
Obstacle Avoidance Methods in UAVs

ZUBAIR AHMED KHAN
junho de 2019

Master’s Thesis on Autonomous Systems

Obstacle Avoidance Methods in UAV’s

by

Zubair Khan

Dissertation submitted to obtain the

degree of Masters in Autonomous Systems

Department of Electrical and Computer Engineering

June 2019

i

Acknowledgements

Any achievement big or small should have a catalyst and constant encouragement

and advice of valuable and noble minds. The satisfaction and euphoria that ac-

companies the successful completion of any task would be incomplete without the

mention of the people who made it possible, whose constant guidance and encour-

agement crowned our effort with success. I would like to express our deep sense

of gratitude to our President Maria Joo Viamonte for her continuous effort in

creating a competitive environment in our university and encouraging throughout

this course. I would like to thank sincerely to my beloved Course Director pro-

fessor Cecilia Reis, for her invaluable guidance, support and endurance. I would

like to convey heartful thanks to my guide professor Andre Dias, for giving me

the opportunity to embrace upon this topic and for his continuous encouragement

throughout the preparation.

I also wish to thank all the staff members of the course Autonomous Systems who

have helped us directly or indirectly for the completion of our project successfully.

Finally, I am thankful to my parents, friends and loved ones for their continued

moral and material support throughout the course and in helping me to finalize

the project.

ii

Abstract

We contributed a method for avoiding obstacles using monocular vision as the

only sensor in UAV (Unmaned Aerial vehicle). The vision based ROS (Robotic

operating system) node detects the known obstacles in front of the UAV. Unknown

obstacles can be taken care of by adding he information of all the obstacles seen

in the scene to a map. The distance to obstacle in this research is calculated

by just increasing size of the obstacle in front of the UAV. The image processing

libraries were used from OpenCV to do thresholding, noise removal and contours

detection. This research also tests and evaluate the path planning of UAV using

MoveIt architecture, and evaluates the different results obtained.Hence we show

the effectiveness of the monocular vision and size as a constraint algorithm in

UAVs to detect and avoid frontal obstacles.

Keywords : ROS ,UAV, OpenCV, MoveIt, Thresholding, Contours, monocular

vision.

iv

Declaration of Authorship

I Zubair Ahmed Khan declares, under a commitment of honor, that this work is

original and that all non-original contributions were duly referenced, with identi-

fication of the source.

June 2019

Signature

vi

Contents

Acknowledgements ii

Abstract iv

Declaration of Authorship vi

List of Figures x

List of Abbreviations xiii

List of Nomenclature xiv

1 Introduction 1

1.1 What is Obstacle Detection and Avoidance Technology 2

1.2 Why Obstacle Avoidance . 2

1.3 How does Obstacle detection Sensors Works 3

1.3.1 Stereo-Vision sensor for Obstacle Avoidance 3

1.3.2 Ultrasonic Sensors for Detecting Obstacles 4

1.3.3 LIDAR For Obstacle avoidance 4

1.3.4 Monocular vision Obstacle avoidance 4

1.4 Objective of this Research . 5

1.5 Thesis structure . 5

2 State of the art 7

2.1 Obstacle Avoidance using Monocular Vision 9

2.1.1 Limitations . 10

2.1.2 Advantages . 10

2.2 3D Information using MOPS and SIFT 11

2.3 Obstacle Avoidance Using Disparity 12

2.3.1 Limitations . 13

2.3.2 Advantages . 13

3 Fundamentals 14

3.1 What are contours ? . 15

3.2 What is Image Thresholding ? . 15

3.3 Background Subtraction in image processing 16

viii

CONTENTS ix

3.4 Clustering . 17

3.5 Robot Operating System . 18

4 Proposed method 22

4.0.1 Gaussian filter to smoothen the image frames 23

4.0.2 Intensity gradient . 24

4.1 Non-maximum suppression . 25

4.2 Double threshold to determine fine edges 25

5 Implementation 26

5.1 Gazebo simulation environment . 27

5.2 Ardrone Test with Moveit - Configuration 31

5.3 Path Planning MoveIt Architecture 34

5.3.1 Move Group . 35

5.3.2 ROS Param Server . 36

5.4 Path Planning Algorithm . 37

5.5 Proposed Architecture Model . 39

6 Result 42

6.1 Results while testing the proposed method (Manually) 43

6.2 Path planning result with MoveIt 46

6.3 Results - proposed method . 48

7 Conclusion 52

8 Future Work 54

9 Documentory References and Other Source Of Information 55

List of Figures

2.1 SURF feature points matching . 9

2.2 Previous and Current frame . 10

2.3 Algorithm to construct three-dimensional information of obstacles
using MOPS and SIFT [2] . 11

2.4 Color image(left) and Depth map(right) [3] 12

2.5 Disparity to check least depth [3] 13

3.1 Concept of approach . 15

3.2 simple thresholding based segmentation [10] 16

3.3 ROS example network . 20

4.1 Flow chart of the Detection implementation 23

5.1 Gazebo model for AR DRONE with camera link 28

5.2 Image feed with ROI from Ardrone camera 28

5.3 .SDF file for camera link . 29

5.4 camera plugin and image topic description 30

5.5 Left : image from ARDrone camera, Right : Contours of obstcles. . 31

5.6 Front screen of MoveIt setup assistance 32

5.7 After loading the ardrone URDF.xacro 32

5.8 Setting up self collision for ARdrone 33

5.9 Finishing setup by giving location of ROS workspace for config files 34

5.10 MoveIt Architecture [14] . 35

5.11 Adding obstacle to Moveit Planning Scene 36

5.12 Rqt graph of the interaction with whole system 37

5.13 Model inside a Moveit Workspace 38

5.14 Proposed System architecture . 40

6.1 Obstacle detection (total 2 obstacles in front). Left : Graph of
changing size; Right : Image of the scene 44

6.2 Obstacle detection (total 4 obstacles in front). Left : Graph of
changing size; Right : Image of the scene 45

6.3 Path planning . 46

6.4 Collision with 2 obstacle in front (Unsuccessful avoidance) 47

6.5 Successful attempts with 2 obstacle in front 48

6.6 Distance to obstacle . 49

6.7 Distance (y-axis) vs time (x-axis) 49

x

LIST OF FIGURES xi

6.8 Close look at the Distance reading from Fig. 6.7 50

6.9 UAV flying upwards until obstacle is out of ROI 51

xiii

Abbreviations

CPU - Central Processing Unit

GPS - Global Positioning System

IMU - Inertial Measurement Unit

LIDAR - Light Detection and Ranging

MOPS - Multi Scale Oriented Patches

OSRF - Open Source Robotic Foundation

RGB - Red Green Blue

ROI - Region Of Interest

ROS - Robot Operating System

SDF - Spatial Data Format File

SIFT - Scale Invariant Feature Transform

SLAM - Simultaneous Localization and Mapping

SONAR - Sound Navigation and Ranging

SURF - Speed-up Roburst Features

UAV Unmanned Arial Vehicle

URDF - Unified Robot Description Format

YAML - Yet Another Markup Language

xiv

Nomenclature

ρ - Length scale for a matrix

D - Distance between obstacle and UAV (m)

D′ - Calculated distance between obstacle and UAV (m)

F - Focal length of the camera (mm)

P - Pixel size of for the given width of image (pixel)

W - Width of the obstacle (inch)

B - 5x5 Gaussian Filter

centroid x - X co-ordinate of centroid for Contours

centroid y - Y co-ordinate of centroid for Contours

G - Edge Gradient

Gx - First derivative for Canny edge detection in horizontal direction

Gy - Second derivative for Canny edge detection in vertical direction

Hij - The Gaussian kernel Formula

M 10 - Image Moment for image pixel x

θ - Direction of edge

xv

Chapter 1

Introduction

The ability of birds, flies to detect and avoid obstacles in very outdoor environ-

ment like forests is fascinating and have been eventually one of the motivation for

deep study in obstacle detection and avoidance. However for UAV’s this includes

many applications like search and rescue, information gathering from an area. To

accomplish this many active like LIDAR. Few interesting application of drones

are in search and rescue operations, inspection and all these application require a

very challenging feature which is called Obstacle avoidance. Having said that, its

also important to know the environment to add this feature. For example Depth

camera will not necessarily work in complex environment like forest and also where

the obstacle is in direct exposure to the light.

