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The quantum revolution of the last century advanced synergistically with technology,

for example, with control of the temporal and spatial coherence, and the polarization

state of light. Indeed, experimental confirmation of the quirks of quantum theory, as

originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then

Bell, have been performed with photons, i.e., electromagnetic wave packets prepared

in the same quantum states. Experimental tests of quantum mechanics with matter

wave packets have been limited due to challenges in preparing all of the packets with

similar quantum states. While great strides have been made for trapped atoms and

Bose-Einstein condensates, the technology for electron matter waves has not kept

pace. In other words, electron sources typically have a low quantum degeneracy. As

new techniques to control the coherence of electron wave packets are developed, new

avenues to test quantum theory become available.

To better understand the temporal coherence of a pulsed electron source, we

have studied electron emission from metallic and semiconductor structures. Ultrafast

electron emission was obtained by focusing femtosecond laser pulses on metallic

nanotips and nanoribbons, as well as semiconductor shards. The various emission

mechanisms from these sources were investigated in efforts to control the coherence of

the emitted electron wave packets. The electronic band structure of semiconductor

materials provides an additional feature in that the spin state of emitted electrons can

be optically controlled. Controlling the spin polarization in a pulsed electron source



could lead to a source with the highest quantum degeneracy yet achieved.

The development of a quantum degenerate source of matter waves is a step toward

realizing fundamental tests of quantum mechanics with electron wave packets. As

quantum degenerate electron sources do not yet exist, their potential and utility remains

to be explored. An ultrafast spin-polarized source of electrons is itself intriguing for

studying nanoscale magnetic systems with unprecedented temporal resolution. These

advancements suggest that an entirely new field of free electron quantum optics may

be within our reach, with all of its possibilities open for exploration. The quantum

revolution may yet have some surprises in store.
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The development of the first compound microscopes around the 17th century revealed

an entirely unseen world for discovery, the world of the very small. Microscopic

anatomy was first reported in Giambattista Odierna’s L’occhio della mosca (The Fly’s

Eye) in 1644. For the first time, individual cells and new lifeforms were discovered,

which lead to new fields of inquiry. Using polarized light revealed hidden structures of

what was being imaged; however, the ultimate magnification was limited by the size

of the wavelength of light used. To see further into the world of the very small then

required smaller wavelengths or new methods.

A breakthrough was realized amidst the quantum revolution in 1924, when physicist

Louis de Broglie hypothesized that all matter in motion has a wavelength. De Broglie’s

hypothesis was confirmed through the electron scattering experiments of Davisson

and Germer between 1921 and 1925. The first electron microscopes were developed

over the next decade by Ernst Ruska and Max Knoll, with the first images obtained

by Ernst Lübke in 1932. Resolution was refined to the atomic scale by the 1980’s

with the development of scanning probe microscopes by Gerd Binnig and Heinrich

Rohrer. The 1986 Nobel Prize was shared among Ruska, Binnig, and Rohrer. The

famous image of the quantum corral was taken in 1993 at IBM using a scanning probe

microscope. Further advancements would come with the development of ultrafast

electron microscopy, pioneered in the group of Nobel laureate Ahmed Zewail, which



has lead to the possibility of visualizing objects at the atomic scale in motion.

This dissertation focuses on studying sources that produce short flashes of electrons

that can also be spin-polarized. These sources might be used in electron microscopes

to provide imaging in time, and, when polarized, could reveal the hidden magnetic

structure of objects at these short time scales. The behavior of the electrons produced

from these sources could also provide insight into how quantum mechanics works at

very short time scales. As technology improves, the world of the very small becomes

even larger.
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PREFACE
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//doi-org/10.1063/1.5031440), with the permission of AIP Publishing.

Chapter 3 has been published in European Journal of Physics (E. R. Jones, R.

A. Bach, and H. Batelaan, “Path integrals, matter waves, and the double slit,” Eur.

J. Phys. 36, 065048 (2015).), and was selected by the editors to be included in the

“Highlights of 2015” collection.

Chapter 4 includes results that have been published in Journal of Physics: Con-

ference Series (H. Batelaan, E. Jones, W. C. Huang, and R. Bach, “Momentum

exchange in the electron double-slit experiment,” J. Phys.: Conf. Ser. 701, 012007

(2016).), as well as unpublished results for a future publication.

Chapter 5 contains figures and results that have been published in Applied Physics

Letters. Reproduced from E. Brunkow, E. R. Jones, H. Batelaan, and T. J. Gay,

“Femtosecond-laser-induced spin-polarized electron emission from a GaAs tip” (Appl.

Phys. Lett. 114, 073502 (2019); https://doi.org/10.1063/1.5070059), with the

permission of AIP Publishing. Work related to subadditive emission from GaAs s still

in progress and will hopefully be submitted for publication by August 2019.
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Chapter 1

Introduction

1.1 Motivation for research

The motivation for the work presented in this dissertation is to further develop

our understanding of the creation and evolution of electron matter wave pulses in

space and time. The creation of electron matter waves has proceeded following the

independent electron diffraction experiments of Davisson and Germer,1 and Thompson

and Reid,2 which confirmed de Broglie’s hypothesis that electrons in motion possess a

characteristic wavelength dependent on their velocity.3 Electron matter wave pulses

became available after the realization of the first femtosecond- and nanometer-scale

tip sources, produced by illuminating metallic nanostructures with femtosecond laser

pulses.4–6 Ultrashort, multiple electron bunches have been have been used practically

in ultrafast electron diffraction and ultrafast electron crystallography.7–9 Recently,

pulsed tip sources were used for the first time to obtain ultrafast low-energy electron

diffraction from polymers and graphene.10,11 Tip sources have been used in ultrafast

electron microscopy,12,13 in particular, to image the plasmonic near-fields excited in

metallic nanostrucures, in a technique referred to as photon-induced near field electron

microscopy (PINEM).14–16 The technique of optically gating electron pulses by utilizing

their interactions with plasmonic near-fields in the PINEM arrangement has recently



2

produced electron pulses having a duration of 30 fs, with the possibility of further

gating into the attosecond regime.17,18 While electrons produced from tip sources

are often used to probe a sample target, the electrons produced at the source can

give insight into dynamics occurring within the source itself.19 Owing to their spatial

and temporal coherence,20 such sources have also been used in fundamental tests of

quantum mechanics.21–23 The nanometer spatial confinement provided by the source

structure and temporal confinement provided by the exciting laser pulses suggest

the possibility for the on-demand production of electrons with the highest possible

quantum degeneracy.24,25 We have attempted to characterize and control various

emission processes by making use of unique source geometries other than standard

field emission tips, and to increase the degeneracy of our source by considering different

materials. The possibilities for unique sources are made available by new methods of

growing or shaping tailored nanostructures in a variety of materials.26 For our purposes,

we obtained gold nanoribbons, whose growth can be tuned by various controls,27

and developed electrochemical etching for several materials, including gold28–30 and

p-doped gallium arsenide (GaAs).31,32 Electron emission from a nanoribbon source,

provided for us by our collaborators Professor Bret N. Flanders and Gobind Basnet

at Kansas State University, is presented in Ch. 2.33 Emission from GaAs, studied

through a collaboration with Professor Timothy J. Gay and his former graduate

students Evan Brunkow and Nathan Clayburn,34 is presented later, in Ch. 5, after

the presentation of a basic quantum-mechanical model of degenerate electron sources.

Ultrafast, nanometer-scale electron sources can therefore illuminate processes both

within and outside of the source.

Once electron pulses are created, understanding how they propagate in space and

time informs both experimental results and experimental pursuits. The propagation of

electron matter waves generally proceeds with the well-established connection between
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quantum mechanics and the optics of electromagnetic waves.35 This connection is

made by identifying similar terms in the time-independent solutions of both the

Schrödinger and Maxwell wave equations. Indeed, matter wave interferometers have

generally confirmed the expectations from optics,36 and experiments as fundamental

as Young’s double-slit interference37 have been repeatedly verified. However, beams

of matter waves also experience various interactions with matter optics elements,

such as van der Waals forces38,39 or simple charging effects.40 Matter waves, unlike

electromagnetic waves, are dispersive in free space. Treating matter wave propaga-

tion in the same manner as electromagnetic waves can therefore lead to incorrect

predictions. In our research group, we have often used the path integral formulation

of quantum mechanics,41,42 informed by the matter-optics analogy, to successfully

describe experiments performed with electrons illuminating material gratings and

interacting with electromagnetic fields.37,40,43–47 In order to proceed with our goals

of theoretically modeling our quantum degenerate sources, it was necessary to test

the limits of the matter-optics analogy, and then use the appropriate theoretical

description to determine what results were possible. In Ch. 3, the path integral

formalism for electron matter waves interfering in a Young’s double slit arrangement

is presented. The difficulty of associating elements of the correct theoretical formalism

with representations of the physical system in order to make predictions is discussed

in detail.48

A valuable tool in presenting the matter/optics analogy would be a system where

the analogy could be easily visualized. The classic system that has demonstrated wave

evolution, developed by Thomas Young himself, is the ripple tank.49 The advantage of

the ripple tank is that unlike electromagnetic waves, water waves are easily visualized,

and are thus an invaluable system of demonstrating wave behavior. The disadvantage is

that the presentation provided by the ripple tank demonstration can lead to conceptual



4

difficulties in considering the evolution of matter waves. This conceptual difficulty

is highlighted in Ch. 3. The connection between the ripple tank demonstration and

matter is further complicated because matter in motion is more often intuitively

associated with particles. It seemed an improved system was demonstrated in 2005,

when researchers lead by fluid physicist Yves Couder showed that a vertically shaking

dish of oil could support bouncing droplets of the same oil. The bouncing droplets were

accompanied by parametrically forced macroscopic waves that form spontaneously on

the surface of vertically oscillated cells of shallow fluid, which are known as Faraday

waves.50,51 When the frequency and amplitude of the shaking are within a particular

range, the drops will interact with their associated Faraday wave at the surface, and

will march in step at 1/2 the driving frequency of the dish.52 An intriguing feature

of this system is that while the action of the particle bouncing on the fluid surface

initiates the Faraday wave, the Faraday wave locally surrounding the droplet guides

the motion of the marching droplets. Disturbances in the local environment that

affect the boundary conditions of the wave will change the trajectory of a marching

droplet. Similarly intriguing is that the Faraday wave, which is supported by the

near-resonance shaking of the fluid, retains information regarding the state of the

wave at previous times until that component of the wave damps away.53–55 The system

therefore demonstrates a kind of path memory of previous interactions. Thus, the

droplet/wave system is a unique hydrodynamic analog to particle/wave duality,56 and

could then be used to demonstrate the behavior of matter waves. This analogy was

studied in the Young’s single- and double-slit configuration, and seemed to demonstrate

a wave interference pattern generated one marching droplet at a time.57 This system

was reproduced in our research group, and our results are presented in Chapter 4. We

further study an arrangement that has features analogous to a particle trapped in

an infinite square well potential, and show that system entails research that can be
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aimed toward high school students.

The importance of understanding how matter waves propagate in space and time

from their appropriate source distributions is an essential component of modeling

how multiple-electron wave packets will evolve. The physics describing the creation

and evolution of multiple-electron wave packets is studied in Hanbury Brown-Twiss

type anticorrelation experiments.58 The original experiments performed by Hanbury

Brown and Twiss, which measured correlations of the detection of photons from

independent sources,59 are often noted as the motivation for the development of

quantum optics.58,60–63 While their methods were developed to measure the angular

width of distant stars,64,65 they demonstrated that photons emitted from seemingly

random sources was in fact bunched in time.59,66 A statistical argument supporting their

results was quickly published by Purcell,67 and a fully quantum mechanical description

of their results developed by Fano followed a few years later.68 Their methods were

further utilized to determine the size of the reaction regions of high energy physics

collision experiments.58,69 Similarly, the development of a quantum degenerate electron

source could motivate an entirely new field of free electron quantum optics.70,71 A

description of quantum degenerate sources, as well as a quantum mechanical treatment

of pairs of electron pulses propagating in time, is presented in Chapter 5.

1.2 Ultrafast electron sources

Electron emission from cathode sources can be obtained from a number of different

mechanisms. Typical electron sources are made by biasing a sharp metallic tip

at a high voltage. The local electric field at the tip modifies the work function

experienced by electrons in two ways: first, the barrier obtains a linear negative

slope proportional to the electric field strength at the tip, and second, the barrier is
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lowered due to the Schottky effect.72 Electrons can then be emitted from the metal

into the vacuum by tunneling through the modified barrier. Thermionic sources

can be obtained by applying a current to a cathode, which in most practical cases

is a hairpin filament.73 For sufficiently low electric fields at the filament apex (<

5 GV/m), electron emission follows a Richardson-Schottky model, and depends on

the temperature of the emitter and the applied voltage that lowers the material work

function.74 From semiconductors, electrons can be emitted from the conduction band

after being promoted from the valence band.75 For direct band gap semiconductors like

GaAs, this can be accomplished by shining light resonant with the band gap energy

on the cathode. The energy difference between the conduction band and vacuum,

sometimes referred to as the ionization energy,76 can be modified by layering materials

on the surface of the cathode. This layering process is generally referred to as surface

activation. For example, GaAs photocathodes are typically activated by layering Cs

and O2 onto a clean crystal surface.75,77 The band structure of GaAs allows electrons

to be pumped from the valence band to the conduction band with a preferential spin

population determined by the helicity of light used to pump the photocathode.75 The

spin polarization obtained during optical pumping can survive transport through the

activation layer, and thus electrons emitted from the surface will be spin-polarized. To

our knowledge, all of these sources emit electrons at random times. When they do so

with a well-defined energy, they are referred to here as continuous wave (CW) sources.

The essential ultrafast electron source requires focusing femtosecond laser pulses

onto a photocathode material. Typically, the photocathode of choice is a metallic

field emission tip having a radius of curvature on the order of 10 nm–100 nm; however,

since the observation of ultrafast emission from tungsten and gold tips,4–6 fast electron

emission has also been observed by focusing femtosecond laser pulses onto ion-milled

grating structures which couple the laser pulses into surface plasmon pulses that
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propagate toward a sharp apex,78–80 and from flat surface unactivated GaAs photo-

cathodes attributed to a multiphoton process.81 The emission process of an ultrafast

source results from a number of different mechanisms and depends on the material,

the intensity of laser used, and the applied voltage. So far, fast electron emission

has been attributed to multiphoton processes, above threshold photoemission, optical

field emission, thermally-assisted photoemission, and plasmonic field emission.19,79,82

Ultrafast electron sources have so far been implemented successfully in a number of

schemes.

It is important to define precisely what we mean by “fast” when describing the

emission process. When we refer to a fast source of electrons, we mean that the

time scale of the emission process is comparable to duration of the laser pulses that

cause the emission.5,33,34 This characterization has only an indirect bearing on the

duration of emitted electron pulses, in that temporally short electron pulses can be

obtained from fast emission processes, while long electron pulses are expected from

slow emission processes. This characterization also does not determine how promptly

electron emission follows excitation with the laser pulse, although it is expected that

fast emission processes ought to be prompt.

Characterizing how fast an emission process is can be accomplished through

pump/probe techniques. When the emission process is found to be additive, electron

emission from probe pulses is no longer affected by processes initiated by pump pulses.

In this work, pump/probe measurements were performed for a number of samples,

including annealed tungsten tips, annealed gold tips, and gold nanoribbons in Ch. 2,33

and GaAs shards in Ch. 5.34 The gold nanoribbons, named as such due to their square

cross-sectional profile and high aspect ratios, were prepared for us in the research lab

of Professor Bret N. Flanders with his graduate student, Gobind Basnet, at Kansas

State University, using the method of directed electrochemical nanowire assembly



8

(DENA).26,27,83 Comparing emission data among the metallic samples showed that

emission from gold nanoribbons can proceed from thermally-assisted processes. The

signature of thermal processes depends on the thermal conductivity of the sample

being considered. Gold nanoribbons, which have fairly low thermal conductivity and

thus retain heat for relatively long times, have been shown to take up to 5 µs to cool

to 20 % of their peak temperature in a laser focus.84 At high source temperatures,

one emission signature is therefore enhanced additive electron emission for delays

longer than the incident pump and probe pulse durations due to thermally enhanced

emission. A second signature, in cases where the laser heating is sufficient, can be

observed in the extended tails of the detected time-of-flight spectra taken for single

beam illumination. This thermal energy is likely acquired due to laser heating of the

samples, and is shown to scale with the incident intensity and polarization used. The

time-of-flight spectra can be modeled with a Richardson-Schottky mechanism, which

is used to determine the temperature of the source in the laser focus, as well as the

material work function and emitter radius of curvature.74 For GaAs, the multiphoton

emission process is more complicated as it can be additive similar to metallic field

emission tips, or in an unexpected twist can be subadditive for long delays. The

mechanism for subadditive emission is currently under investigation, but a model is

presented here that shows that the emission process from GaAs is nonetheless due to

a fast process. It was determined by measurements performed by Evan Brunkow and

Nathan Clayburn in the lab of Professor Timothy J. Gay here at the University of

Nebraska-Lincoln that electron emission from GaAs shards can be spin-polarized, but

it remains to be seen if the spin-polarized emission from GaAs shards is due to a fast

process.
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1.3 Using Feynman’s path integrals to describe matter waves

The subject of Richard M. Feynman’s own graduate dissertation was the development

of the path integral formalism for quantum mechanics.41,42 Feynman followed Dirac’s

work that showed the phase evolution of a quantum state between two space and

time coordinates was related to the action functional.85 In Feynman’s path integral

solution to the Schrödinger equation, a source probability amplitude is propagated

in space and time over discrete time steps, where the phase of the amplitude evolves

by the value of the action integral along the path taken in the limit of infinitesimal

time steps. The path integral propagator, or kernel, is itself a solution of the time-

dependent Schrödinger equation.86 The final probability amplitude is determined by

taking the sum of the amplitudes obtained over all possible paths that could exist

in the system, and a final probability distribution function is then obtained as the

square modulus of the final probability amplitude. Practically, as it is impossible to

sum over infinitely many paths in a simulation, it suffices to use paths that result

in values of the accumulated phase that are similar to the semiclassical paths in the

system, that is, the phase difference between neighboring paths should be smaller

than π. The density of spatial or temporal steps necessary for a calculation can then

be determined then by observing numerical convergence of the final result.

In our research group, we have used the path integral propagator to describe various

scenarios, including the free propagation of electrons through material gratings and

slits, as well as through potentials.37,40,43–47 When appropriate, the propagator phase

can be computed using only the path lengths between propagation points and the de

Broglie wavelength of particles considered. This computation method is possible in

steady-state systems when the matter-optics analogy holds, that is, when a variation

in propagation time does not affect the differences in the accumulated phase along
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neighboring paths. In situations where the propagation times must be considered,

such as passing from one side of a slit to the other in a near-field configuration, the

full time-dependence of the propagator must be used.48 This behavior is explored

in detail in Ch. 3. The time-dependent path integral propagator is used to show

when one can expect deviation from the matter-optics analogy. As the position of

slits acts as a gate to the possible free-space paths at particular times, it is shown

that diffraction of matter waves from spatial slits can also demonstrate effects due

to diffraction in time. What is perhaps not expected is that the effects of diffraction

in time manifest themselves as differences in the spatial diffraction pattern. These

effects make matter wave diffraction distinct from optics, as light in free space does not

experience dispersion. This means that although the matter/optics analogy generally

holds, as is the case for far-field diffraction experiments, care must be taken in the

situations where matter wave propagation differs from light wave propagation, and

the correct time-dependent formalism must then be used to describe matter waves.

The methods obtained and established in Ch. 3 will be applied later in Ch. 5 to the

case of the temporal evolution of electron wave packets between two points in space.

The path integral method is also explored for its pedagogic value. The elements of

the path integral method, that is, the paths connecting source distributions to screens,

and the phases accumulated along the paths, can be used to describe a picture of

constructive and destructive interference. In contrast, the usual description of wave

interference from slits involves drawing waves along “paths,” where interference at

a detection point is determined by how much the path lengths differ by fractional

multiples of a wavelength.87–91 These waves could either be interpreted as stationary,

e.g., as solutions to the time-independent Schrödinger equation, or as a snapshot of

waves evolving in time, i.e., the waves demonstrated by a ripple tank. The distinction

is subtle and not usually made. If one considers the stationary wave, the correct
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phase difference between waves can be obtained by counting the wavefronts between

points. However, if the waves pictured are considered to be evolving in time, the phase

difference will be incorrect by a factor of 2, despite the fact that matter and light of the

same wavelength are taught to result in the same diffraction pattern. The picture, that

uses stationary waves with the same wavelength, is related to the time-independent

solution to the problem. It is shown that the discrepancy in the factor of 2 difference

between the phase obtained from the time-independent picture and the phase obtained

from the application of time evolution to the time-independent picture is due to

dispersion, or that the group velocity and the phase velocity describing a matter wave

also differ by a factor of 2. Invoking the path integral formalism from the start of the

discussion avoids this conceptual difficulty and also justifies the use of paths, as paths

are a physical element in the path integral solution and not in the solution of the

time-independent wave equation. Thus, the accumulated phase along a single path of

a propagating matter wave is half the value expected from optics. This may come as

a surprise as it could lead to incorrect predictions. Nevertheless, the phase difference

for neighboring paths in the far field agrees with the value expected from optics.

1.4 Visualizing wave-particle duality

One of the difficulties in presenting quantum mechanics is in finding appropriate

demonstrations by analogy to aid in visualizing abstract concepts. The physical

elements of nonrelativistic quantum theory are waves, so it is natural to present

certain phenomena, such as electrons diffracting from slits or scattering from crystals,

by presenting other wave systems, such as surface waves excited in a ripple tank,

or by analogy in microwave or laser apparatus.92–94 These systems reinforce the

matter/optics analogy, but are missing a key element of experimental observation.
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In quantum systems, the observed phenomena are localized “clicks” or “lumps.”95

That is, flashes of fluorescent light or electronic pulses that are well-localized are often

identified with particle-like behavior. Rigorous treatments of quantum mechanics

will illuminate this issue, as it is an essential step toward describing the quantum

measurement problem.96 For visualizing quantum effects by analogy, it would appear

only the wave element of the theory has been accessible thus far. Beginning in 2005,

a series of remarkable experiments performed in the research group of Yves Couder

developed a system capable of demonstrating quantum analogues which appeared to

exhibit both the wave and the particle element of the theory.51 In short, the system

exhibited an intriguing new form of wave-particle duality.54

A system consisting of a dish filled with silicone oil (dimethicone), shaken vertically

at frequencies near 50 Hz, was shown to support a bouncing droplet with diameter on

the order of 1 mm of the same oil without the droplet coalescing into the fluid.51 This

behavior was found to be due to the existence of a thin layer of air that forms between

the droplet and the fluid surface. As the droplet falls, momentum is transferred

between the drop and the fluid surface. This causes a circular ripple to form on the

surface of the fluid. When the shaking conditions are appropriately tuned, this surface

ripple will persist for many oscillations of the dish as a result of the Faraday instability.

The Faraday instability is the spontaneous formation of waves on the surface of a

shallow fluid under the influence of vertical shaking, which was originally explored

by Michael Faraday.50 This Faraday wave, with a wavelength λF of approximately

5 mm, can impart momentum to the drop in the plane of the dish as the fluid surface

obtains a slope. In the regime where the droplet bouncing period is twice as long

as the shaking period, the droplet will fall on approximately the same fluid height

and slope on each bounce, and will march in step with the driving frequency. The oil

droplets exhibiting this behavior were originally dubbed marcheurs, or “walkers.”52
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Single walkers in a level and barrier-free cell tend to move in straight trajectories

with fixed velocities, until they approach a boundary or disturbance in the surface of

the fluid.97 As a walker approaches a cell boundary, the Faraday wave of the walker

interacts with the boundary, and the trajectory of the droplet is diverted away from

the disturbance. This behavior allows walkers to be pushed around the surface of

a fluid with a toothpick, or whatever thin stick happens to be available, without

touching the droplet. It was found from this behavior, that while the droplet causes

the formation of the Faraday wave, it is the state of the Faraday wave at each bounce

that controls where the droplet will bounce. In essence, the Faraday wave maintains a

kind of “memory” of previous bounces, and the state of the Faraday wave at any time

is in effect a sum of all the prior configurations of the wave which have not yet damped

away.55 Instead of a solid wall, parallel strips were placed under the surface of the

fluid, with a narrow (15 mm) opening. The trajectories of walkers passing through this

opening were deflected by angles that appeared to be independent of what part of the

opening the walkers crossed. After sending many single walkers through this opening,

it was reported that an approximate Fraunhofer diffraction distribution of could be

obtained. A similar result was obtained for a pair of openings, with each opening being

8 mm wide.57 It would seem that the challenge of visualizing wave-particle duality

found an answer.

Since the presentation of macroscopic single-particle diffraction, a number of other

analogues with single walkers demonstrating quantum behavior were developed. These

systems included tunneling through a barrier,98 Bohr orbit quantization,53 and tracing

the distribution of the quantum corral.99 The orbits of pairs of walkers interacting

through their Faraday waves were found to exhibit an analogous effect to Zeeman level

splitting.100 Droplets have been injected with ferrofluid so that they could be affected

by magnetic fields configured into a harmonic potential, and thus demonstrated
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behavior analogous to the harmonic oscillator.101

While these analogues were being explored, we attempted to recreate Couder’s

single- and double-slit results. Before our results were published,102 we learned that

the research group of Thomas Bohr, grandson of Niels Bohr, had the same goals.

His group published results that would seem to contradict Couder’s findings, and

claimed that they were outright falsified by the new data and a quantum mechanical

Gedankenexperiment.103 Our results similarly did not demonstrate single- or double-

slit diffraction. Research published from the group of John M. Bush at MIT did

not replicate the original results either, but demonstrated the importance of initial

conditions and experimental controls in the results that can be obtained.104 It would

appear that we found ourselves in a developing controversy that was even reported in

a popular science publication.105

The results we obtained for single- and double-slit diffraction of walkers is shown in

Ch. 4. A number of students, both graduate and undergraduate, made contributions to

the development of the working system over time. The design of coupling a magnetic

shaker (in our case, a subwoofer) to a dish that could be externally leveled was my

own, and was picked up by other groups.106 The system we built is highlighted, along

with the features it was able to demonstrate. The overall apparatus we built was at

considerably less to no cost in comparison to other rigs, which makes our apparatus

viable as a tool for demonstration as well as for use in introductory research projects.

To show this, data obtained by high school students who worked on the apparatus

during the summer of 2018 is presented. We conclude that it is entirely possible

to contribute to scientifically controversial research on a low budget, and that this

apparatus can aide in visualizing analogues of quantum behavior in a manner that is

appropriate for a broad audience.
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1.5 Degenerate sources for free-electron quantum optics

The field of quantum optics is generally thought to have begun with the stellar

measurements of Hanbury Brown and Twiss (HBT).64,65 They developed a radio

telescope that made use of the spatial correlations of the intensity of radio waves

emanating from stars, in contrast to methods using Michelson interferometry to

obtain correlations of the optical wave field amplitude.58 As Michelson interferometers

depend on wave amplitudes, the methods of the time were sensitive to random phase

differences introduced between the two input ports that collected light from the object

to be measured. The intention of HBT was to develop an intensity interferometer

for optical wavelengths, as an intensity interferometer would reduce the sensitivity of

the interferometer on phase shifts caused by atmospheric disturbances, and optical

wavelengths reduced the baseline necessary to resolve the small angular width of

distant objects. Intensity interferometry was understood in the context of radio waves,

but there was considerable doubt that employing photomultiplier tubes as detectors

for optical wavelengths would give the same results. The method would be proven and

tested in a series of fascinating articles published to Nature between 1955 and 1957. In

order to verify that the intensity interferometer worked in principle for optical sources,

HBT performed a table-top experiment using a split beam from a thermal source

that was detected by separate photomultipliers to show that indeed, the intensity

of coherent sources, and for what was at the time most surprising, the number of

detected photons, will be correlated for short time delays between the detectors.59

That is, photons emitted from a chaotic source were shown for the first time to bunch

in time. Their methods and results received immediate criticism from Brannen and

Ferguson, who reported an experiment where it was claimed that the original HBT

results could not in principle be reproduced.107 The response from HBT was to build
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and demonstrate their optical intensity interferometer to measure the angular width of

Sirius A, which they found agreed well with theoretical predictions.66 In a short article

published on the same day as the HBT measurement of Sirius A that demonstrated

their optical intensity interferometer, the earlier results showing photon correlations

were further justified by a statistical argument made by Purcell, who explained that

one would expect to see bunching for a source of bosons prepared in the same state.67

Purcell also remarked, that one would expect no such bunching for a beam of electrons.

He wrote,67

Were we to carry out a similar experiment with a beam of electrons, we should,
of course, find a slight suppression of the normal fluctuations instead of a
slight enhancement; the accidentally overlapping wave trains are precisely the
configurations excluded by the Pauli principle. Nor would we be entitled in that
case to treat the wave function as a classical field.

It would seem that this discussion would also then also anticipate the field of free-

electron quantum optics.

Such an experiment as described by Purcell was carried out for a beam of free

electrons emitted by a sharp tungsten cathode by Kiesel, Renz, and Hasselbach, in

2002.70 They reported a decrease in coincidence detections of electrons produced by

their field emission tip source when they compared incoherent detector illumination

to coherent illumination. However, this change in signal was small (∼ 10−4) due

to their source’s low quantum degeneracy, which is a measure of the occupation of

electron states produced by the source. Further, it was found that their measurements

were consistent with Coulomb effects, as electrons placed in spatial proximity will

experience a mutual Coulomb repulsion.71,108,109 A necessary development to settle

the debate over whether quantum degeneracy or Coulomb repulsion was in effect

would be an on-demand electron source that can produce electrons in nearly the same

quantum state, within Heisenberg uncertainty. Ultrafast electron sources are the ideal
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candidates to accomplish this goal, as they confine electron states both spatially and

temporally. However, as electrons also have a spin degree of freedom, the typical

metallic tip may not be sufficient to distinguish quantum degeneracy from Coulomb

repulsion.

In Chapter 5, the quantum degeneracy of an ultrafast source is described. It

is shown that with our current experimental apparatus, it is possible to approach

a quantum degeneracy of ∼ 1, which is 4 orders of magnitude greater than that

reported by Hasselbach. A Hanbury Brown-Twiss experiment for a pulsed source

of completely spin-polarized electrons is modeled using the path integral methods

developed in Ch. 3 to describe the evolution of electron wave packets. These path

integral methods are compared to a semi-classical time-of-flight method described

by former graduate student Brett Barwick.110 From these considerations, I conclude

that our current detector apparatus should have the necessary temporal resolution

to observe effects caused entirely by quantum degeneracy at the source. I designed a

split detector consisting of a pair of Dr. Sjuts channel electron multipliers, which has

been assembled and is currently being studied by graduate student Sam Keramati.

Finally, the last element needed to test quantum degeneracy, a spin-polarized source,

is described. Through collaboration with Professor Timothy J. Gay and his graduate

students Nathan Clayburn and Evan Brunkow, we have developed an ultrafast source

of spin-polarized electrons by illuminating a GaAs shard with femtosecond laser light.

The possibility of illuminating our sources with femtosecond laser light was provided

by collaboration with Professor Kees Uiterwaal and his graduate student Joshua Beck.

Such a source has the potential for broad applications similar to ultrafast metallic tip

sources, as well as the possibility of producing an on-demand quantum degenerate

electron beam. A quantum degenerate beam is a vital component of experiments in

quantum optics, but the analogous element has not yet been realized for electrons.
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The range of capabilities and utility of such a beam remain to be explored, but one

possibility is that a quantum degenerate beam could be used to finally distinguish

Pauli from Coulomb repulsion for free electrons.
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Chapter 2

Laser-induced electron emission from Au nanowires: a probe

for orthogonal polarization

Photoelectron field emission, induced by femtosecond laser pulses focused on metallic

nanotips, provides spatially coherent and temporally short electron pulses. Properties

of the photoelectron yield, such as the arrival time of photoelectrons and pump/probe

behavior, give insight into both the material properties of the nanostructure and

the exciting laser focus. Ultralong nanoribbons, grown as a single crystal attached

to a metallic taper as characterized by transmission electron microscope (TEM)

measurements performed by our collaborators at Kansas State University, are sources

of electron field emission that have not yet been characterized. In the following,

photoemission from gold nanoribbon samples is studied and compared to emission

from tungsten and gold tips. We observe that the emission from sharp tips generally

depends on one transverse component of the exciting laser field, while the emission of

a blunted nanoribbon is found to be sensitive to both components. We propose that

this property makes photoemission from nanoribbons a candidate for position-sensitive

detection of the longitudinal field component in a tightly focused beam.
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2.1 Introduction

A consequence of tightly focusing a beam of light is that the beam will become partly

longitudinally polarized near the focus.111–114 The concept of a longitudinally polarized

electric field is perhaps familiar in the context of field modes confined to metallic wave

guides, in particular, as in the case for transverse magnetic field modes propagating in

a rectangular guide.115 The notion of longitudinal polarization is less familiar in the

propagation of beams in free space. The propagation of beams generally follows from

the paraxial approximation to Maxwell’s equations, which assumes that the complex

electric field ~E admits plane-polarized solutions, that is, ~E is transversely polarized

to the direction of propagation, and also satisfies ∇ · ∇ · ~E = 0. It was shown by Lax,

Louisell, and McKnight that these two conditions are generally incompatible with the

complete form of Maxwell’s equations, but if an expansion of Maxwell’s equations in

powers of the ratio of the beam waist to the Rayleigh length is considered, the familiar

paraxial solution is obtained as the zeroth-order term of the expansion, while the

first-order correction includes a longitudinal field component.112 Tight focusing, which

occurs when the size of the focal waist is comparable to the Rayleigh length, therefore

results in a component of longitudinal polarization within the focus. A schematic of

the transverse and longitudinal polarizations of a tightly focused beam with a focused

waist w0 and Rayleigh length zR is shown in Fig. 2.1.
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Figure 2.1: Schematic of a tightly focused beam. When the beam waist w0 is
comparable to the Rayleigh length zR, a longitudinal component of the electric field
will be present in the laser focus, denoted by EL, along with the expected transverse
component, ET .

Longitudinally polarized laser beams are desirable because their focal widths can

be below the diffraction limit, and the longitudinal component of the electric field

does not contribute to the energy flow along the direction of beam propagation.116,117

These features find applications in high-resolution optical microscopy,118,119 optical

data storage,120 particle trapping,121,122 charged particle acceleration,123 material

ablation,124 and pushing the high-intensity frontier. The longitudinal field component

of a laser focus has been characterized in situ by atomic fluorescence125 and near-

field microscopy,117 and ex situ via imaging of material damage124 and atomic force

microscopy of thin film deformation.126 As the in situ methods of characterizing

the longitudinal field are limited by intensity or to a resonant wavelength, a flexible

alternative would be preferable.

Photoelectron field emission, induced by focusing femtosecond laser pulses onto

sharp metallic tapers with nanometer-scale radii of curvature,4–6 has a broad range of

applications. Temporally short electron wave packets22 with high spatial coherence20,127

can be achieved with moderate intensities. Tip sources have thus been integrated

into electron microscopes to obtain sub-micron spatial resolution with femtosecond

timing.11,14,15 Femtosecond electron pulses have been used to study fundamental

quantum mechanics, as in testing the existence of forces in the Aharonov-Bohm
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effect,21 and observing diffraction in time.22,23 Electron emission from nanotips has

been obtained for a range of laser intensities and wavelengths.128–130 Nanotip emission

might then provide an alternative for characterizing the longitudinal component of

a laser focus. However, as nanotip emission is dominated by a single transverse

component of the polarization of the exciting field, it has not yet been utilized of

longitudinal fields.

Ultralong gold nanoribbons,27 grown by the method of directed electrochemi-

cal nanowire assembly (DENA),26,83 were previously unstudied sources for ultrafast

electron photoemission. The DENA method results in single-crystalline samples, as

confirmed by electron diffraction, with a uniform rectangular cross-section along the

sample length. The samples can also be grown with a considerably large aspect ratio

of the length compared to the cross-sectional widths, hence why they are referred to as

ultralong nanoribbons in order to distinguish them from standard nanowires. Previous

studies into the optical damage threshold of similar nanowire samples indicated that

single-crystalline gold nanowires could tolerate high laser pulse peak intensities before

melting, but that they exhibited long cooling times on the order of 5 µs.84 From these

studies, the exchange and dissipation of heat between the nanowire electrons and the

crystalline lattice could be modeled. A logical next step would then be to character-

ize electrons emitted from nanoribbons in response to ultrashort pulse illumination.

Photoelectron emission is known to carry information on material effects, such as

plasmonic dynamics and laser heating.19,79 Temporally short electron pulses have been

observed from plasmonic nanostructures,131,132 and the photoemission yield has been

used as a sensitive probe of the plasmonic field enhancement from nanostructures.133

We measured photoelectron emission from nanoribbons in an attempt to determine

their plasmonic or thermal properties.19,79,133 In the following, nanoribbon samples are

characterized by photoelectron emission and compared to standard single-crystalline
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gold and tungsten samples. The resulting photoelectron emission spectra reveal that

nanoribbons can be employed as position- and polarization-sensitive detectors within a

laser focus. As the transverse dimensions of nanoribbon samples can have a thickness

of 40 nm, and widths ranging from 130 nm–360 nm along the length of the sample,

with an apex radius of curvature of 10 nm,27 these nanoribbon samples could provide

a potential in situ sub-wavelength probe for longitudinal polarization of pulsed beams

having a typical wavelength of 800 nm.

2.2 Experimental apparatus

A schematic for the system used to characterize tip samples is given in Fig. 2.2.

�
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Figure 2.2: Experimental schematic showing pump/probe configuration for tip and
nanoribbon photoelectron emission (see text for description).
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Figure 2.3: The Ti:Sapphire oscillator, viewed with the cover removed. The view from
the front is shown in (a), and a view from the top is shown in (b).

The laser system used for the experiments described here was provided and

maintained by the laboratory of Kees Uiterwaal, with regular maintenance and repairs

performed diligently by his graduate student, Joshua Beck. The intensity of the

output from a Ti:Sapphire oscillator, shown in Fig. 2.3 (Spectra Physics Tsunami,

80 MHz repetition rate, 800 nm central wavelength, 100 fs pulse width) is controlled by

a variable attenuator (VA), which consists of a λ/2 plate and a Brewster window. The

attenuated beam is split into a pump and a probe beam by a balanced Mach-Zehnder

interferometer (IFM), which is shown in Fig. 2.4.
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Figure 2.4: (a) Schematic of the Mach-Zehnder interferometer, showing beam path and
optical components. The probe beam passes through both a variable neutral density
(VND) filter and a λ/2 plate to control the power and polarization, respectively. Insets
show the translation stage adapter plate, which can be used with the Thorlabs model
PE4 PZT micrometer (top), and the Newport model 8302-V picomotor (bottom). A
Fowler electronic indicator, mounted to the interferometer slab, is used to measure
the displacement of the translation stage relative to the slab. (b) Picture showing
the beam path through the Mach-Zehnder interferometer. The schematic, insets, and
interferometer picture are to scale.

Photoelectron emission is observed in pump/probe and single beam experiments.

The time delay between pump and probe pulses, τ, can be varied from −4 ps to 4 ps

manually by a micrometer that varies one arm length of the interferometer. The

additive ratio, R(τ), measured as a function of the delay τ, is defined as

R(τ) ≡ Rboth(τ)

Rpump(τ) +Rprobe(τ)
, (2.1)

where Rpump(τ) and Rprobe(τ) are the emission rates from the pump and probe beams

separately at each delay, and Rboth is the rate measured when both beams are incident

on the sample. Electron emission from the pump and probe beams is considered to be

completely independent when the emission is additive, or when R(τ) ≈ 1. Note that a
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similar pump/probe measurement performed on GaAs shard samples will be described

later in Ch. 5, and defined by Eq. 5.23 in a slightly different fashion than here in

Eq. 2.1. This was historically due to different preferences regarding ratios. The only

notable difference is that for Eq. 5.23, the condition for additive emission will be given

by R(τ) ≈ 0 instead of R(τ) ≈ 1. A second λ/2 plate (HWP) rotates the polarization

of both beams prior to delivery to the experimental chamber. A rotational stepper

motor is used to scan the beam power and the polarization. The beam path, from the

variable attenuator to the experimental chamber, is shown in Fig. 2.5.
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10 cm

Figure 2.5: Picture showing the beam path, starting from the variable attenuator, and
ending at experimental chamber.

The experimental chamber, which is also detailed in Ref. [ 5], is maintained at

2× 10−7 Torr. The beams are focused within the chamber by an off-axis parabolic
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mirror to a full-width half maximum of 4.5 µm. A 3-axis stage, coupled to the chamber

by flexible bellows, positions tip samples into the focus. Mounted tip samples were

biased at −100 V, as this was lower than the threshold for Fowler-Nordheim dc field

emission. A brief discussion on Fowler-Nordheim emission now follows.

Fowler-Nordheim emission describes the tunneling of electrons bound in a metal

from the Fermi level through a triangular potential barrier into vacuum at low

temperature. The expression describing the Fowler-Nordheim emission current, in

Hartree units, can be found in Eq. 56 of Ref. [ 74]. The physical elements in the

expression include the electric field at the emitter tip, the material work function, and

the emitter temperature. The dc electric field, Fdc, at the surface of a conducting

sphere with radius of curvature r, and held at an applied voltage V , is given by

Fdc = V/r. For a field emission tip, which can be approximately described as the

union of a hemisphere with a conical taper, the dc electric field is described similarly.

The electric field at the surface of a field emission tip with a radius of curvature rtip

held at an applied voltage V can be expressed as Fdc = V/(krtip), where k ≈ 5 is a

geometric correction factor that accounts for the shank of the tip.134 The conversion to

Hartree units follows from dividing the electric field strength, Fdc, in units of V/m, by

the constant m2e5h̄−4 = 5.15× 1011 V m−1. The emitter material has a work function,

φwf , and a thermal energy kBT , where kB is the Boltzmann constant. The conversion

of these quantities, expressed in eV, to Hartree units, is accomplished by division by

the constant me4h̄−2 = 27.2 eV. The emission current j can then be written, with

electric field F , work function φ, and thermal energy ET in Hartree units,

j =
F 2

16π2φ [t(y)]2

(
πcET

sin πcET

)
exp

[
−4
√

2φ3/2v(y)

3F

]
, (2.2)

where y =
√
F/φ is a dimensionless parameter, t(y) and v(y) are functions of elliptic



29

integrals that arise in the derivation of Eq. 2.2, and c is a constant depending on F ,

φ, y, and t(y) as c = 2
√

2F−1φ1/2t(y)y. The expression is valid when cET < 1, which

at a temperature of 300 K is assured for voltages greater than 6 V. The functions

t(y) and v(y) are related by a third function, s(y), as 3t(y) = 4s(y) − v(y). The

functions v(y) and s(y), historically referred to as Fowler-Nordheim field emission

functions, are determined numerically. Selected values were tabulated by Burgess,

Kroemer, and Houston as a correction to the original analysis of the tunneling process

by Nordheim.135,136 The tabulated values of v(y) and s(y) can be interpolated to

find the values of t(y) in the range 0 ≤ y ≤ 1. A plot of these functions, and their

interpolated values, is shown in Fig. 2.6.

Figure 2.6: Plot of the corrected values of the Fowler-Nordheim functions v(y) (red)
and s(y) (blue) tabulated in Ref. [136]. Also shown is the related function, t(y) (black
markers), that appears in Eq. 2.2. Lines connecting data points are the result of
a 4th-order polynomial fit. The gray area under the curve represents the range of
voltages from 0 to −450 V applied to a tungsten tip having a work function φWF =
4.5 eV and radius of curvature rtip = 50 nm. The green line indicates the values of the
Fowler-Nordheim functions for a typical applied voltage of −100 V.
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In Fig. 2.6, the markers indicate the tabulated values provided in Ref. [136]. The

lines connecting the markers arise from a 4th-order polynomial fit. The range of

y-values that describe the range of voltages applied to our typical sources, which are

tungsten tips having a radius of curvature of 50 nm and a work function of 4.5 eV, is

indicated by the gray area under the curves, and represents voltages between 0 and

−450 V. The green line indicates the typical operating voltage of −100 V. For this

voltage, the values of the relevant functions v(y) (red) and t(y) (black) do not vary

significantly from 1.

The count rate can be predicted from the theoretical expression for the emission

current given in Eq. 2.2. Multiplying the current j by the Hartree unit conversion

constant m3e9h̄−7 = 2.37× 1014 A cm−2 gives the current density in SI units. The

current in Amperes can be estimated by assuming the entire current passes through an

area of 1 cm2. Division by the electron charge then gives the rate of electron detection.

Theoretical predictions for the emission rate are plotted in Fig. 2.7.
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Figure 2.7: Theoretical Fowler-Nordheim emission plots. In (a), the count rate
predicted from Eq. 2.2 is plotted as a function of the negative voltage applied to the tip.
The red curve shows the rate predicted for the full expression in Eq. 2.2, while the blue
curve gives the rate for the approximated form taking the limit πcET/ sin πcET → 1
and the approximation t(y) = v(y) ≈ 1. In (b), the red and blue curves shown in
(a) are presented in the typical form of a Fowler-Nordheim plot, where the quantity
ln(Rate/V 2

tip) is plotted against 1/Vtip. In this form, the slope of these plots can
provide the emitter radius assuming the work function is known.

