differences between two groups were calculated applying a t‐test when analysing results from PGE2 



 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 

Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 

publications, please visit http://repositorio-aberto.up.pt/  

 

A
0

1
/0

0
 

and release of cytokines. Mean fibre diameters obtained when using different solvent combinations 

loaded or unloaded with ibuprofen were analysed using non‐parametric Kruskal–Wallis test and 

Bonferroni correction for multiple comparisons. A p‐value lower than 0.05 was considered 

statistically significant.  

3 Results 

3.1 Characterization of P(TMC‐CL) and ibuprofen‐loaded P(TMC‐CL) 

fibres 

3.1.1 Fibre morphology 

The influence of solvent composition on P(TMC‐CL) fibre morphology was evaluated by testing 

different DCM–DMF mixtures (Figure 1, Table 1). Fibres prepared from 1:0 DCM–DMF solutions 

showed a broad diameter distribution. Improved homogeneity of the fibres was observed when 

increasing the DMF fraction in solution, as shown by the narrowing of the fibre diameter distribution 

(Figure 1). The fibre mean diameter was found to be 1.09 ± 0.10 µm for fibres prepared from 1:0 

DCM–DMF solutions, decreasing to 0.48 ± 0.03 µm for fibres prepared from 1:1 DCM–DMF solutions 

(Table 1).  

Ibuprofen‐loaded P(TMC‐CL) fibres were prepared by adding 5 % and 10 % of the drug (w/w of 

polymer) to the polymer solution before electrospinning. Electrospinning parameters applied were 

the same as those optimized for the preparation of the non‐loaded fibres. When 5% of ibuprofen 

(w/w of polymer) was added to the P(TMC‐CL) solution, smaller fibres were formed, as indicated by 

the decrease in mean fibre diameter in comparison with unloaded fibres (Table 1). When analysing 

the effect of the solvent composition on the morphology of 5% ibuprofen‐loaded fibres, under the 

conditions tested, fibres prepared from 1:1 DCM–DMF solutions fused (Figure 2). For this reason, a 

1:1 DCM–DMF solutions was not tested for 10% ibuprofen‐loaded fibres. No significant differences in 

terms of mean fibre diameter were detected when comparing loaded fibres prepared from 1:0, 6:1 

and 3:1 DCM–DMF solutions. However, in terms of fibre diameter distribution a higher percentage of 

bigger fibres (> 3 µm) were formed from 1:0 DCM–DMF solutions (Figure 2). When fibres were 

prepared from solutions with 10% ibuprofen (w/w of polymer), the high drug content led to jet 

instability, resulting in a less homogeneous fibre mesh. Under these conditions a tendency towards 

the formation of defects and large‐diameter fibres was observed, as indicated by the fibre diameter 

distribution graphs (Figure 2), albeit the mean fibre diameter was not remarkably affected (Table 1). 

For fibres prepared from 3:1 DCM–DMF solutions, in particular, fusion of the deposited fibres was also 

observed. 

3.1.2 Drug loading and distribution 

The chemical composition of ibuprofen‐loaded P(TMC‐CL) fibres was analysed by means of three 

spectroscopic techniques: 1H NMR, ATR‐FTIR and Raman.  

By 1H NMR spectroscopy, ibuprofen was clearly distinguished from P(TMC‐CL) signals (see the 

Supporting information, Figure S1). The amount of drug relative to the polymer was quantified using 

this technique. It was found that in the 5% ibuprofen (w/w of polymer) loaded P(TMC‐CL) fibres the 
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actual loading was 4.21 ± 0.02 % (w/w of polymer; n = 3), corresponding to a loading efficiency of over 

80%.  

As NMR provides information about the bulk chemical composition of the prepared samples, to 

obtain complementary chemical characterization of the fibres, these were also analysed by ATR‐

FTIR. Figure 3A shows the spectra of ibuprofen‐loaded P(TMC‐CL) fibres prepared from 1:0 DMC‐

DMF solution, unloaded fibres and ibuprofen powder. The most intense bands of ibuprofen are 

located at 2955, 1721 and 1231/cm, being assigned to CH3 asymmetric stretching, C = O stretching 

and C–C stretching, respectively (see full FTIR spectra in Figure S2). These bands cannot be 

distinguished in the ibuprofen‐loaded fibres because of overlapping with the polymer signals. 