To solve this problem since all UAV’s are equipped with camera and inertial mea-

surement unit, we can use these to detect and avoid obstacles in front of the drone.

Which would result in no extra payload and cost effective solution to the problem

of obstacle avoidance. In this research we will be focusing mainly on the simplest

approach to avoid Obstacle, as we all are inspired by our nature, I would like to

remind you how most of the flies and also we humans deals with obstacles.

It is very common to talk about distance when it comes to obstacle avoidance

and related research and which seems to be very logical due to the availability

of depth cameras and even mimic or find depth using two cameras. Although its

a fact that we humans do not calculate distance while moving towards obstacles

1

Chapter 1 Introduction 2

or vice verse. What we do is imagine the size of the obstacle in front rather, to

determine how far or near the obstacle is. Which make the solution even more

realistic and smarter in terms of cost effectiveness and weight on the UAV as we

will just require a single camera now to achieve this. Having said that, we will

in our research study about various techniques for obstacle avoidance and then

implement our approach as a solution to this problem.

The objective of this thesis is to study the available methods for obstacle avoid-

ance which can be applied in UAV’s. The objective also includes proposing a new

method related to obstacle avoidance and to compare advantage of the proposed

method with the obstacle avoidance state of art techniques.

1.1 What is Obstacle Detection and Avoidance

Technology

For any vehicle whether it is UAV, robot or even an autonomous car, to detect

objects and then perform avoidance task like to go around, stop or even go above

needs complex technologies working together to form an integrated system [6]. For

this to happen many complex approaches are requires like mathematical modeling,

machine learning and aspects of SLAM technology.

Various obstacle avoidance sensors includes Stereo vision, Ultrasonic (SONAR),

Time of Flight, LIDAR, Infrared and Monocular vision [6].

1.2 Why Obstacle Avoidance

Obstacle avoidance in a drones can prevent drones from hitting an object in the

way or even can warn new pilots from destroying an investment. Obstacle avoid-

ance is very much in need when flying in densely complex environments like out-

door environment and any other structural environmental object which can come

in the way.

Chapter 1 Introduction 3

Many researches on obstacle avoidance techniques are going on which we will cover

briefly in upcoming chapters. Now a days drones from DJI, Walkera, Yuneec have

can detect obstacles not only from front but also from side, back and bottom [6].

Which makes the drone more safe to fly in dense clustered environments.

The application of obstacle avoiding sensors are not only just to avoid obstacles

but the algorithm running on those sensors can also be used to track, follow, or

even recognize and object in an environment and hence the main importance to

obstacle avoidance technique lies in the field of search and rescue operations. These

algorithms can track vehicles, people, animals and many more. Advancement of

the application also includes cinematic photography shot done by drone, which is

made possible only if the drone is able to recognize the object to be tracked and

hence avoid other obstacle in its way.

1.3 How does Obstacle detection Sensors Works

To understand this topic lets go through each collision avoidance sensor we have

around us today.

1.3.1 Stereo-Vision sensor for Obstacle Avoidance

Stereo Vision is a technique of extracting depth or distance information from an

image. These sensors using image from left and right camera view of the sensor

to provide the distance information of the obstacle in front. The more we identify

the corresponsing pixels in an image the more are the 3D points which can be

determined from a single set of images. As stereo images can be to find the depth

this information is quite enough to estimate the approaching obstacle distance and

hense with suitable obstacle avoidance techniques , we can also avoid them but

creating a disparity map[7].

Chapter 1 Introduction 4

1.3.2 Ultrasonic Sensors for Detecting Obstacles

The ultrasonic sensor sends out High frequency pulses and then how long does

it take for an echo of the sound to reflect back and this time is calculated to

estimate how far the obstacle is from the current robot position[6]. These senors

have two openings 1 to transmit high frequency pulse and other to receive the

echo. The speed of sound in air is 341 meter per second and ultrasonic sensor uses

this information to determine the time it takes to listen to its own transmitted

echo.

1.3.3 LIDAR For Obstacle avoidance

LIDAR stands for Light Detection and Ranging , and the only difference between

a LIDAR and SONAR is that the SONAR uses sound to detect obstacle and

LIDAR uses LIGHT. The same way as SONAR LIDAR uses its speed of light as

a constraint to determine the distance of obstacle from the robot by transmitting

a laser pulse from a source and calculate the time it takes to travel from sensor to

the obstacle and back by knowing the speed of light. Effective range sensors like

Velodyne LIDAR sensor used in google self diving car combines multiple detector

pair of upto 64 into one sensor and each can pulse at 20KHz [6]. This will allow

upto 1.3 million data points per second which is very good precision for detection.

1.3.4 Monocular vision Obstacle avoidance

Monocular vision is a technique of processing images from a single lens or camera.

Its upon us how and which kind of image processing techniques to apply so as

to achieve the best results for obstacle avoidance. Many researchers uses Depth

estimation from monocular vision to detect and avoid obstacle. Relative size of an

obstacle serves an important monocular cue for depth perception, which is indeed

a part of this thesis research and we will know more about it as we go further into

the upcomming chapters.

Chapter 1 Introduction 5

1.4 Objective of this Research

The main objective of this research is to study various obstacle avoidance tech-

niques to be applied in UAV’s. After understanding the related work in the field of

obstacle avoidance we propose to introduce a new method for obstacle avoidance

in UAVs and discuss various techniques which will be used to implement the solu-

tion and to understand more about the field of study. Furthermore, the objective

of this thesis also includes the evaluation of the proposed method.

1.5 Thesis structure

This thesis is divided in total of 9 chapters, which are intended to describe each

and every step involved in the development of the research.

The first chapter deals with the introduction to this research where it is explained

in brief what is obstacle avoidance, why it is being used, and the various appli-

cations of obstacle avoidance using LIDAR, Stereo-vision, ultrasonic sensor and

monocular vision. This chapter also deals with a section which describe the ob-

jective of this research.

The second chapters describes the state of art technology used in the field of ob-

stacle avoidance in UAV’s. This chapter is intended to give in brief explanation of

3 very important research papers among many others. The explanation is carried

out with what is the concept behind approach and the limitations, Advantages of

every state of art mentioned.

The third chapter is what is called fundamentals of this research which basically

deals with what are the important technologies and methods used behind this re-

search so as to gain fundamental concepts used in this thesis.

The forth chapter is the proposed method where it is explained the method pro-

posed in this research to achieve the respective results

The fifth chapter deals with Implementation of this research which involves the

software and its configuration implementation also with the architecture model of

the proposed method.

Chapter 1 Introduction 6

The sixth chapter talks about the results achieved after implementing the concept

and proposed method to this research. This also includes the results achieved with

raw phone camera and the data extracted from the distance to object and its size.