In Fig. 2.7(a), the predicted emission rate is plotted against the applied tip voltage. The

red curve shows the emission rate for the full expression in Eq. 2.2, while the blue curve

shows the emission rate for the approximate form of the expression. The approximate

form is found in the limit πcET/ sinπcET → 1 and by taking t(y) = v(y) ≈ 1, which

is the form of the original Fowler-Nordheim formula.74 When plotted on these axes,

the distinction between the full expression and the approximate form can be readily

seen. In Fig. 2.7(b), the full expression (red) and approximate (blue) curves are

shown in what is referred to as a Fowler-Nordheim plot. The vertical scale is obtained

by dividing the emission rate by Vtip
2 and then taking the natural logarithm. The

horizontal scale is obtained by taking the inverse of the tip voltage, Vtip. Ideally, this
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will result in a line to be fitted with a slope given by

FNslope = −4
√

2φ3/2

3
(krtip)

(
5.15× 1011 V/m

)
, (2.3)

where again φ is the work function in dimensionless Hartree units, k is the geometric

correction factor for the shank, and rtip is the tip radius. If the work function is a

known value, the tip radius can then be determined in this fashion. Practically, as

this method is harsh to both field emission tip samples and our detectors (extended

measurement of high count rates can decrease the lifetime of our detectors), it is not

often used to determine emitter properties. What is more commonly done in our

apparatus is to check metallic sources for the onset of Fowler-Nordheim dc emission,

which for sharp tips occurs around −300 V as shown in Fig. 2.7(a). It is later shown

in Sec. 2.3 that electron time-of-flight measurements performed with a nanoribbon

sample held at a moderate dc voltage (resulting in a low dc background) illuminated

by femtosecond laser light allow for the fitting of the material work function, emitter

radius, and temperature without concerns of damaging the sample or the detectors.

Electrons emitted from the source were collimated through two 4 mm apertures

before detection by a microchannel plate (MCP). More detailed pictures of the

experimental chamber are shown below in Fig. 2.8.
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Figure 2.8: Detailed pictures are shown for the experimental chamber. (a) Overview
of the chamber, showing the 3-axis stage and exterior of the MCP. (b) Top view of
a mounted tip sample showing a mounted tungsten tip and its position relative to
the first 4 mm aperture. (c) View from the detector side through the second 4 mm
aperture of a mounted sample positioned in the laser focus. White arrows indicate
the visible top edge of the sample mount. The image scale is the same as in (b).

Electron pulses from the MCP were amplified and discriminated. Discriminator

pulses were counted by a multichannel scaler, and used as the start trigger for a

time-to-amplitude converter (TAC). The output reference signal from the Ti:Sapphire

oscillator was used as the TAC stop trigger to measure the arrival time of electrons.

Timing spectra were obtained by sending the TAC output pulses to a multichannel

analyzer (MCA).

Nanoribbon samples were prepared using the DENA methodology.26,83 Nanoribbon

samples are reported to have a rectangular cross section, with a thickness of 40 nm,

and widths ranging from 130 nm–360 nm along the length of the sample. The tip apex

can have a radius of curvature of 10 nm.27 These dimensions can be tailored during

the growth process to make nanoribbons that are well-suited for photoemission. The

apparatus used for nanoribbon growth is shown below in Fig. 2.9.
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Figure 2.9: Apparatus used for nanoribbon growth in the Flanders group at Kansas
State University. (a) Etching process of the working electrode. A gold wire is
electrochemically etched to a long, thin taper via oscillation into a solution of KCl.
The etching duration is controlled by an electronic timer (not shown). (b) Sharpened
working electrodes are mounted to a 3-axis stage, which is used to position the working
electrode in relation to the counter electrode. The nanoribbon is then formed by
drawing the working electrode away from the counter electrode. (c) Microscope set-up
used to image and facilitate nanoribbon growth. Growth parameters are described
in detail in Ref. [ 27] and summarized below. The working electrode and counter
electrode are submerged in a 20 µL drop of 40.0 mM KAuCl4. A 37 MHz square wave
applied between the electrodes drives the nanoribbon growth.

The process begins by etching a polycrystalline Au wire into a long, narrow taper.

Fig. 2.9(a) shows the etching rig used in the Flanders group, which produced our

nanoribbon samples. The etchant used was a solution of KCl, which was periodically

stirred and heated. The counter electrode used in the etching process was a graphite

rod obtained from mechanical pencil refills. Gold wire was mounted in the modified

sewing machine, which was used to oscillate the sample in and out of the KCl solution.

The etching process was repeated until the working electrode had the desired shape.

The next step in nanoribbon production was to immerse the sharpened working

electrode and blunt counter electrode in a solution of aqueous KAuCl4. This was

performed while being monitored by an optical microscope, shown in Fig. 2.9(c). A

37 MHz square wave applied between the electrodes causes the Au to crystallize on

the working electrode. The growth of the crystal is controlled by slowly drawing the
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working electrode away from the counter electrode. This is accomplished with a 3-axis

stage mounted next to the microscope system, which is shown in Fig. 2.9(b). Fig. 2.10

shows a series of optical microscope images illustrating the growth and branching of

a nanoribbon. In the images, the sharp working electrode moves from left to right,

while the blunt counter electrode remains stationary.

t = 0s t = 5s t = 10s t = 15s

t = 20s t = 25s t = 30s t = 35s

Figure 2.10: Shown is a series of images, taken 5 s apart, highlighting the growth and
branching of a single nanoribbon. Visible in each frame is the blunt counter electrode
(left side) and the sharp working electrode (right side).

In order to distinguish which photoemission properties arise due to the material or

geometry of the nanoribbon samples, single-crystal tungsten (W) and gold (Au) field

emission tips were prepared for comparison. Samples of W wire (200 µm diameter)

were annealed under vacuum according to Ref. [137], and then etched via the lamella

drop-off method.138 A 13 cm length of polycrystalline W wire was clamped between

two sections of copper tubing. The wire was then annealed under a vacuum of 1× 10−6

Torr, with a current of 4.92 A and voltage of 20 V for one hour. The annealing mount,

and an image of the chamber during the annealing process, is shown in Fig. 2.11. A



36

solution of 2.5 M KOH was prepared as the etchant, and an etching voltage of 15 V

was supplied by a Variac across the electrodes. The W etching mount set-up is shown

in Fig. 2.12.

W 
wire

a) b)

Figure 2.11: (a) Picture of the W wire annealing rig. A 13 cm length of W wire
was clamped between the ends of the copper tubing. This corresponds to the length
reported in Ref. [137], but with a commercially available mount. (b) Picture of the
W wire during the annealing process. The voltage and current applied to the wire
were chosen to obtain a dissipated power of 100 W, which corresponds to the value
reported in Ref. [137].
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Figure 2.12: (a) Overview of the W wire etching rig used for the lamella drop-off
method. (b) Picture showing the approximate amount of wire that should be visible
from the bottom edge of the etching device. The lamella is formed by squeezing
a small amount of KOH solution from a small glass dropper topped with a rubber
bulb. The most consistent method to form a lamella is to use a volume of solution
measured off approximately halfway to the first division on the glass dropper, orient
the dropper at 45 deg to the electrode plate, touch the dropper to the plate, and expel
the solution quickly into the hole in the electrode. The electrode plate should be dry
before attempting to form a lamella.

Au wire samples (99.95% purity, Ted Pella, 200 µm diameter) were annealed

according to Ref. [28], and etched as according to Refs. [29,30]. The Au wire samples

were annealed in an oven at 800 ◦C for 8 hours in order to obtain larger crystal grains

in the sample.28 The Au wire electrode, and a graphite rod counterelectrode, were

immersed in an etching solution of 3.0 M NaCl and 1 % HClO4.
29,30 A sinusoidal

etching voltage was supplied by an SRS 345 function generator, with a peak-to-peak

voltage of 4.8 V and frequency of 60 Hz. The ac etching current was monitored by a

Fluke 8840a multimeter to determine when to terminate etching. When the current

read 0 A, the etching circuit was broken manually. An image of the Au etching rig is

shown in Fig. 2.13.
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Figure 2.13: Picture of the gold wire etching rig. Etching is performed behind a fume
hood as a precaution against the perchloric acid. An approximately 2 cm length of
annealed Au wire is held by a recycled nanoribbon mounting electrode. The tip of
the sample is lowered until it is approximately 2 mm below the fluid surface. An
etching current is applied between the Au wire and the graphite counter electrode
and is monitored by a multimeter. The etching circuit was broken once the current
reached 0 A. The most consistent results were obtained for alternating current (ac),
but etching with direct current (dc) is possible. The drawback with dc etching is
that the time to produce samples can be several hours, whereas ac etching takes only
several minutes.

The tip and nanoribbon samples were mounted to SEM pin stubs with silver paste.

SEM images of the samples are given in Fig. 2.15(a) along with plots of the beam focus

(red) and intensity profile (white) as measured by photoemission. From left to right is

shown W (I), Au (II), an undamaged 23 µm Au nanoribbon (III), and an 11 µm Au

nanoribbon (IV) obtained after the 23 µm nanoribbon was blunted during pump/probe

experiments. Images were taken before and after experimental characterization to
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determine the extent of damage due to laser illumination.

2.3 Results

The motivation to measure electron yields from pump/probe experiments on Au

nanoribbons came from the notion that the unique geometry and structure of the

nanoribbons could lead to interesting propagation effects within the structure. Electron

photoemission rates could be effected by thermal exchange between free electrons and

ions comprising the crystalline lattice,84 by collective electron oscillations (plasmons)

in the nanostructure,78 or by ballistic currents. To see if this was the case, the relative

position between the pump and probe beams was controlled to focus on specific

locations on the available nanoribbon sample, namely at the tip of the nanoribbon and

at the junction with the Au substrate. This was accomplished in practice by initially

having both beams spatially overlap at the nanoribbon tip, using the photoemission

signal as an indication of alignment. The nanoribbon was then positioned using the

3-axis stage so that both beams were focused at the nanoribbon/substrate junction.

The polarization of both beams was chosen to be parallel to the plane of incidence.

Then, the probe beam was aligned to obtain photoemission from the nanoribbon

tip. The delay between the pump and probe beams was scanned using the picomotor

mounted in the interferometer stage, as shown in Fig. 2.4(a). The photoemission rates

measured in this arrangement, for both beams and the probe beam alone, are shown

as a function of the MCS scanning time in Fig. 2.14.
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Figure 2.14: Graph of photoemission rates as a function of scan time as the delay is
scanned. The green lines are the data (thin, jagged), average rate (bold), and standard
deviation of the average (dashed) of a scan taken from −8 ps to 8 ps. The scan was
repeated, and the resulting photoemission data, average, and standard deviation are
plotted in blue. The scan was performed for a delay of 8 ps to −8 ps for the probe
beam alone, and is shown in red. This should not have affected the probe beam, as it
was chosen to be the fixed reference beam. The graph inset shows the micrograph of
the 11 µm nanoribbon of Fig. 2.15(a) superimposed with plots of the laser focus to
indicate the pump (right, junction) and probe (left, tip) positions on the nanoribbon.
The distance between the focal spots, measured by the translation of a 25.4 cm rod
used as an extension to the z-position translation stage, was 11.6 µm

The data are inconclusive that any propagation effect was observed in this arrange-

ment. Full picomotor scans required 1000 s to acquire, so drifts can be significant. This

arrangement could be modified in the future to measure thermal propagation if the

polarization of the pump beam is chosen to optimize the thermal electron signal while

the probe polarization is chosen to minimize it. Properties of the thermal emission

signal is discussed below.

Photoemission data from single-beam experiments are shown in Fig. 2.15(b)–(d).

In Fig. 2.15(b), the emission rate is shown as samples were translated through the
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laser focus. The W (I) and Au (II) tip samples show emission localized at the tip

apex only, while the nanoribbon samples (III and IV) can emit from multiple locations

along their length. This feature confirmed that a nanoribbon remained attached to

the Au substrate after imaging and transfer to the experimental chamber. Thin lines

between data points serve as a guide to the eye. Fig. 2.15(c) shows the dependence of

electron yield on the average power of the beam, plotted on a log-log scale. The value,

n, of the power dependence (∝ In), is often used to identify the emission process of a

tip. The W tip and 23 µm nanoribbon have slopes of n = 3, while the Au tip is found

to have a slope of n = 3 for low power, and n = 5 for higher power. Such behavior,

that is, the increase in power law slope with increasing laser power, has been observed

in W tips and studies of above threshold photoemission.5,82 The 11 µm nanoribbon

has a slope of n = 5. With these values of n, the position dependence of the samples

in Fig. 2.15 (b) can be fit with a Gaussian function to determine the size of the focal

waist (bold lines). The focal waist has a fitted full width at half maximum of 4.5 µm

from the W data. This is consistent with knife edge profiles taken of the beam prior to

entering the experimental chamber. For an initial beam radius w0 =1.2 mm incident

on the OAPM having a parent focal distance f = 12.7 mm, the focused beam radius

will be w′0 = λf/(πw0) = 2.7 µm, corresponding to a full width at half maximum of

3.2 µm, which is still smaller than our measured focal size. Fig. 2.15(d) shows the

variation of emission rate as the polarization of the beam is rotated by a λ/2 plate.

The high contrast 90° spaced peaks in the tip samples and 23 µm nanoribbon support

that the sample geometry is well-defined with respect to the laser polarization in the

focus, and that the emission process is dominated by a preferred laser polarization.

The broadened peaks and reduced contrast of the 11 µm nanoribbon electron yield

(black squares, IV) indicate that the emission process depends on both transverse

components of the exciting field. A feature consistent with multiphoton emission
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Figure 2.15: Tip sample characteristics. (a) Scanning electron microscope (SEM)
micrographs of the tip samples: from left to right is shown annealed W (I), annealed
Au (II), a 23 µm Au nanoribbon (III), and an 11 µm Au nanoribbon (IV). The laser
spot size (red) and intensity profile (white) have a full width half maximum of 4.5 µm
as fit from the W data in (b) and (c). (b) Scaled electron counts as function of
tip position in focus. Gaussian fits to the data are shown in bold lines. Thin lines
are guides to the eye. (c) Power dependence of electron emission. (d) Polarization
dependence of electron emission.

is that the power law slope, n, will agree with the polarization dependence on the

emission rate. The emission rate is ∝ cos2n(θ) in a multiphoton emission model,

where θ is the polarization of the laser relative to the tip direction. The W and Au

polarization data agree with a fit with n = 3, while both nanoribbon samples require

a combination of n = 1 and n = 3. This peculiarity of both nanoribbon samples

indicates a deviation from typical multiphoton emission.

Pump/probe and single beam experiments with the TAC/MCA configuration

revealed the timing features of electron emission. The additive ratio of emission from
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the samples is plotted in Fig. 2.16(a) as a function of τ. The polarization of the focus

was chosen for the optimum electron yield from each sample. A ratio of 1 indicates

that the emission yield from the probe pulses are independent from the pump pulses.

A ratio significantly greater than 1 indicates emission processes that are slower than

the time delay between pulses.5 When the delay is shorter than the pulse duration,

the additive ratio can vary due to interference between the pulses. The W tip (blue

triangles), Au tip (green triangles), and 23 µm nanoribbon all have additive ratios that

are close to 1 when the pulse delay is outside of the ±200 fs interference window, so

the emission processes are as fast as the 100 fs laser pulse duration and thus prompt.

The 11 µm nanoribbon (black squares) has an average additive ratio of 14.9 for delays

longer than the pump/probe interference window, therefore the process is not prompt.

Measurement of the ratio for delays with high constructive interference were avoided

to prevent damage to the Au tip and 11 µm nanoribbon samples.

Normalized time spectra of electron emission from tip samples are plotted in

Fig. 2.16(b). Shown, grouped from left to right, are the spectra from the W tip (blue

line), Au tip (green line), 23 µm nanoribbon (red line), and the 11 µm nanoribbon

(black line). The peak separation for each sample shows the 13 ns pulse separation of

the oscillator. Sharp peaks indicate pulsed electron emission, while sustained signal

after the laser pulse indicates background emission. The 11 µm nanoribbon has a

significant background as compared to the other samples, indicating that electron

emission is continuing after the exciting laser pulse is gone. The emission process of

the 11 µm nanoribbon is therefore ruled out as purely multiphoton, and is likely due

to both multiphoton and laser heating of the nanoribbon structure.

To further investigate this feature, the pulsed and background contributions

to emission from the 11 µm nanoribbon are plotted as a function of λ/2 angle in

Fig. 2.16(c). Time spectra were recorded for each λ/2 angle. The process for dividing
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Figure 2.16: Pump/probe, timing, and polarization control of emission processes. (a)
Additive ratio of electron emission vs. pulse delay. Color and marker conventions
follow Fig. 2.15. Ratio values of 1 and 14.9 are highlighted by dashed black lines. (b)
Normalized time spectra of electron emission from tip samples. Grouped from left
to right are the W tip (blue), Au tip (green), 23 µm nanoribbon (red), and 11 µm
nanoribbon (black). (c) Polarization dependence of summed counts of time spectra
background (blue hatched) and pulsed (red hatching) emission vs. λ/2 angle for
the 11 µm nanoribbon. Colored lines are guides to the eye. The inset shows the
background and pulsed signal for a single timing peak taken at λ/2 angle = 124◦.

each spectrum into pulsed and background contributions is illustrated in the inset

of Fig. 2.16(c), which shows a portion of the time spectrum taken at λ/2 angle of

124°. The red hatched region of the inset indicates the pulsed contribution, and the

blue hatched region indicates the background. The background regions are defined by

taking linear fits to the tails of the timing spectra, and extending those fits to the rising

edges of the timing peaks. This procedure is performed for two 13 ns oscillator periods.

The counts in the background regions are summed, giving the data points marked by

the blue hatched squares. The background contributions are then subtracted from

the total counts in each spectrum. This results in the data points marked by the red

hatched squares. The maximum emission for the background process occurs at a λ/2
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angle that is shifted relative to the pulsed process. For example, for a λ/2 angle of

79°, the photoemission signal is dominated by the pulsed process, as the number of

counts in the tails of the electron time of flight spectra is low. For a λ/2 angle of 124°,

the photoemission signal is dominated by the background process, which is marked

by a comparatively high number of counts in the delayed tail of the electron time of

flight spectrum. The explanation for the variation in electron signal is likely due to

the nanoribbon absorbing more of the incident laser pulse energy at 124°, and less

at 79°. The higher degree of energy absorption in the 11 µm nanoribbon requires a

higher degree of energy dissipation, which occurs by an additional process–thermal

dissipation–that is much slower than multiphoton-driven processes. This interpretation

is consistent with the results of Ref. [19], which demonstrated polarization control of

thermally enhanced photoemission from nanotips. The polarization control of these

multiphoton (pulsed) and thermal (background) processes indicates that they respond

to different components of the laser field in the focus.

Thermal emission is the most likely process that could lead to the strongly superad-

ditive behavior and slow timing features shown in Fig. 2.16. In order to demonstrate

that the slow emission features observed in the 11 µm nanoribbon were indeed from

a thermal process, time of flight spectra were obtained for a series of incident laser

powers, varied from 6 mW to 15 mW, and tip voltages, varied from −100 V to −200 V.

Care was taken to keep the count rates below 50 kHz, so as the incident power in-

creased, the tip voltage was not applied over the full range. The 80 time of flight

spectra thus obtained were then fit with a Richardson-Schottky model, which gives

the emission current as a function of the emitter temperature and applied voltage.72,73
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The emission current, J(T, Vtip), is given by the expression

J(T, Vtip) ∝ T 2 exp

−φ− e
√

eVtip
4πε0krtip

kBT

 , (2.4)

where T is the temperature in Kelvin, φ is the work function in eV, e is the fundamental

electron charge in Coulombs, ε0 is the vacuum permittivity in Coulombs per Volt-meter,

k is a geometric constant, rtip is the radius of the emission site, and kB is the Boltzmann

constant. The geometric constant k accounts for the reduction of the electric field from

the field of a free sphere, V/r, which is caused by the presence of the emitter shank.

The value of k near the emitter apex is k ≈ 5, and increases as a function of angle from

the tip. The value k = 5 then gives a reasonable approximation for the field in the

forward direction.134 This model of thermal emission is applicable when the electric

field at the surface of the emitter is smaller than 5× 107 V/cm, meaning it does not

describe emission when a laser field is present.74 The temperature of the emitter is

assumed to increase from a steady-state value, TS.S., by an amount ∆T , the instant

a laser pulse hits the tip. After the pulse hits the tip, the change in temperature is

assumed to decay exponentially in time, with a form T (t) = TS.S. + ∆T exp (−γt).

In the fitting model, the maximum of a time of flight spectrum pulse is assumed

to be the arrival time of the laser pulse at the nanoribbon apex, and thus the start

time for the exponential decay of the temperature change. For each spectrum, the

values for TS.S, ∆T , γ, φ, and e
√
e/(4πε0krtip), as well as the Richardson constant,

are taken as free parameters. The pulsed region of each spectrum is excluded, as that

region does not meet the application criteria of the temperature-dependent model,

and exclusion of the data simplifies the fitting procedure. A sample of three of these

fits are shown in Fig. 2.17. Fig. 2.17(a) shows time of flight spectra taken at 12 mW

and 15 mW to illustrate the differences in thermal background for different applied
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a) b)

Figure 2.17: (a) Time of flight spectra taken for 12 mW and −100 V (green), 12 mW
and −150 V (red), and 15 mW and −100 V (blue). The fits result in values of T0 of
1183 K, 1225 K, and 1330 K, respectively. (b) Fit steady-state temperature vs. incident
laser power. Vertical error bars are taken as the standard deviation of temperature
values obtained from the fitting procedure for all applied voltages. Fitting line (blue)
is shown to highlight the increase of fit temperature with increasing laser power.

voltages. The thermal background is significantly increased at 12 mW comparing the

emission yield for −100 V (green) to −150 V (red), yet the fit gives consistent values

for the steady-state temperature. At 12 mW, the average fit temperature value is

(1215± 17) K. At 15 mW, the average fit temperature value is (1325± 5) K. The

considerably small uncertainty at 15 mW is the result of performing the measurement

with only two voltages. Deviations of the temperature from linear behavior could

be attributed to small changes in alignment that occurred as time of flight spectra

were obtained. From the fit parameters, the cooling time, 1/γ, for nanoribbon apex

emission is (4.94± 0.81) ns. The workfuntion φ is found to be (5.29± 0.09) eV, and

the nanoribbon apex radius, rtip, is (19.6± 2.2) nm. The fit value of the work function

is consistent with the reported values of 5.31 eV and 5.37 eV, which are obtained

from measurement of the photoelectric effect for the [111] and [110] crystal planes,
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respectively.139,140 This value of tip radius, with k = 5, gives a maximum field at the

apex of 2× 109 V/m for an applied tip voltage of −200 V, which is less than the value

considered for thermal emission and thus justifies the application of the model.

2.4 Conclusions

Ultralong Au nanoribbons are unique nanostructures for the study of electron, ther-

mal, and plasmonic transport by laser-induced electron emission. Previous work

indicated that nanoribbons are resilient to damage by laser intensities on the order

of TW/cm2,84 but we found that damage can occur with lower intensities. This

observation resulted in the 11 µm nanoribbon, which differed from the original 23 µm

nanoribbon by having a less defined apex. An immediate consequence of the laser

damage to the 23 µm nanoribbon was that the shorter 11 µm nanoribbon required

higher incident laser power to emit, which is evident in Fig. 2.15(c). The change in the

nanoribbon’s apex geometry also coincided with emission from the 11 µm nanoribbon

being superadditive for emission rates similar to the other samples. The superadditive

emission in pump/probe experiments was accompanied by delayed tails in the photo-

electron time of flight spectra in the 11 µm nanoribbon. Superadditive and delayed

emission are not consistent with plasmon-induced field emission, as plasmonic emission

is reported to have a standard pump/probe cross-correlation and thus is as fast as the

exciting laser pulses.79,132 Such tails were not observed at the 23 µm nanoribbon apex

before it was damaged. These features, the superadditive emission and the delayed

arrival times, are consistent with the 11 µm nanoribbon being more susceptible to

laser heating than the 23 µm nanoribbon. The higher susceptibility to heating made

the 11 µm nanoribbon sensitive to both transverse components of the focused laser

field, as shown in Fig. 2.16(c). The sensitivity to both transverse components of the
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Figure 2.18: (a) Micrographs of a long nanoribbon and sample (IV) (inset). The
nanoribbon is twisted to highlight that it is ribbon shaped. (b) Schematic of nanoribbon
as a detector of longitudinal (EL) and transverse (ET ) electric fields.

focused field is a unique feature of the thermal emission of the nanoribbon that was

not observed in W or Au tips. The cone structure of the nanotip samples leads to

much faster cooling times than the nanoribbon samples. This suggests that a tailored

nanoribbon could be oriented to probe other polarization components in a focus as

well. A schematic for an oriented nanoribbon as a probe of the longitudinal component

of a focused non-paraxial beam is given in Fig. 2.18. Shown in Fig. 2.18(a) is a

high-resolution SEM image of a nanoribbon and our 11 µm nanoribbon as the inset.

The nanoribbon is twisted in the high-resolution image to highlight its shape. With

the nanoribbon oriented as shown in Fig. 2.18(b), the broad side of the nanoribbon

would heat depending on the strength of the longitudinal component of the exciting

field, EL, and the delayed electron yield would therefore depend on EL, while the

peaked electron yield could depend on a combination of the transverse component,

ET , and also EL. The capability to distinguish the slow thermal electron yield at the

nanoribbon apex makes electron emission from a nanoribbon a subwavelength probe

of orthogonal polarizations.

We gratefully acknowledge funding by NSF EPSCoR NE-KS Track-II, Award No.

EPS 1430519, and NSF grant No. 1602755.
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Chapter 3

Path integrals and the double slit

Basic explanations of the double slit diffraction phenomenon include a description of

waves that emanate from two slits and interfere. The locations of the interference

minima and maxima are determined by the phase difference of the waves. An optical

wave, which has a wavelength λ and propagates a distance L, accumulates a phase of

2πL/λ. A matter wave, also having wavelength λ, that propagates the same distance

L, accumulates a phase of πL/λ, which is a factor of two different from the optical

case. Nevertheless, in most situations, the phase difference, ∆ϕ, for interfering matter

waves that propagate distances that differ by ∆L, is approximately 2π∆L/λ, which is

the same value computed in the optical case.

The difference between the matter and optical case hinders conceptual explanations

of diffraction from two slits based on the matter-optics analogy. We provide a path

integral description for matter waves with a focus on conceptual explanation. A

thought experiment is provided to illustrate the validity range of the approximation

∆ϕ ≈ 2π∆L/λ.
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3.1 Introduction

The presentation of the double slit typically begins with a discussion of Young’s

original experiments on the diffraction and interference of light.141 Demonstrations

such as a ripple tank, one of Young’s own inventions, are used to reinforce the concept

of wave interference and Huygens’ Principle of the superposition of waves.49,95 Fig. 3.1.

shows circular waves that impinge on a pair of narrow slits having separation d. The

slits become themselves new sources of circular waves. The phase associated with a

wave is the number of wave-fronts counted along a line with length L, that is, L/λ,

multiplied by 2π. Waves interfere constructively when the phase difference is an

integer multiple of 2π. These ideas lead to the familiar condition for constructive

interference,

∆L = d sin(θ) = nλ, (3.1)

where n indicates the diffraction order that occurs at the diffraction angle θ. This

analysis represented by Eq. 3.1 and Fig. 3.1 describes what we will hereby refer to as

the optical analogy. Even though this approach is correct for light, it is not for matter.

The first problem is that it uses an incorrect phase, 2πL/λdB, for a matter wave

(where λdB is the de Broglie wavelength). The second problem is that the use of the

optical analogy will nevertheless give the correct phase difference for most situations.

In this article, the optical analogy and its limits of validity are discussed for matter

waves. The analogy is also compared to a stationary phase method motivated by the

path integral formalism. The path integral formalism is shown in Sec. 3.2 to give a

single path phase of πL/λdB, and a phase difference between two interfering paths that

is approximately 2π∆L/λdB. This phase difference agrees with the optical analogy.

The path integral formalism assigns different velocities (and thus wavelengths) to

different paths. This appears to be inconsistent with the idea that a double slit is
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Figure 3.1: Typical schematic of Youngs two-slit arrangement. The condition for
first-order constructive interference, d sin(θ) = λ, is illustrated. Shown right is recently
published data for an electron double slit interference experiment.37

illuminated with a wave described by one velocity or wavelength. This apparent

inconsistency will be clarified in the next sections. In sections Sec. 3.3, Sec. 3.4,

and Sec. 3.5, the relation to the optical case, wave mechanics, and time-dependence

is discussed, respectively. In Secs. 3.6 through 3.10, a stationary phase argument

completes the justification for the path selections made in 3.2. At this point, it may

appear that apart from some conceptual details, the optical analogys validity can

be justified by the path integral method. In 3.11, a thought experiment is discussed

for which the optical analogy predicts phase differences that disagree with the path

integral method, with the purpose to illustrate that the optical analogy agrees only

approximatively.
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3.2 Determining the phase from the path integral

Feynman developed a method42 to construct solutions to Schrödinger’s equation142

based on Dirac’s observations on the relationship between the evolution of quantum

states between points in space-time and the classical notion of particle trajectories.85

In Feynman’s path integral formalism, a probability amplitude is determined from

a phase, ϕpath, computed along a particular path connecting two space-time events.

The total probability amplitude K(β;α) for finding a particle at location xβ at time

tβ, having started at location xα at the earlier time tα, is given by the sum

K(β;α) =
∑

all paths α→β

c exp (iϕpath), (3.2)

where all paths connect events α and β.86 The phase ϕpath accumulated along any

path is given by

ϕpath =
1

h̄

∫
path

L(x, ẋ, t) dt, (3.3)

where L is the Lagrangian function, which depends on the position, x, velocity,

dotx, and time, t, along the path. This path integral method is used to efficiently

describe experimental results for matter interferometry36, for example the double

slit experiment for electrons (see the Supplementary Material of Ref. [37], available

online).

For the case of a particle moving in free space in 1-D, the Lagrangian is simply

L(x, ẋ, t) =
m

2
ẋ2. (3.4)

In free space, the velocity, ẋ, is constant along the path of integration, and the
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accumulated phase,

ϕpath =
m

2h̄

(
xβ − xα
tβ − tα

)2

(tβ − tα) =
π

λdB
(xβ − xα) , (3.5)

is a function of the endpoints only. The phase of a single path is thus πL/λdB.

Now consider a double slit illuminated with a matter wave that is characterized by

one velocity. This system can be qualitatively described by the interference of two

paths, represented by the dashed lines of Fig. 3.1. A reasonable assumption would be

that the velocity, and thus the de Broglie wavelength, is the same for both paths. The

phase difference between the two indicated paths of lengths LA and LB would then be

computed from Eq. 3.5 to be

∆ϕ = ϕB − ϕA =
π

λdB
(LB − LA) . (3.6)

This result is incompatible with the phase difference obtained from the optical

analogy because it differs by a factor of 2. This result is also incompatible with

experiment, which agrees with the optical analogy. This is fine because it is indeed

incorrect; the false assumption made is that the velocities along both paths are the

same. This is not a feature of the path integral formalism. The correct result can

be recovered by noting that interfering paths have equal durations ∆t in time; they

both must begin at α and end at β, as expressed in Eq. 3.2. Because LA and LB

are not equal, the consequence is that paths A and B have different velocities. The

corresponding de Broglie wavelengths for paths A and B are then

λA,B =
h∆t

mLA,B
. (3.7)

The path length difference δL between the two paths is taken to be small in comparison
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to the path lengths LA,B. For LA < LB, the de Broglie wavelength can be expanded

as

λB ≈
h∆t

mLA

{
1− δL

LA
+O

[(
δL

LA

)2
]}
≈ λA

(
1− δL

LA

)
. (3.8)

Terms of order O[(δL/LA)2] are neglected. The phase difference between the two

paths is

∆ϕ = ϕB − ϕA ≈
πLB

λA

(
1− δL

LA

) − πLA
λA
≈ 2π (LB − LA)

λA
. (3.9)

Thus, the correct result is recovered and justified by the path integral formalism of

quantum mechanics.

3.3 Comparison to the optical case

The question may arise why the analogous situation of two slit diffraction for light

presents no conceptual difficulty. The use of straight paths in figure 1 for light could

be justified by the application of Fermat’s principle of least time.143 These paths are

called rays in the geometrical optics formulation of light propagation.144–146 Rays are

constructed from the normals of a succession of electromagnetic wave-fronts. Each ray

is associated with a phase called the eikonal φ that is calculated in a homogeneous

medium as

φ =

∫
ray

k · dl =

∫
ray

ω dt. (3.10)

For light, this phase has the value
∫

ray
k · dl = kL = 2π/λ along a ray. This justifies

the optical analogy of counting wave-fronts along the propagation paths as in the

still pictures of Fig. 3.1. The equality of the two integrals in Eq. 3.10 implies (note

dl/dt = c) that the dispersion relation for light is linear:

ω = |k| c. (3.11)
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The dispersion relation determines the group and phase velocities. For light propagat-

ing in free space, these velocities are the same. Matter wave propagation is different

from light because it has a quadratic dispersion relation35 and the group and phase

velocities are not the same. The connection between velocity and phase for matter

waves is discussed in the following section.

3.4 Determining the phase from the wave description: the

motion picture

Consider the motion of a one dimensional electron wave packet, illustrated in Fig. 3.2.

This superposition of waves ψ(x, t) is given by the Fourier transform of the momentum

distribution f(k − k0) of the constituent waves in the group:

ψ(x, t) =

∞∫
−∞

f(k − k0) exp {i [kx− ω(k)t]} dk. (3.12)
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Figure 3.2: Matter wave propagation. Three snapshots of the evolution of a Gaussian
wave packet are shown. The carrier wave moves at the phase velocity vp to the right,
indicated with the blue dot. The envelope moves at the group velocity vG = 2vp. A
pulse that propagates a length L accumulates a phase ϕ = kL − ωt. The angular
frequency is given by ω = kvp, while the propagation time is given by t = L/vG.
Substitution gives that ϕ = πL/λdB, which differs from the optical analogy of counting
waves along the distance multiplied by 2π.

For a Gaussian momentum distribution f(k−k0) = exp[−(k−k0)2/(2(∆k)2)] with
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width δk and a dispersion relation ω(k) = (h̄k2)/2m, the wave packet ψ(x, t) is then

approximately given by

ψ (x, t) ∝ exp {i [kx− ω(k)t]} exp

[
−(∆k)2

2

(
x− h̄k0

m
t

)2
]

∝ exp

[
ik0

(
x− h̄k0

2m
t

)]
exp

[
−(∆k)2

2

(
x− h̄k0

m
t

)2
] (3.13)

A typical matter wave packet’s width spreads and its frequency components disperse as

time evolves; however, for sufficiently short times this spreading and dispersion can be

neglected. The real part of Eq. 3.13 is illustrated in Fig. 3.2 for three times.147,148 The

first exponential factor, represented by a dashed gray line in Fig. 3.2, is a sinusoidal

carrier wave traveling with the phase velocity

vp ≡
ω(k)

k

∣∣∣∣
k=k0

=
h̄k0

2m
. (3.14)

The second factor is the Gaussian envelope, represented by a solid black line, whose

center travels twice as fast as the sinusoidal wave at the group velocity

vG ≡
∂ω(k)

∂k

∣∣∣∣
k=k0

=
h̄k0

m
= 2vp. (3.15)

The group velocity is identified with the particle velocity and determines the de Broglie

wavelength. Suppose that the wave packet in Fig. 3.2 travels a distance L in a time

∆t. The connection between L and ∆t is determined by the motion of the center of

the Gaussian envelope as

L =
h̄k0

m
∆t. (3.16)

Substituting this relationship into the phase argument of the carrier wave in Eq. refeq:pieq13
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gives an accumulated phase ϕ of

ϕ =
k0L

2
=
πL

λ0

. (3.17)

Thus the phase accumulated by a matter wave packet moving from one position

to another follows from inspecting a time-dependent solution, and not from the

time-independent part alone.

3.5 The time-independent and time-dependent Schrödinger

equations

The fact that none of the experimental parts of a double slit experiment changes

over time suggests inspecting a steady state solution. Consider the time-dependent

Schrödinger equation,

−h̄2

2m
∇2ψ − V ψ = ih̄

∂ψ

∂t
. (3.18)

When the potential V in the Schrödinger equation does not depend on time, then the

time-independent equation is derived from the time-dependent equation by separation

of variables and division by the common factor exp (−iωt). This results in the

time-independent Schrödinger equation,

∇2ϕ+
2 (E − V )

mh̄2 ϕ = 0. (3.19)

The factor 2(E − V )/mh̄2 can be defined as k2 to give the Helmholtz equation,

∇2ϕ+ k2ϕ = 0, (3.20)
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the solutions of which also describe the steady state solutions for optics. This well-

known analogy is a defining property of the field of matter-optics (see Sec. 2.1 of Ref. [

35]).

Solutions to the Helmholtz equation with the same energy values (and thus k-values

for free space solutions) can be summed to construct a new solution, and thus the

superposition principle holds. The solutions in the case illustrated in Fig. 3.1 have

the simple form ϕ(r) = (C exp (ikr)/r). The circles in Fig. 3.1 can then be thought

of as depicting the wave fronts of the real part of the circular waves ϕA(rA) and

ϕB(rB) that are the solutions to the Helmholtz equation. The probability to find

a particle at a position x on the detection screen is then given by the Born rule,

|ψ(x, t)|2 = |ϕA[rA(x)] + ϕB[rB(x)]|2. The result is time-independent because the

time-dependent factor exp (−iωt) was factored out of the wave function. Using the

lengths r(A,B) = L(A,B) = n(A,B)λdB for each dashed straight line in Fig. 3.1 leads

immediately to the condition ∆L = nλdB at maxima in the probability distribution.

It is then reasonable to question why the optical analogy is not sufficient to return

to a time-dependent description of the double slit experiment for matter. After all,

it appears that we could recover the time-dependent description by multiplying the

stationary solutions ϕA and ϕB with the factor exp (−iωt). Lets associate with the

waves, for a fixed energy E, the kinematic velocity as given by v =
√

2E/m. The

propagation time t along any direction is then t = r/v. This leads to the phase

kr − ωt = kr/2 evolving from either slit to the detection screen, as in Eq. 3.16, when

the factor exp (−iωt) is added back to the wavefunction. The phase difference at a

detection point would then be (krB − krA)/2 = π(rB − rA)/λdB , as in Eq. 3.6, which

is incorrect. The correct use of time-dependent formalisms avoids this discrepancy, as

shown in Sec. 3.2.
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3.6 Revisiting the path integral propagator in free space

In Sec. 3.2, we restricted the discussion of path integral phase differences in a qualitative

description of the double slit to a particular selection of two paths. However, the

full path integral description for the double slit calls for a summation of probability

amplitudes over all possible paths in space and time between fixed events, not just the

particular selection. In the following, Sec. 3.6, we briefly review the free-space 1-D

propagator in the path integral formalism. In Sec. 3.7, the free-space propagator is

applied to the two-step event of crossing a slit at one particular time. In Sec. 3.8, the

sum over all slit crossing times is shown to converge to the choice of a particular time

for each path in space. In Sec. 3.9, the particular choice of time for each slit-crossing

path is motivated by a stationary phase argument. In Sec. 3.10, the stationary phase

argument is illustrated in the two-path description of the double slit, as in Fig. 3.1.

In Sec. 3.11, the results from the stationary phase argument and a path integral sum

over times are compared to the optical analogy in a near-field arrangement where

paths are summed over the entire extent of the slits.

The probability amplitude for a particle to travel in free space from space-time

event α, denoted (x0, t0), to event β, denoted (xN , tN), in a number N evenly-spaced

time intervals ε, is given in Eq. 3.2 of Ref. [86] as

K (β;α) = lim
ε→0

( m

2πiεh̄

)N/2 ∫
· · ·
∫

exp

{
im

2h̄ε

[
N∑
j=1

(xj − xj−1)2

]}
dx1 · · · dxN−1

(3.21)

Feynman points out that the resulting nested Gaussian integrals can be performed

iteratively, leading to the result

K (β;α) =
( m

2πih̄Nε

)1/2

exp

[
im

2h̄Nε
(xN − x0)2

]
. (3.22)
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When the subscripts 0 and N are associated with their space-time events α and β, and

the total time Nε is replaced with the time difference, tβ − tα, then Eq. 3.22 becomes

K (β;α) =

[
m

2πih̄ (tβ − tα)

]1/2

exp

[
im

2h̄ (tβ − tα)
(xβ − xα)2

]
. (3.23)

This result, which is readily generalized to higher dimensions, shows that the amplitude

associated with the summation over all possible paths connecting two events in free

space is equal to the amplitude associated with the classical path alone, as sketched

in Fig. 3.3.

Figure 3.3: A general path (dotted line) is shown for a point particle that travels from
space-time point (xα, tα) to (xβ, tβ). The locations x that the path crosses (indicated
for times separated by ε) can by varied along the x-axis. The classical path is indicated
with the bold dark line. Feynman showed that the total amplitude for motion from α
to β summed over all paths (by integrating over the x-locations) is identical to the
amplitude computed along the classical path alone, which is a central result from the
path integral formalism.42,86
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3.7 Two-step propagator for a slit

As the next step towards describing the double slit, consider the amplitude for an

electron path intersecting a single slit. This path is described by three space-time

events, labeled as follows: the source, defined as the event α; the slit crossing, denoted

by slit; and the measurement at the screen, β.

The amplitude for such a path can be constructed as the product of the amplitude

for two steps. The first step is to reach the slit from α, and the second step is to travel

from the slit to β.149,150 Applying the result of Eq. 3.23 to this case, one obtains

K (β;α) = K (β; slit) ·K (slit;α)

=

[
m

2πih̄ (tβ − tslit)

]1/2

exp

[
im

2h̄ (tβ − tslit)
(xβ − xslit)

2

]
·
[

m

2πih̄ (tslit − tα)

]1/2

exp

[
im

2h̄ (tslit − tα)
(xslit − xα)2

]
(3.24)

=
m

2πih̄

[
1

(tβ − tslit) (tslit − tα)

]1/2

· exp

[
imL2 (tβ − tα)

2h̄ (tβ − tslit) (tslit − tα)

]
,

where the substitution (xβ − xα)/2 = L was made. We note that this is an approxima-

tion: an exact construction for the propagator would take into account the boundary

conditions set by the walls. The integrations from −∞ to ∞ in Eq. 3.21 include paths

that pass through the walls; therefore, the propagator in Eq. 3.24 adds extraneous

paths to the sum. The times tα and tβ defining the boundaries of this path are fixed,

but the slit-crossing time, tslit, is not. It is not a measured event in the same sense as

α or β and thus cannot be specified. The total amplitude to cross the slit, K(β;α), is

then a sum over all of the amplitudes having every possible value of tslit.
1

1The issue of slit crossing time is closely connected to the problem of diffraction in time. For
context and a discussion, see Ref. [151].
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3.8 Time summed amplitude for two-step propagator

To obtain the total amplitude to cross the slit, K(β;α), consider the sum of the

products K(β; slit) ·K(slit;α) of Eq. 3.24 for every value of tslit occurring between tα

and tβ. The result is written as

K (β;α) =

tβ∑
tslit=tα

K (xβ, tβ;xslit, tslit) ·K (xslit, tslit;xα, tα) . (3.25)

For more detail, see the derivation of Eq. 3.25 in Sec. 3.14. This formally establishes

the sum over intermediate times that is required from the sum over all paths given in

Eq. 3.21. The sum in Eq. 3.25 over the continuous value tslit is proportional to the

integral I(β;α), given by

I (β;α) =

tβ
2∫

tβ
2

dt
m

2πih̄

 1(
tβ
2
− t
)(

tβ
2

+ t
)
2

exp

 imL2tβ

2h̄
(
tβ
2
− t
)(

tβ
2

+ t
)
 . (3.26)

Here, tα = 0, (xβ − xα)/2 = L as before, and the variable time t at the slit has been

defined to give a symmetric integrand. This integral is derived and evaluated in greater

detail in Sec. 3.15. The result, given in terms of the complementary error function,

erfc(z)152, is

I (β;α) =
m

2πih̄
πerfc

(
−i
√
iϕ0

)
, (3.27)

with ϕ0 ≡ 2mL2/(h̄tβ). An asymptotic expansion given by (7.1.23) of Ref. [152] gives,

for Eq. 3.27,

I (β;α) ≈ m

2πih̄

√
π

ϕ0

exp (iϕ0) exp
(
i
π

4

)[
1− i

2ϕ0

− 3

4ϕ0
2

+
15i

8ϕ0
3

+ · · ·
]
. (3.28)
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The form of Eq. 3.28 illustrates that the total integrated amplitude experiences a

phase shift of π/4 from the phase ϕ0. This phase difference is independent of the

choice of path and thus the global phase π/4 can be factored out. Fig. 3.4a shows the

convergence of the real part of the numerical evaluation of Eq. 3.26 (blue curve) to

the real part of the analytic result of Eq. 3.27 (black dashed), for L = 3.37× 10−6 m

and tβ/2 = 3.36× 10−13 s. The numeric results are computed for variable limits

of integration and plotted as a function of the total time interval being integrated.

Fig. 3.4b gives the phase argument of the numeric results (red curve) to show the

convergence of the rotation from the initial phase argument given by ϕ0, which is

defined by choice of the parameters to be π (black dotted), to an angle of −3π/4 (black

dashed). This establishes the appropriate choice of amplitude for a path crossing one

slit. The physical meaning of ϕ0 will now be discussed.
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Figure 3.4: Numerical time integration for a single electron path. (a) Real part
of Eq. 3.26 (solid blue), integrated from −∆t/2 to ∆t/2 relative to tβ/2, showing
convergence to the analytic value given in Eq. 3.27 (dashed line). (b) Complex
argument of the integrated amplitude (solid red), showing convergence to π/4 phase
shift (dashed line) from the argument of exp(iϕ0) (dotted black). The amplitude
proportional to exp(iϕ0) is therefore the appropriate choice of a single amplitude to
characterize the entire sum over time.
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3.9 Stationary phase for the two-step propagator

The phase ϕ accumulated along a path crossing a slit is determined from Eq. 3.5 to be

ϕ =
m

2h̄

(
L1

2

tslit
+

L2
2

τ− tslit

)
, (3.29)

where τ = tβ − tα, L1 is the path length from source to slit, and L2 is the length from

slit to screen. When tslit is varied by δtslit, the phase can be expanded as a power

series in δtslit as

ϕ = ϕ0 +
∂ϕ

∂tslit
δtslit +

1

2

∂2ϕ

∂tslit
2

(δtslit)
2 + · · · , (3.30)

where ϕ0 is associated with a particular choice of tslit. The first-order term of Eq. 3.30

is written out

∂ϕ

∂tslit
=
m

2h̄

(
L2

2

(τ− tslit)2 −
L1

2

tslit
2

)
. (3.31)

The factor ∂ϕ/∂tslit = 0 when L2/(τ − tslit) = L1/tslit: that is, when the velocities

along the path are equal before and after the slit. The phase ϕ will then experience

no first-order variation from ϕ0 when tslit is chosen by this condition. We then say

that the phase is stationary for this choice of path, and the value of the stationary

phase is ϕ0. As shown in Sec. 3.8, this phase characterizes the amplitude arising from

the sum of choosing all values of tslit; therefore, it is the appropriate choice for a single

path. The phase in terms of the de Broglie wavelengths along this single path is now

established πL1/λdB + πL2/λdB = πLpath/λdB.