Although weak, the band corresponding to the aromatic C = C stretching vibration of ibuprofen 

(1509/cm) can be identified in the ibuprofen‐loaded P(TMC‐CL) fibre spectrum, confirming the 

presence of the drug in the fibres (Figure 3A). In order to identify the presence of subtle spectral 

changes in the region of the most intense bands of ibuprofen and P(TMC‐CL) (1670–1800/cm) a 

second derivatization and curve fitting of the raw data was performed. Figure 3AI,II) shows that the 

number of bands in that particular zone of the spectrum increases in the loaded polymer samples 

further supporting the presence of ibuprofen in the fibres. Analysis of the ibuprofen‐loaded P(TMC‐

CL) spectrum compared with those of P(TMC‐CL) and ibuprofen showed no differences other than 

the characteristic bands of the starting materials, suggesting that no chemical interaction between 

ibuprofen and the polymer occurred. ATR‐FTIR analysis of P(TMC‐CL) fibres prepared from 3:1 DCM–

DMF solutions was also performed and similar spectra were obtained.  

As a complementary technique to FTIR P(TMC‐CL), individual fibres were analysed by confocal 

Raman spectroscopy. By using this technique it was possible to identify the C–C stretching (1610/cm) 

on the fingerprint region of ibuprofen (Figure 3B). The presence of this clear marker band allowed the 

use of Raman mapping to determine and compare the spatial distribution of ibuprofen in P(TMC‐CL) 

fibres prepared with 1:0 and 3:1 DCM–DMF solutions. Data was acquired on an area of the fibre as 

shown in Figure 3CI,DI). Mapping was performed by rationing the ibuprofen fingerprint region to the 

background signal in two different spectral regions: 1510–1525/cm and 1645–1665/cm. Regions with 

high concentration of ibuprofen are depicted in bright green, while regions with low ibuprofen 

concentration are shown in black (see Figure 3E). Although drug distribution is not completely 

homogeneous, results show no preferential distribution of the drug at fibre edges or in the centre for 

both ibuprofen‐containing fibres prepared from 1:0 and 3:1 DCM–DMF P(TMC‐CL) solutions (Figure 3 

(CII,DII).  

3.2 Drug‐release studies 

The release of ibuprofen from P(TMC‐CL) fibres was evaluated in PBS at 37 °C, to mimic physiological 

conditions. The amount of ibuprofen released was interpolated from a calibration curve and the 

percentage of cumulative release was calculated relative to the maximum loading of 5% (w/w of 

polymer). 

Under the experimental conditions tested, ibuprofen was released from the P(TMC‐CL) fibres within 

the first 24 h of incubation in PBS (37 °C), independently of the solvent mixture used for fibre 

preparation. None, or residual amounts of ibuprofen were detected in the releasing medium when 

loaded fibres were incubated for longer periods (data not shown). In the case of fibres prepared from 

6:1 and 3:1 DCM–DMF solutions, a burst release appeared to occur (Figure 4B,C). In contrast, the 
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release kinetics of ibuprofen from fibres prepared in 1:0 DCM–DMF was slower, suggesting time‐

dependency (Figure 4A). Analysing ibuprofen release using the Higuchi model it was found that the 

release profile of ibuprofen from P(TMC‐CL) fibres prepared from 1:0 DCM–DMF solutions fitted 

better in the model, indicating that the release is diffusion dependent for the first 8 h of incubation in 

PBS (see fitting curve in Figure S5). Observation of the fibres after the drug release experiments 

showed that fibre morphology was maintained upon drug release (Figure S6).  