The seventh chapter is conclusion which concludes the thesis with the achieved

results and the work involved. The environment in which the research have been

tested and validated.

The eighth chapter discusses about the future work that can be done over this

research to achieve better results

The final chapter is the references in which the key papers and the source of in-

formation to this research are mentioned with the author name and publication

date.

Chapter 2

State of the art

Obstacle avoidance have been widely used over the years and a subject of interest

for decades for many researchers and several algorithms have been proposed to

tackle such problem. This thesis is mainly focused on vision based obstacle dec-

tection and avoidance as the proposed method is also in the direction of vision

based obstacle avoidance. The intension of the following state of art technology

is to find a close match between the proposed method and the other developed

methods.

Obstacle avoidance can also be achieved using LIDAR data to generate a two di-

mensional Cartesian map [2]. The approach is used to generate the map of the

environment prior and then the path will be planned based on the map to allow

the drone or robot to move in the desired obstacle free area [2]. In these types

of techniques it is assumed to have less moving obstacles as this approach is not

build to avoid moving obstacle in the path of the robot. The disadvantage of these

approaches are that these approached need prior information of the environment

it will be working in.

Obstacle avoidance in drones can also be made working using SONAR in which

SONAR sensors are used to know if the obstacle is approaching the drone or vice

verse. These sensors on the other hand are having very less working range approx-

imate 2m. Vision related obstacle avoidance gives us long range of view and also

most accurate information about the environment.

7

Chapter 2 State of the art 8

Obstacle avoidance is also achieved using feature estimation algorithm for terrain

mapping [5]. In this algorithm feature measurements from camera images are

used to update the extended kalman filter [5]. In this algorithm the frames were

captures at 28 fps [5]. Although this method uses GPS and IMU (Inertial measure-

ment units) for its working and hence this is not suitable for indoor environment

where the GPS might be inactive.

This chapter further will deal with few very well known techniques of obstacle

avoidance techniques this thesis will be using reference from and also we will

deeply analyze the algorithm used, the environment in which the algorithm was

tested and how was the effectiveness of the solution proposed in these few papers.

Further more we will also understand the various techniques and software used to

achieve the solution in the field of obstacle avoidance . Below are the techniques

which will be referred to in my approach of obstacle avoidance. These listed

paper or researches are those which matches more closely my proposed method

for obstacle avoidance in drones.

Chapter 2 State of the art 9

2.1 Obstacle Avoidance using Monocular Vision

The application of vision for obstacle avoidance paper basically deals with the size

detector that will be particularly useful to detect and avoid frontal obstacles. One

of the methods is based in feature descriptor, which is used to detect relative size

change in features and is executed in real time to avoid obstacles in front. With

addition to this the algorithm also implements guidance that will permit flights

through clustered environment like forests. Since other methods like depth are

not applicable in environment like forest and also methods like optical flow deals

with more textured obstacles, and fails most of the time in natural environment

with tree etc. on the other hand various other implementation also would require

known object shape and size o detect and avoid them.

The approach is based on bio-mimetic concept, and a size expansion cue can alert

the vehicle about the approaching obstacles, which also tells us looming can stim-

ulate the sense of object approach in a very realistic manner. The algorithm

implements a relative size detector and avoidance algorithm which returns obsta-

cle size as a function of time to detect and avoid them from a distance of 2 to 3m.

The apparent size becomes 1.5 times larger since the frame rate is known, which

can eventually provide us time to collision.

Figure 2.1: SURF feature points matching

The approach uses SURF [1] to to find the key points and consecutive image and

compare the size around key point to recognize the object approaching camera.

After calculating SURF key points , all those key points are discarded whose size

did not get bigger while approaching towards it. Template matching [1] is then

Chapter 2 State of the art 10

used to match those key points in all the frames and if the object is really ap-

proaching it will then warn the vehicle about it and can be used to avoid those

obstacles. Scale ratio is calculated and compared with previous and current frame

and if the current scale is same between those, the key point is discarded. We can

see the result of this algorithm in the figures below.

Figure 2.2: Previous and Current frame

2.1.1 Limitations

The limitations of this project are that first of all using SURF feature is only for

textured objects, object need to be textured to get the SURF features detection

from it and also this algorithm uses too much of computational power. Also

this work is done using a very low powered camera and using which the over all

computation time was not up to the mark, the research now aims to use a high

quality camera which will eventually have more burden on the algorithm point of

view and the concept might get too much complex to understand.

2.1.2 Advantages

The good point regarding this research is that this can be very effective in real

time environment and SURF can be calculated even with few detection from the

camera. The overall result of the research was good with 20 out of 23 trials success.

Chapter 2 State of the art 11

The approach using SURF is quite fascinating because of its usage with monocular

vision approach which provides low payload on the vehicle.

2.2 3D Information using MOPS and SIFT

The application of MOPS and SIFT was to prove that 3 dimensional informa-

tion can be constructed to evaluate the obstacle detection and avoidance. This

algorithm basically deals with two main concepts namely MOPS (Multi-Scale-

Oriented-Patches) which is nothing but minimalist design for local invariant fea-

tures. They consist of a simple bias-gain normalized patch, sampled at a coarse

scale relative to the interest point detection and the other concept is SIFT feature

detection using which the internal outline of the obstacle is created. Both these

information is then combined to get the 3 dimensional information of an object.

Figure 2.3: Algorithm to construct three-dimensional information of obstacles
using MOPS and SIFT [2]

The images were captured using streaming image data and the experimental results

were carried out using MATLAB. To calculate MOPS for outline information the

time required was 0.577 seconds whereas to obtain SIFT feature points for internal

outline requires 0.997 sec. As we can see that extracting features from streaming

Chapter 2 State of the art 12

images requires a lot of computation power and which will eventually affect the

reaction time from the vehicle.

2.3 Obstacle Avoidance Using Disparity

Another approach is based on the stereoscopic vision using two cameras and eval-

uate a depth map. The algorithm is basically divided in two different modules or

parts. In the first part, stereo cameras are used to capture images and process

those images and find the disparity map, from which the depth can be analyzed

which can eventually warn the vehicle about the obstacle knowing the depth or

distance from camera to the object. The second part deals with algorithm which

uses this information and implements the avoidance method to find the safe path

which is obstacle free.

Figure 2.4: Color image(left) and Depth map(right) [3]

The approach is made to divide each frame in 3 parts namely left, center and right,

and then to analyze which part of the frame gives more depth. The part which

return least depth will be chosen to proceed and the command is given to move

the vehicle in that particular direction which contains least depth i.e. the obstacle

is comparatively far away or even no depth which states no obstacle.

Chapter 2 State of the art 13

Figure 2.5: Disparity to check least depth [3]

2.3.1 Limitations

Disparity is a good approach which uses depth camera’s or manually find depth

using stereo vision, but on whole depth approach have quite a lot of limitations

on its own. The depth from the camera can be too blurry when the object is

directly in exposure to the light source and it eventually turns black in from of the

drone and hence it can not be detected. Using advanced depth camera like INTEL

REALSENSE new series can avoid this limitation too but that is quite expensive

approach for a research. Hence depth can be good for limited light conditions, but

not outside real time environment.

2.3.2 Advantages

The research concept is very easy to understand with very low computation power

which gives huge good impact on the over all research. Although the ROI concept

in the proposed method was inspired by this research paper due to its informative

way of understanding the approximate obstacle location . However this algorithm

is not the only one using ROI approach to avoid obstacle. Hence this approach is

quite easy to understand and fits good in land robots and indoor environments.