3.10 Stationary phase in the double slit

Fig. 3.5a shows two interfering paths (green and red) in a space-time diagram for

the double slit. The times tslit1 and tslit2, when paths 1 and 2 intersect the slits,
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respectively, take any value between the initial time tinitial and final time tfinal. The

probability distribution at the screen is shown to the right of the screen as an intensity

plot. In Fig. 3.5b, a phasor diagram of the complex amplitudes for the varying times

tslit1 and tslit2 is shown. The highlighted paths in Figs. 3.5a and 3.5b are the paths of

stationary phase. In Fig. 3.5c, the phases corresponding to the amplitudes in (b) are

given as a function of time to illustrate the stationary phase behavior.

Notice that the stationary phase time for path 1, indicated by the largest red dot

in Fig. 3.5a, occurs after the stationary phase time for path 2. The reason is that the

length of path 1 (that is, the length of the dashed line in the x− y plane) is shorter

than the length of path 2. As the initial time and final times are the same for both

paths, the velocities of the paths are different. The equal length of the part of both

paths between the source and slits explains the difference in the stationary phase

times for this example. For some other path integral calculations, the slit crossing

times are chosen to be identical for all paths37,149,150, while for the optical analogy,

the times are the same for paths of the same length from source to slit.
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Figure 3.5: Path integral illustration for destructive interference in a double slit. (a)
The times tslit1 and tslit2 at which the paths intersect the slits take any value between
the initial time tinitial and final time tfinal. The resulting probability distribution at the
screen is the square of the sum of the amplitudes for all of the times tslit1 and tslit2. (b)
Shown is a phasor diagram for complex amplitudes associated with the intermediate
times for slit 1 (red) and slit 2 (green). The highlighted paths in (b) are the paths
of stationary phase shown in (a). (c) The phases corresponding to the amplitudes in
(b) are shown as a function of intermediate time to illustrate the stationary phase
behavior.
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3.11 Phase matters

Does the optical analogy and the path integral method make the same predictions? In

other words: “Does the phase of a single path matter?” After all, real experiments are

only sensitive to phase differences, which were shown to agree for the optical analogy

and the path integral formalism in Eq. 3.9. This agreement is not always the case.

Consider now the double slit arrangement in Fig. 3.6, where the electron source and

observation point are in-line with one of the slits. Computing the phases of the drawn

paths by Eq. 3.5 (dashed lines) leads to a phase difference

∆ϕpathintegral =
2md2

h̄∆t
. (3.32)

This result does not depend on the length L in this configuration. If instead we use

the optical analogy, we compute the phase difference

∆ϕoptical = 2
2π

λdB(v)

(√
L2 + d2 − L

)
≈ 2md2

h̄∆t
− md4

2h̄∆tL2
, (3.33)

where the time and velocity between the two methods are connected by v = 2L/∆t.

The phase difference in Eq. 3.33 now depends on L. The phase difference thus depends

on the choice of method used for single path phases. When d2/(4L2) ∝ πh̄∆t/(2md2),

Eq. 3.33 conflicts with Eq. 3.32, and thus the choice of method matters.
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Figure 3.6: Feynman paths and probability distribution from all paths in a near-field
two slit arrangement. The source is positioned in line with one of the slits and the
detection point. The slit separation d, propagation length L, and velocity are chosen to
highlight the discrepancy between the predictions of the two methods. The normalized
probability distribution functions at the screen are computed with the path integral
stationary phases (blue), the time-summed amplitudes (green points), and the optical
analogy (dashed red).

To best exemplify this conflict, lets now choose the experimental conditions so

that the common term of Eqs. 3.32 and 3.33 is set to an integer multiple of 2π, and

the second term of Eq. 3.33 set to π. Now, Eq. 3.32 predicts constructive interference

in line with the slit, while Eq. 3.33 predicts destructive interference.

For electron diffraction in the symmetric double slit arrangement of Fig. 3.6, a slit

separation of 273 nm with widths of 63 nm can be chosen. Note that such a double

slit has been demonstrated recently for electron diffraction in Ref. [37]. In contrast

to Ref. [ 37], now the source and screen are placed at the much closer distances of

3.37 µm from the slits. When ∆t is fixed for the path integral method by choosing the

electron velocity to be 1× 107 m/s over the straight path, the difference of π is set
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between the predictions of the two methods. The diffraction patterns are computed

with both methods and shown on the right of Fig. 3.6. At a location on the detection

screen that is in line with the source (at y = 136.5 nm), the path integral method

(solid blue) predicts a constructive maximum, while the optical analogy (dashed

red) predicts a minimum. A time sum of the form of Eq. 3.25 performed for 6000

points per slit and five points on the observation screen over intervals of 6.88× 10−14 s

centered on the stationary phase time of each path from the source to the screen

points (green points) agrees with the blue curve computed with the stationary phase

times alone. This configuration is experimentally challenging to realize. Nevertheless,

near field interferometry for matter waves does exist and may be pushed towards this

regime.45,153 In conclusion, phase difference predictions from the optical analogy and

the path integral formalism will not agree in some near-field conditions. While the

global phase of a single path does not matter, to obtain correct phase differences, the

single path phases must be handled appropriately.

3.12 Summary and conclusions

The optical analogy can give excellent approximate phase differences in most situations

and thus leads to the correct prediction of the positions of interference extrema. This

method is justified by considering stationary solutions to the Schrödinger equation.

The conceptual trap is that a student may infer from the correct phase difference,

2π∆L/λ, that the phase of a single path is given by 2πL/λ (as would be correct for

optical waves). The path integral description of quantum mechanics gives the correct

phase difference 2π∆L/λ between paths, the correct phase πL/λ accumulated over

time along a single path, and justifies drawing paths in space to compute phases. The

path integral method (and the time-dependent Schrödinger equation) gives the exact
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phase difference in all situations. It is therefore an appropriate method to use in

conceptual discussions of matter wave diffraction.

In some physics textbooks, both paths and waves are omitted from the description

of matter wave diffraction. Instead, the discussion refers back to water waves or

Young’s experiment for light waves and quotes the condition for interference or phase

differences by analogy.87–91 This presentation is correct to obtain phase differences,

but it ignores the differences in propagation, that is, the time dependent behavior,

between light and matter waves.

Some physics textbooks89–91, as well as some advanced undergraduate and graduate

texts, will draw attention to group and phase velocities in sections unrelated to the

double slit description.147,154,155 It is interesting to contemplate at what level and in

what manner the conceptual difficulty discussed in this paper could be addressed. For

example, it could follow a discussion of the group and phase velocities of a matter

wave packet. The results from the path integral formalism could thus be presented at

the undergraduate level156–158 to elucidate the idea of a “path.”
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3.14 Time sum derivation

In the following, the propagator is derived for a single slit crossing as described in

Sec. 3.8. In Eq. 3.21, each of the positions xk represent the range of positions a

point could have along a path at the kth time step of the sum. Requiring that a path

intersects the slit at xslit in the kth time step is defined as a multiplication of a term

δ(xslit − xk) to the integrand. This intersection happens at any time step from the

first up to the last, so a factor

χslit =
N−1∑
k=1

δ (xslit − xk) (3.34)

must be included in ( 21 ) to describe all of the alternative times a path can intersect

the slit. Substituting Eq. 3.34 into Eq. 3.21 gives the total amplitude to travel from α

to β as

K (β;α) = lim
ε→0

( m

2πiεh̄

)N/2 ∫
· · ·
∫
χslit exp

{
im

2h̄ε

[
N∑
j=1

(xj − xj−1)2

]}
dx1 · · · dxN−1

= lim
ε→0

N−1∑
k=1

( m

2πiεh̄

)N/2 ∫
· · ·
∫

exp

{
im

2h̄ε

[
N∑
j=1

(xj − xj−1)2

]}
δ (xslit − xk)dx1 · · · dxN−1

(3.35)

Performing the N − 1 integrations in Eq. 3.35 leads to the total sum

K (β;α) = lim
ε→0

N−1∑
k=1

K (xβ, tβ;xslit, tα + kε) ·K (xslit, tα + kε;xα, tα) (3.36)
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The substitution tslit ≡ tα + kε is made into Eq. 3.36 to obtain the final result

K (β;α) = lim
ε→0

tβ−ε∑
tslit=tα+ε

K (xβ, tβ;xslit, tslit) ·K (xslit, tslit;xα, tα)

=

tβ∑
tslit=tα

K (xβ, tβ;xslit, tslit) ·K (xslit, tslit;xα, tα) .

(3.37)

3.15 Evaluating the integral of the full time sum

The time sum derived in Sec. 3.37 over the continuous value tslit must be handled

carefully near the singular points occurring at tslit = tβ and tslit = tα = 0, so we

convert the sum to an integral prior to performing the limit ε→ 0 to obtain

I (β;α) = lim
ε→0

tβ−ε∫
ε

dtslit
m

2πih̄

[
1

tslit (tβ − tslit)

]1/2

exp

[
imL2 · tβ

2h̄tslit (tβ − tslit)

]
, (3.38)

where (xβ − xα)/2 = L as before. Next, x = 2(tslit/tβ − 1/2) is substituted to obtain

I (β;α) = lim
ε→0

1− 2ε
tβ∫

−1+ 2ε
tβ

dx
m

2πih̄

[
1

(1 + x) (1− x)

]1/2

exp

[
i2mL2

h̄tβ

1

(1 + x) (1− x)

]
.

(3.39)

Eq. 3.39 is simplified by the definition of the stationary phase as ϕ0 ≡ 2mL2/(h̄tβ) as

in Sec. 3.8. The next substitution to be performed is x = sin (θ). This trigonometric
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substitution eliminates the square root, as dx/
√

1− x2 = dθ, and we obtain

I (β;α) = lim
ε→0

m

2πih̄

sin−1

(
1− 2ε

tβ

)∫
sin−1

(
−1+ 2ε

tβ

) dθ exp

[
iϕ0

cos2 (θ)

]

= lim
ε→0

m

2πih̄

sin−1

(
1− 2ε

tβ

)∫
sin−1

(
−1+ 2ε

tβ

) dθ exp (iϕ0) · exp
[
iϕ0 tan2 (θ)

]
,

(3.40)

where the identity sec2 (θ) = 1+tan2 (θ) is used in order to factor out a term exp (iϕ0).

Next, we substitute u = tan (θ) and obtain

I (β;α) = lim
ε→0

m

2πih̄
exp (iϕ0)

tan

[
sin−1

(
1− 2ε

tβ

)]∫
tan

[
sin−1

(
−1+ 2ε

tβ

)] du
exp (iϕ0u

2)

1 + u2
. (3.41)

The limits of integration are symmetric and now tend to ±∞ as ε→ 0, so they are

redefined as tan [sin−1 (1− 2ε/tβ)] = R and tan [sin−1 (−1 + 2ε/tβ)] = −R, with the

limit R→∞. Finally, we extend the integrand into the complex plane by performing

the substitution t = −i
√
iϕ0u to obtain

I (β;α) = lim
R→∞

m

2πih̄
exp (iϕ0)i

√
iϕ0

−i
√
iϕ0R∫

−i
√
iϕ0(−R)

dt
exp (−t2)(√
iϕ0

)2 − t2
. (3.42)

The integrand is analytic everywhere in the complex plane except for first-order poles

at ±
√
iϕ0, therefore the path of integration, which lies on the line t = R exp (i3π/4),

can be rotated to lie entirely on the real axis. The integrand’s even symmetry then
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permits

I (β;α) =
m

2ih̄
exp (iϕ0)

2i

π

√
iϕ0

∞∫
0

dt
exp (−t2)(√
iϕ0

)2 − t2

 . (3.43)

The term in square brackets of Eq. 3.43 has the form of the complex-valued function

w(z), given in (7.1.4) of Ref. [152], as

w (z) =
2iz

π

∞∫
0

dt
exp (−t2)

z2 − t2
(3.44)

This function can be readily evaluated from the definitions given in (7.1.2) and (7.1.3)

of Ref. [152], as

w (z) = exp
(
−z2

)
erfc(−iz), (3.45)

where erfc(z) is the complementary error function. Substituting Eq. 3.44 and Eq. 3.45

into Eq. 3.43, we obtain the result,

I (β;α) =
m

2πih̄
π · erfc

(
−i
√
iϕ0

)
, (3.46)

which is Eq. 3.27.
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Chapter 4

Bouncing droplets as quantum analogs

Analogous systems are useful in demonstrating phenomena that can be experimentally

difficult to accomplish, or are otherwise conceptually challenging. In that regard,

analogs can make such systems more accessible for basic research, or simpler to grasp

for pedagogical purposes. Young’s ripple tank, which was discussed in Chapter 3, is a

classic example, where a fluid wave analog was applied to the diffraction of electro-

magnetic waves from slits49, and later, potentially erroneously, to demonstrations of

matter wave diffraction. A number of acoustic analogs to quantum phenomena have

been explored, including a demonstration of level splitting159, the formation of band

structure160, and an acoustic avoided crossing.161 An acoustic quantum analog system

is even commercially available for undergraduate laboratory courses, which can be

used to study analogs of atomic hydrogen and semiconductor bandgaps.162 These

systems share in common a similar theoretical structure while being experimentally

accessible to undergraduates studying physics.

A visually stunning quantum mechanical analog was developed recently in Paris,

France, in the research group of Yves Couder. A system of bouncing oil droplets,

coupled to dynamically evolving surface waves which guide the motion of the droplets,

was found to exhibit properties that are typically considered beyond the capability of

classical systems.51,52 Oil droplet analogs have since been demonstrated for quantum
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mechanical tunneling98,163, Landau orbit quantization53,101, orbital level splitting100,164,

and for the quantum corral.99 One of the most significant of these analogs was the

realization of a macroscopic single and double slit diffraction experiment.57 Couder et

al. reported the ability to obtain wave-like diffraction patterns from the macroscopic

oil drop system, taken one trajectory at a time. The results were so fantastic that the

system was featured in an episode of the science popularization series, Through the

Wormhole.165

The original experimental results, which show wave-like diffraction patterns built

up by the trajectories of single walking droplets, have been tested for repeatability

by the Bohr group at the Technical University of Denmark103, by our group at the

University of Nebraska-Lincoln,102 and the Bush group at MIT.104 The work has

inspired new experiments with the double slit,166 as well as theoretical models,167

while discussion over how single particles can diffract remains current and ongoing.168

In the following chapter, I will describe the oil drop system we developed, along with

the data we obtained replicating Couder’s single and double slit analog experiments.

A second experiment is then described, of walkers confined to nearly 1-D motion in a

linear channel,54 which was developed to be performed by undergraduate or even high

school-level researchers. The data presented for those experiments were obtained by

visiting high school students, Summer 2017.

4.1 Experimental Apparatus

In all experiments, an electromagnetic mechanical shaker is used to oscillate a dish filled

with silicone oil. The silicon oils used in experiments were pure polydimethylsiloxane

(Clearco Products Comany, Inc.), with viscosities 20 cSt (centiStokes), which is

identical to the oil viscosity reported in Couder et al. of 20× 10−3 Pa s,57 and 50
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cSt (50× 10−3 Pa · s). The oils have a surface tension σ =0.0209 N/m and density

ρ =0.965× 103 kg/m3. We used a home-built mechanical shaker based around a

Pioneer TS-W3002D2 subwoofer. The speaker was given an amplified sinusoidal signal

supplied by a Stanford Research Systems DS345 function generator. The function

generator signal was amplified by a home-built amplifier with a gain of 2. The amplifier

was based around an LM12CLK OP amp, and was supplied ± 20 V by a Topward

6306A power supply, running in independent mode. It was necessary to use a power

supply with adequate current, as the speaker places a considerable load on the circuit

when it is driving a filled dish.

The dishes, which are shown in Fig. 4.1(a), are coupled to the speaker by a magnetic

coupler, which is shown in Fig. 4.1(b).

a)

b)

c)

Figure 4.1: Images of oil drop experimental apparatus. Shown in a) are the dishes used
in various experiments. The center and right-most dishes are used for reproducing the
single and double slit oil drop experiments, respectively. Shown in b)is the underside of
the double slit dish to highlight the magnetic coupler and Delrin bearing components.
In c), the complete apparatus is shown, with lighting, and droplet guide. This setup
forms the basis for all experiments shown. The imaging camera was not in the frame.
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A Delrin cylindrical bearing constrains the motion of the dish to be vertical. This

bearing assembly is lubricated before experiments with either valve oil (a petroleum

distillate more regularly found with brass musicians) or WD-40. The bearing assembly

can be positioned and oriented by a 3-legged leveling table, which in turn levels the

dish. Complete drawings of all dish components, with relevant dimensions, can be

found in Appendix B. A dish is leveled by filling it to with oil a depth of ≈ 4 mm, and

then observing the onset of the Faraday instability.50,169 The wave patterns of the

Faraday instability are shown in Fig. 4.2. The Faraday instability is a parametrically

forced wave pattern that spontaneously forms on the surface of the fluid when the

oscillation acceleration reaches a threshold value. The Faraday waves on the surface

of the fluid have a wavelength given by the shallow water dispersion relation,

ω2 = gk +

(
σ

ρ

)
k3, (4.1)

where ω is the driving frequency, g is acceleration due to gravity, k = 2π/λF is

the wavenumber, σ is the fluid surface tension, and ρ is the fluid density. The

Faraday wavelengths for the 20 cSt and 50 cSt oils are then determined by the applied

driving frequencies, which are 80 Hz and 50 Hz, respectively. The value of the Faraday

wavelengths, λF , are then 4.75 mm and 6.95 mm, respectively.57 When the waves at

threshold start to form first in the center of the deepest portion of the dish, then

the dish is appropriately level. Once the dish is level, the leveling table legs can be

locked by thumb screws located at the base of the legs. The entire system is shown in

Fig. 4.1(c). A refined version of this system, featuring an air bearing in place of the

Delrin bearing assembly and a thin “stinger” rod to couple loads to the mechanical

shaker, is detailed in Ref. [106]
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a) b)

Figure 4.2: Images of Faraday wave excitations on the oil surface. Shown in a) is
a Faraday wave in an open square dish filled with 50 cSt dimethicone. In b), the
single slit dish was filled with 20 cSt dimethicone. The measured wavelengths are
approximately 7 mm and 4.8 mm, respectively.

When a dish of oil is shaken below the Faraday threshold, a droplet can be

suspended on the surface of the fluid nearly indefinitely.51,52 The reason for this is

the presence of a small air channel that is compressed between the drop and the fluid

bath–the droplet is never in direct contact with the oil bath, so it does not coalesce.

As the shaking acceleration is increased to near the Faraday instability threshold,

the bouncing droplet will excite a ripple in the fluid surface. That ripple will be

sustained by the parametric forcing of the surface, but will dissipate over time. As

the dissipation time increases, the drop can fall on the slope of the wave created by

the back action of the previous bounce. For a sufficient shaking amplitude, the drop

bouncing period becomes twice the shaking period, and the location of where the

drop strikes the Faraday wave packet becomes consistent between bounces. Such a

wave/droplet pair is referred to as a walker.51 A succession of frames of the motion

of a walker is shown in Fig. 4.3. The shape of the surface wave is highlighted by a
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method developed by the Bush group.170 A translucent cell of alternating blue and

red stripes is used as a filter to illuminate a walker. The cell diffuses the light, and

the stripes provide patterns that add depth to the image.

t = 0.00 s t = 0.09 s t = 0.18 s t = 0.27 s

t = 0.36 s t = 0.44 s t = 0.53s t = 0.62 s

Figure 4.3: Visualization of the droplet/wave pair in a cavity. The surface wave
features are highlighted via illumination of the dish through a colored filter consisting
of alternating red and blue bars, as demonstrated in Ref. [BUSH REFERENCE]. Even
though the drop spontaneously coalesced into the fluid at t = 0.36 s, the companion
wave persisted in the fluid at least 1.8 s later.

Drop trajectories are recorded by a digital camera (JAI CM-030GE) mounted

above the dish. The camera has a maximum acquisition rate of 90 frames per second

(fps), but was typically run at 22.5 fps to save on memory and disk space. The frames

were acquired by a LabVIEW code adapted by former graduate student Roger Bach.

After a set of images were taken, the drop position was located by a blob-finding code.

The first iteration of code was written by an undergraduate researcher, Adam Lif.

The code was written to not only find the drop position in the thousands of acquired

images, but organize the trajectory data in a reasonable fashion. Adam’s source code,

which can be compiled in Microsoft Visual Studios, is given in Appendix C.
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A walker in an open cell, that is, a cell having no changes in topography of the cell

floor, will undergo rectilinear motion. As a walker approaches the sides of the cavity,

however, the surface wave begins to interact with the boundary and the motion of

the walker will be deflected. Such behavior is referred to as “billiard motion,” and is

shown below in Fig. 4.4.

20 mm

a) b)

Figure 4.4: Shown is the recorded and analyzed motion of a free walker in a 76 mm
× 76 mm square dish. (a) Compiled image of 3787 656× 494 pixel frames recorded
by the data acquisition camera. The image addition code is written to highlight
the brightest pixels in each frame without increasing the background intensity. (b)
Analyzed positions of the walker plotted as a trajectory. The horizontal ticks are
spaced at 100 pixels, and the vertical ticks at 50 pixels.

In Fig. 4.4(a), a series of 3787 acquired images of a walker in motion were compiled

into a single image by adding the pixel values in all of the frames. The Python

script used to perform this compilation can be found in Appendix E.1, and is called

“Compile.py.” Fig. 4.4(b) gives the plotted trajectory of the walker The term “billiard

motion” was first described in Ref. [51], but was not further investigated experimentally

or theoretically until Ref. [97]. Pucci et al. shows that a walker does not undergo

specular reflection at a submerged boundary. The consequences of this nonspecular

reflection are the precessing orbits shown in Fig. 4.4. What is significant here is

that a system that exhibits rectilinear motion, and therefore billiard motion, must be
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sufficiently protected from air currents and is provided with uniform vibration.104 In

short, billiard motion indicates that our shaker system is actually quite decent.

4.2 Replicating Couder’s Single and Double Slit Experi-

ments

In an attempt to reproduce Couder’s macroscopic interference results, a single slit dish

was designed utilizing all the available dimensions and description at the time. The cell

was made to have dimensions of 100 mm×100 mm, as this was close to the reported

70 mm and 130 mm square dishes reported in Ref. [57]. An allowance for a 0.35”-wide

shallow region around the open area of the dish was made, as per the suggestion of

Couder during a laboratory visit. This shallow region is necessary to dampen the

Faraday guiding waves before hitting the meniscus of the dish. The materials used

included polycarbonate, acrylic, and Delrin. Polycarbonate was used for the cell,

and acrylic was used for a stem and supporting fins. These plastics were utilized for

their strength and light weight, as there was concern that our speaker-based shaker

would not be strong enough to drive a heavy dish. The acrylic parts were fused to the

polycarbonate dish with methylene chloride (dichloromethane, Sigma Aldrich). Delrin

was used for the stem guide because it performs well as a bearing surface. Detailed

drawings of the components can be found in Appendix B.

To obtain a slit opening, two metal strips (5.2 mm×30 mm) were glued to the

bottom of the dish. The strips were 3 mm thick, so that a fluid depth of ≈4 mm would

leave 1 mm of fluid covering the slit barriers. The single slit opening, L, was set at

the reported 14.7 mm length. For our experiment, we used the 20 cSt (20× 10−3 Pa s)

viscosity oil, which has a Faraday wavelength given by the dispersion relation Eq. 4.1,

λF , of 4.75 mm, when the dish is shaken at 80 Hz. Once a suitable walker was obtained,
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usually by plucking at the surface until a number of walkers could be observed and

then discarded, the walker was manually guided to the walker guiding system. The

walker guiding system was a trap made of two wires that could be dropped into the

launching side of the dish from above. The wires made slight deformations of the

fluid that could temporarily trap a walker until it was nudged from behind, which

resulted in repeatable starting positions for the walkers as they moved to the slits.

The guide could be adjusted parallel to the slit structure, with the effect of having a

series of starting positions that filled the slit opening with our best approximation of

a “uniform distribution”.57 Walker trajectories were recorded by the camera, which

was controlled by LabVIEW. Walkers of different sizes and velocities were launched at

the slit 1519 times, resulting in 1092 trajectories that could be analyzed. The images

were analyzed by undergraduate student Adam Lif’s blob finding code. The trajectory

files were analyzed by a series of Python scripts in order to make each analysis step

more transparent. These Python scripts can be found in Appendix D.

The plotted trajectories, incidence angle distribution, and deflected angular distri-

bution measured a distance 2L from the slit opening , are shown below in Fig. 4.5.
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Figure 4.5: Shown are the results from the reproduction of the oil drop single slit
analog. (a) Complete set of all walker trajectories that pass the detection plane. The
detection plane, indicated by the solid red line, is spaced exactly 2 slit widths from the
opening of the slit. The slit width, L, is 14.7 mm, as reported in Ref. [57]. Of the 1519
trajectories recorded, 1092 are plotted. (b) Histogram of the incidence angles of the
1092 walker trajectories approaching the submerged slit structure. An incidence angle
of 0 is defined as a trajectory moving perpendicular to the slit plane. Incidence angles
are measured as the average angle between the first 10 positions of each trajectory.
(c) Histogram of the deflection angles of walker trajectories. The deflection angle is
computed as the average angle between consecutive points for 5 points lying above
the deflection plane and 5 points below.

In Ref. [57], the authors describe that trajectories used to build the diffraction

pattern are selected so that their angles of incidence are nearly perpendicular with

the slits. This indicates that post-selection could be necessary in order to obtain
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the distributions they reported. So, in order to try and reproduce that experimental

consideration, the 1092 trajectories were post-selected to have an incidence angle

smaller than ± 2 deg. The resulting 358 trajectories, with their respective angular

distributions, are shown as Fig. 4.6. The script used to define the selection of the

incidence angle distribution and organize the data is given in Appendix D.4. The

deflected angle distribution is plotted with the single slit amplitude function that was

given as Eq. (1) of In Ref. [57]. The single slit amplitude, as a function of deflection

angle, is

f(α) = A

∣∣∣∣sin (πL sinα/λF )

πL sinα/λF

∣∣∣∣ . (4.2)
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a) b)

c)

L

Figure 4.6: Shown above are the post-selected trajectories and angular distributions
obtained for selecting only trajectories having an incidence angle smaller than ± 2 deg.
(a) Plots of the 358 trajectories having an incidence angle within the 4 deg selection
criteria. (b) Zoomed-in plot of the histogram of the selected angular distribution,
binned with the same resolution as in Fig. 4.5, to confirm the incidence angle selection.
(c) Histogram of the post-selected deflection angle distribution, measured 2 slit widths
from the slit opening. Plotted in black is the single slit diffraction envelope reported
in Ref. [57], with L/λF = 2.86.

Couder’s double slit experiment was also performed. This dish was designed to be

the largest size quoted (130 mm×130 mm), and had the slit barrier machined along the

diagonal of the dish. The width of the slit barrier was extrapolated from colloquium

slides delivered at the Perimeter Institute54, and taken to be 6.0 mm. The single

slit width, L, and slit separation, d, were taken to be the values quoted in Ref. [57],
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which are 7.6 mm and 14.3 mm, respectively. The dish was given the same 0.35”-wide

shallow barrier, with the addition of a flattened corner that was marked with the

positions of the slits. These served as references for positioning the walker guides for

consistent launches. The details of the double slit placing and reference markings are

shown in Appendix B, Fig. B.1. The recorded trajectories and angular distributions

are plotted below in Fig. 4.7.

a) b)

c)

d

L

Figure 4.7: Shown above are the results from the reproduction of the oil drop double
slit analog. (a) All 483 of 958 attempted walker trajectories that passed the detection
plane for the oil drop double slit. The slit width, L , shown in black, is 7.6 mm,
as reported in Ref. [ 57]. The slit separation, d, shown in yellow, is 14.3 mm. The
detection plane is located a distance 2d from the slit openings, and is indicated by the
red lines. The axes are scaled in pixels. (b) Histogram of the incidence angles of the
483 walker trajectories approaching the submerged slit structures. (c) Histogram of
the deflection angle distribution, measured a length 2d from the slit opening.



91

Similar to the single slit analysis, the double slit trajectories are post-selected for

an incidence angular spread of ± 2 deg. The 149 trajectories that could be analyzed

that fit this criteria are plotted below in Fig. 4.8. In Fig. 4.8(c), the deflected angle

distribution is plotted with the double slit amplitude (black line), and single slit

envelope function (cyan line), that were used to fit the data in Ref. [57]. The double

slit amplitude, f(α), is given as a function of deflection angle, alpha, as

f(α) = A

∣∣∣∣sin (πL sinα/λF )

πL sinα/λF
cos πd sinα/λF

∣∣∣∣ (4.3)
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a) b)

c)

Figure 4.8: Shown above are the post-selected trajectories and angular distributions
obtained for selecting only trajectories having an incidence angle smaller than ± 2 deg.
(a) Plots of the 149 trajectories having an incidence angle within the 4 deg selection
criteria. (b) Zoomed-in plot of the histogram of the selected angular distribution,
binned with the same resolution as in Fig. 4.5(b) and Fig. 4.7(b), to confirm the
incidence angle selection. (c) Histogram of the post-selected deflection angle distribu-
tion, measured a length 2d from the slit openings. Plotted in black is the double slit
diffraction amplitude reported in Ref. [57], with L/λF = 0.9 and d/λF = 1.7. Plotted
in cyan is the single slit envelope, again with L/λF = 0.9.

The results obtained in our reproduction clearly do not match those originally

reported by Couder et al. in Ref. [57]. No clear diffraction peaks or cusps are visible

in our data, with or without a trajectory post-selection. This result agrees with

the data reported by Andersen et al. in Ref. [ 103]. Their conclusions following

their reproduction of the single and double slit are that the data selected by Couder
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et al. were not statistically significant to be distinguished from a fitted Gaussian.

The analysis offered by Pucci et al. in Ref. [104] suggests another possibility, that

the shaking amplitude has a significant effect on the kinds of trajectories that can

appear in the distribution. For shaking that is less than the Faraday threshold,

trajectories launched from the same initial positions are repeatable, an observation

that is completely contrary to Couder et al.’s claims that the trajectories are chaotic.

For shaking amplitudes that are closer to the Faraday threshold, walkers launched

from the same initial position become less repeatable, and peaks form in the deflected

angular distribution. However, those peaks are found to be consistent with the

droplet interacting with the edges of the submerged slit structures, and make an angle

consistent with the non-specular reflection observed at submerged barriers.97,104

An omission in the otherwise thorough analysis of Pucci et al. is that the incident

angles of the analyzed trajectories are not reported. The incident walker position was

controlled by a v-shaped guide submerged in the fluid; however, our data show that the

use of a guide does not necessarily fix the incident trajectory angles. For a complete

reproduction or modification of the original experiment, all of the experimental

variables Pucci et al. considered, which include drop size, isolation from external air

currents, fine tuning of the shaking amplitude, and initial position, must be considered

with the distribution of incoming angles. As the mechanism that lead to the data

reported in Ref. [57] is likely to be an edge interaction, it has been suggested during a

conference meeting of oil droplet researchers that an alternative experiment should

employ an external slit potential. Such an experiment performed by Perrard et al. used

an external magnetic field to apply a force to ferrofluid-filled walkers to demonstrate

orbital quantization in an external potential.101 Ref. [104] concludes that an analog

to Kapitza-Dirac diffraction will be investigated in the future.
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4.3 Walkers Confined to a Waveguide

A less restrictive oil droplet analog was studied by guided high school researchers.

Three high school seniors, Karissa Goosic, Greg Hubbard, and Taylor Morgan, were

shown how to operate the oil droplet system, and performed experiments with walkers

confined to linear channels, similar to experiments reported in Ref. [171]. What we

observed early in the stages of developing the oil drop reproduction system was that

a walker confined to such a channel would experience nearly 1-D motion, and the

velocity would vary with walker position, leading to peaks and valleys in position

distributions taken along the channel length. This observation was first reported

by Couder during a colloquium at the Perimeter Institute,54 and further studied by

Filoux et al.171

The students made linear channels by magnetically attaching 3.1 mm thick iron

strips to the bottom of the open 74 mm×74 mm dish. The iron strips formed the

boundaries of the channel. The width of the channels varied between 10 mm and

12 mm, while the length of the channels was fixed by a set of calipers. The dish was

filled with 50 cSt oil, which has a Faraday wavelength, λF , of 6.95 mm when driven at

50 Hz.57

One of the practical experimental tasks first accomplished by the students was the

design and construction of an improved camera mount. Their camera mount, and

experimental set-up, is shown in Fig. 4.9.
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Figure 4.9: Shown above is a picture of the experimental apparatus adapted and
used by visiting high school Summer researchers. The mechanical apparatus (shaker
and controlling electronics, leveling table, and dish) were set up for them, while they
improved on the camera mounting.

One of the next tasks the students were requested to perform was to see the

effect of the shaking amplitude on the distribution of walker positions. In order to

accomplish this, the students acquired trajectories of bound walkers that contained

nearly 10× as many images as needed for an oil drop slit trajectory. This increase in

image volume caused the old droplet finding code to crash frequently, so a new script

was written in Python to analyze the droplet positions. The new drop finding script
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is given in Appendix E.2. Shown in Fig. 4.10 are the resulting position histograms

for the x-coordinate for walkers confined in a 27.5 mm×10 mm channel, as the driving

voltage (and thus shaking amplitude) is increased.

Driving Voltage

(i) (ii) (iii) (iv)

Figure 4.10: Shown above are a series of position histograms, normalized to probability,
obtained for a walker confined to nearly 1-D motion in a 27.5 mm × 10 mm cavity.
The fluid used has a viscosity of 50 cSt, so the Faraday wavelength λF is 6.95 mm
as before. The data are plotted in units of λF . Yellow rectangles located above the
histograms indicate the cavity length, fluid depth, and location of the cavity walls (to
scale). From left to right, the peak-to-peak driving voltage provided by the function
generator was increased from 5.8 V to 6.2 V in steps of 0.1 V.

Another task was to determine the relationship between the length of the channel

and the number of peaks that could be obtained in droplet position distributions

taken along the channel length. Shown below in Fig. 4.11 are the position histograms

obtained by the students as channel length was varied from 16.5 mm (2.37λF ) to

29.0 mm (4.17λF ). The shaking amplitude was adjusted throughout so that peaks

would be visible in the position histograms.
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Figure 4.11: Shown above are a series of position histograms, normalized to proba-
bility, obtained for a walker confined to nearly 1-D motion in a cavity. The cavity
lengths, depths, and boundaries, which are as in Fig. 4.10 represented to scale by the
yellow rectangles above each histogram, are varied from 2.37λF (16.5 mm) to 4.17λF
(29.0 mm), where λF is the fluid’s Faraday wavelength of 6.95 mm. The horizontal
axes are again plotted in units of λF .

As the students took data, they observed that the motion of walkers in the cavity

changed depending on the position and direction of motion. It appeared that a walker

trajectory was effected more as it moved away from a channel boundary than when it

moved toward a boundary. They then asked, is this an actual effect, or a trick of the

eyes? In order to answer their question, a Python script was provided for them to

determine if the walker was moving to the left or the right of the channel. The script is
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included in Appendix E.3 Fig. 4.12 shows the resulting histograms for channel lengths

of 26.0 mm (3.74λF ) (a) and 29.0 mm (4.17λF ) (b) separated into distributions for

motion toward the right (i), motion toward the left (ii), and the distribution sum (iii).

a) b)
(i) (i)

(ii) (ii)

(iii) (iii)

Figure 4.12: Shown above are the position histograms for walkers confined to cavi-
ties with widths of (a) 3.74λF (26.0 mm) and (b) 4.17λF (29.0 mm), separated into
distributions for motion toward the right boundary of the cavity (i), motion toward
the left boundary (ii), and the combined left-right distributions (iii). The distribution
asymmetry indicates a stronger interaction while the walker is moving away from a
cavity boundary than when it approaches a boundary. This test was instigated by
observations made by the high school students obtaining the data.

One of the last experimental tasks that the students were able to perform was

to image the Faraday waves in a cavity so they could be compared to the position

probability distribution. First, they were able to obtain the walker images that were

produced earlier in Fig. 4.3, utilizing the method described in Ref. [170]. Then, they
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chose a series of channel lengths, and acquired ≈ 30 frames of Faraday wave images for

each length. Those images were processed in a summing script called CompileBright.py

that highlighted the features that changed the most (that is, the antinodes of the

Faraday waves) while diminishing the contribution from static features. This image

analysis script is given in Appendix E.4. The resulting compiled images are plotted

with the channel position histograms in Fig. 4.13
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Figure 4.13: Shown above are position histograms for walkers confined to cavities of
widths 2.81λF (19.5 mm), 3.09λF (21.5 mm), 3.74λF (26.0 mm), and 4.03λF (28.0 mm),
which are compared to images of walker-free Faraday waves. The images highlighting
the amplitude of the Faraday waves were made by compiling ≈1.3 s (≈ 30 frames) of
acquired images of the cavities excited to the Faraday instability. The positions of
the histogram peaks, that is, where the walker velocities are the slowest, mostly align
with the position of the Faraday wave extrema, where the surface gradient of the fluid
surface changes at the slowest rate.

The data taken by the students leads to a number of observations. The first is

that indeed, the shaking amplitude has an effect on the 1-D probability distribution

of a confined walker. As the shaking amplitude approaches the Faraday threshold, the

walker trajectories are more affected by the channel boundaries, which is evidenced by

the increase in peak contrast. The resulting probability distribution does not bear

a strong resemblance to the quantum mechanical “particle in a box.” A surprising

omission in the study performed by Filoux et al. is that the 1-D walker probability

distributions are not plotted.171 The channels they used are also long, so the walkers
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do not appear to have wall interactions. As the channel length is increased, the number

of Faraday waves supported by the cavity increases, and so the number of peaks in a

subsequent probability distribution will also increase. Even and odd numbers of peaks

are possible, and the location of distribution peaks tend to line up with the Faraday

excitation of the cavity, with exception to the data observed for the channel of length

3.74λF (26.0 mm). Lastly, the motion of walkers depends on where the walker is in

relation to the boundary walls. This is complementary to the study of Pucci et al.

that measured non-specular reflection from submerged barriers.97

Oil drop walker experiments are rich areas to study particle and wave dynamics.

They can be developed as analog systems that can be used both for fundamental

research and in pedagogical settings. Although the results of the single and double slit

analogs do not hold up under scrutiny, it appears that other successful analogs can

be developed. Such analogs provide research opportunities accessible to high school

students and undergraduate researchers, and thus they are useful for teaching.
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Chapter 5

Degenerate electron sources and diffraction in time

The field of the quantum optics of light essentially began with the radio telescopic

measurements of Hanbury Brown and Twiss.64,65 Robert Hanbury Brown, an expert

in radio telescopes, developed a telescope based on the intensity interferometer, which

was inherently less sensitive to atmospheric fluctuations than the optical Michelson

interferometers of the day. Essentially, the intensities of light, incoherently emitted

from opposite sides of a star, will give spatial correlations when measured with a pair

of radio detectors. In order to measure the angular widths of distant stars emitting

in optical frequencies, the intensity interferometer would have to be modified to use

photomultiplier tubes as detectors. While the function of the radio wave intensity

interferometer was accepted and understood at the time, there was considerable doubt

when photons were to be considered.172 Hanbury Brown and Twiss showed, in a

table-top experiment using a filtered mercury lamp, that the detection of photons

in two coherent beams of light was correlated in time.59,66 That is, photons, which

are formally treated by Bose-Einstein spin statistics, can bunch, or occupy similar

quantum states. Experiments showing such correlations are typically referred to as

Hanbury Brown-Twiss (HBT) measurements. This experiment was the first formal

demonstration that the intensity interferometer would indeed work in the photon

counting regime, and motivated the expansion of quantum optics.
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The analogous experiments for particles obeying Fermi-Dirac statistics typically

demonstrate the opposite effect. The detection of coherent beams of fermions is

generally expected to be anticorrelated in time, or in other words, fermions demonstrate

antibunching. This is due to the Pauli exclusion principle (PEP). Formally, the

PEP is expressed as the condition that the overall wave function describing two

identical spin-1/2 particles must be antisymmetric under particle exchange. The

first experiments demonstrating antibunching effects for electrons were performed in

solid-state systems,61,62 and then finally for free electrons in the Hasselbach group.70

Realizing the experiment for free electrons was difficult, due to the low degeneracy

of electrons in the source, which was reported to be on the order of 10−4 electrons

in the coherence volume. Here, the source degeneracy is defined as the number of

electrons produced from the source within the coherence time, or as will later be

shown as the fraction of electrons produced within a phase space volume that are

also within the coherence volume. One of the problems was that this low degeneracy

resulted in a correspondingly small experimental signature, namely, a change of

∼ 10−4 was reported in the detected coincidence signal when comparing coherent

to incoherent electron detection. There is further controversy as the experimental

apparatus could not in principle distinguish between the effects of degeneracy pressure

and Coulomb pressure in the coincidence measurements.70,71,109 As degeneracy pressure

is polarization-dependent, while Coulomb pressure is not, a femtosecond, nm-scale,

spin-polarized source could resolve the controversy of the measurements reported

by Hasselbach. One possibility for falsifying or verifying Hasselbach’s result is to

implement a free electron source that incorporates a higher quantum degeneracy, that

is, a source that produces electrons with consistent quantum numbers in the smallest

phase space volume. A femtosecond, nanometer-scale, spin-polarized electron source

would accomplish such a goal by increasing the quantum degeneracy to be on the order
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of 1; however, such sources combining all three attributes are not currently available.

Such a source is desirable for tests of quantum degeneracy and for implementation in

ultrafast electron microscopy.12,24,25,173

The current state-of-the-art spin-polarized electron sources are planar photo-

cathodes. The best combined spatial and temporal resolution in ultrafast electron

microscopes has been provided by nanotip sources triggered by femtosecond lasers, as

the spatial resolution of photocathodes with planar geometry is limited by the laser fo-

cus size.174,175 Direct measurements of the electron pulse duration in ultrafast electron

microscopy have shown that the electron and the illuminating laser pulse durations

are of the same order.17 Implementing a spin-polarized source in an ultrafast electron

microscope to study magnetic nanostructures on the fs-scale is currently underway in

a globally collaborative research effort176, while a CW source that can also operate at

ps-scale resolution has been developed in Japan with the goal of producing quantum

degenerate electron beams.177–179 In particular, their planar photocathode installed in

a 200 keV transmission electron microscope demonstrated a spin polarization of 82 %,

transverse coherence length of 170 nm, and a degeneracy of 4× 10−6 The authors

claim such an arrangement can enhance electron antibunching.178 In the Batelaan, Gay,

and Uiterwaal labs at the University of Nebraska-Lincoln, we are currently installing

such a fast spin-polarized source in an electron HBT experiment.

In this chapter, the degeneracy of a pulsed electron source is defined and quantified.

The system is described by a single two-particle wavefunction that is obtained by

first using the path integral formalism to propagate two single-particle probability

amplitudes from the source toward two identical detection points. The general

apparatus for measuring fermion anticorrelations in a HBT experiment is described.

Finally, a candidate for a fast, localized, spin-polarized source of electrons is obtained

from a sharp p-GaAs bulk [110] crystal shard illuminated with femtosecond laser
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light. The size of the emission site is approximately 1 µm in scale, and the electron

polarization achieved so far is 13 %. The electron emission was studied using methods

similar to those developed to characterize pulsed emission from metallic nanotips,

whose spatial resolution has been shown to be determined by the size of the emitter

and not by the laser focus used. It is shown that through chemical etching, GaAs

shards can be sharpened into sub-micron structures, with the potential to be further

shaped by improved etching techniques or other nanofabrication schemes. Whether the

sharpened tips retain the spin polarization obtained from the shard samples remains

to be seen, but with these refinements, it appears that a femtosecond, nanometer

scale, spin-polarized electron source is now available.