3.3 Biological evaluation 

Ibuprofen anti‐inflammatory properties have been associated to its inhibitory action on COX 

(Mitchell et al., 1993). This enzyme is responsible for the formation of prostaglandins (such as PGE2) 

from arachidonic acid, and is related with the inflammatory response (for a review see Rainsford, 

2009). To ensure that the ibuprofen incorporated into the P(TMC‐CL) fibres exerted its biological 

activity, the release of cytokines and PGE2 by monocyte‐derived human macrophages was quantified 

after incubating the cells with the fibers or soluble ibuprofen (positive control). Taking advantage of 

the fact that P(TMC‐CL) density is similar to water density and consequently the discs hang in cell 

culture medium, the fibres were incubated without direct contact with the adhered cells. This set up 

made it possible to distinguish the effect of the drug from any effect triggered by the polymer 

surface, as macrophage response and differentiation is affected by surface chemistry (Brodbeck et 

al., 2002), and by its topography (Cao et al., 2010). In this study the aim was to discern the effect of 

the released drug regardless of cell–material interaction.  

3.3.1 Effect of ibuprofen on macrophage cell viability and morphology 

To assess ibuprofen cytotoxic profile on monocyte‐derived human macrophages, the drug was added 

in its soluble form to the cell culture medium to a final concentration ranging from 0.001–1 mg /ml. 

Ibuprofen solvent (ethanol 70% v/v) was also applied as a negative control. The graph presented in 

Figure 5A indicates that, at the highest concentration tested (1 mg/ml), ibuprofen was toxic for 

macrophages, significantly reducing cell viability (< 10%). Similar results were obtained when cell 

metabolic activity was assessed 24 h post‐treatment (data not shown). Taking into consideration 

these results, 0.1 mg/ml soluble of ibuprofen was applied in the following experiments as control.  

The effect of ibuprofen‐loaded P(TMC‐CL) fibres on macrophage morphology was investigated by 

observing the distribution pattern of cytoskeleton proteins (α‐tubulin and F‐actin). Therefore, human 

primary macrophages were incubated for 72 h with soluble ibuprofen at a final concentration of 

0.1 mg/ml, with ethanol (70% v/v, ibuprofen solvent), with P(TMC‐CL) fibres or with ibuprofen‐loaded 

P(TMC‐CL) fibres. In all the experimental conditions tested macrophages showed evidence of 

heterogeneous cell morphology, with round‐shaped cells and F‐actin staining concentrated at the 

cell periphery in podosome‐like structures, and elongated cells with less intense and peripheral F‐

actin staining. In contrast, α‐tubulin staining was always homogeneously distributed along the cell 

body and according the cell axis (Figure 5). No significant differences in terms of macrophage 

morphology were observed between the different experimental conditions.  

3.3.2 Anti‐inflammatory properties of ibuprofen‐loaded P(TMC‐CL) fibres 
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To assess if the ibuprofen released from ibuprofen‐loaded P(TMC‐CL) electrospun fibres is bioactive, 

the concentration of soluble PGE2 produced by exposed macrophages was quantified in the cell 

culture supernatants after 72 h of incubation.  

The results (Figure 6) indicate that when ibuprofen is added to the medium the release of PGE2 

decreases, suggesting that COX is being inhibited. The same tendency is observed when comparing 

the effect of ibuprofen‐loaded fibres and non‐loaded fibres (Figure 6), although none of the 

differences achieved statistical significance. In terms of inhibition, considering the mean values, 

when ibuprofen is added in solution there is a 56% decrease in PGE2 release, while ibuprofen released 

from P(TMC‐CL) electrospun fibres can reduce the release of PGE2 by 47%. However, when 

comparing the effect of ibuprofen released from P(TMC‐CL) fibres directly with control conditions 

one should take into account that the amount of drug that can be released from P(TMC‐CL) fibres is 

in a concentration range and can slightly differ from the control concentration used in this assay.  

The effect of ibuprofen on the release of IL‐6, IL‐10 and TNFα was also evaluated. Under the 

experimental conditions of this study, ibuprofen was found to induce no significant effect on the 

release of IL‐6 or IL‐10 when added in solution or when released from electrospun P(TMC‐CL) fibres 

(Figure 6). The concentration of TNFα secreted into the cell culture medium was found to be below 

the detection limit (3.5 pg/ml) of the ELISA assay (data not shown).  