Chapter 3

Fundamentals

After briefly studying the above state of art as related work in the field of ob-

stacle avoidance we can analyze that the research area under obstacle avoidance

is linearly growing due to the high advancement in the technology and methods.

Furthermore in this research work I would like to propose my solution in the field

of obstacle avoidance in UAV’s.

We have seen various techniques which talks about monocular vision and most

of them work over feature detection and matching, which will eventually lead the

research orientation towards two approaching namely comparing the current im-

age with database image and secondly process feature detection and matching on

each frame taking previous image as reference image. Although, analyzing each of

these one by one we can come to a conclusion that, In first approach of keeping

reference images as database image, the method need a lot of database of images

to avoid different kind of obstacle in the environment. For example a tree in the

database will probably not match in the tree of real world scenario which will

intern make the system more unrealistic of having infinite number of database

images to make the system realistic. In the second method where the feature de-

tection and matching is done over previous and current frame, the method requires

a lot of computation power and advanced CPU to process that information so as

to have a quick reaction from the vehicle. Calculating features on each and every

14

Chapter 3 Fundamentals 15

frame requires a lot of computation.

Figure 3.1: Concept of approach

3.1 What are contours ?

Contours are simply curve joining all the continuous points having same colour

and intensity and these contours are used also in the field of object detection

and recognition. Contours are good and more accurate if applied after image

thresholding (we will study about it in next section) or canny edge detection.

3.2 What is Image Thresholding ?

Image thresholding is nothing but partitioning an image into foreground and back-

ground. Thresholding is the simplest method of image segmentation. From a

grayscale image, thresholding can be used to create binary images [8]. Some algo-

rithm of image thresholding are as follows :

1. Adaptive Thresholding is used when different threshold is used for different

regions in a image.

Chapter 3 Fundamentals 16

2. Image Segmentation divides the image into its constituent region or objects.

3. Segmentation algorithms are based on one of two basic properties of intensity

values discontinuity and similarity.

4. Histogram are constructed by splitting the range of the data into equal-sized

bins (called classes). Then for each bin, the numbers of points from the data

set that fall into each bin are counted.

Figure 3.2: simple thresholding based segmentation [10]

3.3 Background Subtraction in image processing

Background subtraction is a technique in image processing where an image is clas-

sified into background and foreground. This is done to achieve different application

which require segmentation of concerned objects from the scene [9]. Model of the

background is created first using background subtraction which then segments

out everything that does not belong to background based on spatial and temporal

setting and once foreground objects are retrieved from the foreground mask, it is

easy to extract as well as localize the objects in the scene.

By focusing only on parts of a scene with a significant degree of movement, we can

eliminate a large number of unnecessary points to be tracked in later stages [11].

Chapter 3 Fundamentals 17

In most cases filtering is done to remove excess information from the image after

the background subtract and then the features are detected on relevant regions so

as to get most accurate information from features of the image.

The background is usually modelled using an Adaptive Gaussian Mixture Model

where each pixel in the scene will be modelled by K Gaussian distributions ac-

cording to Grimson and Stauffer [37] and [38].

3.4 Clustering

After the feature detection being applied to the image many times there are many

isolated and overlapping features which does not give proper information about

the object and hence cluttering helps us to remove those unwanted features from

a given image. This steps helps eliminating those isolated features and reduces

number of points too close to each other.

After analyzing these two main related work, and understanding basic concepts of

image processing this thesis deals with a completely different approach to detect

obstacle and uses the information from the related work to process the avoidance

algorithm. This paper have got motivation from human being and animal’s un-

derstanding of detecting the approaching obstacle and avoid them. We human

beings get to know about object getting closer to us by increasing size of object

as we move towards it, the important point to be noted here is we logically not

at all calculating any distance to the object but assuming that because the object

is getting bigger by certain limit, it might be certain meters away. The whole

research in this paper will try and understand this behaviour of animals and to

predict or assume the distance to the object by not actually find the distance but

to calculate the size change in each frame. The paper deals with the approach to

have an ROI divided in 3 parts, and if the size of obstacle is crossing a certain

limit when compared to the ROI size, the vehicle will be warned and the region

of ROI containing no or less size of obstacle (contour size in threshold image) will

Chapter 3 Fundamentals 18

be chosen as the obstacle free area. This method required the concept and under-

standing of few major concepts namely contours, time to collision, thresholding,

background subtraction and concept of re gaining the original path of the vehicle

after avoiding the obstacle.

3.5 Robot Operating System

Robot operating system (ROS) is an open source collaborative product developed

by Open Source Robotic Foundation (OSRF), and according to OSRF ”ROS was

build from the ground up to encourage collaborative robotics software develop-

ment” and also ”its a collection of tools, libraries that’s basically aims to sim-

plify a task of working out with complex and robust behaviour across all robotic

platforms” [12]. The architecture of ROS allows us to build more complex and

advanced robotic systems to be performed on multiple platforms combined with

the network. ROS network consists of a master and one or more ROS nodes and

topics. The advantage of using ROS is that every other node in ROS runs to-

tally independent of any other node inside the same network, which means that

START/STOP of one node will not affect the working of other node. The ROS

systems uses publisher and subscriber architecture in which if the node needs to

provide information to the network, it does it with the help of messages on the

pre-defined topic for that particular information and when that information is to

be retrieved from the network, the subscriber job is to subscribe to the topic from

which the information needs to be retrieved and pull the messages that are being

published on that topic. In order to accomplish and establish this behaviour ROS

master is used. ROS master is started before all the nodes in the network and when

the nodes are started the ROS node gets registered with the master node running

on the same or a different machine. As the result of this each node provides to the

master all the subscription and publication information. The master also uses this

information to keep track of all the nodes, topics, messages and services so that

when a new node is registered with the network and which requires the interface

with the existing part of the network, master can easily update the nodes with a

Chapter 3 Fundamentals 19

new connection without any side affects.

A simple ROS network consisting of a ROS network is described in Figure 4.1.

As we can see like the architecture described above this example netwrok also

consist of a ROS master which can also be called as ROS CORE in other words,

in the figure we have a sensor i.e camera which is giving its data to a node called

”Camera Node” and the work here of a camera node is to may be convert the

image format or to convert the ROS image to Mat image (for opencv usage).

The camera node then publish the desired form of camera data to a topic called

”imageDataMessage” as shown in figure. The node-2 which is image processing

node is to process the image from the sensor and perform various image processing

techniques to achieve the desired results. This node-2 is subscribing to the image

topic being published by the publisher i.e node-1, camera node. All these nodes

and topic are registered in the ROS master node. There is another node-3 called

image display node and its job is to display the the sensor information by sub-

scribing to the same camera topic, this node can be a visualization environment

too which we will discuss in later section of this chapter. Although various other

aspects of ROS network is not show in this example but this covers at least the

major concepts of ROS architecture. This whole architecture combine to form a

single ROS network.

Chapter 3 Fundamentals 20

Figure 3.3: ROS example network

In this implementation Ardrone is being used to test and validate the results of

the algorithm and also the model of the drone is also added with a mono camera

which is used to provide us a camera feed on a given topic. The camera topic was

called /ardrone/camera/image raw and this is set in gazebo which we will discuss

in detail in our later section of this chapter. The ROS node ”contour” was written

as a subscriber to this image topic and the work of this node is basically first to

subscribe to the camera topic, convert the ROS image to an opencv compatible

image using ”cv bridge” and the ROS image is converted into MAT image using

this bridge.