5.1 Description of a degenerate electron source

Obtaining a degenerate beam is a necessary step to realize HBT-type correlations for

free electrons in the beam. The derivation of estimating the degeneracy of a pulsed,

tip electron source, was developed in detail in Refs. [180] and [25], but will be repeated

here for clarification and consistency. The degeneracy, δ, is defined as the number

of electrons within the coherence volume of the source.181,182 The coherence volume,

Vc, is approximated as cylindrical, with a radius defined by the beam’s transverse

coherence length, lt, and cylindrical length as the longitudinal coherence length, lc. The

longitudinal coherence length is related to the coherence time of the electron source,

tc, which is determined from the Heisenberg uncertainty relation between energy and

time as tc ≈ ∆t ≥ h̄/∆E. Electrons traveling with a velocity v will then have a

longitudinal coherence length lc = vtc ≈ vh̄/∆E. The transverse coherence length, lt,

is determined from a momentum selection of detected electrons. This is accomplished

by confining the beam to an acceptance angle of α by means of an aperture of size
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∆x. The Heisenberg uncertainty relation between position and momentum then gives

lt ≈ ∆x ≥ h̄/∆p ≈ h̄/(αp). Substituting the de Broglie wavelength λ = h/p gives the

transverse coherence length as lt ≈ λ/(2πα). The coherence volume of the source is

then

Vc =
(
πlt

2
)
lc ≈

[
π

(
λ

2πα

)2
] [

vh̄

∆E

]
=

λ2vh̄

4πα2∆E
=

h3
√

2E

16π2α2m3/2E∆E
. (5.1)

A pulsed electron source will produce a number of electrons in a cylindrical volume

determined by the source size and the electron pulse duration. The degeneracy of

the electron source is then the product of the coherence volume with the number of

electrons produced per unit volume from the source. The source volume is defined by

the cross-sectional area of the source surface, which has a radius rtip = dtip/2. The

longitudinal length l of the source volume is determined from the electron packet’s

temporal width, ∆tp, as l = v∆tp. The degeneracy is then approximated as

δ ≈ N

πrtip
2v∆tp

Vc =
N

πrtip
2∆tp

Actc, (5.2)

where N is the number of electrons per pulse, and lc = vtc. The current density, j, of

the pulsed electron source is defined as j ≡ Nq/(πrtip
2), where q is the charge of a

single electron. The current density j can be substituted back into Eq. 5.2 to obtain

δ ≈
(
j

q

)
Actc. (5.3)

The degeneracy in the form of Eq. 5.3 was derived in Ref. [ 182] and Ref. [ 181]

considering the brightness of a DC electron source, but it is here interpreted to also

describe a pulsed source. In terms of the experimental parameters that describe our
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apparatus, the degeneracy is estimated as

δ ≈ N

πrtip
2∆tp

λ2vh̄

4πα2∆E
=

Nh3L2

π3md2dtip
2E∆E∆tp

, (5.4)

where the substitutions E = mv2/2, λ2 = h2/(2mE), and the divergence angle

α ≈ d/(2L) were made. An illustration of a coherent source obtained in this fashion

is given in Fig. 5.1(a), and the coherence volume is shown in Fig. 5.1(b).

lc

lt

-V

�
�

L

d
D

a) b)

Figure 5.1: A schematic of a degenerate electron source. In (a), a field emission tip is
biased at a voltage of −V , which determines the central value of the electron energy,
E. The emission diverges from the source with an angle θ, but an aperture located a
distance L from the source with width d constrains the divergence angle to an angle
alpha. Electrons propagate toward a detector with effective width D. In (b), the
transverse (lt) and longitudinal (lc) coherence lengths are illustrated. For an initial
energy of E =30 eV and energy uncertainty of ∆E =0.8 eV as shown in Table 5.1, the
ratio lc/lt ≈ 2/100 .

The degeneracy is calculated using Eq. 5.4 and parameters typical for our apparatus.

The laser pulse duration, ∆tp, of the Ti:Sapph oscillator, is 100 fs. Etched tips have

a typical diameter of dtip = 50 nm. The standard DC voltage applied to tip samples
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Table 5.1: Summary of experimental values used to estimate the source degeneracy,
and the resulting optimum detection rates.

Parameter Description Value

N Electrons/pulse 10
L Source to aperture distance 1 cm
d Aperture diameter 5 µm
dtip Source diameter 50 nm
E Electron energy 30 eV
∆E Electron energy width 0.8 eV
∆tp Pulse temporal width 100 fs
δ Degeneracy ≈ 2.7
θ Source divergence angle 45°
D Beam diameter at aperture 2 cm
Ndet Detected electrons/pulse 10−6

in our experiments ranges between −100 V and −200 V, but a bias of −30 V can be

considered, giving electrons an energy distribution centered at E = 30 eV, with a

measured root mean square (RMS) energy uncertainty of ∆ERMS = 0.8 eV1 for a

source emitting less than one electron per pulse; however, tip sources are capable

of producing an average of N = 10 electrons per pulse.180,183,184 A pinhole having a

diameter of d = 5 µm can be positioned a distance L = 1 cm from the source. This

combination of experimental parameters results in a degeneracy of δ ≈ 1. A fully

quantum mechanical description of the degeneracy, with similar parameters, resulted

in a degeneracy of δ ≈ 0.2, where considerations were made concerning the effects

of Coulomb repulsion between pairs of electrons.24 An estimate of the signal passing

through the selection aperture gives a count rate of Naperture ≈ Nd2/D2 ≈ 10−6

electrons per pulse, or with respect to the oscillator repetition rate, 100 electrons per

second. The experimental values and resulting detection rates are summarized in

Table 5.1.

1 It is noted that there is some disagreement between the reported value of the width of our
electron pulses.
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The electron pulse duration and temporal coherence will now be discussed, because

the degeneracy depends on the duration of the electron pulse, and modeling two-

electron pulses will depend on the temporal coherence. A result published by Krüger

et al. showed interference effects in the kinetic energy spectra of electrons produced by

illuminating a tip with a carrier envelope phase (CEP) controlled laser.22,23 The short

laser pulse duration of ∼6 fs with CEP control could contain one or two oscillations

of the laser field. When there were two field oscillations, the electron energy spectra

showed a spacing consistent with the electron source being gated in time by two

temporal slits. They argued that the measured energy peak spacing of ∆E =1.56 eV

corresponded to a temporal slit spacing ∆t determined by ∆t ≈ h/∆E =2.67 fs,

where h is Planck’s constant. This value of ∆t corresponded well to the oscillation

period of the laser, indicating that the electron temporal coherence must exceed the

laser field oscillation period. A similar electron energy spacing was also observed in

above-threshold photoemission, but was attributed to an excess of energy imparted in

the multiphoton emission process.82 The temporal single slit width was determined

to be ≈450 as. Considering our measured single-electron pulse energy spread of

∆E =0.8 eV, it is intriguing that the estimated temporal coherence of our source

then has a minimum value of ∆t ≥ h̄/(2∆E) = 412 as. These time scales are all

relevant in determining the behavior of two-electron systems as they evolve in time. In

the following, a theoretical formalism will be given for diffraction in time, where the

temporal coherence will play an important role. This formalism will then be applied

to a degenerate electron source to illustrate a HBT-type experiment for free electrons

produced by a completely polarized pulsed electron source.
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5.2 Path integral propagation in time for a Gaussian energy

distribution

In order to describe our quantum degenerate pulsed electron source, it is necessary to

consider the evolution of the source’s temporal distribution, as experiments to measure

correlations between electrons at the source will depend on coincidence measurements

at the detectors in time. Discussion of the time evolution of temporally gated matter

waves is referred to as “diffraction in time,” as first coined by Moshinsky.185 The

original problem considered gating a matter wave by a time-dependent shutter that

could be instantaneously opened, resulting in a temporal analog to diffraction from

a sharp edge. The effect of temporal diffraction from single and double slits was

experimentally realized by Szriftgiser, by temporally gating cold Cs atoms bouncing

on a mirrored surface with a pulsed laser.186 The data were modeled using the path

integral formalism, where the propagator for particles in a gravitational potential was

integrated over the appropriate temporal slit time.187 The reason for why matter waves

will experience diffraction in time is that matter waves have a nonlinear dispersion

relation, as is discussed in Ref. [187] and earlier. The effect of this nonlinear dispersion

relation was shown in Chapter 3.11 in that even spatial diffraction experiments, which

are typically incorrectly described by time-independent equations, can exhibit time-

dependent effects. As our electron source is gated by a laser pulse, the approach

to compute how the resulting electron pulses propagate in time is then considered

in a similar fashion, where the temporal coherence of the electron pulses acts as

the duration of the temporal slits. The effect of temporally gating a matter wave

source results in an unavoidable energy spread that follows the Heisenberg uncertainty

relation for energy and time.188 Therefore, the duration of the temporal slits of our

gated source will be deduced from the typical measured energy uncertainty. In the
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following, both Gaussian and Heaviside slits will be considered.

One of the cornerstones of the discussion of the spatial diffraction of matter waves

is the evolution of a Gaussian wavepacket propagating in space and time. A spatial

wavepacket, having an initially Gaussian momentum distribution, will broaden in

spatial width as time evolves. An analogy can be made for a temporal wavepacket,

with an initially Gaussian energy distribution. That is, a temporal wavepacket, having

an initially Gaussian energy distribution, will broaden in temporal width as time

evolves. Consider a Gaussian probability amplitude, φ(E), centered at an energy E0,

and with an energy width corresponding to our measured RMS energy uncertainty

of ∆E =0.8 eV. The normalized probability amplitude for electrons at the source

position is written

φ(E) =
1√√
πσE

exp

[
−(E − E0)2

2σE2

]
, (5.5)

where σE is the Gaussian width that will result in the RMS energy uncertainty defined

by (∆E)2 = 〈E2〉−〈E〉2. Here, the brackets denote the operator average value defined

by

〈Â〉 =

∞∫
−∞

φ∗Âφ da. (5.6)

With the above definitions, σE =
√

2∆E.

The energy distribution of Eq. 5.5 can be cast into the time domain via a Fourier

transform as

ψ(t) =
1√
2πh̄

∞∫
−∞

φ(E) exp−iEt
h̄

dE =

√
σE
h̄
√
π

exp

(
−t

2σE
2

2h̄2

)
exp

(
−iE0t

h̄

)
.

(5.7)

The result of Eq. 5.7 is a temporal wavepacket, initially traveling “forward” in time,

with an initial temporal spread ∆t = h̄/(2∆E) given by the Heisenberg uncertainty
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relation for energy and time. This temporal wavepacket can be propagated from a

source position point (taken at x = 0) to a detection position point located a distance

x′ = L by the application of the Feynman path integral kernel. With fully coherent

spatial propagation, integration is performed over all source positions to determine the

spatial distribution at a detector for a single propagation time. In analogy, to describe

fully coherent temporal propagation, integration is performed over all source times to

determine the temporal distribution at a detector for a single propagation position.

The resulting probability amplitude at the detector position, L′, as a function of the

detection time, t′, is then

ψ (t′) =

∞∫
−∞

K(x′ = L, t′;x = 0, t)ψ(t) dt =

∞∫
−∞

√
m

2πih̄ (t′ − t)
exp

[
imL2

2h̄ (t′ − t)

]
ψ(t) dt.

(5.8)

The temporal probability distribution, ∝ ψ(t′)∗ψ(t′), has a width that can be estimated

by direct analogy to a Gaussian spatial wave packet spreading in space. The probability

distribution of a spatial wavepacket, having an initial width of σx,t=0, will spread as a

function of time as

σx′,t′ =

√
σx,t=0

4 +
(
h̄t′

m

)2

σx,t=0
2

. (5.9)

The evolution of the temporal width, which is initially σt,x=0, can then be found by

the substitution of σt′ = σx′,t′/v0 and σt = σx,t=0/v0 into Eq. 5.9, where v0 is the

group velocity of the centroid of the temporal wavepacket. Agreement is shown for the

case where L =20 cm, E0 =30 eV, and ∆E =0.8 eV. The temporal wavepacket, which

initially had a width σt =0.58 fs, arrives at the classical time of flight predicted by

tflight =
√

2E0/(mL2) =61.6 ns, with a width σt′ =1.16 ns. Plots of the single-particle

source amplitude and probability distribution are shown with the screen amplitude and

probability distribution in Fig. 5.2. In Fig. 5.2(d), the path integral result (black) is
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plotted with the Gaussian estimate (green) to show agreement with the evolution of the

distribution temporal width σt′ . The Fortran code used to generate the single particle

distributions, and later the two-particle distributions, can be found in Appendix F.1.
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Figure 5.2: Evolution of a temporal wavepacket in free space, with all plots normalized
to the maximum value. (a) Probability amplitude of the source distribution (real
part), as a function of time. This result is obtained by taking the Fourier transform of
a Gaussian energy distribution centered at E0 =30 eV. (b) Probability distribution of
the source, with Gaussian width σt = 0.58 fs. (c) Probability amplitude of the screen
distribution (real part), with inset to show fast oscillations (inset scale is 2 fs). The
propagation length is taken to be L =20 cm. (d) Probability distribution at the screen,
showing the path integral result (black line) and the Gaussian distribution estimate
(green line) obtained taking σt′ =1.16 ns. The path integral result is slightly skewed
when compared to the Gaussian, which is a feature of diffraction in time not seen in
the typical case for spatial Gaussian wavepackets.
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A second approach to obtain the single particle probability distribution is to

consider the time-of-flights resulting from the different kinetic energies present in

the initial energy distribution.110 Taking the initial energy distribution as in Eq. 5.5,

the substitution E → mL2/(2t2) will transform the energy distribution φ(E) into a

time-of-flight distribution, φ(t), where L is the distance between the source point and

the detector point, and t is the time elapsed between the production of an electron at

t = 0 and the detection of that electron. Note that this semiclassical approach produces

a probability distribution that is identical to that obtained from the path integral

formalism, which is fully quantum mechanical. The screen probability distributions

obtained from the path integral formalism (black) and the time-of-flight substitution

(green) are plotted together in Fig. 5.3 to show they are indeed identical. The Matlab

script used to compute and plot the single particle time-of-flight distributions can be

found in Appendix F.3.

2�t'

Figure 5.3: Probability distribution obtained from substituting the classical time of
flight via E → mL2/(2t2) into the energy distribution given by Eq. 5.5 (green line)
plotted with the path integral result shown in Fig. 5.2 (black line).

It is unusual to consider only the temporal evolution of a wave function, so some
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discussion is provided here. A first concern might be toward regarding quantum

states in an energy and time representation. An argument developed by Pauli

asserts that while the Hamiltonian is an appropriately defined operator, a conjugate

operator for time can not be defined.189 Combining descriptions of quantum systems

with classical environments can lead to a definable time operator, as reviewed in

Ref. [ 190]. Nonetheless, energy and time can be treated as conjugate variables

through the standard Fourier transform.191 It might also be concerning that the

time-dependent part of the wavefunction is here considered separately from the spatial

part, especially when temporal effects were already shown to be present in near-field

arrangements in Chapter 3.11. However, in the case when the diffracted matter

wave satisfies far-field conditions, and the distribution time approaches the classical

arrival time, the amplitudes contributing to the purely spatial and purely temporal

effects can be factorized.187 Therefore, considering the evolution of the temporal

part of the wavefunction separately can be justified. As the time-dependent part of

the wavefunction must also be a solution to the Schrödinger equation at all times

and positions, it is then appropriate to propagate that part with the path integral

kernel to compute how that solution evolves. Finally, while the concept of an arrival

time is difficult if not contentious to formally define quantum mechanically,192 the

distributions arising from the path integral method have so far agreed well with

experimental data.186

5.3 Path integral propagation in time for a temporal slit

A second physical system used to describe the evolution of matter waves, specifically, to

demonstrate the Heisenberg uncertainty relationship between position and momentum,

is the single slit. A plane monochromatic matter wave directed toward a spatial slit
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becomes spatially confined by the slit, and as a result the momentum distribution

immediately following the slit obtains a width and structure as predicted by the

Fourier transform of the spatial distribution. It should be noted, that while this is the

typical example used to demonstrate the effects of the uncertainty principle and the

relationship between the widths of distributions related by Fourier transformation, the

RMS width used in the Gaussian case cannot be used for single slit distributions.147,193

This is because the signature sinc p2 momentum distribution does not have a meaningful

RMS width ∆p as defined in Sec. 5.2. The momentum distribution width that is

frequently used in discussions is the half width of the central interference maximum.

The following will show the analogous case of an initially plane monoenergetic matter

wave confined by a temporal slit. The energy distribution immediately following the

temporal slit obtains a width and structure predicted by the Fourier transform of the

temporal distribution. As this energy distribution can not be measured directly, the

half width of the central interference maximum is not as useful to the discussion as

the measured RMS energy width of 0.8 eV. This width will be used in the following

to develop the temporal evolution of a temporal slit.

The normalized wavefunction for a slit in time at the source point is written,

ψ(t) =
1√
∆t

Ξ(t) exp

(
−iE0t

h̄

)
, (5.10)

where E0 is the initial energy of the particle being described, and Ξ(t) is a square

aperture function with width ∆t188,194 which truncates the value of ψ(t) to 0 for all

times outside of the temporal slit width. The aperture function could be thought to

describe the action of a shutter that can open and close instantaneously to define a

square pulse from a continuous beam. While the Heisenberg limit sets the lower bound

for the temporal widths of the Gaussian distribution shown before, here, the energy
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distribution arising from the Fourier transform of Eq. 5.10 will set the minimum slit

width. The normalized probability amplitude as a function of energy is obtained by

an inverse Fourier transform as

ϕ(E) =
1√
2πh̄

∞∫
−∞

ψ(t) exp

(
iEt

h̄

)
dt

=
2 sin (E−E0)∆t

2h̄√
2πh̄∆t(E − E0)/h̄

,

(5.11)

which gives the probability distribution, |ϕ(E)|2, of

| ϕ(E) |2=
4 sin2 (E−E0)∆t

2h̄

2πh̄∆t ((E − E0)/h̄)2 . (5.12)

Choosing a temporal slit width of ∆t =1.95 fs for the distribution defined by Eq. 5.12

results in a probability distribution in energy that has a width of ∆E =0.8 eV. An

observation of an energy distribution with this width would then be in principle indistin-

guishable from the Gaussian distribution. The normalized energy distribution resulting

from a temporal slit of width ∆tslit =1.95 fs (red), having initial energy E0 =30 eV,

is plotted along with a Gaussian energy distribution with a width ∆EG =0.8 eV in

Fig. 5.4(a), with the initial Gaussian (black) and slit (red) temporal distributions

normalized to the Gaussian plotted in the inset. The Fortran code used to compute

the single- and two-particle amplitudes and probability distributions can be found in

Appendix F.2.
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Figure 5.4: Probability distributions for diffraction in time from a single temporal slit.
(a) Shown is the normalized energy distribution, |ϕ(E)|2, for a temporal slit with width
∆t =1.95 fs (red curve), and a Gaussian having a RMS energy width ∆E =0.8 eV.
The width of the temporal slit, ∆tslit, plotted in the inset, is chosen so that the energy
distribution, |ϕ(E)|2, will have the same FWHM as the Gaussian distribution. (b)
Arrival time distributions, normalized to the maximum amplitude, for a temporal slits
of width ∆t =1.95 fs (red and green), for a propagation length of L =20 cm and initial
energy E0 =30 eV. The red curve was obtained by the arrival time substitution, while
the green curve was obtained from a path integral simulation. The first maximum can
be seen approximately 3.4 ns after the main arrival peak. These values are within the
temporal resolution of our electron time of flight apparatus.

Following the path integral method as in the previous section, the single-particle

probability amplitude ψ(t′) after propagation to the detector a distance L away is

ψ (t′) =

∞∫
−∞

K(x′ = L, t′;x = 0, t)ψ(t) dt

=

∆t/2∫
−∆t/2

√
m

2πih̄ (t′ − t)
exp

[
imL2

2h̄ (t′ − t)

]
exp

(
−iE0t

h̄

)
dt.

(5.13)
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The probability distribution in time, ψ(t′)∗ψ(t′), is computed and plotted in Fig. 5.4(b)

for the slit width of 1.95 fs (green) for a slit distance of L =20 cm. The result obtained

from making the time-of-flight substitution E → mL2/(2t2) into Eq. 5.12 is plotted in

red. Again, the time-of-flight substitution for the single particle distribution agrees well

with the path integral calculation. A notable feature is that the central maximum at

61.57 ns is separated by 3.4 ns from the later-arriving first-order peak. This signature

would be easily distinguishable in the current electron time-of-flight apparatus, and

could be used to test pulsed sources for an emission mechanism that results from

temporal gating by the exciting laser pulses.

One concern regarding the peaked structure of the distribution shown in Fig. 5.4(b)

is that this structure could be the result of above-threshold photoemission.82 In above-

threshold photoemission, the total energy of emitted electrons for a material that

requires n photons in a conventional multiphoton process, with the absorption of m

additional photons, is

Etotal = (n+m)h̄ω − φ, (5.14)

where n and m are integers, h̄ω is the laser pulse energy, and φ is the source material

work function.195 For sufficiently high intensities, it has been observed that strong-field

effects shift the dominant emission process to a higher order, so the energy spectrum

of this situation will exhibit a prominent peak positioned in a train of equally spaced

satellite peaks. A simplified plot of this kind of energy spectrum is plotted in Fig. 5.5(a)

along with a single-slit energy distribution.
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Figure 5.5: Temporal diffraction from a single slit is compared to a hypothetical
distribution spacing generated by a multiphoton process. In (a), the initial energy
distribution obtained from diffraction from a ∆t =1.95 fs temporal slit (black) is
plotted with a series of Gaussian 0.8 eV-wide energy distributions shifted by multiples
of 1.56 eV (red, orange, green, blue, and purple). Such a distribution could result
from above-threshold photoemission at a source. In (b), ψ(t) (black) is plotted with
the time-of-flight distributions of the shifted Gaussian distributions. The separation
from the zeroth-order maximum to the first-order is 3.4 ns, which overlaps with the
−2h̄ω Gaussian (red), but not with the −h̄ω Gaussian (orange). In (c), the same
distributions with 0.8 eV width are shown for a central energy of 60 eV. In (d), ψ(t)
is plotted with the Gaussian time-of-flight distributions. The spacing between the
central zeroth-order maximum and the first-order maximum has decreased to 1.1 ns.
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The black curve, centered at 30 eV, is the distribution obtained from a ∆t =1.95 fs

duration temporal slit given by Eq. 5.12. Overlapping this distribution is a series

of 0.8 eV-wide Gaussian distributions (red, orange, blue, and purple), spaced evenly

about the central distribution (green curve) by multiples of 1.56 eV, which is the

energy characteristic of our laser oscillator. What is immediately apparent is that

the spacing of the Gaussian peaks does not match the spacing of the temporal slit

energy distribution. A longer temporal slit duration (for example, ∆t =3.78 fs) could

decrease the energy peak spacing to match the 1.56 eV separation, but that would also

create a clear distinction of the energy width from the 0.8 eV Gaussian distribution.

Since the peak spacing of the single-slit energy distribution is distinguishable from the

constant peak spacing of the multiphoton distribution, the temporal spacing of the

resulting arrival time distribution will be distinguishable from the spacing predicted

by the above-threshold photoemission model. One last feature to distinguish the two

models is that the lowest photon order in above-threshold photoemission tends to be

the dominant order, with a shift to the next highest order as intensity increases.82

This shift is similar to a mechanism seen in above-threshold ionization of atoms. In

above-threshold ionization, this spectral shift has been referred to as peak suppression,

threshold shifting, or the onset of channel closing.196,197 This would mean that for our

electron source, the number of peaks in the energy spectrum of a multiphoton process

preceding the dominant process should depend on the laser intensity. In terms of the

temporal spectrum, the number of peaks arriving in time after the dominant process

should increase and the arrival time of the dominant process will shift to an earlier

peak position with increasing laser intensity. The temporal slit distribution should

have no such intensity dependence. These two differences, observed in changing the

source voltage and laser intensity, allow for distinguishable results between the two

mechanisms.



122

5.4 Path integral propagation for two particles

With the methods of computing single-particle amplitudes and probability distributions

established, it is now straightforward to extend the results for a pair of identical

particles. Following the discussion Ref. [182], in particular pp. 75–79, a degenerate

pulsed electron source is directed toward a pair of detectors, as illustrated in Fig. 5.6(a).
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Figure 5.6: Simplified schematic describing two-particle interference. (a) Basic ex-
perimental set-up and components. A pulsed laser (red) focused onto a tip source
produces electron pulses with an initial time separation of δt. As δt must be within the
coherence time of the source, it is greatly exaggerated here in order to distinguish the
two pulses schematically The electron pulses travel a distance L over the propagation
time t′ toward a split detector (green rectangles). The yield of electron pulses reaching
the detectors separated by an arrival time delay τ is determined by the two-particle
probability distribution. (b) Illustration of elements used to compute the two-particle
probability distribution as a function of the detector delay. Two identical source
distributions (S1 and S2) separated by an initial time delay of δt are propagated a
distance L and time t′ toward a pair of detectors (D1 and D2) with correlated outputs.
The paths from the source distributions to the detectors, for example, s11 and s12, are
labeled to indicate that those paths originated at source 1 and terminated at detector
1 and 2, respectively.
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Here, instead of considering spatially separated amplitudes propagating toward

spatially separated detectors, we will consider temporally separated amplitudes propa-

gating in space and time toward temporally delayed detectors, as shown in Fig. 5.6(b).

Identical particles originate at S1 and S2, where S2 is delayed in time after S1 by a

time δt. In a fully coherent description, δt must be shorter than the coherence time

of the source distributions. The source distributions are propagated a distance L

toward a pair of detectors, D1 and D2, located equidistant from the source point,

but delayed in time by τ . There are 4 propagation paths connecting the two source

points to the two detection points. These paths are labeled sjk, where j indicates the

source distribution and k the detection point. Each of the 4 paths is associated with

a single-particle probability amplitude. The 4 individual amplitudes are computed by

the path integral formalism as

ψ1 (D1) =

∞∫
−∞

K(x′ = L, t′;x = 0, t)ψ(t) dt, (5.15)

ψ2 (D2) =

∞∫
−∞

K(x′ = L, t′ − τ ;x = 0, t)ψ(t− δt) dt, (5.16)

ψ1 (D2) =

∞∫
−∞

K(x′ = L, t′ − τ ;x = 0, t)ψ(t) dt, (5.17)

andψ2 (D1) =

∞∫
−∞

K(x′ = L, t′;x = 0, t)ψ(t− δt) dt, (5.18)

where ψ(t) is a source temporal probability amplitude, which in our specific examples

is given by by Eqs. 5.7 or 5.10. The two-particle coincidence amplitude for identical

electrons, Ψ(1,2), is

Ψ(1,2) =
1√
2

[ψ1 (D1)ψ2 (D2)− ψ1 (D2)ψ2 (D1)] . (5.19)
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Eq. 5.19 presumes 100 % spin polarization and total coherence. The effects of in-

complete or no polarization have been shown previously, and forthcoming work will

demonstrate the effects of partial coherence.

The two particle probability distribution, P (1, 2), is computed as a time-average

of the probability density, Ψ∗(1,2)Ψ(1,2), at the detector, written as

P(1,2)(τ) =

∞∫
−∞

Ψ(1, 2)(t′, τ)∗Ψ(1, 2)(t′, τ) dt′. (5.20)

The case when the source distribution ψ(t) is a Gaussian temporal wavepacket is

shown in Fig. 5.7.
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Figure 5.7: (a) Probability amplitudes of the source distributions (real part), as a
function of the source time t. As before, these distributions are obtained from the
Fourier transform of a Gaussian energy distribution centered at E0 =30 eV with a
width determined by ∆E =0.8 eV. The source distributions are delayed by a time
δt = ∆t/2, where ∆t = h̄/(2∆E) is the coherence time given by the Heisenberg
uncertainty relation. For the parameters chose, δt has a value of 0.21 fs. (b) Joint
probability distribution at the detection point, located L =20 cm from the source
point. The distribution determined from the semiclassical time of flight (black line)
agrees with the path integral calculation (green line). The resulting peaks for this
configuration have a delay separation of 3.28 ns, which can be achievable by both
channel plates or channel electron multipliers.

In Fig. 5.7(a), the real part of the source probability amplitudes are plotted as a

function of time, indicating the 0.21 fs time delay between them. Fig. 5.7(b) shows

the two-particle probability distribution, P(1,2)(τ), resulting from both a path integral

calculation (green) and the semiclassical time-of-flight substitution into the Gaussian

energy distribution. For a propagation distance of L = 20 cm, both calculations predict

a peak separation of 3.28 ns.

The case when the source distributions are temporal single-slits is plotted in

Fig. 5.8.
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2.6 ns

Figure 5.8: Joint probability distributions are shown for diffraction in time from two
temporal slit distributions, using the path integral method (black) and semiclassical
time-of-flight (red), as a function of detector delay (τ). The temporal slits considered
have a width of ∆t =1.95 fs. Both methods are plotted for comparison as they do
not agree as well as for Gaussian source distributions plotted in Fig. 5.7(b); however,
they give roughly the same predictions for the distribution peak separation. For a slit
width of 1.95 fs, the separation of the dominant peaks is 2.6 ns. The peak separation
appears to scale with the ratio of the slit widths, meaning that a shorter temporal slit
will give a broader peak separation. These values are within the temporal resolution
of our electron time of flight apparatus.

Here, the slit separation is half of the slit width, or 0.975 fs. The path integral

calculation (black connected dots) is compared to the semiclassical time-of-flight

substitution into the energy distribution (red). The two methods give similar results,

with some distinguishing features. In particular, the path integral method results in
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interference minima where the semiclassical method results in maxima. This may be

a consequence of how phase appears in both methods. In the path integral method,

the amplitude is complex, and the phase evolves with the path integral propagator.

For the time-of-flight substitution, the amplitude is exclusively real, with no clear

phase evolution. Both methods demonstrate a peak separation that scales with the

initial temporal slit width, and interference structure. In an experiment, the presence

of such structure would indicate that the electron source behaved as if electrons were

emitted from a temporal slit, and the main peak separation would give the temporal

slit duration for that process, thus providing a direct measurement of the temporal

coherence of the source. The code used to generate the graphs in Fig. 5.7 and Fig. 5.8

can be found in Appendix F.1, Appendix F.2, and Appendix F.3.

5.5 Experimental progress toward a degenerate source

Development of the elements necessary to realize a degenerate electron source, as

discussed in Sec. 5.1 is described below. As shown in Fig. 5.1, an aperture needs to

be positioned after the tip in order to define the transverse coherence length of the

source. Hardware to mount an aperture, as well as the method to position and align

it with respect to the tip apex, is shown in Fig. 5.9.
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~2 mm pinhole

Inspection scope

3-axis stage

Indicator

Mounted sample

Tip apex

Aperture

Figure 5.9: Apparatus for mounting an aperture behind a tip source. In (a), the
full aperture alignment apparatus is shown. A tip sample is mounted, and held in
place vertically by the mount base (Duratron, burnt orange) and the aperture side
extension piece (aluminum). A 3-axis stage is used to position the aperture (2 mm,
brass ) mount above the tip. The vertical position of the aperture is monitored by an
electronic indicator, and the position of the aperture is determined by observation
in the inspection scope above. In (b), a top-view is shown of how the aperture is
positioned. The tip apex is barely visible, but highlighted by the blue arrow. The
tip-to-aperture separation is set by first focusing on the tip apex and then adjusting
the 3-axis stage so the back side of the aperture is also focus, off to the side of the
tip apex. The aperture is translated by the desired distance added to the aperture
material thickness. Then, the aperture can be gradually brought back down over the
tip apex by adjusting the x− and y−axis micrometers until the apex is imaged in the
center of the aperture hole. The vertical position is then readjusted to the desired
distance. In (c), a successfully mounted sample is shown. In (d), the full mount is
pictured from the detector side in the field emission tip experimental chamber with
the tip positioned in the laser focus.

The mounting procedure requires an optical bread board and an inspection micro-
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scope with a reasonably bright light source. A tip sample is mounted and held in place

vertically by the feedthrough base (Duratron, burnt orange) and the aperture side

extension piece (aluminum). A 3-axis stage is used to position the aperture (2 mm,

brass ) mount above the tip. The vertical position of the aperture is monitored by an

electronic indicator, and the position of the aperture is determined by observation

in the inspection scope above. In (b), a top-view is shown of how the aperture is

positioned. The tip apex is barely visible, but highlighted by the blue arrow. The

separation between the tip apex and the aperture back surface is set by first focusing

on the tip apex, and then adjusting the 3-axis stage so the back side of the aperture

is also in focus off to the side of the tip apex. The aperture is translated in the

z-direction by the desired distance added to the aperture material thickness. Then,

the aperture can be gradually brought back down over the tip apex, adjusting the

x− and y−axis micrometers until the apex is imaged in the center of the aperture.

The vertical position is then readjusted to the desired distance. In (c), a successfully

mounted sample is shown. In (d), the full mount is pictured from the detector side

in the field emission tip experimental chamber, with the tip positioned in the laser

focus. This method could be used to mount a smaller aperture, the only concern being

that a higher magnifying power would be needed if the aperture chosen is 5 µm. The

aluminum rail can be modified to mount and align electron optic elements as well,

such as a quadrupole lens.

The second element developed was a detector scheme to measure two-particle

correlations. The assembled detector is shown in Fig. 5.10.
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Figure 5.10: Shown is a first attempt at making a two-particle coincidence detector. In
(a), the front facing view of the detector assembly is shown. The detector is comprised
of two Dr. Sjuts KBL 510 channel electron multipliers (channeltrons), which have
rectangular openings of 5 mm×10 mm. The channeltrons are fixed to a Duratron
mount, which provides 4.4 mm of separation as a precaution against arcing, which
could occur between the sharp edges of the collection plate assemblies, which are held
near 2 kV, located at the rear of the detectors. In (b), a top view of the detector
assembly is provided to show further detail of its construction.

Part of this work involved the design of the mounts and electronic components,

as well as fabrication of the feedthroughs for mounting the dual Dr. Sjuts KBL 510

channel electron multipliers. The elements of the detector were assembled by graduate

student Sam Keramati.

The third element developed for studying electron degeneracy was a fast, spin-

polarized electron source in close collaboration with the Gay research group, with

significant overlap with former graduate student Evan Brunkow. In the next section,

the source will be described, and a potential outlook will be proposed.
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5.6 Femtosecond-Laser-Induced Spin-Polarized Electron Emis-

sion from a GaAs Tip

In the following section, a fast, localized, spin-polarized source of electrons is described.

The source was obtained from a sharp p-GaAs bulk [110] crystal shard illuminated

with femtosecond laser light. The size of the emission site is approximately 1 µm

in scale, which give it characteristics similar to metallic nanotips.4–6,198 The best

polarization achieved so far from this source was 13 %. The electron emission was

studied using methods similar to those developed to characterize pulsed emission from

metallic nanotips. This source is referred to as “fast,” meaning that the temporal

response of the emission process is comparable to that of the light pulse duration.

Standard CW polarized electron sources use a planar GaAs photocathode that

must be layered with, e.g., Cs and O2 to lower the vacuum potential below that of

the conduction band. This creates a “negative electron affinity” (NEA) condition that

allows electron emission by absorption of a single photon from a CW laser.



132

E

V

p-GaAs Vacuum

CB

VB

�

ϕ

p-GaAs Vacuum

CB

VB

Cs, O2

�

E

e-

Cs

O2 e-

σ
+3 1

(-3/2) (-1/2) (+1/2) (+3/2)

(+1/2)(-1/2)
CB

VB

�

a) b)

c)
2s1/2

2p3/2

ħω

Figure 5.11: GaAs energy levels for (a) NEA bulk surfaces and (b) a non-NEA shard
apex. The diagrams indicate bending of both the valence band (VB) and conduction
band (CB) at the surface due to heavy p-doping. (a) The vacuum energy (dashed black
line), is lowered (solid black line) due to the deposition of alternating layers of Cs and
O2 (top inset). Electron emission from the NEA surface proceeds by the absorption of
a single photon with energy that exceeds the band gap ∆ of the bulk. (b) Multiphoton
emission from an uncoated (non-NEA) GaAs shard apex (see text). (c) Allowed
transitions at the GaAs Γ-point for absorption of right-hand circularly-polarized
light by Zeeman (mj) sublevels. Selection rules (∆mj = +1) and the relative line
strengths (indicated in circles) yield a nascent conduction-band electron polarization
of (3− 1)/(3 + 1) = 50% for valence-conduction band resonant transitions.75

When circularly-polarized light with an energy near the bandgap ∆ of GaAs is

used to excite electrons, there is an imbalance in excitation probabilities of the two

excited 2s1/2 Zeeman substates (Fig. 5.11(c)),75 causing the emitted electrons to be

spin-polarized. Such sources are used in a variety of fields, including atomic and

molecular,77 high-energy,199 and condensed matter physics.200

Alternative planar photocathodes with and without NEA have been developed

to optimize the spin-polarization of the emitted electrons, to provide short pulse

operation, and to enhance source brightness. NEA strained and unstrained thin
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photocathodes have produced 2.5 ps electron pulses.201 There, the electron pulse

duration is limited by the slow emission process of diffusion through the material. A

strained, back-illuminated GaAs-GaAsP superlattice with NEA activation resulted in

a 16 ps pulse duration with high brightness177–179, and was used in a spin-polarized

transmission electron microscope. The source was determined to have a degeneracy

2 orders of magnitude lower than the cathode tip used to first study free electron

degeneracy,70 with a source size that was limited by the diffraction limit of the laser

focus. A planar GaAs photocathode with a Ag overlayer a few nm thick has functioned

as a polarized electron source without NEA activation by utilizing a multiphoton

electron emission process.81 Electron yields were increased by employing local field

enhancement through plasmonic coupling on the surface of a p-doped GaAs wafer,

while the spin-polarization of emitted electrons was largely maintained. Pulsed ∼100 fs

laser light produced a spin-polarization as high as 21 %, with a value of ∼15 % for

illumination at a central wavelength of 800 nm.

Tips of magnetized iron and cobalt-coated tungsten have been used to produce spin-

polarized electrons, although these sources have used only CW lasers to date.202,203

Such magnetized sources have a further limitation in that their spin polarization is not

optically reversible, unlike that of of GaAs photocathodes. An array of etched GaAs

tips, illuminated with CW laser light for both positive electron affinity (PEA) and

NEA surface conditions resulted in a maximum polarization of 37 %, but the electrons

were not pulsed.32 Implementation of a tip geometry results in field enhancement at

the tip apex, which increases the yield of emitted electrons. While a more robust

activation surface of layered Cs and Te has been demonstrated,204 a tip geometry,

particularly in combination with a multiphoton emission process, eliminates the need

for NEA activation that is generally extremely sensitive to vacuum conditions.205

The work reported here focuses on obtaining fast, spin-polarized electrons from a
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sharp p-GaAs bulk [110] crystal shard, which naturally incorporates optical reversibility.

To do this, Ti:Sapph pulsed lasers with wavelengths centered around 800 nm, the

appropriate wavelength for single-photon excitation across the band gap, were used to

induce multiphoton emission without requiring that the samples have NEA. Fig. 5.11(b)

illustrates this. The vacuum potential (dashed black line) is modified at the surface

by the application of a negative DC bias voltage V and the local laser field (solid

black line). A single photon with energy just exceeding the bandgap ∆ can promote

an electron from the valence band to the conduction band. Absorption of a second

photon can in principle result in emission via tunneling through the vacuum potential

(blue arrow). Absorption of one or more additional photons provides sufficient energy

for the electron to exceed the additional ionization energy φ and escape into the

vacuum (red arrow). The 800 nm central wavelength of our lasers accesses the relative

excitation probabilities for circularly-polarized light that make standard NEA GaAs

sources produce polarized electrons (Fig. 5.11(c)).

5.6.1 Experiment

The vacuum system, with a nominal base pressure of 10−7 Torr, comprised two sections.

A sample chamber contained an off-axis front-surface Au parabolic mirror to change

the direction and focusing of the laser to a 20 µm-FWHM spot size. The GaAs shard

was mounted on a 3-axis stage to position it in the laser focus. A channel electron

multiplier (CEM) near the sample monitored the electron emission current. We also

measured the total emission current from the electrically-isolated sample. Emitted

electrons were directed to a compact, cylindrical Mott polarimeter,206
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Figure 5.12: The experimental setup for polarimetry and dichroism measurements.
The pulsed laser beam (1) enters the chamber and hits the off-axis parabolic mirror
(2) which focuses the laser onto the sample (3). Note that the beam is propagating
out of the plane at (2), indicated by the red circle. The sample is mounted on an
XYZ translator (4) that allows the sample tip to be positioned in the laser focus. A
CEM (5) can be used to monitor electron emission. Transport optics (6) guide emitted
electrons (7) toward the Mott polarimeter (8) in the adjoining chamber with top (T)
and bottom (B) CEM detectors.

comprising two concentric cylindrical electrodes and two CEMs placed symmet-

rically about the entrance that defined the electron scattering plane. The central

gold-plated electrode was biased at +20 kV, whereas the outer electrode and the

mouths of the CEMs were biased at +500 V.

To measure the electron polarization, Pe, the count rates measured by the top and

bottom CEMs (CT and CB) were monitored for electrons produced by light pulses

that were right-hand circularly-polarized, and then compared with the rates when the

light helicity was flipped. The electron polarization, Pe, is given as Pe = Seff/A, where

A =
χ− 1

χ+ 1
and χ =

√
CTC ′B
C ′TCB

. (5.21)

Here, Seff , the “effective Sherman function,” is the polarimeter’s analyzing power,

and the primes indicate the CEM rates for left-handed incident laser light. The

advantage of measuring Pe this way is that it eliminates first-order instrumental
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asymmetries.77 Measurements of the electron polarization were performed entirely in

the Gay laboratory.

Measurements of the linear and circular emission dichroism were also made in the

Gay laboratory to better understand the emission process . The dichroism, calculated

using total emission as measured by the CEM proximate to the sample, is

D ≡ R1 −R2

R1 +R2

; (5.22)

R1,2 is the rate of emission for orthogonal polarizations.

Electron emission from the samples was optimized at the edge of the crystal

shard. Sharp tip-like shards were made by shattering crystalline wafers and using an

optical microscope to determine the “sharpest” pieces.207 When using these, total

emission currents between 50 pA and 3 nA were obtained with an average laser power

of ∼100 mW, an 80 MHz pulse repetition rate, and a DC sample bias of −100 V.

A second, similar apparatus was used to study emission rates as a function of the

shard apex morphology, to measure the dependence of emission rate on laser intensity,

and to assess the temporal width of the emission process.33 The entire apparatus is

described in Ch. 2, Sec. 2.2, in Figs. 2.2 through 2.5, and Fig. 2.8. Pulses from a

Ti:Sapph oscillator (Spectra Physics Tsunami) were focused to a FWHM of 4.5 µm.

The laser pulse intensity FWHM, τlaser, was measured to be 100 fs. The laser power

delivered to the shard apex was controlled by a Brewster window variable attenuator.

Pulsed electron emission was detected by a microchannel plate (MCP) placed close

to the shard apex, or by an electrometer connected directly to the sample. Prior to

entering the chamber, the primary beam was split into pump and probe components

in a balanced Mach-Zehnder interferometer. The delay τ between pump and probe

pulses could be adjusted for values between ±4 ps.
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When two temporally-separated light pulses hit the sample, the integrated electron

emission can be categorized as either “additive” or “super-additive.” Additive emission

means that the integrated signal is the same as the sum of the emission from each

pulse individually. Super-additivity occurs when the emission is greater than the sum

of that due to the individual beams. Additive emission for τ > τ0 shows that the

emission process does not exceed τ0; if τ0 ≈ τlaser, the emission process is “fast” as

defined in the Introduction. Superadditivity for τ � τlaser implies the process is slow,

e.g., due to thermally assisted processes.4,5,19,33

20 �m
(ii)

(i)

a)

n = 5.14(16)

b)

Figure 5.13: Emission data from a GaAs shard “tip.” In (a), R is plotted vs. τ
(blue circles). The red line is the theoretical curve obtained with an electric field
width of 160 fs and an I5 intensity dependence. The bifurcation of the R(τ) curve for
τ < 400 fs is due to the flipping of the sign in Eq. 5.24 of Eprobe, and corresponds to
the envelope function for the rapidly oscillating autocorrelation interference pattern in
this region. The power dependence of emission is plotted in the inset. (b) A scanning
electron microscope (SEM) micrograph of the apex area with an expanded square
section 20 µm on a side. The laser focal spot size from the Pe measurements (dashed
green circle, (i)) is shown to the scale of the top micrograph and compared to the focal
spot size (solid green circle, (ii)) used for the measurements shown in (a). The tip
and shank positions used for measurements of Pe and D are indicated by the 20 µm
dashed green circles (bottom and top, respectively). Localized emission from the
shard’s sharpest features (inset) indicates that multiple sites may have been emitting
in the Pe and D measurements.
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5.6.2 Results

We first consider the electron pulse emission process. Electron emission from nanotips,

if measured to be both nonlinear and additive for τ > τlaser, has been shown to be

fast.4,5,198 Our electron emission current shows non-linearity as a function of intensity.

It fits with a power law of n = 5.14(16) (Fig. 5.13(a) inset; blue line). The Keldysh

parameter for a solid, γ, characterizes the emission. For γ � 1, field emission is

dominated by multiphoton processes.23,208 Given our focal spot sizes of 20 µm and

4.5 µm, and an average power that never exceeded 150 mW, our Keldysh parameter

readily satisfied this condition in all our experiments and supports our simple multi-

photon model. The fifth order non-linearity indicates a five-photon process. (This

result is in excess of the three-photon process illustrated in Fig. 5.11(b)). Generally

speaking, the order of the multiphoton process in a given sample can vary with the

details of the emitting surface, its local surface electric field, and the nature of surface

states near the emission point. For a full discussion, see, e.g., Section 3.1 of Ref. [209].

Pump-probe measurements as described above were used to determine if the

emission was additive.5,33 In Ch. 2, the additive ratio was defined in Eq. 2.1 such that

an additive ratio of R(τ) ≈ 1 indicated fully independent electron emission from the

pump and probe pulses. Instead, the additive ratio is defined here such that R(τ) ≈ 0

indicates fully independent electron emission from the pump and probe pulses. This

choice was made for consistency on collaborative work between the Batelaan and Gay

research groups. The additive ratio is then defined here as

R(τ) ≡ Rboth(τ)− (Rpump(τ) +Rprobe(τ))

Rpump(τ) +Rprobe(τ)
, (5.23)

where Rpump(τ) and Rprobe(τ) are the emission rates from the pump and probe beams
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separately at each delay, and the rate Rboth(τ) was modeled as

Rboth(τ) =

∞∫
−∞

[Epump(t)± Eprobe(t+ τ)]2n dt. (5.24)

The individual pump and probe field amplitudes were modeled as Gaussians with

E(t) = E0 exp[−(t/τpulse)
2]. The best fit to the data (red line in Fig. 5.13(a)) is

obtained for τpulse = 160 fs (n = 5). The electron emission process is additive

(R(τ) = 0 for τ > 400 fs) and is thus shown to be faster than this value. Note that

this is not a direct measurement of the electron pulse duration. Nevertheless, fast

emission processes have so far indicated short electron pulses.23 For emission rates

with an average of less than one electron per pulse, this is not surprising, given that

space charge effects are essentially absent.

We now turn our attention to electron polarization. Measurements of Pe were

taken with a 20 µm-diameter focal spot for two focal positions on the three samples we

studied. In the first “tip” position, the focal spot was centered on the shard apex. In

the second “shank” position, the focus center was moved about 15 µm away from the

tip towards the bulk. The results of all measurements of Pe and emission dichroism,

taken with the 20 µm focus, are given in Table 5.2.