4 Discussion 

The preparation of nerve conduits by electrospinning holds the promise of allowing easy preparation 

of fibres, at the nanometre scale, that can guide axonal growth and be loaded with biologically active 

molecules able to enhance nerve regeneration processes (Lee and Arinzeh, 2011). In the present 

work, the aim was to prepare fibres of a statistical copolymer of TMC and CL with low TMC content 

(11 mol%) by electrospinning and to load these with an anti‐inflammatory drug. The idea beyond this 

strategy is to design scaffolds that can provide physical support for nerve cell growth, and that 

simultaneously minimize, at the lesion site, the inflammatory reaction that could counteract nerve 

regeneration. The preparation of electrospun structures based on a block copolymer of TMC and CL 

(Jia et al., 2006) or blends of P(TMC) and P(CL) (Han et al., 2010) have been reported in the literature. 

Nevertheless, a statistical copolymer holds the advantage of reducing the formation of crystalline 

domains and reducing phase separation within the polymer structure, which is desirable when 

envisaging the use of these materials in implantable devices (Pêgo et al., 2001). The authors have 

previously reported on the use of selected statistical P(TMC‐CL) for the preparation of microporous 

and macroporous conduits for nerve reconstruction in the peripheral nervous system. P(TMC‐CL) 

with a high CL content has been shown to possess adequate mechanical properties and degradation 

rate to be used in a nerve regeneration strategy (Pêgo et al., 2001, 2003), as it is able to support nerve 

regeneration in vivo (Vleggeert‐Lankamp et al., 2008). This paper describes for the first time the 

preparation of electrospun fibres from this copolymer.  

By using different DCM–DMF mixtures in the electrospinning solution it was possible to prepare 

fibrous meshes with variable mean fibre diameter. Increasing the DMF content in solution, mean fibre 

diameter was decreased from 1.09 µm to 0.48 µm. DMF is a high conductivity solvent, and its use in 

the preparation of solutions for electrospinning leads to an increase in jet splaying and a reduction of 

fibre diameter (Hsu and Shivkumar, 2004). Typically, DMF is used below 30% in solution, as described 

for the preparation of fibres of P(CL) (Bölgen et al., 2005) and P(CL)/P(TMC) blends (Han et al., 2010). 
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Herein, the preparation of fibres from solutions containing up to 50% of DMF was explored. Results 

show that by increasing the DMF content one can obtain very homogeneous fibre meshes, with 

narrower fibre diameter distribution and smaller mean fibre diameter. However, the use of 1:1 DCM–

DMF solutions was revealed to be unsuitable for the preparation of ibuprofen‐loaded P(TMC‐CL) 

fibres at the drug concentrations tested. It was previously described that the incorporation of drugs 

in electrospinning solutions can lead to an increase in solution conductivity (Kim et al., 2004). This 

increase, combined with the high DMF content, may cause fibres to bind together because of the 

high conductivity (Heikkilä and Harlin, 2008) and high boiling point of DMF, which prevent solvent 

evaporation during fibre deposition (Hsu and Shivkumar, 2004).  

Ibuprofen‐loaded fibres were obtained from 1:0, 6:1 and 3:1 DCM–DMF mixtures. In terms of 

morphology, when applying a 5% of ibuprofen (w/w of polymer) load, a tendency towards a decrease 

in mean fibre diameter is observed compared with unloaded fibres. This effect is particularly 

noticeable for 1:0 DCM–DMF solutions, probably because the presence of the drug led to a more 

marked increase in solution conductivity compared with solutions containing DMF (Kim et al., 2004). 

Although the differences in terms of mean fibre diameter are not significant, when loading 10% 

ibuprofen in solution, jet stability and solvent evaporation are reduced, the latter being particularly 

evident in the case of the 3:1 DCM–DMF solution. The increase in jet instability with higher drug 

loading has also been reported previously (Natu et al., 2010).  