The other important node will be an offboard node which will subscribe to the

state of the drone through ardrone config and save its current state. The node

also publish the local state to the topic called /ardrone/setpoint position/local

at a rate of 10 Hz. Through this node we can arm, takeoff and give the posi-

tion values to the drone. /ardrone/state is a topic that holds the current state

of the vehicle, which includes arming state, local position and other important

Chapter 3 Fundamentals 21

data. Through the /ardrone/state topic from the offboard node then publish

command to arm the drone. For take off offboard node also uses /ardrone/state

and /ardrone/set position/local to give the take off altitude and position values

to the ARDrone quadcopter.

Chapter 4

Proposed method

After studying various researches in the field of obstacle avoidance in UAV’s, this

research is intended to focus on the method proposed and the results obtained from

it. The method is intended to focus on the size of obstacle in front of UAV and

estimate the approximate distance of the object from UAV. To achieve the same we

have developed the ROS node responsible for image processing so to get the image

from the RGB camera installed on the drone and understand the approaching

obstacle based on the size of the contours. Hence this will also eliminates the

need of more heavy sensors like lasers, LIDAR, radars for performing obstacle

avoidance.

The flow chart of the current implementation of the concept is shown below :

22

Chapter 4 Proposed method 23

Figure 4.1: Flow chart of the Detection implementation

The images are captures as frames from the drone’s camera and then it undergoes

the convertion from RGB to mat image so as to make it compatible for the pro-

cessing over it. Ones the we have our frames in MAT format , we do canny edge

detection over the frames. Canny detection undergoes the following 5 steps during

the complete process :

1. Gaussian filter to smoothen the image frames.

2. Intensity gradient.

3. Non-maximum suppression.

4. Double threshold to determine fine edges

4.0.1 Gaussian filter to smoothen the image frames

We know that the edges information is easily affected by noise and hence it is

required to clean or filter out noise from the image. To do so the Gaussian filter

is applied. The equation of the Gaussian kernel of size (2K+1)x(2K+1) is :

Chapter 4 Proposed method 24

Hij =
1

2πρ2
exp(−(i− (k + 1)2) + (j − (k + 1)2)

2ρ2
) (4.1)

Hence for 5X5 Gaussian filter , to create adjacent image with ρ=1.4 :

B =

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

∗ A (4.2)

The selection of the size of the kernel will affect the performance of the canny edge

detector. Larger the size of Gaussian kernel, more lower the sensitivity to noise.

We have also chosen 5X5 Gaussian kernel because its standard for most of the

application to get a fine smooth result.

4.0.2 Intensity gradient

The edge may point to many direction in an image for to correct that intensity

gradient is used to detect horizontal, vertical and diagonal edges in the blurred

image. Edge detection operation returns a value for the first derivative in the hori-

zontal direction (Gx) and the vertical direction (Gy). From this the edge gradient

and direction can be determined :

G =
√
G2

x +G2
y (4.3)

θ = a tan 2(Gy, Gx) (4.4)

Where G can be computed with hypot function atan2 is the arc tangent function

with two arguments.

Chapter 4 Proposed method 25

4.1 Non-maximum suppression

This is also called Edge thinning technique, after the gradient detection the edge

intensity is still blurred there should only be one accurate response to the edge.

Thus non-maximum suppression can help to suppress all the gradient values (by

setting them to 0) except the local maxima, which also indicates the location with

the sharpest change of intensity.

If the Gradient value is 0 degrees , the point is considered to be on edge if the

gradient magnitude is magnitudes at pixels in the east and west directions.

4.2 Double threshold to determine fine edges

After Non maximum suppression the edges now provide real good value and to

still ignore bad edges due to noise and color variation and keep the edges with

high gradient value while ignoring low gradient edges, this is done by selecting

high and ow threshold value which in short is also called Image Threholding.

Hence the edge gradient magnitude lesser than high threshold value is considered

week and the magnitude larger than lower threshold value is marked as week edges

and which eventually be suppressed to provide more better edges after the process.

After the image is thresholded and applied canny detection , we find the contours

of each objects in front. Then the centroid of the each contour is found so as to

get the x and y position of each of the contour. This information is taken using

cv2.moments() where centroid can be defined as :

centroid x = M 10/M 00 (4.5)

centroid y = M01/M 00 (4.6)

Chapter 5

Implementation

With all this information to be the basics for understanding the implementation,

software suites were selected that will be the major role in achieving the thesis

research goals. The purpose of this suite will be to provide the integration of

camera with the drone, which will eventually solve the main requirement of the

research to be accomplished, use of these types of software helps us to also modify

the environment to test for the research.

The Robot Operating System was chosen as the underlying command and control

network for the entire system because of its versatility, inter interoperability, and

modularity. The modularity of ROS helps integrate multiple programming lan-

guages and tools to be be used on a development system, which inturns supports

vast development and continuous modification of the research.

Opencv libraries were chosen so as to integrate the software coding part of the

project on top of ROS. This can be easily interfaced with ROS as we can include

Opencv in our CmakeList.txt file of the ROS package. With the help of Opencv we

are also viewing continuous image feeds from the ROS camera which is integrated

in our simulated drone. In order to safely implement and test this research a sim-

ulation environment was needed which can provide us a good working simulated

environment including drone with a mono camera and of course possibility to add

and remove object from the scene.

Due to this type of requirement GAZEBO was chosen for simulation because of

26

Chapter 5 Implementation 27

its easy integration with ROS and also because of its robust feature set. This

also includes built in ROS visualization tool RVIZ, which is helpful in viewing the

camera topic more easily and also this provides ease of use and build in support

with ROS and gazebo.

The whole tests and ROS network was performed on Ubuntu 16.04 LTS (Long

term support) operating system. As the ROS architecture is only designed to

be used on Linux, specifically Ubuntu Linux, this Opearing system was chosen.

Also the machine on which the whole system i.e ROS, GAZEBO and the main

algorithm development was performed was dual booted machine with Intel Core

i5-7200U CPU, 2.50GHz x 4 processors and 64 bit system support.

5.1 Gazebo simulation environment

The requirements for the simulation environment in this research included the

ability to integrate with the ROS network, have support for the sensors like cam-

era and provide the ability to add or remove objects while the simulation was in

progress in order to simulate dynamic obstacles and test the effectiveness of the

system. According to the overview of Gazebo, Gazebo is a 3D dynamic simula-

tor with the ability to accurately and efficiently simulate populations of robots

in complex indoor and outdoor environments, and offers physics simulation at a

much higher degree of fidelity, a suite of sensors, and interfaces for both users and

programs [13]. This simulator includes a good variety of quadcopter model which

was the basic requirement for this research including the camera plugin, since its

developed along side ROS, this provide ROS package called ”gazebo ros pkgs” to

facilitate the communication between our ROS network and the gazebo environ-

ment [14].

Chapter 5 Implementation 28

Figure 5.1: Gazebo model for AR DRONE with camera link

The Ardrone drone is used with the package tum simulator which contain all the

necessary model for the drone and the environment itself. The tum simulator

package was easily integrable with MoveIt configuration too and hence no time

was invested in making the model for the UAV and its environment.

Figure 5.2: Image feed with ROI from Ardrone camera

Gazebo plugins give your URDF models greater functionality and can tie in ROS

messages and service calls for sensor output. Plugins can be added to any of the

main elements of a URDF - a robot,link, or joint depending on what the scope and

purpose of the plugin is. To accomplish adding a plugin to a particular element

in your URDF, you must wrap your plugin tag within a gazebo element. Going

Chapter 5 Implementation 29

little deeper in the conversion process, the URDF is converted to a SDF before

being parsed by Gazebo. Any further elements inside the gazebo tags which are

not in the element table on URDFs are directly inserted into the model tag of the

generated SDF. Below figure shows an example of the camera link inside an SDF

file.