In the “tip” position, with circularly-polarized laser illumination, Pe was 13 % for

samples 1 and 2, and 10 % for sample 3. Note that these results are comparable to

those of Ref. [81]. Variations in the local structure or p-doping could be responsible

for the differences in Pe.
209 Each Pe value is the result of between 4 and 87 runs,

typically taken over several hours. Individual runs yielded uncertainties that we based

on counting statistics alone. Occasionally, these error bars were increased to account

for small temporal drifts. The values quoted in Table 5.2 are the uncertainty-weighted

averages of these individual run values. As expected, when the laser was linearly-
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Table 5.2: Polarization and dichroism results for circularly- and linearly-polarized
light incident on either the apex (“tip”) or the bulk (“shank”) of three different shard
samples.

Target Light Pe(%) D(%)
Polarization

#1 Tip Circular 13.1(9)
#2 Tip Circular 13.3(7) 4.7(6)

Linear 0.1(5) 41.3(1.0)
#3 Tip Circular 10.4(2) 1.8(2)

Linear 2.6(2.5) 18.5(6)
#1 Shank Circular 1.7(8.0) 6.4(1.4)

Linear 1.0(2.1) 23.7(5)
#2 Shank Circular 3.4(1.6)

Linear 5.2(1.0)

polarized, the values of Pe were consistent with zero. One exception, which we have

yet to understand, was observed with sample 2 in the shank position. We note only

that this value of Pe is less than half that of the polarization measured at the tip with

circularly-polarized light.

Finally, we consider the sample morphology. The electron emission rate was found

to depend sensitively on the position of the laser focus at the sample. Fig. 5.13(b)

shows a plot of the emission rate measured in a 20 µm square area of a shard apex.

The two laser focal spot sizes used in this work are shown relative to the size of the

20 µm scale bar in the top micrograph. The brightest emission feature was used for

the measurements plotted in Fig. 5.13(a).

Non-zero linear emission dichroism (Eq. 5.22) was observed for the GaAs shards

similar to a field emission tip (FET). That is, emission is higher when the light’s

linear polarization is parallel to the axis of the tip.4,5 In contrast, emission dichroism

is absent for standard planar GaAs sources.75,77 Dichroism measurements were taken

at both focal positions as well. At the tip of the GaAs, the circular dichroism is

small (<5 %) and the linear dichroism for tips 1 and 2 are 41 % and 19 %, respectively.
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Linear dichroism measured for tip 1 drops to 24 % at the shank, possibly because

there is less of a tip-like structure with which the light interacts. The full polarization

dependence of an older sample is shown in Fig. 5.14.

Figure 5.14: Shown is the polarization dependence of electron emission from a p-GaAs
shard sample, taken for two positions in the laser focus at 60 mW. The emission rate
from the apex of the shard (Tip, red triangles) was fit by a sum of two I3 processes
in the form Rate = A cos6 (2θ) +B cos6 (2θ + 90◦), where θ is the recorded half wave
plate angle with an offset determined by the fit. Emission from the apex is dominated
by the process due to laser polarization in-line with the shard, similar to a sharp tip.
The linear dichroism, determined from the fit parameters, was approximately 85 %.
The emission rate several microns behind the apex (Shank, blue squares) was fit by
a similar function, except that the contributions from orthogonal polarizations were
nearly equal. The linear dichroism at this sample position was approximately 6.3 %.

Electron emission was measured at both the tip and shank locations, and the

data were then fit with with a cos θ2n-model, where θ is the recorded angle of the

HWP as in Chapter 2.3. The data are best fit by two separate processes that differ

in phase by 90°. Such behavior is indicative of emission from separate surfaces, or

possibly crystal facets, present near the GaAs tip. The linear dichroism at the tip

position was determined to be 85 %, while at the shank it was 6.3 %. Thus our shard
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“tips” therefore have emission characteristics similar to those of FETs4–6,198 in terms

of nonlinearity, additivity, polarization and local morphology although it is apparent

from Fig. 5.13(b) that the overall shard morphology is complex.

In summary, we have demonstrated a source that is able to produce fast pulses

of polarized electrons from a micrometer-size area. This can, in principle, enable the

imaging of a small electron spot on a target to measure spin-dependent effects with

fs-scale resolution. The reduced vacuum requirements of this source when compared

with NEA GaAs sources make it easier and less costly to operate. Although the

observed electron polarization is modest, our results demonstrate that this source

follows the selection rules illustrated in Fig. 5.11(c). Polarization might be increased

by having a sharper, more well-defined GaAs tip, or varying the laser wavelength.

The parameter space is large and open to future study. Through the use of chemical

etching and ion milling, it is possible to shape the tip. An optical parametric amplifier

can be used to explore the wavelength-dependence of polarization. Investigation of

the effects these parameters have on the total yield and polarization of the emitted

electrons is needed.

5.6.3 Subadditive electron emission from a GaAs shard

An unexpected feature was observed for electron emission induced from samples in

the 20 µm focus and from shank emission with the 5 µm focus. Instead of the emission

being strictly superadditive for when the pump and probe pulses overlapped in time,

and then additive when the pulses were temporally separated, the emission yield was

found to be subadditive for long delays. That is, the total electron emission yield

for both pump and probe beams incident on the sample was less than the summed

yields from the pump and probe pulses alone. This feature was first described in Evan

Brunkow’s dissertation work, Ref. [ 210], using the methods and the initial model
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developed here. This work builds on what was first reported in Ref. [210] by improving

the subadditive model to take the laser pulse shape into account and by testing the

spatial dependence of subadditive emission.

The first attempt at modeling the emission is reproduced in Fig. 5.15. Fig. 5.15(a)

shows the measured additive ratio, R(τ), plotted for 100 fs< τ <1 ns, with an I3

model (cyan).

FWHM = 153 fs

a)
b)

Figure 5.15: A plot (a) of the measured additivity ratio R(τ) (black connected squares)
for delays ranging from 100 fs to 1 ns is shown with an I3 model (cyan) is shown. The
figure inset (b) shows a plot of the intensity profile constructed in the model to obtain
the best fit. The intensity distribution has a full width at half maximum (FWHM)
of 153 fs, which does not agree with the measured temporal width of the oscillator of
75 fs. The question is open, is this due to a physical emission process or a consequence
of the model chosen?

The pulses used in the best-fit are plotted in Fig. 5.15(b). The difference between this

model and the model shown for Fig. 5.13(a), given by Eq. 5.24, is that these pulses are
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not Gaussian, and the emission dependence is on the intensity, not the electric field.

The intensity profiles chosen for this first attempt were composed of a complementary

error function joined smoothly to a decaying exponential function. Those pulses were

then used to model the emission rate with two pulses incident on a shard as

Rboth(τ) =

∞∫
−∞

[Ipump(t) + χ(τ)Iprobe(t+ τ)]n dt, (5.25)

where χ(τ) is a delay-dependent suppression function given by

χ(τ) = 1− α exp (−τ/τsub), (5.26)

with α being the strength of the emission suppression and τsub the characteristic time

for the subadditive process to decay. The additivity ratio R(τ) is then computed as

in Eq. 5.23. The model was computed with the Fortran code given in Appendix G.1.

One of the drawbacks of the subadditive model presented so far is that it is purely

heuristic, as it does not derive from any particular emission or transport mechanism.

Improving the heuristic model to better fit the available data is then one approach to

discerning what processes could be responsible for the observed subadditive emission.

For example, the emission response pulses used so far do not describe the emission

data when there is temporal overlap of the pulses. The measured pulse duration

used in the pump/probe experiments, that is, the intensity FWHM, was reported as

75 fs. The pulse duration of the model pulses is 153 fs. This does not at first seem

like a significant difficulty, but the result of this error is that the drop of the data

from positive to negative near τ =170 fs is due to the pulse shape chosen and not a

physical process. This issue is enhanced when the short delay (|τ | <100 fs) data is

modeled, which could not possibly be due to pulses much longer than 100 fs. This
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claim will be further explained as the improvements to the subadditive emission model

are presented. Further, as this model assumes subadditivity for all τ > 0, there is

no room for dynamics, which hinders the elucidation of what mechanisms could be

responsible for the effect.

The subadditive model is refined by first considering a linearly chirped Gaussian

electric field pulse. Such a pulse has the form

Echirp = E0 exp
−t2

2σ2
t

cos
(
ωt+ bt2

)
, (5.27)

where E0 is the field amplitude, σt is the Gaussian temporal pulse width, ω is the

central frequency of the pulse, and b is the chirp parameter. Fig. 5.16(a) gives a plot of

a chirped Gaussian electric field pulse (red) and the resulting intensity profile (green)

used in a refinement of the subadditive model.

a) b)

FWHM = 92 fs

Figure 5.16: In (a), the real part of the electric field amplitude (red) is plotted with the
resulting intensity distribution (green) as a function of time. The values used for the
new model give a FWHM of 92 fs with a linear chirp. The suppression function, χ(τ),
is shown in (b). The original model (black) only considered an exponentially increasing
function. The new model (blue and red) accounts for the onset of subadditive emission
as well as unequal emission rates from the pump and probe pulses. The Gaussian dip
in χ(τ) near 2.2 ps may be the result of such a case. Unequal emission could be due
to both the imbalance of the interferometer (accounting for 75 to 80 percent) as well
as slight misalignments of the pump and probe beams at the emission apex.
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The suppression function, χ(τ), is then modified to include a term that allows for

the subadditive effect to gradually turn on. A form of the function that achieves this

effect is found as

χ(τ) = 1− α
{

exp

(
− τ

τsub

)
erfc

[
τw − (τ − τ0)√

2τw

]
+ k(τ)

}
, (5.28)

where α is again the strength of the emission suppression, τsub is the characteristic time

for the subadditive process to decay, τw is the delay width of the onset of subadditivity,

τ0 is the effective starting time for the subadditive process, and k(τ) is a function

chosen to try to improve agreement with the data, which appear to cluster below the

old model fit in Fig. 5.15(a) around 1 ps. The addition of the Gaussian function was

made to highlight this region of data, and if there could be another mechanism to

which the subadditive measurement is sensitive. Fig. 5.16(b) gives gives a plot of the

suppression functions, χ(τ), used in the old model (black), the refined model with

I1 = I2 (blue), and a further refinement that allows for I1 6= I2 (red). Specifically, a

best-fit is obtained for the short-delay data when I2 = 0.57I1. The blue and red curves

result in the same best-fit to the long-delay data shown in Fig. 5.17. The Gaussian

feature shown around 2.2 ps in Fig. 5.16(b) and Fig. 5.18 is accomplished by taking a

value of k(τ) given by

k = α′ exp−
(
τ − τ ′0
τ ′w

)2

, (5.29)

where α′ is the strength of the feature, τ ′0 is the central time of the dip, and τ ′w is the

width of the dip. The feature can then be eliminated by setting k = 0.
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Figure 5.17: Shown is the additive ratio R(τ) for short delays using the electric field
and suppression function χ(τ) shown in Fig. 5.16. For τ < 170 fs, the crosscorrelation
ratio shows no subadditive behavior when the model (red) accounts for a linear
temporal chirp.

In Fig. 5.17, the short delay (less than 170 fs) crosscorrelation ratio shows no

subadditive behavior when the model (red) accounts for a linear temporal chirp. The

subadditive behavior truly starts near τ0 = 190 fs. The distinction between the two

regimes is shown in Fig. 5.18- the tail at τ = 100 fs (assuming χ(τ) = 0) is extended

to later delays to show how typically additive emission behavior would drop to a ratio

of 0. The extension of the subadditive model earlier from 190 fs to 100 fs shows how

the two processes meet. This data shows that the GaAs emission process, that is,

the intensity response, is shorter than 100 fs, with a long-delay subadditive feature.

The subadditive feature effectively starts at a delay of 190 fs, and has a sharp turn-on

time of 40 fs. The effect that results in subadditive emission is thus likely to be a fast

process. The Matlab script used to compute the new subadditive model is provided
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in Appendix G.2.

Figure 5.18: Shown is the additive ratio R(τ) for long delays plotted in a logarithmic
scale, using the electric field and suppression function χ(τ) shown in Fig. 5.16. The
subadditive behavior appears to start near 190 fs. The tail from the coming down
from 100 fs, which was plotted without the inclusion of the suppression function, is
extended to later delays to show how typical additive behavior would drop to a ratio
of 0. The extension of the subadditive model earlier to 100 fs shows how the two
processes meet. The model suggests that the mechanism responsible for subadditive
emission has a width of τw = 40 fs.

The complicated morphology of the shards begs the question, which of the local

features is responsible for subadditive emission? To answer this question, pump/probe

data were obtained from the sample shown in Fig. 5.13(b) as it was translated through

the 5 µm laser focus. The count rates for the pump (blue), probe (green), and both

(black) beams incident on the shard for τ = 2 ps are plotted in Fig. 5.19(a) vs. the tip

position.
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a)

b)

Figure 5.19: Shown is the position-dependence of electron emission of a GaAs shard
translated into a laser focus. The emission rates from the pump (blue), probe (green)
and both beams (black) incident on the shard apex at a delay of τ =2 ps is plotted in
(a). A Gaussian fit to the pump and probe count data, accounting for the I5 emission
process, gives a focal intensity FWHM of 5 µm, which is slightly wider compared to
the 4.5 µm width determined in Chapter 2.3. The resulting additive ratio R(τ) is
plotted in (b). The emission begins as additive, but becomes increasingly subadditive
as the shard is translated past the focus.

Assuming an I5 intensity dependence (as shown in Fig. 5.13(a)) to the single-beam

data gives a focal intensity FWHM of 5 µm. The resulting additive ratio, R(τ), is

plotted in Fig. 5.19(b). The emission remains additive until there is substantial overlap

of the laser focus and the shard shank. The subadditivity then saturates as the shard

apex is translated past the focus, until emission ceases.
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In order to mitigate the complications arising from the unpredictable apex mor-

phology arising from mechanically breaking samples into shards, an etching method

was explored. The possibility of thinning GaAs shards via an etching solution was

first demonstrated by Gobind Basnet in the research group of Bret N. Flanders, where

our nanoribbon samples were prepared. Here, at the University of Nebraska-Lincoln,

an undergraduate researcher, Zachary Rohde, prepared GaAs etchant solutions to

reproduce regular arrays of GaAs pyramid structures.31,32 The etching solution typi-

cally contained 52.1 mL of 85 % H3PO4, 2.35 mL of 30 % H2O2, and 1.8015 mL of H2O.

The resulting ratio, in moles, of H3PO4 : H2O2 : H2O, was then 10 : 0.30 : 8.23. A GaAs

shard sample was electrochemically etched in this solution in a method similar to that

used to produce the gold nanotips shown in Fig. 2.13. The etching apparatus is shown

in Fig. 5.20(a), with a simplified schematic in Fig. 5.20(b).
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Figure 5.20: Schematic of GaAs wet etching, which is always performed under a
fume hood. (a) A shard of GaAs is shown mounted to an SEM stub and lowered
into a beaker of etching solution. The tip is biased with a DC voltage of 13.0 V
relative to a graphite counterelectrode, similar to the method used to etch gold tips
illustrated in Fig. 2.13. To etch the GaAs, a solution comprised of a 10 : 0.30 : 8.23
molar ratio of H3PO4 : H2O2 : H2O is used, prepared by undergraduate researcher
Zach Rohde. A Keithley 177 digital multimeter, connected in series with the graphite
counterelectrode, was used to monitor the etching current during the process. As with
the gold etching, the circuit was disconnected as soon as the etching current dropped
to 0 A. A simplified schematic of the arrangement is shown in (b).

The shard sample was biased at 13.0 V relative to the graphite counterelectrode.

This produced an etching current that drifted around 300 µA until dropping abruptly

to 0 µA after several hours of etching. Once the current ceased, the etching circuit

was disconnected and the sample was removed from the solution. As soon as it was

possible, the shard was washed with methanol to rinse the excess solution.

The results of this round of etching on a single shard are shown in Fig. 5.21.



152

20 m

400 m

20 m

a) b) c)

Figure 5.21: Shown are SEM micrographs of the shard etched by the process given in
Fig. 5.20. (a) Full detail of the etched apex with a 400 µm scale indicated. The colored
boxes highlight areas that are interesting to try as sources. The area at the very apex
(green) is given as the inset. (b) A micrograph of the sharp feature to the left of the
apex is shown. (c) A micrograph of the feature to the right of the apex is shown.
What is intriguing about these features is that they are considerably more localized
than the shard features indicated in Fig. 5.13. This suggests that an improved wet
etching technique could be used to produce a suitable GaAs tip, or that wet etching
could provide a good start for further processing, such as focused ion beam milling.

The entire sample is shown in (a) with a 400 µm scale bar indicated. The inset

(green border) shows the central sharp feature, while (b) and (c) show the left (blue

border) and right (red border) sharp tip-like features. The inset, (b), and (c) are all

shown with the same scale. Compared to the sample imaged in Fig. 5.13(b), the sharp

features shown here are clearly distinguishable from the bulk. While the features

shown are not quite nanoscale, it is feasible that this electrochemical wet etching

procedure could produce a more well-defined substrate for further tip shaping. What

remains to be determined is if the etched shards will emit under femtosecond laser

illumination, and if that emission maintains or improves upon the 13 % Pe measured

from the shard samples.
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5.7 Conclusions

Improving the quantum degeneracy of an electron source will make falsifiable free

electron HBT measurements a possibility. It is proposed that the quantum degeneracy

can be increased orders of magnitude from what is currently available by employing

nanostructures illuminated by a femtosecond laser. As HBT measurements for photons

heralded the beginning of quantum optics, so too could degenerate electron sources

lead to free electron quantum optics. The results of an electron HBT measurement

have been shown here to have implications on describing the emission mechanism

from a sharp tip illuminated by a femtosecond laser and in the free propagation of

electron wave packets through the diffraction in time phenomenon. Distinguishing the

anticorrelations due to Pauli pressure from Coulomb pressure in the electron HBT

signal can be accomplished with a femtosecond, nanometer, spin-polarized source,

which is now achievable due to our efforts with obtaining pulsed electron emission

from GaAs shards.
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Chapter 6

Reactions and outlook

6.1 Reception of “Path integrals, matter waves, and the

double slit”

The work presented in Chapter 3 was published in the European Journal of Physics.48

The original arXiv posting of a draft of the manuscript gained immediate attention from

Dr. Mathieu Beau, a Postdoctoral Research Fellow at the University of Massachusetts

Boston.211 In his correspondence, he pointed out that the path integral methods we

used to compute double slit interference, that is, summing over the intermediate slit

time or choosing the appropriate paths of stationary phase, gave similar results to

those he had obtained with the Green’s function method.151 He indicated that he

was not able to solve his particular problem with the path integral formalism. This

interaction is what eventually lead to my considering to use the path integral method

to obtain the results of Chapter 5, where after some months of developing simulations,

I discovered that the research group of Jean Dalibard had earlier used the summing

over time method with path integrals to describe their first experimental realizations

of diffraction in time.186 After publication, our manuscript was selected by the editors

of EJP for inclusion in the “Highlights of 2015” collection. The certificate signifying

this distinction is reproduced on the following page.



This is to certify that the article

Path integrals, matter waves, and the double slit
by Eric R Jones, Roger A Bach and Herman Batelaan

has been selected by the editors of European Journal of Physics for  
inclusion in the exclusive ‘Highlights of 2015’ collection. This paper has  

been chosen for its quality and contribution to the community. 

Michael Vollmer
Editor-in-chief

European Journal of Physics
iopscience.org/ejp

European Journal 
of Physics
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6.2 Reactions to ”Momentum exchange in the electron double-

slit experiment”

A portion of the work presented in Chapter 4 toward replicating Couder’s single- and

double-slit oil drop diffraction experiments57 was published in a Journal of Physics:

Conference Series article titled, ”Momentum exchange in the electron double-slit

experiment.”102 Our conclusion from the data we obtained is that we were unable to

reproduce Couder’s results.

The publication of our article followed the publication of an article to Physical

Review E from the fluid mechanics group of Thomas Bohr at the Technical University

of Denmark, titled “Double-slit experiment with single wave-driven particles and

its relation to quantum mechanics.”.103 They reported no deflection in their walker

trajectories, remarking that their distribution was indistinguishable from a Gaussian.

They conceived of a Gedankenexperiment that considered a double-slit scenario where

the slits were separated by a long and thin barrier, claiming that such a barrier would

prevent the real wave field of walkers from interacting with the second slit, while

for a quantum mechanical scenario the wall would have no effect on the interference

pattern. The argument was that the oil drop analogue would here deviate from what

was expected from quantum mechanics, and therefore defeated the correspondence.

They concluded that “the long and variable slit passage times of the droplets, together

with the weakness of the wave field through the other slit, cast strong doubt on

the feasibility of the interference reported by Couder and Fort.” Nonetheless, they

concurred with Couder and Fort’s observation that oil droplet trajectories were not

repeatable, meaning that a distribution of walkers launched from the same initial

position would not follow identical trajectories.

Contradictory results to both experimental reports were obtained from the fluid
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mechanics group of John W. M. Bush at MIT, where through careful control of

the apparatus parameters and walker initial conditions, it was shown that walker

trajectories could not only be repeated, but that they could in principle show peaked

diffraction-like behavior.104 While this particular effect was attributed to interactions

between the walkers and the submerged slit boundaries, the experiment demonstrated

rather conclusively that the results of any oil drop experiment depend on how the

experiment is carried out and the environmental conditions in which the experiment

is performed. It is important to note that Couder’s original results were not verified

here. As these results differed from both Couder’s and Bohr’s, it would seem that

there is now a controversy to be settled and an open question if oil droplet analogues

can demonstrate diffraction from slits.

The controversy was picked up and reported recently in an article published

online October 11, 2018 in Quanta Magazine, which is a nationally syndicated science

journalism publication funded by the Simons Foundation. The article, titled “Famous

Experiment Dooms Alternative to Quantum Weirdness,” written by senior writer

Natalie Wolchover, focused almost singularly on Bohr’s argument that the oil drop

analogue had been defeated.105 From the subheading, Wolchover asserts that the failure

of Bohr to replicate Couder’s original results meant that “[o]il droplets guided by ‘pilot

waves’ have failed to reproduce the results of the quantum double-slit experiment,

crushing a century-old dream that there exists a single, concrete reality.”

Wolchover’s article in Quanta picked up immediate attention from Emmanuel Fort,

who was a member of Couder’s research group and the second author on the original

2006 Physical Review Letters paper demonstrating oil droplet diffraction. Fort engaged

Wolchover in the public comments to criticize the tone and biased presentation of the

article.212 He pointed out that none of the original researchers from Couder’s group

were interviewed prior to the publication of the article. He also pointed out that the
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conclusion of the article could not be supported by the contradictory results obtained

from Bohr and Bush. Fort wrote, “This is why my colleague Yves, who is a true

scientist, naturally said that the reason for which there was such a disparity in the

results obtained by the different groups was still to be discovered and understood. By

the way, John Bushs quote in your paper states exactly that in contradiction with

the tone of your article!” Fort continued, “What you could say is this: given the

fact that ALL the experiments give different results, there is probably a parameter

still hidden and yet to be found. As you will note, I am not saying that our results

are devoid of some experimental biases. We just, for now, dont know. This is the

definition of research.” He wrote, that while the system of walkers is not quantum

mechanical, “Walkers give an intuition about what a dual wave-particle object can

be, in our macroscopic world where waves and particles are usually separated. [...]

Walkers are bouncing droplets not quantum objects and you cannot pretend to answer

the debate on reality (which is mainly related to entanglement and Bells inequality)

with this experiment.” In short, while the system of walking droplets can inform what

ways particle-wave duality could emerge in classical systems, the failure of a walker

experiment to reproduce a quantum mechanical result does not exclude the system

from further investigation, nor does it have any bearing on quantum foundations.

John W. M. Bush had prepared a statement to add to the comments in defense of

the field, but declined to post it publicly.213 As it clearly summarizes the failures of

the article and defends the study of the quantum hydrodynamic analogy, it is in part

reproduced here. Bush concurred with Fort’s claims, in that the results from Pucci’s

2018 paper on the droplet single- and double-slit were more in line with Couder’s and

Fort’s original observations and contradictory to Bohr’s. He wrote,

First, our single-slit results were largely in line with the experiments of Couder
& Fort; specifically, there were three peaks, a central peak and a pair of side-
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peaks centered at roughly 60 degrees. Second, in the double-slit geometry, the
trajectory of a drop passing through either slit is affected by both slits, a feature
erroneously contested by Andersen et al. (2016). Third, the fact that Andersen
et al. (2016) saw no multimodal structure in their histograms simply reflects
the shortcomings of their experiments, specifically, the dominant influence of
the bounding geometry and air currents. With all due respect to the authors,
their experiments were by no means definitive, and their gedanken experiment
debatable. It is thus that their study has failed to discourage any of those
capable of making serious contributions to the problem.

In regards to the claim of the Quanta article’s subheading, Bush said:

Furthermore, as noted by Emmanuel Fort, it is important to bear in mind that
there are three pilot-wave systems being discussed in this forum, each different.
The first two, Bohmian mechanics and de Broglies double-solution theory, are
quantum pilot-wave theories. The third is the hydrodynamic pilot-wave system
discovered by Couder & Fort. The failure of the hydrodynamic pilot-wave
system to capture a particular feature of quantum mechanics simply reflects
its shortcomings as a quantum analog. Such has no bearing whatsoever on the
viability of quantum pilot-wave theories to provide a dynamical underpinning
for quantum statistics.

Bush goes on to argue that the hydrodynamic system is worthy of study in its own

right.

The hydrodynamic pilot-wave system is an example of a particle moving in
synchrony with its own wave field. As such, it is a rich dynamical system
worthy of study in its own right. It extends the range of classical systems to
include certain features of quantum systems; moreover, it bears a striking resem-
blance to de Broglies original pilot-wave framework, which provided a number
of cornerstones of quantum theory. Given the philosophical extravagance of
the prevailing view somehow promulgated from Copenhagen, that there is no
quantum reality beyond the wave function, it would seem irresponsible not to
explore the dynamical range of this hydrodynamic system. Its ability to capture
certain features of quantum systems is remarkable; its inability to capture others
is to be expected. By declaring one such shortcoming, debatable as it is, to be
fatal for the entire field of pilot-wave hydrodynamics and, by unjustified extrap-
olation, for quantum pilot-wave theory, the article unfortunately encourages a
return to the defeatist stance that ‘No one understands quantum mechanics, so
dont even bother trying,’ a position that best assures that no progress be made.
I believe that a more thoughtful, constructive article would have detailed the
many successes of both hydrodynamic and quantum pilot-wave theories.
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Bush then expressed his feelings regarding the quality of argument provided by

the reporting in Quanta, stating:

Were the bar for mechanistic understanding in quantum mechanics not set so
pitifully low, perhaps we would be less encouraged by the conceptual headway
being made by our field, more easily put off by impossibility proofs of dubious
relevance, and more concerned by the errant news of our doom.

To summarize, the best research asks good questions. I would put Couder &
Forts paper in that category. The worst type of research answers these questions
incorrectly. And the worst type of scientific journalism cant tell the difference.

To summarize both Fort’s and Bush’s sentiments, the reporting presented in

Quanta was made in poor taste. At worst, it was as Fort suggested, an exercise in

calumny. The response, though, is worth a discussion, and is included as Appendix H.

In my opinion, the field of hydrodynamic analogues to quantum systems remains open

to further investigation, and serious researchers in the field are continuing to determine

if systems of walkers can indeed reproduce single- and double-slit diffraction.

6.3 Outlook for ”Femtosecond-laser-induced spin-polarized

electron emission from a GaAs tip”

A portion of the work discussed in Chapter 5, Section 5.6 was recently published in
Applied Physics Letters as ”Femtosecond-laser-induced spin-polarized electron emission
from a GaAs tip.”34 Using a semiconductor shard illuminated with femtosecond laser
light to produce a fast, spin-polarized electron source has been written into a provisional
patent, tentatively titled “Fast spin-polarized electron source.”214 The first claims of
the provisional patent thus far cover:

1. A source of fast spin-polarized electrons as substantially described herein.

2. A method of producing fast spin-polarized electrons as substantially de-
scribed herein.

3. A source of fast spin-polarized electrons, comprising: a target material
comprising a sharp tip or a sharp edge or a cusp, the sharp tip comprising
at least two intersecting edges; and a pulsed light source that emits light
pulses focused on the sharp tip or the sharp edge or the cusp to thereby
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induce emission of spin-polarized electrons from the sharp tip or the sharp
edge or the cusp of the target material.

4. The source of fast spin-polarized electrons according to claim 3, wherein
the target material comprises GaAs.

5. The source of fast spin-polarized electrons according to claim 3, wherein
the target material comprises ZnSe, or GaAsP, or GaAs doped with Zn or
Cd.

6. The source of fast spin-polarized electrons according to claim 3, wherein
the pulsed light source comprises a pulsed laser.

7. The source of fast spin-polarized electrons according to claim 3, wherein
the pulsed light source comprises a pulsed laser that emits laser pulses
each having a duration of between about 10 fs and 0.1 ps.

The wording of Claim 5 was introduced to accommodate an idea I proposed for an

alternative spin-polarized source that utilized zinc selenide (ZnSe), which is a II-VI

semiconductor having a 2.72 eV band gap and a long spin coherence time.215,216 My

proposal followed from the experimental observation of spin currents in GaAs utilizing

pulses of 1600 nm and frequency-doubled 800 nm laser light,217 and then later in

ZnSe utilizing collinear pulses of 800 nm and frequency-doubled 400 nm laser light.218

It was found that the spin currents optically injected into the ZnSe samples could

be coherently controlled, meaning that the process did not require high intensities.

Combining cocircularly polarized ω and 2ω pulses, delayed by a time τ , resulted in

pure spin currents parallel to the propagation direction of the exciting laser pulses,

with a spin-polarized electrical current transverse to the propagation of the exciting

laser pulses (see Fig. 1(a) of Ref. [ 218]). The direction of the current depends on

the delay τ between the two pulses, and the spin orientation depends on the helicity

of the light chosen. As it has been shown that spin currents can be transferred

between materials sharing an interface,219 I reasoned that the spin-polarized electric

current might be extracted from an appropriate ZnSe nanostructure into the vacuum,

by either a dc voltage or multiphoton emission process. As the resulting electric

current is completely polarized, such a source might result in significantly higher spin
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polarizations than have been realized yet with our GaAs tip. A schematic of the

source is given in Fig. 6.1.

τ

-V

e
-

σ-

σ-

Figure 6.1: Shown is a schematic of a proposed fast, spin-polarized source utilizing
a ZnSe nanostructure. Pulses of left-handed circularly polarized (σ−) ω − 2ω light
are delayed by a time τ , and then focused onto the ZnSe nanostructure tip (gold
structure, upper left), which is biased at a voltage −V . The resulting electron pulses
(green) should have a spin polarization determined by the light helicity chosen. As
ZnSe reacts with acids, it is in principle feasible to etch a crystalline sample into a
sharp tip.

Pulses of cocircularly polarized light are produced by first frequency-doubling

800 nm laser light into its second harmonic at 400 nm. The pulses are divided by

means of a dichroic beam splitter, delayed by a time τ such that the two pulses remain

temporally overlapped, and then delivered to the tip of a ZnSe nanostructure biased

at a voltage −V . For our purposes, the bias voltage is typically −100 V. As we have

previously developed and demonstrated an ω − 2ω interferometer in our research

group,130 what remains to be developed is the appropriate source target. ZnSe can be

etched by acids, but one of the by-products of the etching process is H2Se gas, which

is toxic. Crystalline samples of ZnSe are also costly (for example, one price quote from

Semiconductor Wafer Inc. gave a price of $400 for a single [110] or [111] 10× 10× 0.5

mm wafer, with a minimum order of 3). In Ref. [ 218], the ZnSe was grown epitaxially



163

on a GaAs substrate to a thickness of 290 nm. As we understand how to etch GaAs

samples, it may be possible to combine the processes to obtain ZnSe nanostructures.
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Appendix A

Path Integral Source Code

A.1 Path integral Fortran Code, with time summing

PROGRAM Fig6

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! 2015−03−23
!
! Generate PDF of a l l paths summed over time
! and s l i t p o s i t i on fo r s t a t i ona ry phase ,
! i n t u i t i v e , and f u l l sum ampl i tudes to be
! incorpora ted in to Figure 6 o f
! ”Path i n t e g r a l s and the doub le s l i t ”
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMPLICIT NONE
! Define gener i c subrou t ine t ha t t ake s any o f the arrays the program encounters
! ( real1D , complex , complex2D) and s e t s a l l the va lue s to 0d0

INTERFACE i n i t a r r a y
SUBROUTINE i n i t a r r a y 1 d (A, alpha )
INTEGER∗8 : : i
REAL∗8 : : A( : ) , alpha
END SUBROUTINE i n i t a r r a y 1 d

SUBROUTINE i n i t a r r a y 2 d (R, alpha )
REAL∗8 : : R( : , : ) , alpha
INTEGER∗8 : : s , t
END SUBROUTINE i n i t a r r a y 2 d

SUBROUTINE i n i t a r r a y C (B, alpha )
INTEGER∗8 : : r
COMPLEX∗16 : : B( : ) , alpha
END SUBROUTINE i n i t a r r a y C

SUBROUTINE i n i t a r ray2dC (D, alpha )
COMPLEX∗16 : : D( : , : ) , alpha
INTEGER∗8 : : j , k
END SUBROUTINE i n i t a r ray2dC

END INTERFACE i n i t a r r a y

INTERFACE
SUBROUTINE i n i t random seed ( )
IMPLICIT NONE
INTEGER, ALLOCATABLE : : seed ( : )
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INTEGER : : i , n , un , i s t a t , dat ( 8 ) , pid , tim ( 2 ) , s
INTEGER(8 ) : : cownt , tms
END SUBROUTINE i n i t random seed

END INTERFACE

INTERFACE r a n d f i l l
SUBROUTINE r a n d f i l l 1 d (A, a r b i n t e r v a l )
IMPLICIT NONE
INTEGER∗8 : : i
REAL∗8 , INTENT(IN) : : a r b i n t e r v a l
REAL∗8 : : A( : ) ,B( s ize (A) )
END SUBROUTINE r a n d f i l l 1 d

SUBROUTINE r a n d f i l l 2 d (B, a r b i n t e r v a l )
IMPLICIT NONE
INTEGER∗8 : : i , j
REAL∗8 , INTENT(IN) : : a r b i n t e r v a l
REAL∗8 : : B ( : , : )
REAL∗8 : : C( s ize (B, 1 ) , s ize (B, 2 ) )
END SUBROUTINE r a n d f i l l 2 d

END INTERFACE r a n d f i l l

! Define s q r t (−1) to double−pr e c i s i on
COMPLEX∗16 , PARAMETER : : I = (0 d0 , 1d0 )
COMPLEX∗16 , PARAMETER : : Ps i0 = (0 d0 , 0 d0 ) ,K0 = (0 d0 , 0 d0 )

! Take Nscreen = 2 when time summing ( f o r i n s e t )
INTEGER∗8 , PARAMETER : : Nmid = 3000 , Nscreen = 1000 , &

Ntimediv = 0 , & ! 2 paths from s l i t s converge f o r 500000 500000
i n t o r d e r = 305

! Define r e a l cons tant s d e f i n i n g exper imenta l se t−up
! and gr i d s i z e s
REAL∗8 , PARAMETER : : Pi = 3.1415926535898 d0 , &

Hbar = 1.05457173d−34, m = 9.10938291d−31, &
w s l i t = 63d−9, d s l i t = 273d−9, &
y o f f s e t 1 = d s l i t / 2d0 , y o f f s e t 2 = d s l i t / 2d0− 2 .73 d−7, & !
ymidgrid = ws l i t , y s c r e e n g r i d = 1d−6, &
! 1d−6 fo r f i g6 , 2d−9 fo r inse t , 1.75d−9 fo r tsum comparison
t i n t e r v a l = 1d−13, & ! 2d0∗1.10142833717d−15, 5.0462446d−29 g i v e s no change
d e l t a t i n t = 1d−13, &
! 7.200007502769d−15 fo r +/−5%, 3.44340859950290802669d−14 fo r +/−1% in Phi
d e l t a t = d e l t a t i n t ! / DFLOAT(Ntimediv )

! Step s i z e s f o r ymid and yscreen . Skip the se i f Nmid and Nscreen = 0
REAL∗8 , PARAMETER : : deltaymid = ymidgrid / (2 d0 ∗ Nmid) , &

d e l t a y s c r e e n = y s c r e e n g r i d / (2 d0 ∗ Nscreen )

! Use the se va lue s when Nmid and Nscreen = 0
! REAL∗8 , PARAMETER : : de l taymid = ymidgrid , &

! de l t a y s c r e en = yscreengr id

! Arrays f o r time and d i s t ance
REAL∗8 : : xsource , ysource , t s ou r c e

REAL∗8 : : xmid(−Nmid : Nmid) , ymid(−Nmid : Nmid) , &
y s l i t 1 (−Nmid : Nmid) , y s l i t 2 (−Nmid : Nmid)

REAL∗8 : : tmin1 , tmin2 , t s l i t 1 , t s l i t 2 , alpha ! , d e l t a t

REAL∗8 : : x sc reen (−Nscreen : Nscreen ) , &
yscreen (−Nscreen : Nscreen ) , &
t s c r e e n (−Nscreen : Nscreen )

REAL∗8 : : phase s l i tm in1 ( −Nmid : Nmid ) , &
phase s l i tm in2 ( −Nmid : Nmid )

REAL∗8 : : phasescreenmin1 ( −Nmid : Nmid,−Nscreen : Nscreen ) , &
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phasescreenmin2 ( −Nmid : Nmid,−Nscreen : Nscreen )

COMPLEX∗16 : : Ksourcemin1T ( −Nmid : Nmid ) , &
Ksourcemin2T ( −Nmid : Nmid )

COMPLEX∗16 : : Kslitmin1T ( −Nmid : Nmid , −Nscreen : Nscreen ) , &
Kslitmin2T ( −Nmid : Nmid , −Nscreen : Nscreen )

! I n t u i t i v e method d e f i n i t i o n s
REAL∗8 : : p h a s e s l i t 1 ( −Nmid : Nmid ) , &

p h a s e s l i t 2 ( −Nmid : Nmid )

REAL∗8 : : phasescreen1 ( −Nmid : Nmid,−Nscreen : Nscreen ) , &
phasescreen2 ( −Nmid : Nmid,−Nscreen : Nscreen )

COMPLEX∗16 : : Ksource1T ( −Nmid : Nmid ) , &
Ksource2T ( −Nmid : Nmid )

COMPLEX∗16 : : Ksl i t1T ( −Nmid : Nmid , −Nscreen : Nscreen ) , &
Ksl it2T ( −Nmid : Nmid , −Nscreen : Nscreen )

! Arrays f o r the ampl i tudes
COMPLEX∗16 : : Ps i source
COMPLEX∗16 : : P s i s l i t m i n 1 (−Nmid : Nmid) , &

P s i s l i t m i n 2 (−Nmid : Nmid)
COMPLEX∗16 : : Psitimetempmin(−Nscreen : Nscreen )
COMPLEX∗16 : : Ps i screenmin(−Nscreen : Nscreen )

REAL∗8 : : PDFmin(−Nscreen : Nscreen )

COMPLEX∗16 : : P s i s l i t 1 (−Nmid : Nmid) , &
P s i s l i t 2 (−Nmid : Nmid)

COMPLEX∗16 : : P s i s c r e en (−Nscreen : Nscreen )

REAL∗8 : : PDF(−Nscreen : Nscreen )

INTEGER∗8 : : p , q , n , j
REAL∗8 : : sumintmin , sumint

! COMPLEX∗16 : : Psitemp1 , Psitemp2
COMPLEX∗16 : : Psitempmin1 , Psitempmin2
COMPLEX∗16 : : Psitemp1 , Psitemp2

! Set v a r i a b l e s t ha t were p r e v i ou s l y parameters
REAL∗8 : : lambda , v , &

sourcet , s c r eent , &
Lsca le , lambscale , s ou r c ed i s t , s c r e e n d i s t

Lsca l e = DSQRT(DFLOAT( i n t o r d e r )/2 d0 )
lambsca le = DSQRT(2 d0 /(DFLOAT( i n t o r d e r ) )∗∗3 d0 )

s o u r c e d i s t = Lsca l e ∗ d s l i t
s c r e e n d i s t = Lsca l e ∗ d s l i t

lambda = lambsca le ∗ d s l i t
v = 2d0 ∗ Pi ∗ Hbar / ( lambda ∗ m)

! v = 1d7
s ou r c e t = s o u r c e d i s t /v
s c r e e n t = s c r e e n d i s t /v

alpha = (2 d0 ∗ m ∗ s o u r c e d i s t ∗∗2d0 ) / &
( hbar ∗ ( s ou r c e t + s c r e e n t ) )

PRINT∗ , ’ Value o f alpha : ’ , a lpha
PRINT∗ , ’ Source d i s t ance : ’ , s o u r c e d i s t
PRINT∗ , ’ s ou r c e t : ’ , s ou r c e t
PRINT∗ , ’Lambda : ’ , lambda
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PRINT∗ , ’ dˆ4 / Lˆ3 : ’ , d s l i t ∗∗4d0 / (2 d0∗ s o u r c e d i s t ∗∗3d0 )

PRINT∗ , ’ Ve l o c i ty (10ˆ7 m/ s ) : ’ , v/1d7

! I n i t i a l i z e a l l 1−d arrays to zero
PRINT∗ , ’ I n i t i a l i z i n g 1−D arrays ’
xsource = 0d0
ysource = 0d0 + y o f f s e t 1
t sou r c e = 0d0

PRINT∗ , ’ s ou r c e t ’ , s ou r c e t
PRINT∗ , ’ s c r e e n t ’ , s c r e e n t

CALL i n i t a r r a y ( xmid , s o u r c e d i s t )
CALL i n i t a r r a y ( ymid , 0 d0 )
CALL i n i t a r r a y ( y s l i t 1 , 0 d0 )
CALL i n i t a r r a y ( y s l i t 2 , 0 d0 )

tmin1 = 0d0
tmin2 = 0d0
t s l i t 1 = 0d0
t s l i t 2 = 0d0

CALL i n i t a r r a y ( xscreen , s o u r c e d i s t+s c r e e n d i s t )
CALL i n i t a r r a y ( yscreen , 0 d0 )
CALL i n i t a r r a y ( t sc reen , s ou r c e t+s c r e e n t )

! I n i t i a l i z e the complex arrays to zero
PRINT∗ , ’ I n i t i a l i z i n g complex ar rays ’
Ps i source = COMPLEX(1 d0 , 0 d0 )

CALL i n i t a r r a y ( Ps i s l i tm in1 , Psi0 )
CALL i n i t a r r a y ( Ps i s l i tm in2 , Psi0 )
CALL i n i t a r r a y ( Psitimetempmin , Psi0 )
CALL i n i t a r r a y ( Psiscreenmin , Psi0 )

CALL i n i t a r r a y ( P s i s l i t 1 , Psi0 )
CALL i n i t a r r a y ( P s i s l i t 2 , Psi0 )
CALL i n i t a r r a y ( Ps i s c reen , Psi0 )

! I n i t i a l i z e the phase arrays to zero
PRINT∗ , ’ I n i t i a l i z i n g phase ar rays ’

CALL i n i t a r r a y ( phases l i tmin1 , 0 d0 )
CALL i n i t a r r a y ( phases l i tmin2 , 0 d0 )
CALL i n i t a r r a y ( phasescreenmin1 , 0 d0 )
CALL i n i t a r r a y ( phasescreenmin2 , 0 d0 )

CALL i n i t a r r a y ( p h a s e s l i t 1 , 0 d0 )
CALL i n i t a r r a y ( p h a s e s l i t 2 , 0 d0 )
CALL i n i t a r r a y ( phasescreen1 , 0 d0 )
CALL i n i t a r r a y ( phasescreen2 , 0 d0 )

! I n i t i a l i z e the propagators
PRINT∗ , ’ I n i t i a l i z i n g propagators ’

CALL i n i t a r r a y ( Ksourcemin1T ,K0)
CALL i n i t a r r a y ( Ksourcemin2T ,K0)
CALL i n i t a r r a y ( Kslitmin1T ,K0)
CALL i n i t a r r a y ( Kslitmin2T ,K0)

CALL i n i t a r r a y ( Ksource1T ,K0)
CALL i n i t a r r a y ( Ksource2T ,K0)
CALL i n i t a r r a y ( Kslit1T ,K0)
CALL i n i t a r r a y ( Kslit2T ,K0)

! I n i t i a l i z e the PDF
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PRINT∗ , ’ I n i t i a l i z i n g PDF ’

CALL i n i t a r r a y (PDFmin, 0 d0 )
CALL i n i t a r r a y (PDF, 0 d0 )

! I n i t i a l i z e the random number generator once per execu t ion
! This was not used in f i n a l f i g u r e prep
CALL i n i t random seed ( )

! Set up y g r i d s ( s l i t 1 i s top s l i t , s l i t 2 i s bottom )
DO p = −Nmid , Nmid

ymid (p) = DFLOAT(p) ∗ deltaymid
y s l i t 1 (p) = ymid (p) + d s l i t / 2d0
y s l i t 2 (p) = ymid (p) − d s l i t / 2d0

ENDDO

DO q = −Nscreen , Nscreen
yscreen ( q ) = DFLOAT( q ) ∗ d e l t a y s c r e e n + y o f f s e t 2

ENDDO

PRINT∗ , ’Timesumming ! ’
! Used fo r t e s t i n g turning o f f a s l i t (∗ Psi0 ) , time sum , or i n s e t
! OPEN(UNIT=29, FILE=” s t p h a s e f u l l s l i t 2 o f f . t x t ”)
! OPEN(UNIT=30, FILE=”s t p h a s e i n s e t s l i t 2 o f f . t x t ”)
! OPEN(UNIT=31, FILE=” i n t u i t i v e i n s e t s l i t 2 o f f . t x t ”)
! OPEN(UNIT=32, FILE=”t sum in s e t po in t s . t x t ”)
! OPEN(UNIT=33, FILE=” i n t u i t i v e f u l l s l i t 2 o f f . t x t ”)