The presence of ibuprofen in P(TMC‐CL) fibres was clearly demonstrated by ATR‐FTIR and Raman 

spectroscopy. Both techniques showed that the chemical stability of ibuprofen is maintained after 

electrospinning. In addition, no alterations in the characteristic peaks of P(TMC‐CL) and ibuprofen 

are seen in ibuprofen‐loaded P(TMC‐CL) spectrum, indicating that there is no significant chemical 

interaction between the polymer and the drug, as previously observed in ibuprofen‐loaded cellulose 

acetate fibres (Tungprapa et al., 2007).  

The ibuprofen release kinetics from P(TMC‐CL) fibres were assessed in physiological medium (PBS, 

37 °C). Results demonstrate that ibuprofen is released within the first 24 h after incubation in PBS, 

independently of the solvent mixture used for the preparation of the fibres. It was previously reported 

that the expression of cycloxygenase‐2 peaks 3 h after spinal cord injury (SCI), and is maintained for 

3 days (Adachi et al., 2005). In this context, the release of ibuprofen in the early hours after the lesion 

can provide the expected therapeutic benefit. A complete ibuprofen release in the first 24 h of 

incubation under physiological conditions has also been reported using cellulose acetate fibres 

(Tungprapa et al., 2007). In terms of kinetics, we found an initial burst release for fibres prepared from 

6:1 and 3:1 DCM–DMF mixtures. However, in the case of fibres prepared from 1:0 DCM–DMF the 

release was found to be diffusion dependent, as it fits the Higuchi model for drug release (Siepmann 

and Peppas, 2001). Indeed, the cumulative amount of ibuprofen correlates with the square root of 

the time (R2 > 0.94) for the first 8 h of incubation for fibres prepared from 1:0 DCM–DMF solutions. 

Conversely, no linearity was observed for ibuprofen release from P(TMC‐CL) fibres prepared from the 

3:1 and 6:1 DCM–DMF solutions. It was hypothesized that the presence of DMF in solution could 

affect the drug distribution within the fibre, leading to a burst release compared with fibres prepared 

from solutions without DMF. To address this point samples were analyzed using confocal Raman 

microscopy. To the best of the authors' knowledge this is the first report using confocal Raman 

microscopy to assess drug distribution in an electrospun fibre. Mapping experiments by confocal 

Raman allowed screening of specific areas within an electrospun fibre. By using a step slightly smaller 

than the theoretical size of the spot of the laser beam (0.7 µm), mapping experiments provided the 

https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0029
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0042
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0042
https://onlinelibrary.wiley.com/doi/full/10.1002/term.1792#term1792-bib-0038


 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 

Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 

publications, please visit http://repositorio-aberto.up.pt/  

 

A
0

1
/0

0
 

profiling of all the sample area and discrimination of subtle differences in composition (Adar, 2008). 

The mapping of the drug in P(TMC‐CL) fibres showed that ibuprofen distribution was not completely 

homogenous. Nevertheless, at the spatial resolution offered by the experimental setup used, no 

preferential localization of the drug was identified that could be correlated with the burst release (for 

example, at the fibre edge). In addition, no significant differences were detected when comparing 

fibres prepared from 1:0 and 3:1 DCM–DMF solutions, suggesting that, at the submicrometer scale, 

the drug distribution is independent of the solvent mixture applied during electrospinning. The 

results indicate that other parameters are probably playing a role in ibuprofen release, for example 

the fibre diameter (Cui et al., 2006). Although no significant differences were detected in terms of 

mean fibre diameter, the fibre diameter distribution was different between these two types of 

samples. In fibres prepared from 1:0 DCM–DMF mixtures the presence of a small percentage of fibres 

with a large diameter (> 3 µm) was observed and could have contributed to delaying the release of 

the drug by increasing the drug diffusion pathway within the polymeric fibre structure.  