Figure 5.3: .SDF file for camera link

The SDF file was modified to get the camera link in the ARdrone quad copter, the

camera plugin name used was ”camera controller” for the camera and for using

this ”libgazebo ros camera.so” with camera image width set as 800 and height as

800 (pixels) too. Although to add a plugin to the model we need to use another

tag in xml which is ”plugin”. The camera image topic on which image will be

published must be described here in this plugin tag. Here we are just using two

topic namely ”camera info” to get the available camera info parameters and the

other is ”image raw” which contains the main image feed from camera, this can

be seen in figure 4.7.

Chapter 5 Implementation 30

Figure 5.4: camera plugin and image topic description

With this we now have set all the requirements for our simulation environment

to be used for the research. To summarize, with the help of Gazebo, we achieved

to get our vehicle and the camera with the running camera topic. With all this

the research approach is now to go much deep into the system architecture and

algorithmic approach of the obstacle detection technique, and from now we will

discuss about our algorithm used and the implementation of the system architec-

ture in later section of this chapter.

As shown in figure 4.9, the we use the ROI over the image to know if the contour

is exceeding to a certain limit and hence we made an ROI diving in 2 parts of each

frame called left and right as shown in figure 4.10. As the size of the obstacle is

equal to or more than the size of ROI, the drone gets a warning to stop as it is

approach the obstacle in front. Further this can be added to Moveit path planning

algorithm and it will take care of it on its own. Below is the result of the contour

implementation from AR drone camera.

Chapter 5 Implementation 31

Figure 5.5: Left : image from ARDrone camera, Right : Contours of obstcles.

5.2 Ardrone Test with Moveit - Configuration

MoveIt provides great user friendly graphical interface for integrating any kind of

robot in it. The MoveIt setup assitance takes care of generating all the files based

on information provides during the setup. In order to launch setup assistance the

following command needs to be executed :

roslaunch moveit setup assistance setup assistance.launch

Chapter 5 Implementation 32

Figure 5.6: Front screen of MoveIt setup assistance

The second tab in the screen as shown in figure 4.6 is after loading the URDF of

the ardrone to get the configuration of our drone to moveit.

Figure 5.7: After loading the ardrone URDF.xacro

The next window is for self-collision check , which mean when the drone is moving

around, this check if the collision between the self link is possible. Hence thi

Chapter 5 Implementation 33

generates a self collsion matrix which tells the MoveIt not to collide with self

joints.

Figure 5.8: Setting up self collision for ARdrone

The next step include the virtual joint creation with joint type as floating , con-

figuring child link as base link and parent frame as world. The next step is the

planning group in which we need to add a group with name as ARdrone group,

also we will add only the virtual joints as other joints are just the constant trans-

form of the virtual joint and also while adding a link to the planning group we will

add base link and save the configuration. At last we need to add the configuration

files to a ROS workspace to summarize the setup.

Chapter 5 Implementation 34

Figure 5.9: Finishing setup by giving location of ROS workspace for config
files

5.3 Path Planning MoveIt Architecture

Obstacle avoidance is a fundamental problem for any autonomous system as it

attempts to reach its destination. The goals of this thesis research require the

robot to be able to detect obstacle, the main aim of this research is to mainly do

the process for static objects, although this can also be done on dynamic objects

with a little more added approach. With this in mind, the approach of this re-

search is to focus on this factor of working with static obstacles, and hence the

only sensor used was a mono camera. The sensor data is carried out on ROS topic

as discussed in previous sections and hence the image processing algorithm comes

into picture. The data from the camera is subscribed in an image processing node

to get the contour position and comparing it with the ROI size. The algorithm

and the architecture in details will be discussed in this chapter ahead. Also in this

section we will combine and understand the big picture of the system.

Chapter 5 Implementation 35

Figure 5.10: MoveIt Architecture [14]

Lets discuss about each block briefly so as to understand the functionality of each

block in the system.

5.3.1 Move Group

The primary interface to the ROBOT to MoveIt is though class called MoveGroup.

This provides easy to use and understandable functionality the we want to carry

out, this includes in our case, moving the drone around, setting joint or pose goals,

in creating motion Plans for the drone, adding or removing obstacles from the en-

vironment. Hence this contains all the joints, sensors and state information of the

ARDrone and provides the desired functionality knowing all the listed informa-

tion about the drone or ROBOT. MoveGroup hold all the possible information

about the vehicle and we can access each of them from MoveGroup Class. The

example to add an obstacle to the MoveIt environment is shown below from the

implemented code.

Chapter 5 Implementation 36

Figure 5.11: Adding obstacle to Moveit Planning Scene

This implementation successfully added the obstacle in the planning scene. Move-

Group class also talks with other implmentaions in existing on the network such

as ROS controllers, ROS camera for ARDrone, Param server and other image

processing node. This gather the information about the state of the drone, the

planning scene, action callbacks, and just perform requested callback action when

in need. The drone information was loaded in the ROS param server by using

the Moveit Setup Assistance and hence it contains the URDF, SDF and other

configurations regarding the ARDrone.

5.3.2 ROS Param Server

The MoveGroup class is also configured with the ROS tools and definition lan-

guages such as YAML, SDF, URDF. This defines the group with the joints that

will the part of the group with their joint limits. The drone must also expose

JointTrajectoryAction so as to get the output of motion planning to be executed

on hardware or even in the software like in our case. In order to executes the

planning for the obstacle free path /joints states is also needed by the means of

drone’s state publisher, all of these are together provided by ROS control and

Chapter 5 Implementation 37

senosor drivers. All this is configured by Moveit Setup Assistance, this also builds

the MoveIt work space for our drone. Once the param server is loaded to MoveIt,

ARdrone configuration is known to Moveit which includes sensors and joints in-

formation.

Figure 5.12: Rqt graph of the interaction with whole system

In the above graph we can cleary see the whole system intraction with MoveGroup

and the exchange of information in the current implementation. Each block in the

grapth has its own importance in providing moveit the necessary information it

need to do path planning, collision avoidance and load other trajectory informa-

tion.

5.4 Path Planning Algorithm

Path planning in MoveIt deals with defining an obstacle free path for our drone

allowing us to reach the desired goal, in other words keeping the drone away from

obstacles perceived from the camera and also taking care of joint limits violations.

In our project we are using Moveit motion planning library called OMPL using

ROS actions and services

While execution a motion planning request is sent to MoveGroup which will take

care of obstacle collision avoidance (including self colision), and finds an optimum

trajectory for all the joints in the group, so as to reached the desired goal requested.

Chapter 5 Implementation 38

The result of motion planning is a trajectory that moves the vehice to the target

location. This also satisfies velocity and acceleration constraints at joint level.

MoveGroup class have the motion planning pipeline made of planners request

adapters. This is used for pre and post-processing of the motion plan request.

Pre-processing is use full to check of the initial state of the vehicle is inside the

joint limits, while post processing is used to convert paths into time parameterized

trajectories. Default Motion planning adapters provided by Move-It are as listed

below :

• FixStartStateBonds : This fixes the initial and start state to be inside the

joint limits which were configured in the URDF, without this the joints are

outside the joint limits , the planner would not be able to find any plan since

the joint rule is already violated. This will only come into picture if the joint

state is outside the limits exceeding a certain amount.