DO q = −Nscreen , Nscreen
! q = 0

! j = Ntimediv ∗ 0
! d e l t a t = d e l t a t i n t / DFLOAT( j )

j = Ntimediv

Psitemp1 = COMPLEX(0 d0 , 0 d0 )
Psitemp2 = COMPLEX(0 d0 , 0 d0 )

Psitempmin1 = COMPLEX(0 d0 , 0 d0 )
Psitempmin2 = COMPLEX(0 d0 , 0 d0 )

DO p = −Nmid , Nmid
! p = 0

tmin1 = (DSQRT( ( xmid (p)−xsource )∗∗2 d0 + &
( y s l i t 1 (p)−ysource )∗∗2 d0 ) ) / &
( (DSQRT( ( xscreen ( q)−xmid (p ))∗∗2 d0 + &
( yscreen ( q)− y s l i t 1 (p ))∗∗2 d0 ) ) + &
(DSQRT( ( xmid (p)−xsource )∗∗2 d0 + &
( y s l i t 1 (p)−ysource )∗∗2 d0 ) ) ) ∗ &
( sour c e t + s c r e e n t )

tmin2 = (DSQRT( ( xmid (p)−xsource )∗∗2 d0 + &
( y s l i t 2 (p)−ysource )∗∗2 d0 ) ) / &
( (DSQRT( ( xscreen ( q)−xmid (p ))∗∗2 d0 + &
( yscreen ( q)− y s l i t 2 (p ))∗∗2 d0 ) ) + &
(DSQRT( ( xmid (p)−xsource )∗∗2 d0 + &
( y s l i t 2 (p)−ysource )∗∗2 d0 ) ) ) ∗ &
( sour c e t + s c r e e n t )

! I n t e rna l time−summing loop .
! Uncomment s h i f t in t s l i t 1 and t s l i t 2 , as sum i s performed symmetr ica l l y
! about tmin1 and tmin2 , r e s p e c t i v e l y .
! DO n = −j , j

t s l i t 1 = tmin1 !+ DFLOAT(n)∗ d e l t a t
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t s l i t 2 = tmin2 !+ DFLOAT(n)∗ d e l t a t

phase s l i tm in1 (p) = ( 0 . 5 d0 ∗ m / Hbar ) ∗ &
( ( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 1 (p)−ysource )∗∗2 d0 ) ) / &
( t s l i t 1 − t s ou r c e )

phase s l i tm in2 (p) = ( 0 . 5 d0 ∗ m / Hbar ) ∗ &
( ( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 2 (p)−ysource )∗∗2 d0 ) ) / &
( t s l i t 2 − t s ou r c e )

phasescreenmin1 (p , q ) = ( 0 . 5 d0 ∗ m / Hbar ) ∗ &
( ( ( xsc reen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 1 (p ))∗∗2 d0 ) ) / &
( t s c r e e n ( q ) − t s l i t 1 )

phasescreenmin2 (p , q ) = ( 0 . 5 d0 ∗ m / Hbar ) ∗ &
( ( ( xsc reen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 2 (p ))∗∗2 d0 ) ) / &
( t s c r e e n ( q ) − t s l i t 2 )

Ksourcemin1T (p) = CDEXP( I ∗ phase s l i tm in1 (p ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
( t s l i t 1 − t s ou r c e ) ) )∗ &
CDEXP(− I ∗Pi /4d0 )

Ksourcemin2T (p) = CDEXP( I ∗ phase s l i tm in2 (p ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
( t s l i t 2 − t s ou r c e ) ) )∗ &
CDEXP(− I ∗Pi /4d0 )

Kslitmin1T (p , q ) = CDEXP( I ∗ phasescreenmin1 (p , q ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
( t s c r e e n ( q ) − t s l i t 1 ) ) )∗ &
CDEXP(− I ∗Pi /4d0 )

Kslitmin2T (p , q ) = CDEXP( I ∗ phasescreenmin2 (p , q ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
( t s c r e e n ( q ) − t s l i t 2 ) ) )∗ &
CDEXP(− I ∗Pi /4d0 )

p h a s e s l i t 1 (p) = ( m / Hbar ) ∗ v ∗ &
DSQRT( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 1 (p) − ysource )∗∗2 d0 )

p h a s e s l i t 2 (p) = ( m / Hbar ) ∗ v ∗ &
DSQRT( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 2 (p) − ysource )∗∗2 d0 )

phasescreen1 (p , q ) = ( m / Hbar ) ∗ v ∗ &
DSQRT( ( xscreen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 1 (p ))∗∗2 d0 )

phasescreen2 (p , q ) = ( m / Hbar ) ∗ v ∗ &
DSQRT( ( xscreen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 2 (p ))∗∗2 d0 )

! Use path l eng t h to s e t time i n t e r v a l when using 2piL/lambda phase
Ksource1T (p) = CDEXP( I ∗ p h a s e s l i t 1 (p ) ) ∗ &

DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
(DSQRT( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 1 (p) − ysource )∗∗2 d0 ) )/ v ) ) ∗ &
CDEXP(− I ∗Pi /4d0 )
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Ksource2T (p) = CDEXP( I ∗ p h a s e s l i t 2 (p ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
(DSQRT( ( xmid (p) − xsource )∗∗2 d0 + &

( y s l i t 2 (p) − ysource )∗∗2 d0 ) )/ v ) ) ∗ &
CDEXP(− I ∗Pi /4d0 )

Ksl it1T (p , q ) = CDEXP( I ∗ phasescreen1 (p , q ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
(DSQRT( ( xscreen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 1 (p ))∗∗2 d0 ) )/ v ) ) ∗ &
CDEXP(− I ∗Pi /4d0 )

Ksl it2T (p , q ) = CDEXP( I ∗ phasescreen2 (p , q ) ) ∗ &
DSQRT(m / (2 d0∗Pi∗Hbar ∗ &
(DSQRT( ( xscreen ( q ) − xmid (p ))∗∗2 d0 + &

( yscreen ( q)− y s l i t 2 (p ))∗∗2 d0 ) )/ v ) ) ∗ &
CDEXP(− I ∗Pi /4d0 )

! Propagate the wavefunct ion from source to s l i t (min phase )
P s i s l i t m i n 1 (p) = Ksourcemin1T (p) ∗ Ps i source
P s i s l i t m i n 2 (p) = Ksourcemin2T (p) ∗ Ps i source ! ∗ Psi0

Psitempmin1 = Psitempmin1 + Kslitmin1T (p , q ) ∗ &
P s i s l i t m i n 1 (p) / (2 d0 ∗ Nmid)

Psitempmin2 = Psitempmin2 ∗ Psi0 + Kslitmin2T (p , q ) ∗ &
P s i s l i t m i n 2 (p) / (2 d0 ∗ Nmid)

! lambda phase
P s i s l i t 1 (p) = Ksource1T (p) ∗ Ps i source
P s i s l i t 2 (p) = Ksource2T (p) ∗ Ps i source ! ∗ Psi0

Psitemp1 = Psitemp1 + Ksl it1T (p , q ) ∗ P s i s l i t 1 (p) / &
(2 d0 ∗ Nmid)

Psitemp2 = Psitemp2 ∗ Psi0 + Ksl it2T (p , q ) ∗ P s i s l i t 2 (p) / &
(2 d0 ∗ Nmid)

! END DO ! uncomment to run time loop

ENDDO ! s l i t loop

Psitimetempmin ( q ) = Psitempmin1 + Psitempmin2 + &
Psitimetempmin ( q )

Ps iscreenmin ( q ) = ( Psitimetempmin ( q ) ) ! ∗ &
! 2d0∗ d e l t a t i n t / (DFLOAT(2∗Ntimediv+1))
! Factor to compare time sum to in t e g r a l− use when time summing .

PDFmin( q ) = REALPART(DCONJG( Psiscreenmin ( q ) ) ∗ &
Psiscreenmin ( q ) ) ! ∗ &
! alpha / (Pi ∗ ( source t )∗∗2d0 )
! Factor to compare time sum to s t a t i ona ry phase PDF
! Use when performing time sum , turn o f f f o r s t a t i ona ry phase

Ps i s c r e en ( q ) = Psitemp1 + Psitemp2
PDF( q ) = REALPART(DCONJG( Ps i s c r e en ( q ) ) ∗ &

Ps i s c r e en ( q ) )

! WRITE(29 ,100) yscreen ( q ) ,PDFmin( q )/1.3021245418689126E+023,q
! WRITE(33 ,100) yscreen ( q ) ,PDF( q )/1.2999689400111953E+023,q

ENDDO ! screen loop

100 FORMAT(E24 . 17 , 4 x , E24 . 17 , 4 x , I8 )
! 101 FORMAT(E24 .17 ,4 x , E24 .17 ,4 x , E24 .17 ,4 x , E24 .17 ,4 x , I8 )
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! 102 FORMAT(E24 .17 ,4 x , I8 )

CLOSE(29)
! CLOSE(30)
! CLOSE(31)
! CLOSE(32)
! CLOSE(33)

PRINT∗
PRINT∗ , ’ Numerica l ly i n t e g r a t e s t a t i o n a r y d i s t r i b u t i o n ’
sumintmin = 0d0
DO q = −Nscreen , Nscreen

sumintmin = PDFmin( q ) ∗ d e l t a y s c r e e n + sumintmin
ENDDO
PRINT∗ , sumintmin ! shou ld be 1.3021245418689126E+023

OPEN(UNIT=34, FILE=” stphase normed . txt ” )
PRINT∗ , ’Normed d i s t r i b u t i o n : ’
DO q = −Nscreen , Nscreen

WRITE(34 ,100) yscreen ( q ) ,PDFmin( q )/ sumintmin , q
ENDDO
CLOSE(34)

PRINT∗ , ’ Numerica l ly i n t e g r a t e i n t u i t i v e d i s t r i b u t i o n : ’
sumint = 0d0
DO q = −Nscreen , Nscreen

sumint = PDF( q ) ∗ d e l t a y s c r e e n + sumint
ENDDO
PRINT∗ , sumint ! = 1.2999689400111953E+023 fo r Nscreen=1000

OPEN(UNIT=35, FILE=” intu i t i v e normed . txt ” )
PRINT∗ , ’Normed d i s t r i b u t i o n : ’
DO q = −Nscreen , Nscreen

WRITE(35 ,100) yscreen ( q ) ,PDF( q )/ sumint , q
ENDDO
CLOSE(35)

ENDPROGRAM Fig6

! s e t s a l l va l ue s o f any 1−D rea l ∗8 array to a lpha
SUBROUTINE i n i t a r r a y 1 d (A, alpha )
IMPLICIT NONE
INTEGER∗8 : : i
REAL∗8 : : A( : ) , alpha

DO i =1, s ize (A)
A( i ) = alpha
!PRINT∗ , A( i ) , i

ENDDO
END SUBROUTINE i n i t a r r a y 1 d

! s e t s a l l va l ue s o f a 2−D rea l ∗8 array to a lpha
SUBROUTINE i n i t a r r a y 2 d (R, alpha )
IMPLICIT NONE
REAL∗8 : : R( : , : ) , alpha
INTEGER∗8 : : s , t

DO t =1, s ize (R, 2 )
DO s =1, s ize (R, 1 )

R( s , t ) = alpha
!PRINT∗ , R( s , t ) , s , t

ENDDO
ENDDO

END SUBROUTINE i n i t a r r a y 2 d

! s e t s a l l va l ue s o f a complex∗16 array to alpha
SUBROUTINE i n i t a r r a y C (B, alpha )
IMPLICIT NONE
INTEGER∗8 : : r
COMPLEX∗16 : : B( : ) , alpha
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DO r =1, s ize (B)
B( r ) = alpha
!PRINT∗ , B( r ) , r

ENDDO
END SUBROUTINE i n i t a r r a y C

! s e t s a l l va l ue s o f a 2−D complex∗16 array to alpha
SUBROUTINE i n i t a r ray2dC (D, alpha )
IMPLICIT NONE
COMPLEX∗16 : : D( : , : ) , alpha
INTEGER∗8 : : j , k
DO k=1, s ize (D, 2 )

DO j =1, s ize (D, 1 )
D( j , k ) = alpha
!PRINT∗ , D( j , k ) , j , k
ENDDO

ENDDO
END SUBROUTINE i n i t a r ray2dC

FUNCTION d e l t a ( stepnum , i n t e r v a l ) RESULT( rout )
IMPLICIT NONE
INTEGER∗8 , INTENT(IN) : : stepnum
REAL∗8 , INTENT(IN) : : i n t e r v a l
REAL∗8 : : rout

rout = DFLOAT( stepnum ) ∗ i n t e r v a l
END FUNCTION

SUBROUTINE r a n d f i l l 1 d (A, a r b i n t e r v a l )
IMPLICIT NONE
INTEGER∗8 : : i
REAL∗8 , INTENT(IN) : : a r b i n t e r v a l
REAL∗8 : : A( : ) ,B( s ize (A) )

CALLRANDOMNUMBER(B)
!CALL RANDOMNUMBER(A)
DO i =1, s ize (A)

!CALL RANDOMNUMBER(A( i ))
A( i ) = A( i ) + a r b i n t e r v a l ∗ (B( i ) − 0 .5 d0 )
!A( i ) = a r b i n t e r v a l ∗ (A( i ) − 0.5 d0 )

ENDDO
END SUBROUTINE r a n d f i l l 1 d

SUBROUTINE r a n d f i l l 2 d (B, a r b i n t e r v a l )
IMPLICIT NONE
INTEGER∗8 : : i , j
REAL∗8 , INTENT(IN) : : a r b i n t e r v a l
REAL∗8 : : B ( : , : )
REAL∗8 : : C( s ize (B, 1 ) , s ize (B, 2 ) )

CALLRANDOMNUMBER(C)
DO j =1, s ize (B, 2 )

DO i =1, s ize (B, 1 )
!CALL RANDOMNUMBER(B( i , j ) )
B( i , j ) = B( i , j ) + a r b i n t e r v a l ∗ (C( i , j ) − 0 .5 d0 )
ENDDO

ENDDO
END SUBROUTINE r a n d f i l l 2 d

SUBROUTINE i n i t random seed ( )
IMPLICIT NONE
INTEGER, ALLOCATABLE : : seed ( : )
INTEGER : : i , n , un , i s t a t , dat ( 8 ) , pid , tim ( 2 ) , s
INTEGER(8 ) : : cownt , tms

CALL random seed ( s ize = n)
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ALLOCATE( seed (n ) )

! The f i r s t b i t t r i e s to check i f the OS has i t s own
! na t i v e random number generator . Otherwise , the PID
! i s XOR: ed with the current time and numbers are
! ad jus t ed with primes .

OPEN(NEWUNIT = un , f i l e=”/dev/urandom” , access=” stream ” , &
form=” unformatted ” , action=” read ” , status=” old ” , &
iostat=i s t a t )

! IF ( i s t a t == 0) THEN
! READ(un) seed
! CLOSE(un)
! PRINT∗ , ’Used urandom ’
!ELSE

!PRINT∗ , ’Not us ing urandom ’
CALL system clock ( cownt )
IF ( cownt /= 0) THEN

tim = transfer ( cownt , tim )
ELSE

CALL date and time ( va lue s = dat )
tms = ( dat (1 ) − 1970) ∗ 365 8 ∗ 24 ∗ 60 ∗ 60 ∗ 1000 &

+ dat (2 ) ∗ 31 8 ∗ 24 ∗ 60 ∗ 60 ∗ 1000 &
+ dat (3 ) ∗ 24 ∗ 60 ∗ 60 ∗ 60 ∗1000 &
+ dat (5 ) ∗ 60 ∗ 60 ∗ 1000 &
+ dat (6 ) ∗ 60 ∗ 1000 + dat (7 ) ∗ 1000 &
+ dat (8 )

tim = transfer ( tms , tim )
END IF

s = ieor ( tim ( 1 ) , tim ( 2 ) )
pid = getp id ( ) + 1099279 ! Adding a prime number
s = ieor ( s , pid )

IF (n >= 3) THEN
seed (1 ) = tim (1) + 36269
seed (2 ) = tim (2) + 72551
seed (3 ) = pid
i f (n > 3) then

seed ( 4 : ) = s + 37 ∗ (/ ( i , i = 0 , n − 4) /)
END IF

ELSE
seed = s + 37 ∗ (/ ( i , i = 0 , n−1) /)

END IF
!END IF

CALL random seed ( put=seed )
END SUBROUTINE i n i t random seed
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A.2 Path integral Fortran Code, time sum normalization

PROGRAM F 6 p o i n t s h i f t
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Code used to renormal i ze 5 time sum data po in t s from path i n t e g r a l sum code
! to va lue s o f the normalized s t a t i ona ry phase d i s t r i b u t i o n .
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMPLICIT NONE
REAL∗8 : : data f ( 1 : 5 , 1 : 2 ) , newdata ( 1 : 5 , 1 : 2 )
INTEGER : : i

OPEN(UNIT=30, FILE=” t s u m i n s e t p o i n t s . txt ” , STATUS=” old ” )

DO i =1,5
READ(30 ,100) data f ( i , 1 ) , data f ( i , 2 )
ENDDO

OPEN(UNIT=31, FILE=” p o i n t s s c a l e d . txt ” )
! manipulat ions− s e t center va lue equa l to s t a t i ona ry va lue from t sum in s e t po in t s . t x t
DO i =1,5
newdata ( i , 1 ) = data f ( i , 1 )
newdata ( i , 2 ) = ( data f ( i , 2 ) / data f (3 ,2) )∗3 .7074643704598104E+06
PRINT∗ , newdata ( i , 2 )
WRITE(31 ,100) newdata ( i , 1 ) , newdata ( i , 2 ) , i
ENDDO

CLOSE(30)
CLOSE(31)

100 FORMAT(E24 . 17 , 4 x , E24 . 17 , 4 x , I8 )

ENDPROGRAM F 6 p o i n t s h i f t
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Appendix B

Oil Drop Dish Components

The following schematics show the details and dimensions of components machined

at the University of Nebraska-Lincoln Instrument Shop by Pat Pribil and Keith

Placek. Fig. B.1 shows the double slit dish measurements and details, which include a

highlighted region indicating marked rulings that served as a launching guide. Fig. B.2

highlights channels that were used to provide an accurate centering location of the

dish as well as placement of supporting fins. Fig. B.3 shows the Delrin bearing

component that was fastened to the apparatus leveling table. Fig. B.4 shows the

various components that comprise the dish stem, Delrin bearing, and supporting fins.

Fig. B.5 gives an exploded view of the entire assembly.
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Figure B.1: Double slit dish, with relevant dimensions. Units are given in inches.
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Figure B.2: Double slit dish, bottom view. Units are given in inches.
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Figure B.3: Delrin bearing component used for the leveling table. Units are in inches.
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Figure B.4: Dish stem components. Units are in inches.
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Figure B.5: Exploded view of all assembled dish components.
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Appendix C

Oil Drop C++ Code

C.1 BitmapDriver.cpp

/∗
BitmapDriver . cpp
Created by Adam Li f

Contains a s e r i e s o f f unc t i ons used fo r ana ly s ing bitmap ( . bmp) p i c t u r e s
∗/

//Avoid Microso f t unsafe func t i on warnings
#define CRT SECURE NO WARNINGS

#include <iostream>
#include <fstream>

#include ”BitmapDriver . h”
#include ” TextFi l eDr iver . h”

using namespace std ;

BitmapDriver : : BitmapDriver ( ) {}

void BitmapDriver : : GetInfo (FILE ∗pInputImage , unsigned int ∗ f i l e H e a d e r I n f o ,
unsigned int ∗ f i l e C o l o r T a b l e ) {

//Copies bitmap f i l e header and co l o r t a b l e to f i l eHeade r In f o and f i l eCo l o rTab l e

f i l e H e a d e r I n f o = 0 ;
f i l e C o l o r T a b l e = 0 ;

unsigned char nul lChar = ’ 0 ’ ;
unsigned char ∗ pReadFi le In fo = &nul lChar ;

f s e e k ( pInputImage , 0L , SEEK SET ) ;

//Read bitmap f i l e header
for ( int i = 0 ; i < 54 ; i++) {

f r ead ( pReadFi leInfo , s izeof (char ) , 1 , pInputImage ) ;
f i l e H e a d e r I n f o [ i ] = ∗ pReadFi le In fo ;

}

//Read bitmap f i l e co l o r t a b l e
for ( int i = 0 ; i < 1024 ; i++) {

f r ead ( pReadFi leInfo , s izeof (char ) , 1 , pInputImage ) ;
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f i l e C o l o r T a b l e [ i ] = ∗ pReadFi le In fo ;
}

}

void BitmapDriver : : GetPixelData (FILE ∗pInputImage , unsigned int pictureWidth ,
unsigned int pictureHe ight , unsigned int ∗∗ f i l e P i x e l D a t a ) {

//Reads bitmap f i l e p i x e l data in to 2D array

unsigned char nul lChar = ’ 0 ’ ;
// informat ion be ing read in from the p i c t u r e

unsigned char ∗ pReadFi le In fo = &nul lChar ;
// b r i g h t e s t co l o r va lue in the p i c t u r e

unsigned int maxPixel = 0 ;

f s e e k ( pInputImage , 1078L , SEEK SET ) ;

//Read data , f i nd wh i t e s t p i x e l & i t s l o c a t i on
for (unsigned int row = 0 ; row < p i c tureHe ight ; row++) {

for (unsigned int column = 0 ; column < pictureWidth ; column++) {
f r e ad ( pReadFi leInfo , s izeof (char ) , 1 , pInputImage ) ;

f i l e P i x e l D a t a [ row ] [ column ] = ( int ) ∗ pReadFi le In fo ;
}

}
}

void BitmapDriver : : FindDropMax (unsigned int ∗∗ f i l e P i x e l D a t a , int pictureWidth ,
int pictureHe ight , unsigned int &xMax ,
unsigned int &yMax , unsigned int &lastX ,
unsigned int &lastY , int searchAreaS ize ) {

//Finds the b r i g h t e s t spo t in the p i c t u r e . Based o f prev ious po in t s i f not f i r s t
// po in t

xMax = 0 ;
yMax = 0 ;

unsigned int maxPixel = 0 ;
int xStart = 0 ;
int yStart = 0 ;
int xEnd = pictureWidth − 1 ;
int yEnd = pic tureHe ight − 1 ;

//Narrows down search area in x d i r e c t i on i f not f i r s t p i c t u r e
i f ( lastX != 0) {

xStart = lastX − searchAreaS ize ;
i f ( xStart < 0) xStart = 0 ;

xEnd = lastX + searchAreaS ize ;
i f (xEnd > pictureWidth − 1) xEnd = pictureWidth − 1 ;

}
//TODO: Temp f i x , d e l e t e
else {

xStart = 100 ;
xEnd = 400 ;

}

//Narrows down search area in y d i r e c t i on i f not f i r s t p i c t u r e
i f ( lastY != 0) {

yStart = lastY − searchAreaS ize ;
i f ( yStart < 0) yStart = 0 ;

yEnd = lastY + searchAreaS ize ;
i f (yEnd > p i c tureHe ight − 1) yEnd = pic tureHe ight − 1 ;

}
//TODO: Temp f i x d e l e t e
else {
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yStart = 493−350;
yEnd = 493−150;

}

// Searches f o r b r i g h t e s t po in t in g iven search area
for ( int row = yStart ; row <= yEnd ; row++) {

for ( int column = xStart ; column <= xEnd ; column++) {
unsigned int p i x e l Co l o r = f i l e P i x e l D a t a [ row ] [ column ] ;

i f ( p i x e lC o l o r > maxPixel ) {
maxPixel = p ix e l Co l o r ;
xMax = column ;
yMax = row ;

lastX = xMax ;
lastY = yMax ;

}
}

}
}

void BitmapDriver : : CreateCopy (unsigned int ∗header , unsigned int ∗ co lorTable ,
unsigned int ∗∗ pixelData , std : : s t r i n g fi leName ,
double virtualMassX , double virtualMassY ,
unsigned int pictureWidth , unsigned int pictureHe ight ,
unsigned int dotMarkerSize ) {

//Copies ana lysed bitmap with whi te dot p laced on tracked l o c a t i on o f drop

unsigned char nul lChar = ’ 0 ’ ; //Data to wr i t e to new bitmap f i l e
unsigned char ∗ pWri t eF i l e In fo = &nul lChar ;
FILE∗ pOutputBmpFile = NULL; //New bitmap f i l e

pOutputBmpFile = fopen ( f i leName . c s t r ( ) , ”wb” ) ;

f s e e k ( pOutputBmpFile , 0L , SEEK SET ) ;

//Write new bitmap f i l e header
for ( int i = 0 ; i < 54 ; i++) {

∗ pWri t eF i l e In fo = header [ i ] ;
f w r i t e ( pWriteFi l e In fo , s izeof (char ) , 1 , pOutputBmpFile ) ;

}

f s e e k ( pOutputBmpFile , 54L , SEEK SET ) ;

//Write new bitmap co l o r t a b l e
for ( int i = 0 ; i < 1024 ; i++) {

∗ pWri t eF i l e In fo = co lo rTab le [ i ] ;
f w r i t e ( pWriteFi l e In fo , s izeof (char ) , 1 , pOutputBmpFile ) ;

}

f s e e k ( pOutputBmpFile , 1078 , SEEK SET ) ;

//Write new bitmap p i x e l data
for (unsigned int row = 0 ; row < p i c tureHe ight ; row++) {

for (unsigned int column = 0 ; column < pictureWidth ; column++) {

i f ( column >= ( virtualMassX − dotMarkerSize ) &&
column <= ( virtualMassX + dotMarkerSize ) &&

row >= ( virtualMassY − dotMarkerSize ) &&
row <= ( virtualMassY + dotMarkerSize ) ) {

pixe lData [ row ] [ column ] = 255 ;
}

else i f ( p ixe lData [ row ] [ column ] <= 8) pixe lData [ row ] [ column ] = 0 ;
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∗ pWri t eF i l e In fo = pixe lData [ row ] [ column ] ;
f w r i t e ( pWriteFi l e In fo , s izeof (char ) , 1 , pOutputBmpFile ) ;

}
}
pWri t eF i l e In fo = 0 ;

f c l o s e ( pOutputBmpFile ) ;
}

void BitmapDriver : : FindDropCenter (unsigned int xMax , unsigned int yMax , int dropSize ,
double &virtualMassX , double &virtualMassY ,
unsigned int ∗∗ pixelData , double pictureWidth ,
double p i c tureHe ight ) {

// Ca l cu l a t e s v i r t u a l center o f mass where whi te = mass .
//Location s to red in virtualMassX , virtualMassY

double intens itySum = 0 . 0 ;

virtualMassX = 0 . 0 ;
virtualMassY = 0 . 0 ;

for ( int y = −dropSize ; y <= dropSize ; y++) {
for ( int x = −dropSize ; x <= dropSize ; x++) {

i f (yMax − y > 0 &&
yMax + y < p i c tureHe ight &&
xMax − x > 0 &&
xMax + x < pictureWidth ) {

//Formula :SUM( color−t a b l e−va lue ∗pix−coordinate−of−po in t )
// / SUM( color−t a b l e−va lue ) .

//Numerator
virtualMassX += pixe lData [ yMax + y ] [ xMax + x ] ∗ (xMax + x ) ;
virtualMassY += pixe lData [ yMax + y ] [ xMax + x ] ∗ (yMax + y ) ;

//Denominator
intens itySum += pixe lData [ yMax + y ] [ xMax + x ] ;

}
}

}

virtualMassX = virtualMassX / intens itySum ;
virtualMassY = virtualMassY / intens itySum ;

}



185

C.2 BitmapDriver.h

/∗
BitmapDriver . h
Created by Adam Li f

See BitmapDriver . cpp fo r more informat ion
∗/

#ifndef BITMAPDRIVER H
#define BITMAPDRIVER H

class BitmapDriver {

public :
BitmapDriver ( ) ;
void GetInfo (FILE ∗pInputImage , unsigned int ∗ f i l e H e a d e r I n f o ,

unsigned int ∗ f i l e C o l o r T a b l e ) ;
void GetPixelData (FILE ∗pInputImage , unsigned int pictureWidth ,

unsigned int pictureHe ight ,
unsigned int ∗∗ f i l e P i x e l D a t a ) ;

void FindDropMax (unsigned int ∗∗ pixelData , int pictureWidth , int pictureHe ight ,
unsigned int &xMax , unsigned int &yMax , unsigned int &lastX ,
unsigned int &lastY , int searchAreaS ize ) ;

void CreateCopy (unsigned int ∗header , unsigned int ∗ co lorTable ,
unsigned int ∗∗ pixelData , std : : s t r i n g fi leName ,
double virtualMassX , double virtualMassY ,
unsigned int pictureWidth , unsigned int pictureHe ight ,
unsigned int dotMarkerSize ) ;

void FindDropCenter (unsigned int xMax , unsigned int yMax , int dropSize ,
double &virtualMassX , double &virtualMassY ,
unsigned int ∗∗ pixelData , double pictureWidth ,
double p i c tureHe ight ) ;

} ;
#endif
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C.3 Oil Droplet Analyzer 3.1.cpp

/∗
Oil Drop le t Analyser
Created by Adam Li f
Un ive r s i t y o f Nebraska−Lincoln
Department o f Physics and Astronomy

Last Updated − August 15 , 2012

Analyses a s e r i e s o f 8− b i t bitmap ( . bmp) p i c t u r e s f o l l ow i n g the t r a j e c t o r y o f a
b r i g h l y− l i t drop
Creates t e x t ( . t x t ) f i l e s o f each drop ’ s po s i t i on

Since t h i s program was des igned fo r i n t e r na l use , the program catches many ,
but not a l l e r ror s .
Most e r ror s not caught are user−input errors , such as en te r ing a l e t t e r
in s t ead o f a number .

For er ror s t ha t are c l e a r l y not do to user input , a qu ick examination o f the
t e x t f i l e s crea ted by the program w i l l o f t en show the i s s u e .
I f the program s tops be f o r e f i n i s h i n g ana ly s i s , l ook ing through the t e x t f i l e s
w i l l show which one was the i s sue , and the corresponding p i c t u r e f i l e s can be
examined , which w i l l u s ua l l y r e v ea l the i s s u e with l i t t l e d i f f i c u l t y

∗/

//Avoid Visua l Studio unsafe func t i on warnings
#define CRT SECURE NO WARNINGS

#include <iostream>
#include <fstream>
#include <vector>
#include <sstream>
#include <d i r e c t . h>
#include <Windows . h>

#include ” TextFi l eDr iver . h”
#include ”BitmapDriver . h”

using namespace std ;

int main ( ) {
/∗
The p i c t u r e s to ana lyse shou ld be kept in d i r e c t o r i e s f o l l ow i n g t h i s naming
convent ion :

The program shou ld be in the d i r e c t o r y conta in ing a l i s t o f d i r e c t o r i e s named
PRIMARY FILEX
and each PRIMARY FILE may contain mu l t i p l e SECONDARY FILEX d i r e c t o r i e s f u l l o f
p i c ture s , r ep l a c in g the names accord ing l y where X = an incrementa l number
∗/

//These shou ld be l e f t a lone
//Pic ture type , program cur r en t l y works f o r . bmp only
const char ∗EXTENSION = ” .bmp” ;
//Writes copy o f a l l p o s i t i on t e x t f i l e s to t h i s d i r e c t o r y
const char ∗TXTFILE DIR = ”ALL TXT” ;

TextF i l eDr iver t ex tDr ive r ;
t ex tDr ive r . C r e a t e S e t t i n g s F i l e ( ) ;

//Load program s e t t i n g s from SETTINGS. t x t
vector<s t r i ng> s e t t i n g s ;
t ex tDr ive r . ReadSet t ingsF i l e ( s e t t i n g s ) ;

bool readSucces s = true ;
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//Checks f o r empty s e t t i n g s
for (unsigned int s e t = 0 ; s e t < s e t t i n g s . s i z e ( ) ; s e t++) {

i f ( s e t t i n g s . at ( s e t ) . l ength ( ) < 1) readSuccess = fa l se ;
}

i f ( ! r eadSuccess ) {
cout << ” Error : Unable to read SETTINGS. txt \nPress Enter to e x i t ” ;
getchar ( ) ;
return 0 ;

}
//Outer d i r e c t o r i e s
const char ∗OUTER FILE = s e t t i n g s . at ( 1 5 ) . c s t r ( ) ;
//Main d i r e c t o r i e s
const char ∗PRIMARY FILE = s e t t i n g s . at ( 1 2 ) . c s t r ( ) ;
//Sub−d i r e c t o r i e s
const char ∗SECONDARY FILE = s e t t i n g s . at ( 1 3 ) . c s t r ( ) ;

// Information about the s l i t , used f o r var ious t e s t s and c a l c u l a t i o n s
double s l i t S l o p e = ( stod ( s e t t i n g s . at ( 9 ) ) − stod ( s e t t i n g s . at ( 7 ) ) ) /

( stod ( s e t t i n g s . at ( 8 ) ) − ( stod ( s e t t i n g s . at ( 6 ) ) ) ) ;
double s l i t Y I n t e r c e p t = s t o i ( s e t t i n g s . at ( 7 ) ) − s l i t S l o p e ∗ s t o i ( s e t t i n g s . at ( 6 ) ) ;

double s l i tWidth = s q r t ( ( pow ( ( stod ( s e t t i n g s . at ( 9 ) ) − stod ( s e t t i n g s . at ( 7 ) ) ) , 2 ) ) +
(pow ( ( stod ( s e t t i n g s . at ( 8 ) ) − stod ( s e t t i n g s . at ( 6 ) ) ) , 2 ) ) ) ;

double sl itMidPtX = ( s t o i ( s e t t i n g s . at ( 6 ) ) + s t o i ( s e t t i n g s . at ( 8 ) ) ) / 2 . 0 ;
double sl itMidPtY = ( s t o i ( s e t t i n g s . at ( 7 ) ) + s t o i ( s e t t i n g s . at ( 9 ) ) ) / 2 . 0 ;

cout << ” Oi l Droplet Ana lys i s Program\n\ nF i r s t f i l e : \n” + s e t t i n g s . at ( 1 1 ) ;

//The f i r s t p i c t u r e to s t a r t ana ly s ing from in each sub−d i r e c t o r y
s t r i n g startFi leName ;
g e t l i n e ( cin , startFi leName ) ;
unsigned int startFi leNumber = s t o i ( startFi leName ) ;

startFi leName = s e t t i n g s . at (11) + startFi leName ;
startFi leName = textDr ive r . Trim ( startFi leName ) ;

// I f f i l e ex t ens ion not s p e c i f i e d by user
i f ( startFi leName . subs t r ( startFi leName . l ength ( ) − 4 , 4) != EXTENSION) {

startFi leName . append (EXTENSION) ;
}

cout << ”\nLast f i l e : \n” + s e t t i n g s . at ( 1 1 ) ;

//Last p i c t u r e to ana lyse from in each sub−d i r e c t o r y
s t r i n g endFileName ;
g e t l i n e ( cin , endFileName ) ;

unsigned int endFileNumber = s t o i ( endFileName ) ;

i f ( endFileNumber < startFi leNumber ) {
cout << ”\ n I n co r r e c t range \nPress Enter to e x i t ” ;
getchar ( ) ;
return 0 ;

}

//User−entered s t a r t i n g and ending main / sub−d i r e c t o r i e s
s t r i n g numberInput ;

cout << ”\ nStart at ” << OUTER FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
unsigned int startPos it ionNumber = s t o i ( numberInput ) ;

cout << ”\nEnd at ” << OUTER FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
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unsigned int endPositionNumber = s t o i ( numberInput ) ;

cout << ”\ nStart at ” << PRIMARY FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
unsigned int startDropNumber = s t o i ( numberInput ) ;

cout << ”\nEnd at ” << PRIMARY FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
unsigned int endDropNumber = s t o i ( numberInput ) ;

cout << ”\ nStart at ” << SECONDARY FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
unsigned int tra jectoryStartNumber = s t o i ( numberInput ) ;

cout << ”\nEnd at ” << SECONDARY FILE << ” ” ;
g e t l i n e ( cin , numberInput ) ;
unsigned int trajectoryEndNumber = s t o i ( numberInput ) ;

i f ( endDropNumber < startDropNumber | |
trajectoryEndNumber < tra jectoryStartNumber ) {
cout << ”\ n I n co r r e c t range \nPress Enter to e x i t ” ;
getchar ( ) ;
return 0 ;

}

//Prompt c rea t i on o f a dd i t i ona l p i c t u r e s with marker on drop l o ca t i on
//Note : S e l e c t i on o f t h i s cho ice causes s i g n i f i c a n t increase in runtime
cout << ”\nCreate ” << EXTENSION << ” p i c t u r e s ( y/n) ” ;
g e t l i n e ( cin , numberInput ) ;
char yesOrNo = numberInput . at ( 0 ) ;

boolean createBitmaps = fa l se ;
i f ( yesOrNo == ’ y ’ | | yesOrNo == ’Y ’ ) createBitmaps = true ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// Data Re t r i e va l

cout << ”\nAnalysing . P i c ture s i z e ” << s e t t i n g s . at (0 ) << ” x ”
<< s e t t i n g s . at (1 ) << endl ;

t ex tDr ive r . CheckDirectory (TXTFILE DIR ) ;

double percentCompleted = 0 ;
cout . p r e c i s i o n ( 0 ) ;
cout << ”Completed : ” << f i x e d << percentCompleted << ”%\r ” ;
//Writes the l o ca t ed drop po s i t i on fo r each p i c t u r e to t e x t f i l e s in the
//TEXTFILE DIR d i r e c t o r y
ofstream masterF i l eWri te r ;

for (unsigned int outer = startPos it ionNumber ; outer <= endPositionNumber ; outer++) {
s t r i n g currentOuter = textDr ive r . i t o s ( outer ) ;

//Analyses each drop , w i l l s k i p drops t ha t do not e x i s t
for (unsigned int x = startDropNumber ; x <= endDropNumber ; x++){

s t r i n g c a r t e s i a n F i l e ;
s t r i n g currentDrop = textDr ive r . i t o s ( x ) ;
//Both used to search fo r next drop based on po s i t i on o f prev ious one

unsigned int lastX = 0 ;
unsigned int lastY = 0 ;

//Analyses each t r a j e c t o r y , w i l l s k i p t r a j e c t o r i e s t ha t do not e x i s t
for (unsigned int y = trajectoryStartNumber ;

y <= trajectoryEndNumber ; y++) {
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// P laceho lder s t ha t shor ten f i l e l o c a t i on s
s t r i n g cur rentTra j = textDr ive r . i t o s ( y ) ;
s t r i n g dropTraj = currentOuter + ” . ” +
currentDrop + ” . ” + currentTra j ;
s t r i n g preDi r ec t = OUTER FILE + currentOuter + ”\\” +
PRIMARY FILE + currentDrop + ”\\” + SECONDARY FILE + currentTra j ;
s t r i n g d i r e c t o r y = preDi r ec t + ”\\” ;

lastX = 0 ;
lastY = 0 ;

c a r t e s i a n F i l e = ( s t r i n g ) TXTFILE DIR +
”\\” + dropTraj + ” . txt ” ;

//Checks i f d i r e c t o r y e x i s t s
WIN32 FIND DATA d i r I n f o = {0} ;
HANDLE hFind = F i n d F i r s t F i l e ( p reDi r ec t . c s t r ( ) , &d i r I n f o ) ;

// I f d i r e c t o r y e x i s t s
i f ( hFind != INVALID HANDLE VALUE) {

//Holds the p i x e l va lue s f o r each p i c t u r e
unsigned int ∗∗ pixe lData =
new unsigned int ∗ [ s t o i ( s e t t i n g s . at ( 1 ) ) ] ;
for ( int i = 0 ; i < s t o i ( s e t t i n g s . at ( 1 ) ) ; i++) {
pixe lData [ i ] =
new unsigned int [ s t o i ( s e t t i n g s . at ( 0 ) ) ] ;
}

masterF i l eWri te r . open ( c a r t e s i a n F i l e ) ;
s t r i n g f i leName = startFi leName ;

//Analyses each p ic ture , w i l l s k i p p i c t u r e s
// tha t do not e x i s t
for (unsigned int z = startFi leNumber ;
z <= endFileNumber ; z++) {

/∗
For each p ic ture , the program runs through i t to f i nd the b r i g h t e s t po in t
(xMax , yMax ) .
I f the f i r s t p i c t u r e o f a t r a j e c t o r y , searches the en t i r e p ic ture ,
o therwi se searches a smal l area based on the l a s t l o c a t i on .
virtualMassX and virtualMassY become the ” true ” l o c a t i on o f the drop by
us ing an a lgor i thm to e f f e c t i v e l y c a l c u l a t e a center o f mass , where
co l o r = mass , which i s r e f e r r e d to as the ” v i r t u a l center o f mass”
∗/

//The current image to ana lyse
FILE ∗pInputImage = 0 ;
//See BitmapDriver . cpp fo r informat ion
// about bitmap f i l e s
BitmapDriver bitmap ;

unsigned int ∗bitmapHeader = 0 ;
unsigned int ∗bitmapColorTable = 0 ;

// I f the bitmap f i l e e x i s t s
//and i s s u c e s s f u l l y opened
i f ( ( pInputImage =
fopen ( ( d i r e c t o r y + fi leName ) . c s t r ( ) ,
” rb” ) ) != 0) {

bitmapHeader = 0 ;
bitmapColorTable = 0 ;

//The l o ca t i on o f the b r i g h t e s t
// spot in the p i c t u r e
unsigned int xMax = 0 ;
unsigned int yMax = 0 ;
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//Location o f the v i r t u a l
// center o f mass
double virtualMassX = 0 ;
double virtualMassY = 0 ;

//Gets a l l necessary informat ion
//from the p i c t u r e
i f ( createBitmaps ) bitmap . GetInfo (
pInputImage , bitmapHeader ,
bitmapColorTable ) ;
bitmap . GetPixelData ( pInputImage ,
s t o i ( s e t t i n g s . at ( 0 ) ) , s t o i ( s e t t i n g s . at ( 1 ) ) ,
p ixe lData ) ;
f c l o s e ( pInputImage ) ;

// Ca l cu l a t e s drop l o c a t i on and
// wr i t e s to t e x t f i l e
bitmap . FindDropMax ( pixelData ,
s t o i ( s e t t i n g s . at ( 0 ) ) ,
s t o i ( s e t t i n g s . at ( 1 ) ) ,
xMax , yMax , lastX , lastY , 8 ) ;
bitmap . FindDropCenter (xMax , yMax ,
s t o i ( s e t t i n g s . at ( 3 ) ) ,
virtualMassX , virtualMassY , pixelData ,
s t o i ( s e t t i n g s . at ( 0 ) ) , s t o i ( s e t t i n g s . at ( 1 ) ) ) ;

t ex tDr ive r . WriteDropPosit ion (
virtualMassX , virtualMassY ,
masterF i l eWri te r ) ;

i f ( createBitmaps )
bitmap . CreateCopy ( bitmapHeader ,
bitmapColorTable , pixelData , f i leName ,
virtualMassX , virtualMassY ,
s t o i ( s e t t i n g s . at ( 0 ) ) , s t o i ( s e t t i n g s . at ( 1 ) ) ,
s t o i ( s e t t i n g s . at ( 2 ) ) ) ;

// Sets up the name of the next
// p i c t u r e to ana lyse
f i leName =
textDr ive r . IncrementFi l e (
f i leName ,
s e t t i n g s . at ( 1 1 ) . at ( s e t t i n g s . at ( 1 1 ) . l ength ( ) − 1 ) ) ;

} //end fopen i f
} //end z loop

for ( int i = 0 ; i < s t o i ( s e t t i n g s . at ( 1 ) ) ; i++) {
delete ( p ixe lData [ i ] ) ;
}
delete ( p ixe lData ) ;

masterF i l eWri te r . c l o s e ( ) ;
} //end h f ind i f

// Ca l cu l a t e s and d i s p l a y s the progres s o f ana l y s i s
int t r a j e c t F i l e C ou n t = (
trajectoryEndNumber − tra jectoryStartNumber + 1) ∗
( endDropNumber − startDropNumber + 1) ∗
( endPositionNumber − startPos it ionNumber + 1 ) ;
percentCompleted += 100.0 / (double ) ( t r a j e c t F i l e Co u n t ) ;

cout << ”Completed : ”<<f i xed<< percentCompleted<<”%\r ” ;
cout . f l u s h ( ) ;

} //end y loop
} //end x loop

} //end outer loop
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cout << ”\n\ nAnalys i s complete \nPress Enter to Quit\n” ;
getchar ( ) ;

}
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C.4 TextFileDriver.cpp

/∗
TextFi l eDr iver . cpp
Created by Adam Li f

Contains a s e r i e s o f f unc t i ons f o r f i l e I /O and s t r i n g manipulat ion r e l a t e d to
ana ly s ing Oi l Drople t p i c t u r e s

∗/

//Avoid Microso f t unsafe func t i on warnings
#define CRT SECURE NO WARNINGS

#include <iostream>
#include <fstream>
#include <vector>
#include <sstream>
#include <Windows . h>
#include <d i r e c t . h>

#include ” TextFi l eDr iver . h”

using namespace std ;

TextF i l eDr iver : : TextF i l eDr iver ( ) {}

void TextFi l eDr iver : : C r e a t e S e t t i n g s F i l e ( ) {
//Creates f i l e ”SETTINGS. t x t ” with savab l e parameters i f does not a l ready e x i s t

/∗
Parameters :
0 PICTURE WIDTH − Bitmap width
1 PICTURE HEIGHT − Bitmap he i gh t
2 DOT MARKER SIZE − Si ze o f drop po s i t i on marker ( P i x e l s )
3 DOT SIZE − Distance in x/y d i r e c t i on from maximum point to c a l c u l a t e drop

po s i t i on ( P i x e l s )
4 START INITIAL − Fi r s t p i c t u r e to s t a r t l i n e 1 c a l c u l a t i o n s ( deprec ia t ed )
5 END INITIAL − Last p i c t u r e to end l i n e 1 c a l c u l a t i o n s ( deprec ia t ed )
6−9 SLIT POINT1X − SLIT POINT2Y − X/Y coord ina te s ( from bottom l e f t ) o f 2

oppos i t e po in t s on s l i t
10 SLIT WIDTHS − Number o f s l i t wid ths to c a l c u l a t e l i n e 2 at
11 FILE BASE NAME − Bitmap f i l ename exc lud ing incrementa l numbers
12 PRIMARY DIR − The name of the main p i c t u r e d i r e c t o r y
13 SECONDARY DIR − The name of the p i c t u r e s u b d i r e c t o r i e s
14 START SLIT WIDTHS − The number o f s l i t wid ths away to measure the f i r s t

ang le from
15 OUTERFOLDERNAME − The outer f o l d e r ho ld ing number 12 and 13