Owing to the important role of macrophages as effectors of an inflammatory response and as these 

cells are targets of ibuprofen, primary human monocyte‐derived macrophages were selected to 

evaluate ibuprofen bioactivity after the release from electrospun fibres. Macrophages are highly 

dynamic and versatile cells, and their response to exogenous stimuli is generally accompanied by 

alterations in actin assembly/disassembly and cell morphology. These alterations may occur as a 

consequence of a number of effects such as surface topography (Cao et al., 2010), drugs (Chiou et al., 

2003) or soluble factors (Shinji et al., 1991; Porcheray et al., 2005). Thus, the effect of ibuprofen‐

loaded P(TMC‐CL) fibres on macrophage morphology was investigated by observing the distribution 

patterns of cytoskeleton proteins (α‐tubulin and F‐actin). The results show no major alterations of 

actin/tubulin cytoskeleton organization in macrophages incubated with ibuprofen or ibuprofen‐

loaded P(TMC‐CL) fibres. However, it cannot be excluded that, to be perceived, considerable 

alterations would need to have occurred in the heterogeneous macrophage cell population under 

study. Cells incubated with ibuprofen‐loaded P(TMC‐CL) fibres secreted less PGE2 into the cell 

culture medium than did non‐loaded fibres. Although the result did not accomplish the statistical 

significance (p = 0.06) because of the high variability between cell donors, this result strongly 

suggests that the drug incorporated in the electrospun fibres retains its bioactivity. This result is 

reinforced by the fact that the percentage of inhibition obtained (47%) is similar to that found with 

treatment with ibuprofen in solution (56%).  

In addition to the classical view of ibuprofen activity, acting on the prostaglandin pathway, there is 

mounting evidence that lowering levels of eicosanoids is not the only mechanism by which ibuprofen 

exerts its effects (Stuhlmeier et al., 1999; Zhou et al., 2003). Stuhlmeier and co‐workers (1999) 

showed that ibuprofen can inhibit the nuclear translocation of the nuclear factor kappa B (NF‐kB), a 

transcription factor critical for the upregulation of expression of pro‐inflammatory genes. These 

reports prompted evaluation of the concentration of pro‐inflammatory cytokines (TNFα and IL‐6) 

and an anti‐inflammatory cytokine (IL–10) in the cell culture medium in this study. Under the 

experimental conditions applied in this study, no significant levels of TNFα were found in the cell 

culture medium. For IL‐6 and IL‐10, no major differences were found when comparing cytokine levels 

secreted by cells incubated with ibuprofen‐loaded P(TMC‐CL) fibres or non‐loaded fibres. Similar 

results were obtained when cells were treated with ibuprofen in the medium (0.1 mg/ml), suggesting 

that under the set conditions the drug exerts no effect on the cytokine release profile. In the literature 

divergent effects on cytokine release are ascribed to ibuprofen. Some authors have shown that 

ibuprofen induces a decrease in the secretion of TNFα and IL‐1β by mononuclear cells (Stuhlmeier et 
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al., 1999; Lamanna et al., 2012), whereas a concentration‐dependent increase of TNFα and IL‐6 has 

been observed by others (Sirota et al., 2001; Lee and Chuang, 2010). Recently, Lamanna and 

colleagues (2012) reported the inhibition of TNFα secretion by a macrophage cell line when cells were 

incubated with a high concentration of ibuprofen (1 mg/ml). However, when applying this 

concentration, the authors (Lamanna et al., 2012) also found ibuprofen‐mediated cytotoxicity and, 

in agreement with the results of the present study, incubating cells with 0.1 mg/ml of ibuprofen was 

found to have no effect on IL‐6 and TNFα release into the culture medium.  

5 Conclusions 

Fibres from P(TMC‐CL) were successfully prepared by electrospinning. It is shown here that by 

adjusting the solvent composition, one can change the mean fibre diameter in a controlled manner. 