• FixWorkSpaceBonds : This defines a default work space to be plan, by

default the work space is set to 2x2x2 m cube but for our case since we need

a bigger work space this was set to 10x10x10 m cube as shown in figure 4.11.

Figure 5.13: Model inside a Moveit Workspace

Chapter 5 Implementation 39

• FixStartStateCollision : This attempts to sample a collision free configura-

tion near a given configuration in collision. It does it by distributing joint

states by a very small amount. The world geometry monitor uses occupancy

map to monitor and to build a 3D representation of the environment around

the drone, and also augments it with the planning scene topic information,

such as objects. An octomap is used to register all this information.

5.5 Proposed Architecture Model

In this section we will see and understand the architecture for the proposed

method, which involves the obstacle avoidance using size as a constraint. In this

method there are some few assumptions we need to make, firstly the obstacle in

front of the UAV is previously known, i.e. the dimension and approximate. dis-

tance from the camera (initially).

To achieve this we have used a very interesting methodology which is called ”Tri-

angle similarity”, which goes something like this, Lets say we have a object with a

known width W , we will then place this object at some distance D from camera.

We will then take a picture of the obstacle from that distance D and measure the

apparent width in pixel P. This will then give the perceived focal length of the

camera :

F = (PxD)/W (5.1)

In our case, the obstacle is at a distance of almost 6 meters from the UAV which is

equivalent to 236.22 inch (D), with known obstacle width of 39.37 inch (W) and

the obstacle apparent width from image processing is found out to be 119 pixels

(P) and if we apply all these values in the above formula we get the approximate.

focal length of the camera i.e. 714.

Next, the goal of this is to find the distance of this obstacle from our UAV. So,

Chapter 5 Implementation 40

to achieve that, as we move our camera closer or farther away from the known

obstacle, we can then apply triangle similarity to find the distance of the obstacle

to the camera/UAV, hence :

D′ = (WxF)/P (5.2)

Now as we go close and far from this obstacle, the pixel (P) will change according

to the size of the obstacle, and hence we get the effective distance between the

obstacle and the UAV. The architectural view of the proposed system is shown

below :

Figure 5.14: Proposed System architecture

The system architecture is quite simple and easy to understand. As explained in

previous sections the image processing is done over sequence of images from the

UAV camera and then the triangular similarity is applied to get the approximate

distance from the UAV to the obstacle. The avoidance is done by stopping the

UAV in front of obstacle at a distance of 3 meters and then fly up until the contour

id is out of the ROI (region of interest). In the picture below we can see that the

UAV have fly upward after detecting the obstacle at 3m of distance. Of course

Chapter 5 Implementation 41

this is just to show that the UAV is able to react according to the result fed depth.

Chapter 6

Result

As discussed in above chapters we have successfully tested the detection algorithm

in few situation and were able to get the pretty good result out of it. In this

research we have successfully tested and implemented following things :

• We have implemented a new proof of concept for the obstacle detection using

the image size and contours and results were tested with few conditions and

also we have implemented the Obstacle avoidance with one of the Widely

used sensor, LIDAR in corporation with MoveIt path planning capabilities.

In this section we will study and understand the results we have got from

both the implemented solutions i.e LIDAR as sensor and updating the known

obstacle info to the Cost Map and on the other side using size as a constraint

and getting the approximate. distance from the obstacle. Lets analyze the

results produced by each method one by one.

42

Chapter 6 Result 43

6.1 Results while testing the proposed method

(Manually)

We have first tested the changing size of the detected contour after placing

few objects in front of the camera and we have tried to determine the chang-

ing size of the obstacle(s) as we move 1 meter/reading near to it. In the

figure below we can see the graph with 2 obstacles in front of the drone and

also analysis of change in size as the obstacle was approaching the vehicle.

In the graph the x-axis represents distance from the obstacle in meters where

as the y-axis represents the size of the obstacle in pixels.

Chapter 6 Result 44

	0

	5000

	10000

	15000

	20000

	25000

	30000

	35000

	40000

	45000

	1 	1.5 	2 	2.5 	3 	3.5 	4

Si
ze
	o
f	t
he

	o
bs
ta
cle

Distance	from	the	obstacle

Results

First	obstacle
Second	obstacle

(a) Figure A

(b) Figure B

Figure 6.1: Obstacle detection (total 2 obstacles in front). Left : Graph of
changing size; Right : Image of the scene

We can clearly see that the second obstacle was small enough that it wasn’t visible

from 4 meters although started to be visible when the vehicle reached 2 meters,

and also the first obstacle grown its size drastically at a distance of 2m from the

vehicle.

Chapter 6 Result 45

• The algorithm was also tested with 4 obstacles in front and the results seems

to be quite good. As usual the x axis here represents Distance in meters and

y axis represents the size of the obstacle in pixels.

	0

	5000

	10000

	15000

	20000

	25000

	30000

	1 	1.5 	2 	2.5 	3 	3.5 	4

Si
ze
	o
f	t
he

	o
bs
ta
cle

Distance	from	the	obstacle

Results

First	obstacle
Second	obstacle
Third	obstacle

Fourth	obstacle

(a) Figure A

(b) Figure B

Figure 6.2: Obstacle detection (total 4 obstacles in front). Left : Graph of
changing size; Right : Image of the scene

This result is quite entertaining because as we can see in the graph obstacle 1 i.e

pink color and obstacle 2 i.e. blue color are both visible at a distance of 4 meters

that means they are big enough to be detected at the range of 4 meters and also

Chapter 6 Result 46

the size of first obstacle grown drastically at the distance of 3 meters for around

28000 pixels and hence in this case the vehicle will get the warning as the obstacle

size have already exceeded it limit and hence it can be avoided at the distance of

3 meters. Also the last obstacle was very small to be visible only at a distance of

2 meters.

6.2 Path planning result with MoveIt

• The collision world object of the planning scene is used to configure collision

checking , and this is done using a special library called ”Flexible Collision

Library” package. The type of collision object supported in this library

are meshes, primitive shapes, planes and an octomap. For collision check

a matrix called Allowed collision matrix is used to encode a Boolean value,

which indicates whether the collision is possible or not between two pair of

bodies , where value 1 states that the collision is not needed.

Figure 6.3: Path planning

In the above figure we can see that the trajectory of the drone is obstacle

free, in other words words the drone is avoidance the obstacle in front of it.

Hence using this we can integrate new plugin for any kind of sensor.

Chapter 6 Result 47

Also there were many experiment made with two cylindrical obstacles in front of

the UAV and the result were quite encouraging. We saw that in few paths planned

by Move It the UAV couldn’t get enough space to avoid the obstacle in front and

did the collision. Out of 5 trials made with 2 obstacles in front the the percentage

of successful avoidance was about 70 percent which means out of 5 trials 3 were

successful avoidance from the path planning done by Move It. The figure below

shows the screen shots of the path made by UAV while unsuccessful avoidance.

(a) Figure A (b) Figure B

Figure 6.4: Collision with 2 obstacle in front (Unsuccessful avoidance)

In the above figure we can see that although the UAV tried to avoid the obstacle

but the deviation away from obstacle wasn’t enough to avoid them. Next lets see

the successful attempts made by UAV to avoid the obstacle in front.

Chapter 6 Result 48

(a) Figure A (b) Figure B

(c) Figure C

Figure 6.5: Successful attempts with 2 obstacle in front

The results with the MoveIt approach using LIDAR as sensor is tested successfully

and the results were successfully validated. This approach although can only be

used with 3D sensors, like depth cameras, LIDAR etc and hence is very concise to

those particular sensors. Lets now analyze the results we got from our proposed

approach using obstacle size.