NOTE: Missing parameters w i l l cause crash , not f i x e d to a l l ow easy
add i t i on s o f new parameters

Adding add i t i ona l parameters to f i l e , use format :
”<< \nPARAMETERNAME = va lue ”

The reader l ook s f o r ”=” and w i l l cons ider only l i n e s with i t to have a
va lue

∗/
f s t ream s e t t i n g s F i l e W r i t e r ;
s e t t i n g s F i l e W r i t e r . open ( ”SETTINGS. txt ” , i o s : : in ) ;

// I f s e t t i n g s f i l e does not e x i s t , c r ea t e s and wr i t e s to i t
i f ( ! s e t t i n g s F i l e W r i t e r . i s o pe n ( ) ) {

s e t t i n g s F i l e W r i t e r . c l o s e ( ) ;
s e t t i n g s F i l e W r i t e r . open ( ”SETTINGS. txt ” , i o s : : out ) ;

s e t t i n g s F i l e W r i t e r
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<< ” Oi l Droplet Analyser S e t t i n g s \n
\nNote : Do not e d i t anything in t h i s document other than the
numbers . ”

<< ”To r e s e t the numbers to d e f a u l t s e t t i n g s , d e l e t e t h i s f i l e .\n”
<< ”\nPICTURE WIDTH = 656”
<< ”\nPICTURE HEIGHT = 494”
<< ”\nDOT MARKER SIZE = 3”
<< ”\nDOT SIZE = 10”
<< ”\nSTART INITIAL = 0”
<< ”\nEND INITIAL = 20”
<< ”\nSLIT POINT1X = 0”
<< ”\nSLIT POINT1Y = 0”
<< ”\nSLIT POINT2X = 0”
<< ”\nSLIT POINT2Y = 0”
<< ”\nSLIT WIDTHS = 2”
<< ”\nFILE BASE NAME = Camera black ”
<< ”\nPRIMARY DIR = drop”
<< ”\nSECONDARY DIR = t r a j ”
<< ”\nSTART SLIT WIDTHS = 2”
<< ”\nOUTER FOLDER NAME = Pos i t i on ” ;

s e t t i n g s F i l e W r i t e r . f l u s h ( ) ;
s e t t i n g s F i l e W r i t e r . c l o s e ( ) ;

}
else s e t t i n g s F i l e W r i t e r . c l o s e ( ) ;

}

void TextFi l eDr iver : : ReadSet t ingsF i l e ( vector<s t r i ng> &f i l e I n f o ) {
//Reads SETTINGS. t x t to ge t information , s t o r e s in f i l e I n f o
i f s t r e a m f i l e R e a d e r ;
vector<s t r i ng> f i l e ;

f i l e R e a d e r . open ( ”SETTINGS. txt ” ) ;

i f ( f i l e R e a d e r . i s o pe n ( ) ) {
//Reads en t i r e f i l e in to vec to r ” f i l e ”
while ( ! f i l e R e a d e r . e o f ( ) ) {

s t r i n g i n f o ;
g e t l i n e ( f i l eReade r , i n f o ) ;
f i l e . push back ( i n f o ) ;

}

// Pu l l s necessary informat ion from vec tor and s t o r e s in f i l e I n f o
for (unsigned int x = 0 ; x < f i l e . s i z e ( ) ; x++) {

for (unsigned int y = 0 ; y < f i l e [ x ] . l ength ( ) ; y++) {

i f ( f i l e [ x ] . at ( y ) == ’=’ ) {
//Adds eve ry th ing to the vec to r t ha t comes a f t e r

// ’= ’ , tr ims s t a r t /end whi tespace
int l ength = f i l e . at ( x ) . l ength ( ) −

f i l e . at ( x ) . f i n d f i r s t o f ( ’= ’ ) + 1 ;
s t r i n g f i l e In foNumber =

f i l e [ x ] . subs t r ( f i l e [ x ] . f i n d f i r s t o f ( ’= ’ ) +
1 , l ength ) ;

i f ( f i l e In foNumber . l ength ( ) > 0) {
f i l e In foNumber = Trim ( f i l e In foNumber ) ;
f i l e I n f o . push back ( f i l e In foNumber ) ;

}
}

}
}
f i l e R e a d e r . c l o s e ( ) ;

}



194

}

void TextFi l eDr iver : : WriteDropPosit ion (double virtualMassX , double virtualMassY ,
ofstream &f i l e W r i t e r ) {

//Writes x/y po s i t i o n s to a t e x t f i l e in format : xxx . xxx yyy . yyy
f i l e W r i t e r . p r e c i s i o n ( 3 ) ;

// Ca l cu l a t e s number o f spaces between numbers to proper l y a l l i g n in colums
unsigned int spaces = 6 ;
unsigned int vmxLength = i t o s ( f l o o r ( virtualMassX ) ) . l ength ( ) ;

spaces += 3 − vmxLength ;
i f ( spaces < 1) spaces = 1 ;

f i l e W r i t e r << f i x e d << virtualMassX ;

for (unsigned int x = 0 ; x < spaces ; x++) {
f i l e W r i t e r << ” ” ;

}

f i l e W r i t e r << virtualMassY << endl ;
f i l e W r i t e r . f l u s h ( ) ;

}

s t r i n g TextF i l eDr iver : : i t o s ( int integerNum ) {
//Converts i n t e g e r to a s t r i n g
s t r i ng s t r eam s s ;
s s << integerNum ;
return s s . s t r ( ) ;

}

s t r i n g TextF i l eDr iver : : Trim ( s t r i n g inputSt r ing ) {
//Returns o r i g i n a l s t r i n g with l ead ing and t r a i l i n g whi tespace removed
s i z e t found = inputSt r ing . f i n d l a s t n o t o f ( ’ ’ ) ;

i f ( found != s t r i n g : : npos ) {
int l ength = inputSt r ing . f i n d l a s t n o t o f ( ’ ’ ) −

i nputSt r ing . f i n d f i r s t n o t o f ( ’ ’ ) + 1 ;
return i nputSt r ing . subs t r ( inputSt r ing . f i n d f i r s t n o t o f ( ’ ’ ) , l ength ) ;

}

else return ”” ;
}

s t r i n g TextF i l eDr iver : : IncrementFi l e ( s t r i n g fi leName , char escapeChar ) {
// Increments the incrementa l f i l e numbers by 1

s t r i n g f i leBaseName = fi leName . subs t r (0 , f i leName . f i n d l a s t o f ( escapeChar ,
s t r i n g : : npos ) + 1 ) ;

s t r i n g f i l eNumberStr ing = fi leName . subs t r ( f i leName . f i n d l a s t o f ( escapeChar ) + 1 ,
f i leName . l ength ( ) − 1 ) ;

for ( int a = f i l eNumberStr ing . l ength ( ) − 2 ; a >= 0 ; a−−) {
i f ( ! i s d i g i t ( f i l eNumberStr ing . at ( a ) ) ) f i l eNumberStr ing . e r a s e ( a ) ;

}

s t r i n g z e r o S t r i n g = ”” ;
while ( f i l eNumberStr ing . at (0 ) == ’ 0 ’ && f i l eNumberStr ing . l ength ( ) > 1) {

z e r o S t r i n g . append ( ”0” ) ;
f i l eNumberStr ing . e r a s e (0 , 1 ) ;

}

unsigned int f i leNumber = s t o i ( f i l eNumberStr ing ) ;
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f i leNumber++;

// I f the f i l e ’ s number i s a mu l t i p l e o f 10 , caus ing an ex t ra d i g i t , t h i s d e l e t e s
//a 0

for (double x = (double ) f i leNumber ; x >= 10 ; x ) {
x = x / 10 ;

i f ( x == 1) z e r o S t r i n g . e r a s e ( 0 , 1 ) ;
}

f i l eNumberStr ing = i t o s ( f i leNumber ) ;

return f i leBaseName + z e r o S t r i n g + f i l eNumberStr ing + ” .bmp” ;
}

void TextFi l eDr iver : : CheckDirectory ( s t r i n g d i r e c t o r y ) {
//Creates d i r e c t o r y i f nonex i s tan t
WIN32 FIND DATA d i r I n f o = {0} ;

i f ( F i n d F i r s t F i l e ( d i r e c t o r y . c s t r ( ) , &d i r I n f o ) == INVALID HANDLE VALUE){
mkdir ( d i r e c t o r y . c s t r ( ) ) ;

}
}
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C.5 TextFileDriver.h

/∗
TextFi l eDr iver . h
Created by Adam Li f

See TextFi l eDr iver . cpp fo r more informat ion
∗/

#include <vector>

#ifndef TEXTFILEDRIVER H
#define TEXTFILEDRIVER H

class TextFi l eDr iver {

public :
TextF i l eDr iver ( ) ;

void C r e a t e S e t t i n g s F i l e ( ) ;
void ReadSet t ingsF i l e ( std : : vector<std : : s t r i ng> &);
void WriteDropPosit ion (double , double , s td : : o f s tream &);
std : : s t r i n g i t o s ( int ) ;
s td : : s t r i n g Trim ( std : : s t r i n g ) ;
s td : : s t r i n g IncrementFi l e ( std : : s t r i ng , char ) ;
void CheckDirectory ( std : : s t r i n g f i l e ) ;

} ;

#endif
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Appendix D

Python Analysis Scripts

D.1 Trajectory List Management

import numpy as np
import matp lo t l i b
import os . path
matp lo t l i b . use ( ’Agg ’ )
from matp lo t l i b . pyplot import ∗

fname = ’ 0 Drop − Traj L i s t . txt ’
outfname = ’ T r a j e c t o r y L i s t A l l . txt ’
endname = ’ . txt ’

# Some of the t r a j e c t o r i e s g i v e gobb ledegook , t h i s i s a measure to save on
# pu l l i n g them out l a t e r .
s k i p l i n e s = [ ’ 1 . 1 . 4 ’ , ’ 3 . 1 . 3 ’ , ’ 3 . 3 . 1 9 ’ , ’ 3 . 3 . 2 2 ’ , ’ 4 . 3 . 1 ’ , ’ 4 . 3 . 1 1 ’ , ’ 5 . 1 . 2 3 ’ , ’ 5 . 1 . 3 0 ’ , ’ 6 . 4 . 2 ’ ,
’ 7 . 1 . 1 6 ’ , ’ 7 . 1 . 1 8 ’ , ’ 8 . 2 . 7 ’ , ’ 8 . 2 . 2 6 ’ , ’ 9 . 2 . 1 1 ’ , ’ 1 0 . 3 . 1 1 ’ , ’ 1 0 . 3 . 2 0 ’ , ’ 1 1 . 1 . 1 8 ’ , ’ 1 3 . 3 . 4 ’ ,
’ 1 3 . 3 . 7 ’ , ’ 1 4 . 1 . 2 ’ , ’ 1 4 . 1 . 3 ’ , ’ 1 4 . 1 . 4 ’ , ’ 1 4 . 1 . 5 ’ , ’ 1 4 . 1 . 6 ’ , ’ 1 4 . 1 . 8 ’ , ’ 1 4 . 1 . 1 0 ’ , ’ 1 4 . 1 . 1 5 ’ ,
’ 1 4 . 1 . 1 6 ’ , ’ 1 4 . 3 . 1 ’ , ’ 1 4 . 3 . 5 ’ , ’ 1 4 . 4 . 1 ’ , ’ 1 8 . 1 . 2 ’ , ’ 1 8 . 5 . 4 ’ , ’ 1 8 . 5 . 1 6 ’ , ’ 1 9 . 1 . 1 1 ’ , ’ 2 0 . 2 . 1 2 ’ ,
’ 2 0 . 4 . 2 ’ , ’ 2 1 . 1 . 1 1 ’ , ’ 2 2 . 1 . 1 1 ’ ]
with open( fname , ’ r ’ ) as f , open( outfname , ’w ’ ) as g :

for cnt , l i n e in enumerate( f , 1 ) :
basename = l i n e . r s t r i p ( ’ \n ’ )
i f basename == ’− ’ :

pass
e l i f basename in s k i p l i n e s :

print ( ’ Tra j ec tory {} was skipped ’ . format ( l i n e . r s t r i p ( ’ \n ’ ) ) )
pass

else :
l i n e s t r = basename+endname+’ \n ’
g . wr i t e ( l i n e s t r )

print ( ’ There were {} t o t a l l i n e s ’ . format ( cnt ) )

print ”Done ! ”
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D.2 Measuring Trajectory Deflection Angles

import numpy as np
import matp lo t l i b
import os . path
matp lo t l i b . use ( ’Agg ’ )
from matp lo t l i b . pyplot import ∗

fname = ’ T r a j e c t o r y L i s t A l l . txt ’
outfname = ’ TrajListOutAnalyzed . txt ’
out2fname = ’ TrajSkipped . txt ’
out3fname = ’ Out angles . txt ’
out4fname = ’ O u t a n g l e s r e g r e s s i o n . txt ’
out5fname = ’ Out angles compar ison . txt ’

# va lue s o f p i x e l s f o r s l i t s f o r the data s e t
s l i t r i g h t x 1 = 261 .0
s l i t r i g h t y 1 = 287 .0
s l i t l e f t x 1 = 334 .0
s l i t l e f t y 1 = 291 .0
numsl i twidths = 1.306

num l ines = 0
with open( fname ) as f :

for cnt , l i n e in enumerate( f , 1 ) :
pass

num l ines = cnt
print ”New num lines : ” , num l ines

# outang learray = np . zeros ( [ 1 , num lines ] )
# reg r e s s i onang l e = np . zeros ( [ 1 , num lines ] )
# comparison = np . zeros ( [ 1 , num lines ] )

# Note to s e l f : ’ r ’ i s f o r read only , ’ a ’ i s f o r append new data to the end o f the f i l e
print ”Opening the f i l e s ! ”
with open( fname , ’ r ’ ) as f , open( outfname , ’w ’ ) as g , open( out2fname , ’w ’ ) as h ,
open( out3fname , ’w ’ ) as q , open( out4fname , ’w ’ ) as r , open( out5fname , ’w ’ ) as s :

for cnt , l i n e in enumerate( f , 1 ) :
basename = l i n e . r s t r i p ( ’ \n ’ )
i f not os . path . i s f i l e ( basename ) :

pass
else :

# here , can a c t u a l l y make cond i t i on with the l i n e i t e r a b l e .
# i f l i n e < ’ 1 . 1 . 2 . t x t \n ’ : i s e qu i v a l en t to ( and works j u s t as we l l as )
# i f cnt < 2 :
i f cnt < num l ines +1:

s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1

e l i f cnt == num lines +1:
s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1
print ( ” This i s where we stop : {} {}” . format ( cnt , l i n e ) )
pass

else :
pass

s l i t m i d x = ( s l i t r i g h t x + s l i t l e f t x ) / 2 . 0
s l i t m i d y = ( s l i t r i g h t y + s l i t l e f t y ) / 2 . 0
s l i t s l o p e = ( s l i t l e f t y − s l i t r i g h t y ) / ( s l i t l e f t x − s l i t r i g h t x )
s l i t a n g l e = np . arctan ( s l i t s l o p e )
r o t a n g l e = − s l i t a n g l e + np . p i / 2 .0
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s l i t r i g h t x p r i m e = s l i t r i g h t x ∗np . cos ( r o t a n g l e ) − s l i t r i g h t y ∗np . s i n ( r o t a n g l e )
s l i t r i g h t y p r i m e = s l i t r i g h t x ∗np . s i n ( r o t a n g l e ) + s l i t r i g h t y ∗np . cos ( r o t a n g l e )

s l i t l e f t x p r i m e = s l i t l e f t x ∗np . cos ( r o t a n g l e ) − s l i t l e f t y ∗np . s i n ( r o t a n g l e )
s l i t l e f t y p r i m e = s l i t l e f t x ∗np . s i n ( r o t a n g l e ) + s l i t l e f t y ∗np . cos ( r o t a n g l e )
s l i t w i d t h = s l i t l e f t y p r i m e − s l i t r i g h t y p r i m e

s l i tmidxpr ime = s l i t m i d x ∗np . cos ( r o t a n g l e ) − s l i t m i d y ∗np . s i n ( r o t a n g l e )
s l i tmidypr ime = s l i t m i d x ∗np . s i n ( r o t a n g l e ) + s l i t m i d y ∗np . cos ( r o t a n g l e )

data = np . l oadtx t ( basename , unpack=True )

N = np . arange ( len ( data [ 0 ] ) )
r o t da ta = np . z e r o s ( [ 2 , len ( data [ 0 ] ) ] )
r e f d a t a = np . z e r o s ( [ 2 , len ( data [ 0 ] ) ] )

for j in N:
ro t da ta [ 0 , j ] = np . cos ( r o t a n g l e )∗ data [ 0 , j ] − np . s i n ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidxpr ime
ro t da ta [ 1 , j ] = np . s i n ( r o t a n g l e )∗ data [ 0 , j ] + np . cos ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidypr ime

screenx = s l i t w i d t h ∗ numsl i twidths
# pr in t ( ’ s l i t w i d t h i s {} ’ . format ( s l i t w i d t h ))
# pr in t ( ’ screenx i s {} ’ . format ( screenx ))
max points = 11 #choose an odd number f o r symmetry
max counts = max points − 1

for k in N:
# pr in t k
i f r o t da ta [ 0 , k ] < sc reenx :

pass
e l i f r o t da ta [ 0 , k ] >= screenx :

break
s t a r t i n d e x = k
# pr in t s t a r t i n d e x
# pr in t r o t da t a [0 , k ] , r o t da t a [1 , k ] , k
# pr in t l i n e

i f ( s t a r t i n d e x + max counts /2) < len ( data [ 0 ] ) − 1 :
# i f s t a r t i n d e x > 0 :

# g i s ’ TrajListOutAnalyzed . t x t ’
g . wr i t e ( l i n e )
numpoints = np . arange ( s t a r t i n d e x + max counts / 2 ,

s t a r t i n d e x − max counts / 2 − 1 , −1)
# pr in t numpoints
avg ang l e out = 0 .0
for n in numpoints :

de l tax = ro t da ta [ 0 , n ] − r o t da ta [ 0 , n−1]
de l tay = ro t da ta [ 1 , n ] − r o t da ta [ 1 , n−1]
ang l e out = np . arctan ( de l tay / de l tax ) ∗ 180 .0 / np . p i
avg ang l e out = avg ang l e out + ang l e out

avg ang l e out = avg ang l e out / max counts
q . wr i t e ( ’ { 0 : . 3 f } ’ . format ( avg ang l e out )+ ’ \n ’ )

#lea s t−squares method− y has to be an N−dimensional array , not 1xN
x vec to r = np . z e r o s ( [ 1 , max points ] )
y vec to r = np . z e r o s ( max points )

for j in numpoints :
x vec to r [ 0 , j−s t a r t i n d e x ] = ro t da ta [ 0 , j ]
y vec to r [ j−s t a r t i n d e x ] = ro t da ta [ 1 , j ]

A = np . vstack ( [ x vector , np . ones ( max points ) ] ) . T
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m, c = np . l i n a l g . l s t s q (A, y vec to r ) [ 0 ]

a n g l e d i f f = np . arctan (m) ∗ 180 .0 / np . p i
r . wr i t e ( ’ { 0 : . 3 f } ’ . format ( a n g l e d i f f )+ ’ \n ’ )

angle comp = avg ang l e out − a n g l e d i f f
s . wr i t e ( ’ { 0 : . 3 f } ’ . format ( angle comp)+ ’ \n ’ )

else :
h . wr i t e ( l i n e )
print ( ’ Tra jec tory {} was skipped ’ . format ( l i n e . r s t r i p ( ’ \n ’ ) ) )

print ’Done . ’
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D.3 Measuring Trajectory Incidence Angles

import numpy as np
import matp lo t l i b
import os . path
matp lo t l i b . use ( ’Agg ’ )
from matp lo t l i b . pyplot import ∗

# The purpose o f t h i s s c r i p t i s to measure the incoming ang l e s r e l a t i v e to the
# s l i t po ints , which in a data s e t may ro t a t e .
# The sta tements t ha t f o l l ow a l l ow fo r a ro t a t i on so tha t a complete data s e t
# w i l l be p l o t t e d on con s i s t en t axes .
fname = ’ TrajListOutAnalyzed . txt ’
out1fname = ’ Incoming ang les . txt ’
out2fname = ’ Incoming ang les compar i son . txt ’
out3fname = ’ I n c o m i n g a n g l e s r e g r e s s i o n . txt ’

# va lue s o f p i x e l s f o r s l i t s f o r the data s e t
s l i t r i g h t x 1 = 261 .0
s l i t r i g h t y 1 = 287 .0
s l i t l e f t x 1 = 334 .0
s l i t l e f t y 1 = 291 .0

num l ines = 0
with open( fname ) as f :

for cnt , l i n e in enumerate( f , 1 ) :
pass

num l ines = cnt
print ”New num lines : ” , num l ines

with open( fname , ’ r ’ ) as f , open( out1fname , ’w ’ ) as q , open( out2fname , ’w ’ ) as r ,
open( out3fname , ’w ’ ) as s :

for cnt , l i n e in enumerate( f , 1 ) :
basename = l i n e . r s t r i p ( ’ \n ’ )
i f not os . path . i s f i l e ( basename ) :

pass
else :

i f cnt < num l ines +1:
s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1

e l i f cnt == num lines +1:
s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1
print ( ” This i s where we stop : {} {}” . format ( cnt , l i n e ) )
pass

else :
pass

s l i t m i d x = ( s l i t r i g h t x + s l i t l e f t x ) / 2 . 0
s l i t m i d y = ( s l i t r i g h t y + s l i t l e f t y ) / 2 . 0
s l i t s l o p e = ( s l i t l e f t y − s l i t r i g h t y ) / ( s l i t l e f t x − s l i t r i g h t x )
s l i t a n g l e = np . arctan ( s l i t s l o p e )
r o t a n g l e = − s l i t a n g l e − np . p i / 2 .0

s l i t r i g h t x p r i m e = s l i t r i g h t x ∗np . cos ( r o t a n g l e ) − s l i t r i g h t y ∗np . s i n ( r o t a n g l e )
s l i t r i g h t y p r i m e = s l i t r i g h t x ∗ np . s i n ( r o t a n g l e ) + s l i t r i g h t y ∗ np . cos ( r o t a n g l e )

s l i t l e f t x p r i m e = s l i t l e f t x ∗np . cos ( r o t a n g l e ) − s l i t l e f t y ∗np . s i n ( r o t a n g l e )
s l i t l e f t y p r i m e = s l i t l e f t x ∗np . s i n ( r o t a n g l e ) + s l i t l e f t y ∗np . cos ( r o t a n g l e )

s l i tmidxpr ime = s l i t m i d x ∗np . cos ( r o t a n g l e ) − s l i t m i d y ∗np . s i n ( r o t a n g l e )
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s l i tmidypr ime = s l i t m i d x ∗np . s i n ( r o t a n g l e ) + s l i t m i d y ∗np . cos ( r o t a n g l e )

data = np . l oadtx t ( basename , unpack=True )

N = np . arange ( len ( data [ 0 ] ) )
r o t da ta = np . z e r o s ( [ 2 , len ( data [ 0 ] ) ] )
r e f d a t a = np . z e r o s ( [ 2 , len ( data [ 0 ] ) ] )

for j in N:
ro t da ta [ 0 , j ] = np . cos ( r o t a n g l e )∗ data [ 0 , j ] − np . s i n ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidxpr ime
ro t da ta [ 1 , j ] = np . s i n ( r o t a n g l e )∗ data [ 0 , j ] + np . cos ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidypr ime

max points = 10
max counts = max points − 1
#w i l l i nc lude max counts , e xc lude s zero
numpoints = np . arange ( max counts ,0 ,−1)
#w i l l i nc lude zero , e xc lude s max points va lue
indexcount = np . arange (0 , max points )

a v g a n g l e i n = 0 .0
for j in numpoints :

de l tax = ro t da ta [ 0 , j ] − r o t da ta [ 0 , j −1]
de l tay = ro t da ta [ 1 , j ] − r o t da ta [ 1 , j −1]
a n g l e i n = np . arctan ( de l tay / de l tax ) ∗180 .0 / np . p i
a v g a n g l e i n = a v g a n g l e i n + a n g l e i n

a v g a n g l e i n = a v g a n g l e i n / max counts
q . wr i t e ( ’ { 0 : . 3 f } ’ . format ( a v g a n g l e i n )+ ’ \n ’ )
# i f np . abs ( a v g ang l e i n ) > 20:

# g . wr i t e ( l i n e )
# h . wr i t e ( ’{0 : . 3 f } ’ . format ( a v g ang l e i n )+’\n ’)

# e l s e :
# pass

#### reg re s s i on method
x vec to r = np . z e r o s ( [ 1 , max points ] )
y vec to r = np . z e r o s ( max points )

for j in indexcount :
x vec to r [ 0 , j ] = ro t da ta [ 0 , j ]
y vec to r [ j ] = ro t da ta [ 1 , j ]

A = np . vstack ( [ x vector , np . ones ( max points ) ] ) . T
m, c = np . l i n a l g . l s t s q (A, y vec to r ) [ 0 ]
a n g l e d i f f = np . arctan (m) ∗ 180 .0 / np . p i
angle comp = a n g l e d i f f − a v g a n g l e i n

r . wr i t e ( ’ { 0 : . 3 f } ’ . format ( a n g l e d i f f )+ ’ \n ’ )
s . wr i t e ( ’ { 0 : . 3 f } ’ . format ( angle comp)+ ’ \n ’ )

print ’Done . ’
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D.4 Making Post-selection Cuts

from numpy import ∗
import matp lo t l i b
import l i n e c a c h e
import os . path
matp lo t l i b . use ( ’Agg ’ )
from matp lo t l i b . pyplot import ∗

# Rearranges f i l e s and names based on a cut in input ang le .
# Hopefu l ly , t h i s c l eans up a l l the o ther nonsense .
fname1 = ’ Incoming ang les . txt ’
fname2 = ’ TrajListOutanalyzed . txt ’
fname3 = ’ Out angles . txt ’

out1fname = ’ Incoming cuts . txt ’
out2fname = ’ Tra j cu t s . txt ’
out3fname = ’ Out cuts . txt ’

with open( fname1 , ’ r ’ ) as f1 ,open( fname2 , ’ r ’ ) as f2 , open( fname3 , ’ r ’ ) as f3 ,
open( out1fname , ’w ’ ) as of1 , open( out2fname , ’w ’ ) as of2 , open( out3fname , ’w ’ ) as o f3 :

for cnt , l i n e in enumerate( f1 , 1 ) :
i nang l e = f loat ( l i n e . r s t r i p ( ’ \n ’ ) )
i f np . abs ( i nang l e ) <= 2 . 0 0 :

o f1 . wr i t e ( l i n e c a c h e . g e t l i n e ( fname1 , cnt ) )
o f2 . wr i t e ( l i n e c a c h e . g e t l i n e ( fname2 , cnt ) )
o f3 . wr i t e ( l i n e c a c h e . g e t l i n e ( fname3 , cnt ) )

else :
pass
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D.5 Plotting Trajectories

from numpy import ∗
import matp lo t l i b
import l i n e c a c h e
import os . path
matp lo t l i b . use ( ’Agg ’ )
from matp lo t l i b . pyplot import ∗

# fname = ’ In com in g an g l e s l i s t . t x t ’
# fname = ’ Tra j e c t o r yL i s tA l l . t x t ’
# fname = ’ TrajSkipped . t x t ’
# fname = ’ TrajListOutAnalyzed . t x t ’
fname = ’ Tra j cu t s . txt ’

endname=’ . txt ’

cos = np . cos
s i n = np . s i n

# va lue s o f p i x e l s f o r s l i t s f o r the data s e t
s l i t r i g h t x 1 = 261 .0
s l i t r i g h t y 1 = 287 .0
s l i t l e f t x 1 = 334 .0
s l i t l e f t y 1 = 291 .0
numsl i twidths = 2 .0

with open( fname ) as f :
for cnt , l i n e in enumerate( f , 1 ) :

basename = l i n e . r s t r i p ( ’ \n ’ )
i f not os . path . i s f i l e ( basename ) :

pass

#data = l o a d t x t ( basename+endname , unpack=True )
else :

i f cnt < 1093 :
s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1

e l i f cnt == 1093 :
s l i t r i g h t x = s l i t r i g h t x 1
s l i t r i g h t y = s l i t r i g h t y 1
s l i t l e f t x = s l i t l e f t x 1
s l i t l e f t y = s l i t l e f t y 1
print ( ” This i s where we stop : {} {}” . format ( cnt , l i n e ) )
pass

else :
pass

s l i t m i d x = ( s l i t r i g h t x + s l i t l e f t x ) / 2 . 0
s l i t m i d y = ( s l i t r i g h t y + s l i t l e f t y ) / 2 . 0
s l i t s l o p e = ( s l i t l e f t y − s l i t r i g h t y ) / ( s l i t l e f t x − s l i t r i g h t x )
s l i t a n g l e = np . arctan ( s l i t s l o p e )
r o t a n g l e = − s l i t a n g l e + np . p i / 2 .0

s l i t r i g h t x p r i m e = s l i t r i g h t x ∗ cos ( r o t a n g l e ) − s l i t r i g h t y ∗ s i n ( r o t a n g l e )
s l i t r i g h t y p r i m e = s l i t r i g h t x ∗ s i n ( r o t a n g l e ) + s l i t r i g h t y ∗ cos ( r o t a n g l e )

s l i t l e f t x p r i m e = s l i t l e f t x ∗ cos ( r o t a n g l e ) − s l i t l e f t y ∗ s i n ( r o t a n g l e )
s l i t l e f t y p r i m e = s l i t l e f t x ∗ s i n ( r o t a n g l e ) + s l i t l e f t y ∗ cos ( r o t a n g l e )
s l i t w i d t h = s l i t l e f t y p r i m e − s l i t r i g h t y p r i m e
screenx = s l i t w i d t h ∗ numsl i twidths

s l i tmidxpr ime = s l i t m i d x ∗ cos ( r o t a n g l e ) − s l i t m i d y ∗ s i n ( r o t a n g l e )
s l i tmidypr ime = s l i t m i d x ∗ s i n ( r o t a n g l e ) + s l i t m i d y ∗ cos ( r o t a n g l e )
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data = np . l oadtx t ( basename , unpack=True )
data = loadtx t ( basename , unpack=True )

N = np . arange ( len ( data [ 0 ] ) )
r o t da ta = np . z e r o s ( [ 2 , len ( data [ 0 ] ) ] )
# re f d a t a = np . zeros ( [ 2 , l en ( data [ 0 ] ) ] )

for j in N:
ro t da ta [ 0 , j ] = cos ( r o t a n g l e )∗ data [ 0 , j ] − s i n ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidxpr ime
ro t da ta [ 1 , j ] = s i n ( r o t a n g l e )∗ data [ 0 , j ] + cos ( r o t a n g l e )∗ data [ 1 , j ]

− s l i tmidypr ime

p lo t ( r o t da ta [ 0 ] , r o t da ta [ 1 ] , ’ . k ’ , markeredgeco lor=’ black ’ , markers i ze =1.2 , alpha =0.4)

p l o t ( s l i t r i g h t x p r i m e − s l i tmidxpr ime , s l i t r i g h t y p r i m e − s l i tmidypr ime , ’ . r ’ , markers i ze = 2)
p l o t ( s l i t l e f t x p r i m e − s l i tmidxpr ime , s l i t l e f t y p r i m e − s l i tmidypr ime , ’ . b ’ , markers i ze = 2)
# p l o t ( screenx+ro t da t a [ 0 ]∗0 , r o t da t a [1] , ’− g ’)

Figure ( )

ylim (−160 ,160)
xlim (−200 ,300)

#Comment
axes ( ) . s e t a s p e c t ( ’ equal ’ , ’ datal im ’ )
# sa v e f i g ( fname . r s t r i p ( ’ . t x t ’)+ ’. png ’ , dpi=600)
# s a v e f i g ( fname . r s t r i p ( ’ . t x t ’)+ ’. eps ’ , dpi=600)

s a v e f i g ( fname . r s t r i p ( ’ . txt ’ )+ ’ nogreen ’+’ . png ’ , dpi =600)
s a v e f i g ( fname . r s t r i p ( ’ . txt ’ )+ ’ nogreen ’+’ . eps ’ , dpi =600)

c l f ( )
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Appendix E

Python Image Analysis Scripts

E.1 Compile.py

import os
from s t r u c t import ∗
import numpy as np

# se t bitmap dimensions
xwidth = 656
ywidth = 494
f i l t e r m i n = 60
f i l t e r m a x = 150
# i n i t i a l i z e idata3 , s e t up dummy f l o a t i n g array t ha t w i l l take a l l o f the
# summed data because by t ear rays can only accept inpu t s l e s s than 256
i data3 = bytearray (1078+( ywidth − 1)∗ ( xwidth )+( xwidth ) )
in tdata = np . z e r o s (1078+( ywidth − 1)∗ ( xwidth )+( xwidth ) , dtype=f loat )

d i r e c t o r y = ’ . / ’
test fname = ’ bitmaptest . txt ’
outname = ’ t e s t .bmp ’

# check i f output bmp f i l e a l ready e x i s t s
i f os . path . i s f i l e ( outname ) :

os . remove ( outname )
print ”Old compiled image was de le ted , huzzah ! ”

f i l e s = [ ]
for f i l ename in os . l i s t d i r ( d i r e c t o r y ) :

i f f i l ename . endswith ( ” .bmp” ) :
f i l e s . append ( ( os . path . j o i n ( d i r e c to ry , f i l ename ) ) )
continue

else :
continue

for q in np . arange (0 , len ( f i l e s )−1):
i f q%50 == 0 :

print q
else :

pass

f i l e 1 = f i l e s [ q ]
f i l e 2 = f i l e s [ q+1]

with open( f i l e 1 , ’ rb ’ ) as f 1 :
idata1 = bytearray ( f 1 . read ( ) )
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with open( f i l e 2 , ’ rb ’ ) as f 2 :
idata2 = bytearray ( f 2 . read ( ) )

i f q == 0 :
with open( testfname , ’w ’ ) as l :

for i in np . arange ( 0 , 1 1 , 1 ) :
o f f s e t = i
a = unpack from ( ’<L ’ , idata1 , o f f s e t )
print >> l , i , a [ 0 ] , idata1 [ i ]

# i n i t i a l i z e header and data f o r idata3 , the compiled image , to the
# f i r s t read image
for i in np . arange ( 0 , 1 0 7 8 , 1 ) :

idata3 [ i ] = idata1 [ i ]
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

idata3 [ i ] = 0
else :

pass

# take data from 2 consecu t i v e bitmaps , do some appending , add f i l t e r
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

i f i data1 [ i ] > f i l t e r m i n and i data1 [ i ] < f i l t e r m a x :
in tdata [ i ] = intdata [ i ] + ( idata1 [ i ] + idata2 [ i ] ) / 2

else :
i n tdata [ i ] = intdata [ i ] + ( idata1 [ i ] + idata2 [ i ] ) / ( 2∗ len ( f i l e s ) )

# pr e a l l o c a t e the norm fa c t o r to ge t t h i s going f a s t e r
intdatanorm = np .max( in tdata )
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

idata3 [ i ] = int (255∗ ( in tdata [ i ] / intdatanorm ) )
with open( outname , ’wb ’ ) as h :

h . wr i t e ( idata3 )

print ”BMP1 c l o s e d i s ” , f 1 . c l o s e d
print ”BMP2 c l o s e d i s ” , f 2 . c l o s e d
print ”Compiled BMP c l o s e d ” , h . c l o s e d
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E.2 Drop finding script

import os
from s t r u c t import ∗
import numpy as np

#Ins t r u c t i on s : Copy and pas te t h i s code in to the f i l e d i r e c t o r y you want to ana lyze .
#We can ge t fancy and pos t i t outs ide , but f o r now l e t ’ s keep i t s imple .

#As wri t ten , the code reads from bitmaps s i z e d 496x494 . Values o f ” idatamin”
#and ” idatamax” can be modi f ied to ad ju s t the t h r e s ho l d o f how b r i g h t the p i x e l s
#are . Try changing them !

#Edit the code in Notepad++ (and save changes ) or e d i t from IDLE.
#This shouldn ’ t break anything and i s meant to be comp le te l y t ransparent .

#There are some b i t s t ha t aren ’ t so transparent , un fo r tuna t e l y . But
#tha t has to do with how bmp ’ s repre sen t t h e i r data . That va lue 1078 , f o r example ,
#i s a s p e c i a l one and i nd i c a t e s where to look in our f i l e s f o r a l l o f the co l o r va lue s .

#The output , b i tmap te s t . t x t , w i l l show l i n e by l i n e what shows up in ac tua l bitmap f i l e s ,
#g i v e or take some padding spaces . See i f you can make sense o f i t . For example , see i f
#you can spot f am i l i a r numbers ( f i l e s i z e = 246 ,102 by t e s ) , width = 496 , l eng t h = 494 ,
#o f f s e t = 1078 , co l o r va lue s ranging from 0 to 255 , e t c .

#Author : Eric Jones and p l en t y o f Googling , 2017−07−06

#t h i s f i r s t s t ep l ook s f o r every bitmap in the current d i r ec tory ,
#and then appends the f i l e name to an array . ’ . ’ i s used f o r current working d i r e c t o r y .
#d i r e c t o r y = ’ Pos i t ion1 /drop1/ t r a j 1 / ’
d i r e c t o r y = ’ . ’
test fname = ’ bitmaptest . txt ’
outfname1 = ’ x ycoo rd ina t e s avg . txt ’
outfname2 = ’ x ycoordinates CM . txt ’

# check i f output f i l e s a l ready e x i s t , d e l e t e them
i f os . path . i s f i l e ( test fname ) :

os . remove ( test fname )

i f os . path . i s f i l e ( outfname1 ) :
os . remove ( outfname1 )

i f os . path . i s f i l e ( outfname2 ) :
os . remove ( outfname2 )

f i l e s = [ ]
for f i l ename in os . l i s t d i r ( d i r e c t o r y ) :

i f f i l ename . endswith ( ” .bmp” ) :
f i l e s . append ( ( os . path . j o i n ( d i r e c to ry , f i l ename ) ) )
continue

else :
continue

for q in np . arange (0 , len ( f i l e s ) ) :
f i l e = f i l e s [ q ]

with open( f i l e , ’ rb ’ ) as f :
i da ta = bytearray ( f . read ( ) )

# 246099 l i n e s f o r 496x494 bmp , 1078 i s o f f s e t to ge t to p i x e l array
i f q == 0 :

with open( testfname , ’w ’ ) as l :
for i in np . arange (0 , 246099 , 1 ) :

o f f s e t = i
a = unpack from ( ’<L ’ , idata , o f f s e t )
print >> l , ” {0 :06 d}” . format ( i ) , ” { : 12 d}” . format ( a [ 0 ] ) , ” { : 4 d}” . format ( ida ta [ i ] )

else :
pass
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# Now, use ida ta array to f i nd max p i x e l va lue s
xmax = 0
ymax = 0
imax = [ ]
idatamin = 100
idatamax = 256
for i in np . arange (1078 ,1078+493∗496+495 ,1):

i f i da ta [ i ] > idatamin and i da ta [ i ] < idatamax :
imax . append ( i )

# avg o f imax doesn ’ t g i v e a reasonab l e r e su l t , but here i t i s :
i avg = np . average ( imax )

#In t en s i t y center o f mass c a l c u l a t i o n s
#s p l i t imax in to coord ina te s us ing fancy modulo func t i ons % and //
#make a product array l i k e x∗ I n t e n s i t y
#take weighted average xCM = sum( x∗ I n t e n s i t y )/sum( In t e n s i t y )

datamax = np . z e r o s ( len ( imax ) )
xmax = np . z e r o s ( len ( imax ) )
ymax = np . z e r o s ( len ( imax ) )
xprod = np . z e r o s ( len ( imax ) )
yprod = np . z e r o s ( len ( imax ) )

for i in np . arange ( len ( imax ) ) :
datamax [ i ] = idata [ i ]
xmax [ i ] = ( ( imax [ i ] . astype ( int )−1078) % 496)
ymax [ i ] = ( ( imax [ i ] . astype ( int )−1078) // 496)
xprod [ i ] = xmax [ i ]∗ i da ta [ i ]
yprod [ i ] = ymax [ i ]∗ i da ta [ i ]

xavg = np . average (xmax)
yavg = np . average (ymax)
xCM = np .sum( xprod )/np .sum( datamax )
yCM = np .sum( yprod )/np .sum( datamax )

iAVG = 1078 + np . c e i l ( xavg ) + np . c e i l ( yavg )∗496
iCM = 1078 + np . c e i l (xCM) + np . c e i l (yCM)∗496

#format t ing the f i l e output s t r i n g s with spaces and padding zeros
sp=” ”
avgdatast r=” {0 :04 d}” . format ( q)+sp+” { 0 : . 1 f }” . format ( xavg)+sp+” { 0 : . 1 f }” . format ( yavg )
CMdatastr= ” {0 :04 d}” . format ( q)+sp+” { 0 : . 1 f }” . format (xCM)+sp+” { 0 : . 1 f }” . format (yCM)

with open( outfname1 , ”a” ) as g :
g . wr i t e ( avgdatast r+”\n” )

with open( outfname2 , ”a” ) as h :
h . wr i t e ( CMdatastr+”\n” )

print f i l e , ” i s analyzed : ” , f . c l o s e d

print ”avg txt i s c l o s e d : ” , g . c l o s e d
print ”CM txt i s c l o s e d : ” , h . c l o s e d
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E.3 Left-right trajectory script

import os
from s t r u c t import ∗
import numpy as np

# Copy and pas te t h i s in the same d i r e c t o r y as the t e x t f i l e ou tputs .
# Run from the command prompt to see output s i f you l i k e !

d i r e c t o r y = ’ . ’
fname1 = ’ x ycoo rd ina t e s avg . txt ’
fname2 = ’ x ycoordinates CM . txt ’

outfname1 = ’ x a v g r i g h t . txt ’
outfname2 = ’ x a v g l e f t . txt ’
outfname3 = ’ x CM right . txt ’
outfname4 = ’ x CM left . txt ’

# data1 = data1 [ i , j ] where i i s row , j i s column .
data1 = np . l oadtx t ( fname1 )
data2 = np . l oadtx t ( fname2 )

x1 = data1 [ : , 1 ]
x2 = data2 [ : , 1 ]
i r i g h t 1 = [ ]
i l e f t 1 = [ ]
i r i g h t 2 = [ ]
i l e f t 2 = [ ]

for i in np . arange (1 , len ( data1 ) ) :
de l tax1 = x1 [ i ] − x1 [ i −1]
print i , de l tax1

i f de l tax1 > 0 :
i r i g h t 1 . append ( i −1)

e l i f de l tax1 < 0 :
i l e f t 1 . append ( i −1)

else :
pass

for i in np . arange (1 , len ( data2 ) ) :
de l tax2 = x2 [ i ] − x2 [ i −1]

i f de l tax2 > 0 :
i r i g h t 2 . append ( i −1)

e l i f de l tax1 < 0 :
i l e f t 2 . append ( i −1)

else :
pass

print ” Total number o f p o s i t i o n s : ” , len ( x1 )
print ” ”
print ” Total number going r i g h t : ” , len ( i r i g h t 1 )
print ” ”
print ” Total number going l e f t : ” , len ( i l e f t 1 )
print ” ”
print ” Total sum san i ty check : ” , len ( i r i g h t 1 ) + len ( i l e f t 1 )

sp = ” ”

with open( outfname1 , ”w” ) as g :
for j in i r i g h t 1 :
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g . wr i t e ( ” {0 :04 d}” . format ( int ( data1 [ j , 0 ] ) ) + sp+” { 0 : . 1 f }” . format ( x1 [ j ])+ ’ \n ’ )

with open( outfname2 , ”w” ) as h :
for j in i l e f t 1 :

h . wr i t e ( ” {0 :04 d}” . format ( int ( data1 [ j , 0 ] ) ) + sp+” { 0 : . 1 f }” . format ( x1 [ j ])+ ’ \n ’ )

with open( outfname3 , ”w” ) as k :
for j in i r i g h t 2 :

k . wr i t e ( ” {0 :04 d}” . format ( int ( data2 [ j , 0 ] ) ) + sp+” { 0 : . 1 f }” . format ( x2 [ j ])+ ’ \n ’ )

with open( outfname4 , ”w” ) as l :
for j in i l e f t 2 :

l . wr i t e ( ” {0 :04 d}” . format ( int ( data2 [ j , 0 ] ) ) + sp+” { 0 : . 1 f }” . format ( x2 [ j ])+ ’ \n ’ )
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E.4 CompileBright.py

import os
from s t r u c t import ∗
import numpy as np

# se t bitmap dimensions
xwidth = 656
ywidth = 494
# i n i t i a l i z e idata3 , s e t up dummy f l o a t i n g array t ha t w i l l take a l l o f the
# summed data because by t ear rays can only accept inpu t s l e s s than 256
i data3 = bytearray (1078+( ywidth − 1)∗ ( xwidth )+( xwidth ) )
in tdata = np . z e r o s (1078+( ywidth − 1)∗ ( xwidth )+( xwidth ) , dtype=f loat )

d i r e c t o r y = ’ . / ’
test fname = ’ bitmaptest . txt ’
outname = ’ br i gh t .bmp ’