An anti‐inflammatory drug can be loaded in P(TMC‐CL) fibres, the release kinetics being dependent 

on fibre morphology, which is tuned by the solvent mixture applied for preparation of the 

electrospinning solution. Ibuprofen was found to maintain its chemical stability and bioactivity after 

electrospinning, as demonstrated by the fact that the drug was able to reduce the amount of PGE2 

secreted into the cell culture medium by human macrophages. The use of confocal Raman 

microscopy as a mean to assess the drug distribution within electrospun fibres is also proposed for 

the first time, being a promising technique to provide new cues on the drug‐release process.  

The results provide an important insight into the design of a P(TMC‐CL)‐based nerve conduit 

combining physical cues provided by the fibres with an anti‐inflammatory signalling molecule, which, 

together, can assist nerve regeneration. 
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Figure 1. Representative scanning electron microscopy photomicrographs of poly(trimethylene carbonate‐co‐ε‐

caprolactone) [P(TMC‐CL)] fibres and fibre diameter distribution (n = 3). Samples were prepared using P(TMC‐CL) 

solutions in a dichloromethane (DCM)–N,N‐dimethylformamide (DMF) mixture with increasing amounts of DMF: 

(A) 1:0 DCM–DMF; (B) 6:1 DCM–DMF; (C) 3:1 DCM–DMF; (D) 1:1 DCM–DMF. Higher magnification images scale 

bar = 20 µm 
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Figure 2. Scanning electron microscopy photomicrographs of ibuprofen‐loaded poly(trimethylene carbonate‐co‐

ε‐caprolactone) [P(TMC‐CL)] fibres and respective fibre diameter distribution (n = 3). Fibres were obtained from 

solutions containing 5% (A–D) and 10% (E–G) of ibuprofen (w/w of polymer) and applying different 

dichloromethane (DCM)–N,N‐dimethylformamide (DMF) mixtures as solvent: (A,E) 1:0 DCM–DMF; (B,F) 6:1 DCM–

DMF; (C,G) 3:1 DCM–DMF; (D) 1:1 DCM–DMF. Higher magnification images scale bar = 20 µm 
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Figure 3. (A) Attenuated total reflectance–Fourier transform infrared spectroscopy spectrum of ibuprofen‐loaded 

poly(trimethylene carbonate‐co‐ε‐caprolactone) [P(TMC‐CL)] fibres prepared from 1:0 dichloromethane (DCM)–

N,N‐dimethylformamide (DMF) solutions (pink). The spectra of ibuprofen (in green) and non‐loaded fibres (blue) is 

shown for comparison. Curve fitting in the spectral region between 1670/cm and 1800/cm of (I) P(TMC‐CL) fibres 

and (II) ibuprofen‐loaded P(TMC‐CL) fibres. (B) Raman spectra of ibuprofen (dark blue), P(TMC‐CL) fibres (green), 

and ibuprofen‐loaded P(TMC‐CL) fibres (light blue) obtained from 1:0 DCM–DMF solutions. (C,D) Confocal Raman 

microscopy analysis of ibuprofen‐loaded P(TMC‐CL) fibres. (I) In images blue indicates the region analysed from 

ibuprofen‐loaded P(TMC‐CL) fibres prepared from (C) 1:0 DCM–DMF and (D) 3:1 DCM–DMF solutions, respectively 
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(axis indicates distance in µm). (II) For each sample the mapping of the 1610/cm ibuprofen Raman band relative to 

background bands (1510–1525/cm and 1645–1665/cm; axis indicates distance in µm) is presented. These are 

representative images from three different areas analysed. The overlay of the spectra obtained for each point is 

presented in Figure S3 (see Supporting Information). Regions with high concentration of ibuprofen are depicted in 

bright green (*) and regions with lower concentration are depicted in dark green (+). (E) Representative spectra of 

these regions are shown 

 

Figure 4. Cumulative release of ibuprofen from poly(trimethylene carbonate‐co‐ε‐caprolactone) [P(TMC‐CL)] 

fibres in phosphate‐buffered saline (PBS) (37 °C). Samples were prepared from (A) 1:0 dichloromethane (DCM)–

N,N‐dimethylformamide (DMF), (B) 6:1 DCM–DMF and (C) 3:1 DCM–DMF solutions containing 5% ibuprofen (w/w 

of polymer). Fibre concentration in PBS was 5 mg/ml (n = 9) 