6.3 Results - proposed method

We have taken the results with single obstacle in front of the UAV and validated

the results in different perspectives. We can see how the changing size of the

Chapter 6 Result 49

obstacle information is used to simply warn the UAV about the apparent depth

and avoid it by flying up until the nearest contour goes out of the ROI (region of

interest).

Figure 6.6: Distance to obstacle

In the above screen shot we can clearly see that the distance from the UAV camera

and obstacle is found out to be 6.6 meters (approximate). We have also recorder a

graph with distance to the obstacle vs time which can be seen in the figure below.

Figure 6.7: Distance (y-axis) vs time (x-axis)

Chapter 6 Result 50

In Fig. 6.7 we can clearly see the change in distance between the object and UAV

compared with the starting point, which was approximate 7 meter. The spikes in

the graph is the result of error detection for few milli seconds, which didn’t had

much impact over the UAV but the reading and hence we can see several spikes.

To understand the reading of the distance let take a look at the graph more closely.

(a) Figure A (b) Figure B

(c) Figure C

Figure 6.8: Close look at the Distance reading from Fig. 6.7

As we can see in above 3 parts of the Fig. 6.7, we see that the distance reading at

starting was 7.1 meters and then 6.11 meters in the middle and at last 3.25 meters

before it gets stable and vanishes as the UAV did the maneuver to the upward

direction to avoid the obstacle.

Chapter 6 Result 51

Figure 6.9: UAV flying upwards until obstacle is out of ROI

Hence the new approach was tested and implemented. The result with the trian-

gulation method was quite interesting and not bad for the these test on a simulated

environment. From a distance of 6 meters to fully overcome the obstacle it took

about 6 to 7 seconds to complete hovering and avoiding tested over i5-7200U CPU

with 2.50 GHz x 4 processor. The object was kept over a distance of approximately

6 to 7 meters from the drone on a specific marker and each time the distance from

the object was with the accuracy of +-0.3 meters, although the avoidance started

with almost at 3 meters of the distance, depending on the value provided in the

ROS node. With few more efforts this approach can lead to real time obstacle

detection with 2D camera, and hence can help in not increasing the payload of

the vehicle. This approach is very new in the field of obstacle detection and hence

with little more effort this can be a more effective way of obstacle detection and

avoidance. We can clearly see that the results were not bad after the approach

was tested in simulation. The system was tested and simulated on HP Notebook

Linux machine with 8Gb RAM and Intel core i5 -7200U CPU running at 2.50GHz

x 4 quad core processor.

Chapter 7

Conclusion

This thesis aimed to present an approach in the context of obstacle avoidance in

UAV’s. The thesis also implemented the obstacle avoidance method with laser

sensor using MoveIt as the path planner, and the results we implemented and

tested. However, the proposed approach used a single camera and using image

processing algorithm proved that it is possible to use size as the only parameter to

understand the nature of the obstacle and hence avoid it. Although this approach

is for now is just a proof of concept and the results can be more overwhelming if

there is more deep work done over it.

This thesis majorly focus on obstacle detection algorithm which was developed

using simulation on ROS. The UAV model used was ARDrone and the path plan-

ning tool was MoveIt using one approach, while a generic avoidance was performed

so as to avoid the obstacle using proposed method. In this thesis we also studied

various state of art techniques of obstacle avoidance for UAV and fundamentals

involved in this master thesis.

The algorithm captures images in frames from the camera and apply edge de-

tection so as to get the boundary of the obstacles in front. This is followed by

thresholding and then finding the contours over the thresholded image. If the final

contour is bigger than the ROI (Region of interest) then its considered to be a

closer object and if not the obstacle is considered to be relatively far, and using

this information the depth (approximate) was calculated using triangle similarity

52

Chapter 7 Conclusion 53

method which then helped us to understand the obstacle distance in much better

way. Hence the result of this research was based on this new approach for obstacle

detection and the output was gathered as a proof of concept to show that this is

very simple and effective approach in the field of obstacle avoidance in UAVs.

Chapter 8

Future Work

Based on the study and results of this research the future work to be included is to

add more obstacles in the environment and understand the behavior of the UAV

for those obstacles. There can be multiple ways of improving this research :

The first approach may involve the addition of more obstacle and improve the

image processing algorithm so as to get more clear imaging results from the cam-

era. The second approach can be to move the UAV upward when the obstacle

was seen closed to the UAV, this can help if we have 2 or more obstacles close to

each other and all with different height. Using this approach if the drone sees 2 or

more obstacle lying close to each other (difference between centroid of 2 contours

is less) then the UAV will start flying upward so that both the obstacles are evenly

avoided. More obstacles can be added in the scene and the algorithm can be made

more complex in terms of how to deal with multiple obstacles. Which can really

be a good study and work in this field of research.

The research can also be improved by developing a separate plugin for mono cam-

era in the MoveIt work space and use that camera plugin to update the information

of the obstacles in front and avoid them accordingly. Also kinematics of the UAV

can be added to the algorithm for it us to know how much should the UAV deviate

from the obstacle to avoid it.

54

Chapter 9

Documentory References and

Other Source Of Information

[1] Tomoyuki Mori and Sebastian Scherer-”First results in detecting and avoiding

frontal obstacles from a monocular camera for micro unmanned aerial vehicles”-

Robotics and Automation (ICRA), 2013

[2] JeongOog Lee, KeunHwan Lee, SangHeon Park, SungGyu Im and Jungkeun

Park-”Obstacle avoidance for small UAVs using monocular vision”

[3] Lazaros Nalpantidis and Antonios Gasteratos-”Stereo vision Based Algorithm

for Obstacle Avoidance”

[4] Allen Ferrick, Jesse Fish, Edward Venator and Gregory S. Lee- ”UAV Obstacle

Avoidance Using Image Processing Techniques”

[5] Daniel Magree, John G. Mooney, Eric N. Johnson - ”Monocular Visual Mapping

for Obstacle Avoidance on UAVs”

55

Chapter 9 Documentory References and Other Source Of Information 56

[6] Obstacle avoidance drones and techniques defined here :

https://www.dronezon.com/learn-about-drones-quadcopters/top-drones-with-obstacle-

detection-collision-avoidance-sensors-explained/

[7] Lazaros Nalpantidis, Ioannis Kostavelis, and Antonios Gasteratos- ”Stereovision-

Based Algorithm for Obstacle Avoidance”

[8] P.Daniel Ratna Raju, G.Neelima - ”Image Segmentation by using Histogram

Thresholding ”

[9] Jaysinh Sagar and Arnoud Visser - ”Obstacle avoidance by combining back-

ground subtraction, optical flow and proximity estimation”

[10] E. Jebamalar Leavline, D. Asir Antony Gnana Singh - ”On Teaching Digital

Image Processing with MATLAB” - American Journal of Signal Processing

[11] J. M. SAGAR - ”Obstacle Avoidance using Monocular Vision on Micro Aerial

Vehicles” -

[12] ROSARIA, Open Source Robotics Foundation, March 1, 2017. [Online].

Available: http://wiki.ROS.org/ROSARIA

[13] Beginner: overview, Open Source Robotics Foundation.

http://gazebosim.org/tutorials?cat=guided b&tut=guided b1

[14] ROS overview, Open Source Robotics Foundation.

http://gazebosim.org/tutorials/?tut=ROS overview

[15] MoveiT concepts : https://moveit.ROS.org/documentation/concepts/