# check i f output bmp f i l e a l ready e x i s t s
i f os . path . i s f i l e ( outname ) :

os . remove ( outname )
print ”Old compiled image was de le ted , huzzah ! ”

f i l e s = [ ]
for f i l ename in os . l i s t d i r ( d i r e c t o r y ) :

i f f i l ename . endswith ( ” .bmp” ) :
f i l e s . append ( ( os . path . j o i n ( d i r e c to ry , f i l ename ) ) )
continue

else :
continue

# for q in np . arange (0 , l en ( f i l e s )−1):
for q in np . arange ( 0 , 1 0 0 ) :

i f q%5 == 0 :
print q

else :
pass

f i l e 1 = f i l e s [ q ]
f i l e 2 = f i l e s [ q+1]

with open( f i l e 1 , ’ rb ’ ) as f 1 :
idata1 = bytearray ( f 1 . read ( ) )

with open( f i l e 2 , ’ rb ’ ) as f 2 :
idata2 = bytearray ( f 2 . read ( ) )

i f q == 0 :
with open( testfname , ’w ’ ) as l :

for i in np . arange ( 0 , 1 1 , 1 ) :
o f f s e t = i
a = unpack from ( ’<L ’ , idata1 , o f f s e t )
print >> l , i , a [ 0 ] , idata1 [ i ]

# i n i t i a l i z e header and data f o r idata3 , the compiled image , to the
# f i r s t read image
for i in np . arange ( 0 , 1 0 7 8 , 1 ) :

idata3 [ i ] = idata1 [ i ]
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

idata3 [ i ] = 0
else :

pass

# take data from 2 consecu t i v e bitmaps , do some appending
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

in tdata [ i ] = intdata [ i ] + np . abso lu t e ( idata2 [ i ] − i data1 [ i ] )
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# pr e a l l o c a t e the norm fa c t o r to ge t t h i s going f a s t e r
intdatanorm = np .max( in tdata )
for i in np . arange (1078 ,1078+( ywidth − 1)∗ ( xwidth )+(xwidth −1) ,1) :

idata3 [ i ] = int (255∗ ( in tdata [ i ] / intdatanorm ) )
with open( outname , ’wb ’ ) as h :

h . wr i t e ( idata3 )

print ”BMP1 c l o s e d i s ” , f 1 . c l o s e d
print ”BMP2 c l o s e d i s ” , f 2 . c l o s e d
print ”Compiled BMP c l o s e d ” , h . c l o s e d
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Appendix F

Degenerate Electron Source Analysis Codes

F.1 Two-particle Gaussian Path Integral Fortran Code

PROGRAM twopartgauss

IMPLICIT NONE
! Define r e a l parameters and cons tant s
REAL∗8 , PARAMETER : : Pi = 3.1415926535898 d0 , &

Hbar = 1.05457173d−34, &
m = 9.10938291d−31, &
L = 2d−1, &
Energy = 3d1 , &
e l e c = 1.60217662 e−19,&
eE = e l e c ∗Energy , &
deltaE = 0.8∗ e l e c ,&
tsourcewidth = 5d−15,&
tsc reenwidth = 1 .5 d−8,&
dt = Hbar /(4 d0∗ deltaE ) ,& ! 50d−15,&
tde lwidth = 15d−9

! Define complex parameter and cons tant s ( l i k e , you know , I )
COMPLEX∗16 , PARAMETER : : I = (0 d0 , 1d0 )

! Define numbers f o r arrays
INTEGER∗8 , PARAMETER : : Nsource = 1000 ,&

Nscreen = 1000 ,&
Ndelay = 100

! Define r e a l arrays
REAL∗8 : : t s ource1 (−Nsource : Nsource ) , &

t source2 (−Nsource : Nsource ) , &
t s c r e e n (−Nscreen : Nscreen ) , &
t d e l (−Ndelay : Ndelay ) ,&
Phi source1p lo t (−Nsource : Nsource ) ,&
Phi source2p lo t (−Nsource : Nsource ) ,&
PDFsource1(−Nsource : Nsource ) , &
PDFsource2(−Nsource : Nsource ) , &
PDF11screen(−Nscreen : Nscreen ) ,&
PDF2part(−Nscreen : Nscreen ) ,&
PDF2partdel(−Ndelay : Ndelay )

! Define complex arrays
COMPLEX∗16 : : Kscreen11pq ,&

Kscreen12pq ,&
Kscreen21pq ,&
Kscreen22pq ,&
Phisource1(−Nsource : Nsource ) ,&
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Phisource2(−Nsource : Nsource ) ,&
Phi11screen(−Nscreen : Nscreen ) ,&
Phi12screen(−Nscreen : Nscreen ) ,&
Phi21screen(−Nscreen : Nscreen ) ,&
Phi22screen(−Nscreen : Nscreen ) ,&
Phi2part(−Nscreen : Nscreen ) ,&
! PDF2part(−Nscreen : Nscreen ) ,&
Phi2parttemp

! Define ( r e a l and complex ) v a r i a b l e s and loop ing i n t e g e r s
REAL∗8 : : v0 , t f l i g h t , sigE , t source s t ep , t s c r e en s t ep , tde lays tep ,&

PDF2partdeltemp
COMPLEX∗16 : : Phi11temp , Phi12temp , Phi21temp , Phi22temp
INTEGER∗8 : : p , q , r

v0 = DSQRT(2 d0∗eE / m)
t f l i g h t = L / v0
sigE = deltaE ∗DSQRT(2 d0 )
t s o u r c e s t e p = tsourcewidth /(2 d0∗DFLOAT( Nsource)+1d0 )

PRINT∗ , ’ I n i t i a l i z i n g a l l the th ing s ! ’

OPEN(UNIT=20, FILE=” two par t source1 . txt ” )
OPEN(UNIT=21, FILE=” two par t source2 . txt ” )
DO p = −Nsource , Nsource

t source1 (p) = DFLOAT(p)∗ t s o u r c e s t e p
t source2 (p) = tsource1 (p) + dt
Phisource1 (p) = DEXP(−( s igE /(DSQRT(2 d0 )∗Hbar ))∗∗2 d0 ∗ t source1 (p)∗∗2 d0)&

∗CDEXP(− I ∗eE∗ t source1 (p)/ Hbar )
! term for energy d i s t r i b u t i o n centered at E0

Phisource2 (p) = DEXP(−( s igE /(DSQRT(2 d0 )∗Hbar ))∗∗2 d0 ∗ ( t source2 (p)−dt )∗∗2 d0)&
∗CDEXP(− I ∗eE∗( t source2 (p)−dt )/ Hbar )

Ph i source1p lo t (p) = REALPART( Phisource1 (p ) )
Ph i source2p lo t (p) = REALPART( Phisource2 (p ) )
PDFsource1 (p) = REALPART(DCONJG( Phisource1 (p ) )∗ Phisource1 (p ) )
PDFsource2 (p) = REALPART(DCONJG( Phisource2 (p ) )∗ Phisource2 (p ) )
! WRITE(20 ,100) t source (p ) , Phisource (p ) , PDFsource (p ) , p
WRITE(20 ,100) t source1 (p ) , Ph i source1p lo t (p ) , PDFsource1 (p ) , p
WRITE(21 ,100) t source2 (p ) , Ph i source2p lo t (p ) , PDFsource2 (p ) , p

ENDDO
CLOSE(20)
CLOSE(21)

t s c r e e n s t e p = tsc reenwidth /(2 d0∗DFLOAT( Nscreen)+1d0 )
DO q = −Nscreen , Nscreen

t s c r e e n ( q ) = DFLOAT( q )∗ t s c r e e n s t e p + t f l i g h t
ENDDO

td e l ay s t ep = tde lwidth /(2 d0∗DFLOAT( Ndelay)+1d0 )
DO r = −Ndelay , Ndelay

t d e l ( r ) = DFLOAT( r )∗ td e l ay s t ep
ENDDO

PRINT∗ , ’ Value o f v0 : ’ , v0
PRINT∗ , ’ Value o f t f l i g h t : ’ , t f l i g h t
PRINT∗ , ’ Value o f s igE : ’ , s igE
PRINT∗ , ’ Value o f t s o u r c e s t e p : ’ , t s o u r c e s t e p

PDF2partdel = 0d0
! OPEN(UNIT=30, FILE=”two par t s c reen . t x t ”)
OPEN(UNIT=31, FILE=” two par t de lay . txt ” )
! OPEN(UNIT=32, FILE=”two pa r t t e s t . t x t ”)
DO r = −Ndelay , Ndelay

Phi11screen = COMPLEX(0 d0 , 0 d0 )
Phi12screen = COMPLEX(0 d0 , 0 d0 )
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Phi21screen = COMPLEX(0 d0 , 0 d0 )
Phi22screen = COMPLEX(0 d0 , 0 d0 )
Phi2part = COMPLEX(0 d0 , 0 d0 )
PDF2part = COMPLEX(0 d0 , 0 d0 )
PDF2partdeltemp = 0d0
Phi2parttemp = COMPLEX(0 d0 , 0 d0 )
DO q = −Nscreen , Nscreen

Phi11temp = COMPLEX(0 d0 , 0 d0 )
Phi12temp = COMPLEX(0 d0 , 0 d0 )
Phi21temp = COMPLEX(0 d0 , 0 d0 )
Phi22temp = COMPLEX(0 d0 , 0 d0 )
DO p = −Nsource , Nsource

Kscreen11pq = COMPLEX(0 d0 , 0 d0 )
Kscreen12pq = COMPLEX(0 d0 , 0 d0 )
Kscreen21pq = COMPLEX(0 d0 , 0 d0 )
Kscreen22pq = COMPLEX(0 d0 , 0 d0 )

Kscreen11pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t source1 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t source1 (p ) ) ) )

Kscreen12pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t d e l ( r ) − t source1 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t d e l ( r ) − t source1 (p ) ) ) )

Kscreen21pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t source2 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t source2 (p ) ) ) )

Kscreen22pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t d e l ( r ) − t source2 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t d e l ( r)− t source2 (p ) ) ) )
Phi11temp = Phi11temp + Kscreen11pq∗ Phisource1 (p)
Phi12temp = Phi12temp + Kscreen12pq∗ Phisource1 (p)
Phi21temp = Phi21temp + Kscreen21pq∗ Phisource2 (p)
Phi22temp = Phi22temp + Kscreen22pq∗ Phisource2 (p)

ENDDO ! source loop
Phi11screen ( q ) = Phi11temp
Phi12screen ( q ) = Phi12temp
Phi21screen ( q ) = Phi21temp
Phi22screen ( q ) = Phi22temp
! keep as a check
! IF ( r == 1) THEN

! PDF11screen ( q ) = REALPART(DCONJG( Phi22screen ( q ))∗ Phi22screen ( q ))
! WRITE(30 ,101) t s c reen ( q ) , PDF11screen ( q ) , q

! Phi2part ( q ) = (1d0/DSQRT(2d0 )) ∗ ( Phi11screen ( q )∗Phi22screen ( q ) − &
! Phi21screen ( q )∗Phi12screen ( q ))

! PDF2part ( q ) = DCONJG( Phi2part ( q ))∗ Phi2part ( q )
! WRITE(32 ,102) Phi11screen ( q ) , Phi22screen ( q ) , Phi21screen ( q ) , Phi12screen ( q )

! ELSE
! END IF
Phi2part ( q ) = (1 d0/DSQRT(2 d0 ) ) ∗ ( Phi11screen ( q )∗ Phi22screen ( q ) − &

Phi21screen ( q )∗ Phi12screen ( q ) )
! This i s f o r con juga t ing be f o r e i n t e g r a t i n g
PDF2part ( q ) = REALPART(DCONJG( Phi2part ( q ) )∗ Phi2part ( q ) )
PDF2partdeltemp = PDF2partdeltemp + PDF2part ( q )

! This i s f o r summing be f o r e con juga t ing
! Phi2parttemp = Phi2parttemp + Phi2part ( q )

ENDDO ! screen loop
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! For con juga t ing be f o r e summing , take
PDF2partdel ( r ) = PDF2partdeltemp

! For summing be f o r e conjugat ing , take
! PDF2partdel ( r ) = REALPART(DCONJG( Phi2parttemp )∗Phi2parttemp )
WRITE(31 ,101) t d e l ( r ) , PDF2partdel ( r ) , r

ENDDO ! de lay loop
CLOSE(30)
CLOSE(31)
! CLOSE(32)
PRINT∗ , ’Done with a l l the th ing s ! ’

100 FORMAT(E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , I8 )
101 FORMAT(E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , I8 )
! 102 FORMAT(E15 .7E3,4 x , E15 .7E3,4 x , E15 .7E3,4 x , E15 .7E3,4 x ,

E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x )

ENDPROGRAM twopartgauss
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F.2 Two-particle Temporal Slit Path Integral Fortran Code

PROGRAM t w o p a r t s l i t

IMPLICIT NONE
! Define r e a l parameters and cons tant s
REAL∗8 , PARAMETER : : Pi = 3.1415926535898 d0 , &

Hbar = 1.05457173d−34, &
m = 9.10938291d−31, &
L = 2d−1, &
Energy = 3d1 , &
e l e c = 1.60217662 e−19,&
eE = e l e c ∗Energy , &
deltaE = 0.8∗ e l e c ,&
! t sourcewid th = 5d−14,&
t s c reenwidth = 8d−7,&
dt = 4.73∗ Hbar /(4 d0∗ deltaE ) ,& ! 50d−15,&
tde lwidth = 60d−9

! Define complex parameter and cons tant s ( l i k e , you know , I )
COMPLEX∗16 , PARAMETER : : I = (0 d0 , 1d0 )

! Define numbers f o r arrays
INTEGER∗8 , PARAMETER : : Nsource = 3000 ,&

Nscreen = 10000 ,&
Ndelay = 300

! Define r e a l arrays
REAL∗8 : : t s ource1 (−Nsource : Nsource ) , &

t source2 (−Nsource : Nsource ) , &
t s c r e e n (0 : 2∗ Nscreen ) , &
t d e l (−Ndelay : Ndelay ) ,&
Phi source1p lo t (−Nsource : Nsource ) ,&
Phi source2p lo t (−Nsource : Nsource ) ,&
PDFsource1(−Nsource : Nsource ) , &
PDFsource2(−Nsource : Nsource ) , &
PDF11screen ( 0 : 2∗ Nscreen ) ,&
PDF2part ( 0 : 2∗ Nscreen ) ,&
PDF2partdel(−Ndelay : Ndelay )

! Define complex arrays
COMPLEX∗16 : : Kscreen11pq ,&

Kscreen12pq ,&
Kscreen21pq ,&
Kscreen22pq ,&
Phisource1(−Nsource : Nsource ) ,&
Phisource2(−Nsource : Nsource ) ,&
Phi11screen ( 0 : 2∗ Nscreen ) ,&
Phi12screen ( 0 : 2∗ Nscreen ) ,&
Phi21screen ( 0 : 2∗ Nscreen ) ,&
Phi22screen ( 0 : 2∗ Nscreen ) ,&
Phi2part ( 0 : 2∗ Nscreen ) ,&
! PDF2part(−Nscreen : Nscreen ) ,&
Phi2parttemp

! Define ( r e a l and complex ) v a r i a b l e s and loop ing i n t e g e r s
REAL∗8 : : v0 , t f l i g h t , sigE , t source s t ep , t s c r e en s t ep , tde lays tep ,&

PDF2partdeltemp , t sourcewidth
COMPLEX∗16 : : Phi11temp , Phi12temp , Phi21temp , Phi22temp
INTEGER∗8 : : p , q , r

v0 = DSQRT(2 d0∗eE / m)
t f l i g h t = L / v0
sigE = deltaE ∗DSQRT(2 d0 )
tsourcewidth = 4.73∗ Hbar /(2 d0∗ deltaE )
t s o u r c e s t e p = tsourcewidth /(2 d0∗DFLOAT( Nsource)+1d0 )
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PRINT∗ , ’ I n i t i a l i z i n g a l l the th ing s ! ’

OPEN(UNIT=20, FILE=” t p s l i t G s o u r c e 1 . txt ” )
OPEN(UNIT=21, FILE=” t p s l i t G s o u r c e 2 . txt ” )
DO p = −Nsource , Nsource

t source1 (p) = DFLOAT(p)∗ t s o u r c e s t e p
t source2 (p) = tsource1 (p) + dt
Phisource1 (p) = CDEXP(− I ∗eE∗ t source1 (p)/ Hbar ) !∗&

! DEXP(−( sigE /(DSQRT(2d0 )∗Hbar ))∗∗2 d0 ∗ t source1 (p)∗∗2d0 )

! term for energy d i s t r i b u t i o n centered at E0
Phisource2 (p) = CDEXP(− I ∗eE∗( t source2 (p)−dt )/ Hbar ) !∗&

! DEXP(−( sigE /(DSQRT(2d0 )∗Hbar ))∗∗2 d0 ∗ ( t source2 (p)−dt )∗∗2d0 )
Phi source1p lo t (p) = REALPART( Phisource1 (p ) )
Ph i source2p lo t (p) = REALPART( Phisource2 (p ) )
PDFsource1 (p) = REALPART(DCONJG( Phisource1 (p ) )∗ Phisource1 (p ) )
PDFsource2 (p) = REALPART(DCONJG( Phisource2 (p ) )∗ Phisource2 (p ) )
! WRITE(20 ,100) t source (p ) , Phisource (p ) , PDFsource (p ) , p
WRITE(20 ,100) t source1 (p ) , Ph i source1p lo t (p ) , PDFsource1 (p ) , p
WRITE(21 ,100) t source2 (p ) , Ph i source2p lo t (p ) , PDFsource2 (p ) , p

ENDDO
CLOSE(20)
CLOSE(21)

t s c r e e n s t e p = tsc reenwidth /(2∗DFLOAT( Nscreen )+1)
DO q = −Nscreen , Nscreen

t s c r e e n ( q ) = DFLOAT( q )∗ t s c r e e n s t e p + 30 .1 d−9
ENDDO

td e l ay s t ep = tde lwidth /(2 d0∗DFLOAT( Ndelay)+1d0 )
DO r = −Ndelay , Ndelay

t d e l ( r ) = DFLOAT( r )∗ td e l ay s t ep
ENDDO

PRINT∗ , ’ Value o f v0 : ’ , v0
PRINT∗ , ’ Value o f t f l i g h t : ’ , t f l i g h t
PRINT∗ , ’ Value o f s igE : ’ , s igE
PRINT∗ , ’ Value o f t s o u r c e s t e p : ’ , t s o u r c e s t e p

PDF2partdel = 0d0
! OPEN(UNIT=30, FILE=”two par t s c reen . t x t ”)
OPEN(UNIT=31, FILE=” t p s l i t G d e l a y . txt ” )
! OPEN(UNIT=32, FILE=”two pa r t t e s t . t x t ”)
DO r = −Ndelay , Ndelay

Phi11screen = COMPLEX(0 d0 , 0 d0 )
Phi12screen = COMPLEX(0 d0 , 0 d0 )
Phi21screen = COMPLEX(0 d0 , 0 d0 )
Phi22screen = COMPLEX(0 d0 , 0 d0 )
Phi2part = COMPLEX(0 d0 , 0 d0 )
PDF2part = COMPLEX(0 d0 , 0 d0 )
PDF2partdeltemp = 0d0
Phi2parttemp = COMPLEX(0 d0 , 0 d0 )
DO q = −Nscreen , Nscreen

Phi11temp = COMPLEX(0 d0 , 0 d0 )
Phi12temp = COMPLEX(0 d0 , 0 d0 )
Phi21temp = COMPLEX(0 d0 , 0 d0 )
Phi22temp = COMPLEX(0 d0 , 0 d0 )
DO p = −Nsource , Nsource

Kscreen11pq = COMPLEX(0 d0 , 0 d0 )
Kscreen12pq = COMPLEX(0 d0 , 0 d0 )
Kscreen21pq = COMPLEX(0 d0 , 0 d0 )
Kscreen22pq = COMPLEX(0 d0 , 0 d0 )

Kscreen11pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t source1 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
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CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&
( t s c r e e n ( q ) − t source1 (p ) ) ) )

Kscreen12pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t d e l ( r ) − t source1 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t d e l ( r ) − t source1 (p ) ) ) )

Kscreen21pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t source2 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t source2 (p ) ) ) )

Kscreen22pq = CDSQRT(m / (2∗ Pi∗ I ∗Hbar ∗ ( t s c r e e n ( q ) − t d e l ( r ) − t source2 (p))))∗&
! CDEXP(−I∗Pi/4d0)∗&
CDEXP( I ∗m∗L∗∗2d0 /(2 d0∗Hbar∗&

( t s c r e e n ( q ) − t d e l ( r)− t source2 (p ) ) ) )
Phi11temp = Phi11temp + Kscreen11pq∗ Phisource1 (p)
Phi12temp = Phi12temp + Kscreen12pq∗ Phisource1 (p)
Phi21temp = Phi21temp + Kscreen21pq∗ Phisource2 (p)
Phi22temp = Phi22temp + Kscreen22pq∗ Phisource2 (p)

ENDDO ! source loop
Phi11screen ( q ) = Phi11temp
Phi12screen ( q ) = Phi12temp
Phi21screen ( q ) = Phi21temp
Phi22screen ( q ) = Phi22temp

! keep as a check
! IF ( r == 1) THEN

! PDF11screen ( q ) = REALPART(DCONJG( Phi22screen ( q ))∗ Phi22screen ( q ))
! WRITE(30 ,101) t s c reen ( q ) , PDF11screen ( q ) , q

! Phi2part ( q ) = (1d0/DSQRT(2d0 )) ∗ ( Phi11screen ( q )∗Phi22screen ( q ) − &
! Phi21screen ( q )∗Phi12screen ( q ))

! PDF2part ( q ) = DCONJG( Phi2part ( q ))∗ Phi2part ( q )
! WRITE(32 ,102) Phi11screen ( q ) , Phi22screen ( q ) , Phi21screen ( q ) , Phi12screen ( q )

! ELSE
! END IF
Phi2part ( q ) = (1 d0/DSQRT(2 d0 ) ) ∗ ( Phi11screen ( q )∗ Phi22screen ( q ) − &

Phi21screen ( q )∗ Phi12screen ( q ) )
! This i s f o r con juga t ing be f o r e i n t e g r a t i n g
PDF2part ( q ) = REALPART(DCONJG( Phi2part ( q ) )∗ Phi2part ( q ) )
PDF2partdeltemp = PDF2partdeltemp + PDF2part ( q )

! This i s f o r summing be f o r e con juga t ing
! Phi2parttemp = Phi2parttemp + Phi2part ( q )

ENDDO ! screen loop
! For con juga t ing be f o r e summing , take
PDF2partdel ( r ) = PDF2partdeltemp

! For summing be f o r e conjugat ing , take
! PDF2partdel ( r ) = REALPART(DCONJG( Phi2parttemp )∗Phi2parttemp )
WRITE(31 ,101) t d e l ( r ) , PDF2partdel ( r ) , r

ENDDO ! de lay loop
! CLOSE(30)
CLOSE(31)
! CLOSE(32)
PRINT∗ , ’Done with a l l the th ing s ! ’

100 FORMAT(E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , I8 )
101 FORMAT(E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , I8 )
! 102 FORMAT(E15 .7E3,4 x , E15 .7E3,4 x , E15 .7E3,4 x , E15 .7E3,4 x ,

E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x , E15 . 7 E3 , 4 x )

ENDPROGRAM t w o p a r t s l i t
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F.3 Two-particle Time-of-flight Matlab Script

clc ;

m = 9.10938356 e−31; % e l e c t r on mass in k i lograms
hbar = 1.0545718 e−34;% hbar in J . s
Evolt = 30 ; % t i p vo l t a g e in V, s t rong dependence
E = Evolt ∗1.60217662 e−19; % e l e c t r on energy , in Jou les
’ v e l o c i t y , in m/ s ’
v = sqrt (2∗E/m)

L = 0 . 2 ;
deltaE = 0.8∗1 .60217662 e−19; %1e−2∗E;
tcoh = hbar /(2∗ deltaE ) ; %4.73∗ hbar /(2∗ de l taE )
p0 = m∗v ;
t f l i g h t = L/v
% far f i e l d time cond i t i on
’ f a r f i e l d cond i t ion , should be sma l l e r than 1 ’
(E/hbar )∗ tcoh ˆ2/ t f l i g h t

t i n t = t f l i g h t ;
d e l t a t = tcoh ; % with d e l t a t = 4.5∗ tcoh , the width o f s inc and gauss ian are ˜ equa l
deltatG = tcoh ∗4 . 7 3 ;
dt = d e l t a t /2 ;
dtG = deltatG /2 ;

t = t f l i g h t ∗ linspace ( 0 . 1 , 2 , 1 0 0 0 0 0 ) ’ ;
t d e l t = t f l i g h t ∗ linspace ( −0 .7 , 0 , 501) ’ ; %(−0.5/100 ,0.5/100 ,1000) ’ ;

% transform energy dependence in to time dependence
E11 = zeros ( length ( t ) , length ( t d e l t ) ) ;
E21 = zeros ( length ( t ) , length ( t d e l t ) ) ;
E12 = zeros ( length ( t ) , length ( t d e l t ) ) ;
E22 = zeros ( length ( t ) , length ( t d e l t ) ) ;

% transform energy dependence in to time dependence
E11G = zeros ( length ( t ) , length ( t d e l t ) ) ;
E21G = zeros ( length ( t ) , length ( t d e l t ) ) ;
E12G = zeros ( length ( t ) , length ( t d e l t ) ) ;
E22G = zeros ( length ( t ) , length ( t d e l t ) ) ;

% su b s t i t u t i o n f o l l ow s 2.8 o f Barwick d i s s e r t a t i o n
for k=1: length ( t ) ;

E11 (k , : ) = m∗Lˆ2 ./ (2∗ t ( k ).ˆ2)−E;
E21(k , : ) = m∗Lˆ2/(2∗( t ( k)−dt ).ˆ2)−E;
E12(k , : ) = m∗Lˆ2 . / ( 2∗ ( t ( k)+ −t d e l t ).ˆ2)−E;
E22(k , : ) = m∗Lˆ2 . / ( 2∗ ( t ( k)−dt+ −t d e l t ).ˆ2)−E;

end ;

% su b s t i t u t i o n f o l l ow s 2.8 o f Barwick d i s s e r t a t i o n
for k=1: length ( t ) ;

E11G(k , : ) = m∗Lˆ2 ./ (2∗ t ( k ).ˆ2)−E;
E21G(k , : ) = m∗Lˆ2/(2∗( t ( k)−dtG).ˆ2)−E;
E12G(k , : ) = m∗Lˆ2 . / ( 2∗ ( t ( k)+ −t d e l t ).ˆ2)−E;
E22G(k , : ) = m∗Lˆ2 . / ( 2∗ ( t ( k)−dtG+ −t d e l t ).ˆ2)−E;

end ;

norm = sqrt (2/( hbar∗ d e l t a t ∗pi ) ) ;
phi11mat = norm∗ sin (E11∗ d e l t a t /(2∗ hbar ) ) . / ( E11/hbar ) ;
phi22mat = norm∗ sin (E22∗ d e l t a t /(2∗ hbar ) ) . / ( E22/hbar ) ;
phi12mat = norm∗ sin (E12∗ d e l t a t /(2∗ hbar ) ) . / ( E12/hbar ) ;
phi21mat = norm∗ sin (E21∗ d e l t a t /(2∗ hbar ) ) . / ( E21/hbar ) ;
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phi11matG = norm∗ sin (E11G∗ deltatG /(2∗ hbar ) ) . / ( E11G/hbar ) ;
phi22matG = norm∗ sin (E22G∗ deltatG /(2∗ hbar ) ) . / ( E22G/hbar ) ;
phi12matG = norm∗ sin (E12G∗ deltatG /(2∗ hbar ) ) . / ( E12G/hbar ) ;
phi21matG = norm∗ sin (E21G∗ deltatG /(2∗ hbar ) ) . / ( E21G/hbar ) ;

s igE = deltaE ∗sqrt ( 2 ) ;
gaussnorm = 1/ sqrt ( sqrt (pi )∗ s igE ) ;

phi11gaus = gaussnorm∗exp(−(E11/( sqrt (2)∗ s igE ) ) . ˆ 2 ) ;
phi22gaus = gaussnorm∗exp(−(E22/( sqrt (2)∗ s igE ) ) . ˆ 2 ) ;
phi12gaus = gaussnorm∗exp(−(E12/( sqrt (2)∗ s igE ) ) . ˆ 2 ) ;
phi21gaus = gaussnorm∗exp(−(E21/( sqrt (2)∗ s igE ) ) . ˆ 2 ) ;

psi12mat = (1/ sqrt ( 2 ) )∗ ( phi11mat .∗ phi22mat − phi21mat .∗ phi12mat ) ;
prob12mat = psi12mat .∗ conj ( psi12mat ) ;
prob12 = real (nansum( prob12mat , 1 ) ) ;

psi12matG = (1/ sqrt ( 2 ) )∗ ( phi11matG .∗ phi22matG − phi21matG .∗ phi12matG ) ;
prob12matG = psi12matG .∗ conj ( psi12matG ) ;
prob12s l i tG = real (sum( prob12matG , 1 ) ) ;

ps i12gaus = (1/ sqrt ( 2 ) )∗ ( phi11gaus .∗ phi22gaus − phi21gaus .∗ phi12gaus ) ;
prob12gaus = ps i12gaus .∗ conj ( ps i12gaus ) ;
prob12g = real (sum( prob12gaus , 1 ) ) ;
figure ( 6 0 ) ;
plot ( t , phi11mat . ˆ 2 ) ;
% ind = f ind ( abs ( prob12−max( prob12 ))<1e−6∗max( prob12 ) )
% t r e s = t d e l ( ind (2))− t d e l ( ind (1))
%%
figure ( 4 0 ) ;
plot ( tde l t , prob12/max( prob12 ) ) ;
hold on ;
plot ( tde l t , prob12g/max( prob12g ) ) ;
% p l o t ( t d e l ( ind ) , prob12 ( ind ) , ’ xr ’ ) ;
hold o f f ;
xl im ( [min( t d e l t ) max( t d e l t ) ] ) ;
% ylim ( [ 0 0 . 8 ] ) ;
%%
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Appendix G

GaAs Subadditivity Modeling Code

G.1 Subadditivity Modeling Fortran Code

PROGRAM prog

IMPLICIT NONE
REAL∗8 , PARAMETER : : l = 1/(1 d0 ) , &

tw = 3.75 d−1, &
t r e s = 2 .5 d3 , &
alpha = 2 .8 d−1, &
t p l o t = 1d4

REAL∗8 : : I1 , I2 , t , dt , tau , dtau , e1sum , e2sum , e12sum , &
pop , subadd , e1summin , e2summin , e12summin , subaddmin ,&
E1 , E2 , I1sum , I2sum , I12sum , subaddI

REAL∗8 : : condexp
INTEGER∗8 : : i , j , Ndiv , Npoints

OPEN(UNIT=30,FILE=’subaddOLD . dat ’ )

Ndiv = 1000000
dt = 10d0∗ t p l o t / d f l o a t ( Ndiv )
PRINT∗ , dt
Npoints = 1000
dtau = 1d0∗ t p l o t / d f l o a t ( Npoints )
PRINT∗ , dtau

tau = 0d0
DO j = 1 , Npoints

t = −5d0∗ t p l o t
e1sum = 0d0
e2sum = 0d0
e12sum = 0d0

e1summin = 0d0
e2summin = 0d0
e12summin = 0d0

I1sum = 0d0
I2sum = 0d0
I12sum = 0d0

IF ( tau .LT. 8 d0 ) THEN
dtau = 1d−1

ELSE
dtau = 1d0∗ t p l o t / d f l o a t ( Npoints )
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END IF

DO i = 1 , Ndiv
I1 = condexp ( (1/2)∗ l ∗∗2∗tw∗∗2− l ∗ t )∗&

d e r f c ( ( l ∗tw∗∗2− t )/ ( dsqrt (2 d0 )∗ tw ) )
I2 = condexp ( (1/2)∗ l ∗∗2∗ t∗∗2− l ∗( t−tau ))∗&

d e r f c ( ( l ∗tw∗∗2−( t−tau ) ) / ( dsqr t (2 d0 )∗ tw ) )
E1 = sqrt ( I1 )
E2 = sqrt ( I2 )
pop = 1d0 − dexp(−tau/ t r e s )∗ alpha
! e1sum = e1sum + I1 ∗∗3
! e2sum = e2sum + I2 ∗∗3
! e12sum = e12sum + ( I1 + pop∗ I2 )∗∗3

e1sum = e1sum + E1∗∗6
e2sum = e2sum + E2∗∗6
e12sum = e12sum + (E1 + sqrt ( pop )∗E2)∗∗6

e1summin = e1summin + E1∗∗6
e2summin = e2summin + E2∗∗6
e12summin = e12summin + (E1 − sqrt ( pop )∗E2)∗∗6

I1sum = I1sum + I1 ∗∗3
I2sum = I2sum + I2 ∗∗3
I12sum = I12sum + ( I1 + pop∗ I2 )∗∗3

!WRITE(30 ,101) t , I1 , I2
t = t + dt

ENDDO
subadd = ( e12sum − e1sum − e2sum ) / ( e1sum + e2sum )
subaddmin = ( e12summin − e1summin − e2summin ) / ( e1summin + e2summin )
subaddI = ( I12sum − I1sum − I2sum ) / ( I1sum + I2sum )
WRITE(30 ,100) tau , subadd , subaddmin , subaddI
tau = tau + dtau

ENDDO

CLOSE(30)

100 FORMAT(E24 .17E3 , 4 x , E24 .17E3 , 4 x , E24 .17E3 , 4 x , E24 .17E3)
! 101 FORMAT(E24 .17 ,4 x , E24 .17 ,4 x , E24 .17)

ENDPROGRAM prog

FUNCTION condexp ( x ) result ( ans )
REAL∗8 , INTENT(IN) : : x
REAL∗8 ans

IF ( x .LT. 7 d2 ) THEN
ans = dexp ( x )

ELSE
ans = 0d0

END IF

END FUNCTION
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G.2 GaAsXcorrChirp.m

%%
% theory par t
clc ;
%import Evan ’ s data
subaddGauss = importdata ( ’ subaddGauss . dat ’ ) ;
subaddArb = importdata ( ’ subaddArb . dat ’ ) ;

%%
clc ;
I = sqrt (−1);
c = 3e8 ;
lambda = 800e−9;
omega = 2∗pi∗c/lambda ;
b = 3.79 e26 ;
s i g t = 55e−15; % pu l s e 1/eˆ2 width in f s

alpha = 0 . 1 3 4 ;
alpha2 = 1 . 1 1 ;
t r e s = 2 .5 e−10;
tw = 4 .1 e−1;
twfas t = 40e−15;
twfas t2 = 1180e−15;
t a u s t a r t = 190e−15;
t a u s t a r t 2 = 2200e−15;

alpha2p2 = 0 . 6 6 ;
alphap2 = 0 . 0 7 2 4 ;

% t = 1e−15∗(−400:0.01:400) ’;
t = 1e−15∗ ( −200 :0 .01 :200) ’ ;
tau = 1e−15∗(0 :1 :1 e6 ) ’ ;
% tw fa s t ad j u s t s s l ope o f l i n e a r par t o f e r f c f o r s t a r t o f pop func t i on
% t au s t a r t ad j u s t s where pop turns on
% t r e s ad j u s t s long−term exponen t i a l behav ior
I s c a l e = 0 . 5 7 ;%0.57 ;
% pop t e s t = alpha2∗ e r f c (( twfas t2 −(tau−t a u s t a r t 2 ) )/( s q r t (2d0 )∗ tw fa s t 2 ) ) ;
poptest = alpha2 ∗exp(−(( tau−t a u s t a r t 2 )/ twfas t2 ) . ˆ 2 ) ;
poptest2 = alpha2p2∗exp(−(( tau−t a u s t a r t 2 )/ twfas t2 ) . ˆ 2 ) ;
pop = 1d0 − ( alpha )∗ (exp(−( tau )/ t r e s ) . ∗ erfc ( ( twfast −(tau−t a u s t a r t ) )/

( sqrt (2 d0 )∗ twfas t ) ) + poptest ) ;
pop2 = 1d0 − ( alphap2 )∗ (exp(−( tau )/ t r e s ) . ∗ erfc ( ( twfast −(tau−t a u s t a r t ) )/

( sqrt (2 d0 )∗ twfas t ) ) + poptest2 ) ;

%%%%pop2 ge t s the job done with a s ca l ed pu l s e 1 i n t e n s i t y !
e1sum = 1 ;
e2sum = 1 ;
e12sum = 1 + pop . ˆ 3 ;
subadd = ( e12sum − e1sum − e2sum ) / ( e1sum + e2sum ) ;

e1sum2 = I s c a l e ˆ3 ;
e2sum2 = 1 ;
e12sum2 = I s c a l e ˆ3 + pop2 . ˆ 3 ;
subadd2 = ( e12sum2 − e1sum2 − e2sum2 ) / ( e1sum2 + e2sum2 ) ;

Igaus s = exp(−t . ˆ 2 / ( ( s i g t ) ˆ 2 ) ) ;
Echirp = sqrt ( Igaus s ) . ∗ exp( I ∗omega∗ t ) . ∗ exp( I ∗b∗ t . ˆ 2 ) ;
Egauss = sqrt ( Igaus s ) . ∗ cos ( omega∗ t+b∗ t . ˆ 2 ) ;
% p l o t ( t , Egauss )

E1 = Egauss ;
E2 = sqrt ( 0 . 5 7 )∗ Egauss ;
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% generate 3rd order emission process terms , ch i rped
[ ec60 , lag60 ] = xcorr (E1 . ˆ 6 , E2 . ˆ 0 , 0 ) ;
[ ec51 , lag51 ] = xcorr (E1 . ˆ 5 , E2 . ˆ 1 ) ;
[ ec42 , lag42 ] = xcorr (E1 . ˆ 4 , E2 . ˆ 2 ) ;
[ ec33 , lag33 ] = xcorr (E1 . ˆ 3 , E2 . ˆ 3 ) ;
[ ec24 , lag24 ] = xcorr (E1 . ˆ 2 , E2 . ˆ 4 ) ;
[ ec15 , lag15 ] = xcorr (E1 . ˆ 1 , E2 . ˆ 5 ) ;
[ ec06 , lag06 ] = xcorr (E1 . ˆ 0 , E2 . ˆ 6 , 0 ) ;

dt = t (2)− t ( 1 ) ;
tde l ay = dt∗ lag33 ’ ;

ecsigmax = ec60 + 6∗ ec51 + 15∗ ec42 + 20∗ ec33 + 15∗ ec24 + 6∗ ec15 + ec06 ;
bothsigmax = ( ecsigmax ) ;
r e f s i g = ec60 ;
d e l s i g = ec06 ;

rat iof itmaxGaAs = ( bothsigmax−( r e f s i g+d e l s i g ) ) / ( r e f s i g+d e l s i g ) ;

%%
% p l o t the non−subadd i t i v e , normal I ˆ3 c r o s s c o r r e l a t i o n
figure ( 1 ) ;
p1 =plot ( tde lay ∗1e15 , ratiof itmaxGaAs , ’−r ’ , ’ Linewidth ’ , 1 . 5 ) ;
hold on ;
p2 = plot (AddRat ( : , 1 ) , AddRat ( : , 2 ) , ’−k ’ ) ;
hold o f f ;
xl im ([−30 1 .7 e2 ] ) ;
yl im ([−1.2 2 6 ] ) ;

legend ( [ p2 p1 ] ,{ ’ Data ’ , ’ $ I ˆ3$ Model ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

xlabel ( ’ $\ tau$ ( f s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ Add i t i v i ty Ratio $\mathcal{R}(\ tau ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set (gca , ’ Fonts i z e ’ ,10 , ’FontName ’ , ’ Times New Roman ’ , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ,

’ Linewidth ’ , 1 ) ;

f i g = gcf ;
f i g . PaperUnits = ’ inche s ’ ;
% f i g . PaperPosi t ion = [0 0 3.4 2 ] ;
f i g . PaperPos i t ion = [ 0 0 6 .5 4 ] ;
print ( ’ SubaddShort ’ , ’−depsc ’ ) ;

%%
% p l o t the long−term subadd i t i v e behavior , semi log s c a l e in time
figure ( 2 ) ;
p1 = semilogx (AddRat ( : , 1 ) , AddRat ( : , 2 ) , ’−sk ’ ) ;
hold on ;
p2 = plot ( tde lay ∗1e15 , ratiof itmaxGaAs , ’−r ’ , ’ Linewidth ’ , 2 ) ;
plot ( tau ∗1e15 , subadd2 , ’−r ’ , ’ Linewidth ’ , 2 ) ;
plot ( ( tau )∗1 e15−1e2 ,0∗ tau , ’−−k ’ , ’ Linewidth ’ , 1 )
hold o f f ;
xl im ( [ 1 e2 1e6 ] ) ;
yl im ([−0.5 1 . 1 ] ) ;

legend ( [ p1 p2 ] ,{ ’ Data ’ , ’ $ I ˆ3$ Model ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

xlabel ( ’ $\ tau$ ( f s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ Add i t i v i ty Ratio $\mathcal{R}(\ tau ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set (gca , ’ Fonts i z e ’ ,10 , ’FontName ’ , ’ Times New Roman ’ , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ,

’ Linewidth ’ , 1 ) ;

f i g = gcf ;
f i g . PaperUnits = ’ inche s ’ ;
% f i g . PaperPosi t ion = [0 0 3.4 2 ] ;
f i g . PaperPos i t ion = [ 0 0 6 .5 4 ] ;



227

print ( ’ SubaddLong ’ , ’−depsc ’ ) ;

%%%subadd s t a r t s at ˜170 fs , to 320 fs , then s i t s and e xponen t i a l l y goes up
%%
figure ( 3 ) ;
o l d c h i = 1 − 0 .28∗exp(−tau /250e−12);

p1 = semilogx ( tau ∗1e15 , o ldch i , ’−k ’ , ’ Linewidth ’ , 2 ) ;
hold on ;
p2 = semilogx ( tau ∗1e15 , pop , ’−b ’ , ’ Linewidth ’ , 2 ) ;
p3 = semilogx ( tau ∗1e15 , pop2 , ’−r ’ , ’ Linewidth ’ , 2 ) ;
hold o f f ;
xl im ( [ 1 1e6 ] ) ;

% legend ( [ p1 p2 p3 ] ,{ ’ Old Model ’ , ’New Model , $ I {1}=I {2}$ ’ ,
’New Model , $ I {1} \neq I {2}$ ’ } ,
’ Locat ion ’ , ’ s outheas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

% legend ( [ p1 p2 p3 ] ,{ ’ Old ’ ,
’New, $ I {1}= I {2}$ ’ ,
’New, $ I {1} \neq I {2}$ ’ } ,
’ Locat ion ’ , ’ s outheas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

xlabel ( ’ $\ tau$ ( f s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ Suppress ion $\ ch i (\ tau ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set (gca , ’ Fonts i z e ’ ,10 , ’FontName ’ , ’ Times New Roman ’ , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ,

’ Linewidth ’ , 1 ) ;

f i g = gcf ;
f i g . PaperUnits = ’ inche s ’ ;
f i g . PaperPos i t ion = [ 0 0 3 .4 2 ] ;
print ( ’ SuppFunc ’ , ’−depsc ’ ) ;
%%
figure ( 4 ) ;

Echirp = sqrt ( Igaus s ) . ∗ exp( I ∗omega∗ t ) . ∗ exp( I ∗b∗ t . ˆ 2 ) ;
Egauss = sqrt ( Igaus s ) . ∗ cos ( omega∗ t+b∗ t . ˆ 2 ) ;

I c h i r p = real ( Echirp .∗ conj ( Echirp ) ) ;
%%%IFWHM = 91.58 f s

p1 = plot ( t ∗1e15 , real ( Echirp ) , ’−r ’ , ’ Linewidth ’ , 1 ) ;
hold on ;
p2 = plot ( t ∗1e15 , I ch i rp , ’−g ’ , ’ Linewidth ’ , 2 ) ;
hold o f f ;
xl im ([−100 1 0 0 ] ) ;
legend ( [ p1 p2 ] ,{ ’$E( t ) $ ’ , ’ $ I ( t ) $ ’ } , ’ Locat ion ’ , ’ s outheas t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

xlabel ( ’ $t$ ( f s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’E . F i e ld / I n t e n s i t y ( arb . ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set (gca , ’ Fonts i z e ’ ,10 , ’FontName ’ , ’ Times New Roman ’ , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ,

’ Linewidth ’ , 1 ) ;

f i g = gcf ;
f i g . PaperUnits = ’ inche s ’ ;
f i g . PaperPos i t ion = [ 0 0 3 .4 2 ] ;
print ( ’ F i e l d I n t ’ , ’−depsc ’ ) ;
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Appendix H

Comment statistics from Quanta Magazine

The impact of Wolchover’s article in Quanta Magazine might be discussed by a

statistical analysis of comments made to Physics articles around the time of publication.

The Quanta article by Wolchover was the 2nd most commented article since its

publication date in October, receiving 121 comments in the week or so after it was

first published. The first most commented article since the October publication date,

which received 340, discussed criticisms of the Many Worlds interpretation of quantum

mechanics.220 Considering then the 50 most recent articles, Wolchover’s had the 4th

highest number of comments. Including the highly commented article along with

Wolchover’s, the 50 articles received, on average, 31 comments, with a standard error

of 8. Applying Chauvenet’s criterion to remove the Many Worlds article from our

sample, the average and standard error in comments for the most recent 49 articles

drops to 25(5). Given that the median number of comments per article for this

adjusted sample is 9, this suggests a significant skew from an ideal normal distribution

of comments. A distribution of these 49 most recent articles is provided in Fig. H.1.
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Comment Distribution

Gaussian Model

se
 =  5.28

 = 25.06

Figure H.1: Shown is a histogram of the number of comments posted to the 25 most
recently published articles to Quanta in the category of physics. The histogram is
modeled with a normal distribution that is normalized such that the areas under the
comment histogram and the distribution PDF are equal. The distribution is plotted
with an average µ = 25.06 and the sample standard error, σ = 5.28. The median
value of 9 of the comment distribution suggests a significant skew, indicating that the
number of comments received by Wolchover’s article is not typical.

From this skewed distribution, one can conclude that the discussion surrounding

this article is not typical of other articles published around the same time. The oil

droplet experiment, and discussions in quantum foundations in general, remain hotly

debated topics.
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