 

Figure 5. (A) Macrophage viability when incubated for 72 h with ibuprofen at different concentrations. The 

percentage of viable cells was calculated relative to cells treated with ibuprofen solvent (ethanol 70% v/v). Bars 

represent mean values and error bars show standard deviation. Results are representative of three independent 

experiments. (B–E) Actin–tubulin cytoskeleton immunolabelling of macrophages. Macrophages were incubated 

for 72 h in the presence of (B) ethanol 70% (v/v), (C) ibuprofen 0.1 mg/ml, (D) poly(trimethylene carbonate‐co‐ε‐

caprolactone) [P(TMC‐CL)] fibres, and (E) ibuprofen‐loaded P(TMC‐CL) fibres. Scale bar = 100 µm. α‐Tubulin is 

shown in red, F‐actin in green and the cell nucleus in blue. Magnified images of each condition are also presented 

(scale bar = 20 µm) 
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Figure 6. Effect of ibuprofen on (A) prostaglandin E2 (PGE2) and (B) cytokine [interleukin (IL)‐6 and IL‐10] release 

by human macrophages. Results are expressed as box‐whisker plots showing the quantification of (A) PGE2 or (B) 

IL‐6 and IL‐10 released into the cell culture medium after 72 h in contact with soluble ibuprofen added in solution 

to the cell culture medium or released from P(TMC‐CL) electrospun fibres. The P(TMC‐CL) fibres were prepared 

from 1:0 dichloromethane (DCM)–N,N‐dimethylformamide (DMF) solutions. Cells incubated with non‐loaded 

fibres (Fibre) or with ibuprofen (IBU) solvent (ethanol 70% v/v, Control) were used as controls. Results were 

obtained from cells from five independent donors and seven samples and are normalized by the total amount of 

protein in the supernatant. The p‐value calculated by t‐test 

 

Table 1. Poly(trimethylene carbonate‐co‐ε‐caprolactone) [P(TMC‐CL)] electrospun fibre diameters 

 
Fibre diameter (µm) 

1:0 DCM–DMF 6:1 DCM–DMF DCM:DMF (3:1) 1:1 DCM–DMF 

Non‐loaded 1.09 ± 0.10 1.02 ± 0.19 0.67 ± 0.12 0.48 ± 0.03 

Ibuprofen 5% 0.84 ± 0.08 0.91 ± 0.09 0.76 ± 0.06 – 

Ibuprofen 10% 1.2 ± 0.05 0.91 ± 0.2 0.84 ± 0.12 – 

Mean diameter ± standard deviation (n = 3) of P(TMC‐CL) fibres prepared from dichloromethane (DCM)–N,N‐

dimethylformamide (DMF) solutions at ratios of 1:0, 6:1, 3:1 and 1:1 in the absence or presence of 5% and 10% of 

ibuprofen (w/w of polymer), respectively. Standard deviation represents variability between different samples. 
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Supporting Information  

Figure S1. 1H NMR spectrum of ibuprofen-loaded P(TMC-CL) fibers, showing the identification of ibuprofen 

characteristic peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Full ATR-FTIR spectrum of ibuprofen (grey), ibuprofen-loaded P(TMC-CL) fibers (black) and P(TMC-CL) 

(red).   
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Figure S3. Overlay of spectra obtained from mapping experiments of ibuprofen-loaded P(TMC-CL) fibers 

prepared from (A) DCM:DMF (1:0) and (B) DCM:DMF (3:1) solutions. 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Standard calibration curve obtained for ibuprofen. 
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Figure S5. Fittings according to Higuchi model for drug release for fibers prepared from (A) DCM:DMF (1:0), (B) 

DCM:DMF (6:1) and (C) DCM:DMF (3:1) 

 

Figure S6. SEM micrographs of ibuprofen-loaded P(TMC-CL) fibers prepared from DCM:DMF (1:0) solution (A) 

before and (B) after ibuprofen release.  
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