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Abstract 

Understanding postural control requires considering various mechanisms 

underlying a person´s ability to stand, to walk and to interact with the 

environment safely and efficiently. The purpose of this paper is to summarise 

the functional relation between biomechanical and neurophysiological 

perspectives related to postural control in both standing and walking based on 

movement efficiency. Evidence related to the biomechanical and 

neurophysiological mechanisms is explored as well as the role of proprioceptive 

input on postural and movement control. 
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1. Introduction 

Postural control has been defined as the control of the body’s position in 

space for the purposes of balance and orientation (Horak, 2006; Massion, 1998; 

Shumway-Cook & Woolacott, 2000, 2007). Postural orientation involves the 

active control of body alignment and tonus in relation to gravity, base of support, 

environment and internal references (Horak, 2006; Kandel et al., 2000; Lundy-

Ekman, 2002; Massion, 1998; Raine et al., 2009; Winter et al., 1990). Postural 

equilibrium involves the coordination of sensorimotor strategies to stabilise the 

body’s centre of mass (CoM) during both self-initiated and externally triggered 

disturbances in postural stability (Horak, 2006). Postural stability has been 

defined as the ability to control the CoM in relation to the base of support 

(Shumway-Cook & Woolacott, 2000, 2007). The weight of each component 

(orientation and stability) varies according to the task and the environment. 

Indeed, the postural control system adjusts its goal under different 

circumstances, such as longitudinal alignment of the whole body to maintain a 

steady, erect stance; remodeling of stance in preparation for a voluntary 

movement; shaping of the body for display purposes, as in dance; maintenance 

of balance, as on the gymnast's beam; or conservation of energy in a 

demanding task (Kandel et al., 2000; Shumway-Cook & Woolacott, 2007).  

Biomechanically, a postural control position is achieved when the CoM is 

within the base of support and is aligned with the centre of pressure (CoP) 

(Winter, 1995). Any external or internal perturbation that changes the projection 



of the CoM to the limits of the base of support and the alignment between CoM 

and CoP may lead to postural challenge. The ability to maintain the body’s CoM 

within a specific boundary is dictated by the efficiency of the individual’s balance 

mechanisms (Raine et al., 2009) related to  anticipatory postural adjustments 

(APA), triggered by feedforward mechanisms prior to the perturbation (Aruin & 

Latash, 1995; Belen'kii et al., 1967; Li & Aruin, 2007; Massion, 1992; Schepens 

& Drew, 2004), as well as to compensatory postural adjustments (CPA) that are 

initiated by sensory feedback signals (Alexandrov et al., 2005; Park et al., 

2004). The process of generation of APA is likely to be affected by expected 

magnitude (Aruin & Latash, 1996; Bouisset et al., 2000) and direction (Aruin & 

Almeida, 1997; Santos & Aruin, 2008) of the perturbation, voluntary action 

associated to the perturbation (Arruin, 2003; Shiratori & Aruin, 2007), postural 

task and body configuration (Arruin, 2003; van der Fits et al., 1998). In 

conditions of high instability demands, the central nervous system (CNS) may 

suppress APA as a protection against their possible destabilising effects (Arruin 

et al., 1998). In fact, a relation between APA and CPA has been demonstrated 

(Santos et al., 2009), suggesting the existence of an optimal utilization of APA 

in postural control. The CPA response depends not only on the APA, but also 

on the direction and magnitude of the perturbation, the base of support 

dimension (Dimitrova et al., 2004; Henry et al., 1998; Horak & Nashner, 1986; 

Jones et al., 2008) and on the involvement in a secondary task (Bateni et al., 

2004). 

 The main sensory systems involved in postural control are 

proprioception, the vestibular system and vision, and their afferent pathways 

within the CNS (Day & Cole, 2002; Shumway-Cook & Woolacott, 2007). 

Afferent and efferent pathways involve the spinal cord, the brain stem, the 

cerebellum, the midbrain, and the sensorimotor cortex. All of these contribute to 

the development of an internal representation of body posture that is 

continuously updated based on multisensory feedback and is used to forward 

commands to control body position in space (Massion, 1994; Mergner & 

Rosemeier, 1998). This provides a basis for all interactions involving perception 

and action with respect to the external world and is likely to be partly genetically 

determined and partly acquired through ongoing experiential learning. It is 



therefore adaptable and vulnerable, is dependent on the ongoing information 

that it receives (Meadows & Williams, 2009) and is related to human movement 

variability, allowing for adaptable functional behavior (Van Emmerik & Van 

Wegen, 2000). 

The neural process involved on stability organisation and body orientation 

in space is necessary practically for all dynamic motor actions (Massion, 1998). 

Specifically, the control of balance during gait and while changing from one 

posture to another requires a complex control of a moving body CoM that is not 

within the base of foot support (Winter et al., 1993). In fact, human gait is 

influenced by a multifactorial interaction that results from neural and mechanical 

organisation, including musculoskeletal dynamics, a central pattern generator 

(CPG), based on a genetically determined spinal circuit, and peripheral and 

supraspinal inputs (Arechavaleta, 2008; Borghese et al., 1996; Horak & 

Macpherson, 1996; Mazzaro et al., 2005; McCollum et al., 1995; Segers, 2006). 

The CPG designs spinal networks than can generate patterns of rhythmic 

activity in the absence of external feedback or supraspinal control. However, 

these spinal networks are modulated by peripheral input and supraspinal control 

(Armstrong, 1986; Rossignol et al., 2006).  

The present study aims to review the biomechanical and 

neurophysiological mechanisms related to postural control in both standing and 

walking based on movement efficiency. In the following sections, the neural 

mechanisms, the role of afferent information and biomechanical aspects will be 

considered to upright standing and human gait.  

2. Postural and movement control 

2.1 Neural mechanisms 

Upright standing 

The upright stance of the human is an unstable position (Peterka & 

Loughlin, 2004). Postural sway reflects noise and regulatory activity of the 

several control loops involved in maintenance of balance, which requires that 

the CoM never deviates beyond the support area. The control of the appropriate 



level of neuromuscular activity to produce rapid postural control strategies 

involves medial descending systems (Raine et al., 2009). The role of these 

systems is fundamental to the organisation of postural tone appropriately 

according to environment demands, gravity and base of support. The vestibular 

system action is related to postural tone adjustments to body weight support 

(Matsuyama & Drew, 2000). This system plays a major role in the antigravity 

function (Latash, 1998; Siegel & Sapru, 2011) as it is responsible, through 

lateral vestibulospinal tract, for the activation of ipsilateral extensor motor 

neurons and their associated gamma motor neurons (Latash, 1998; Rothwell, 

1994; Siegel & Sapru, 2011). The reticular formation has an important role on 

APA production (Schepens & Drew, 2004) as it receives afferent input from all 

the sensory system and also from the pre-motor cortex and supplementary 

motor area (Brodal, 1981; Kiernan, 2005; Rothwell, 1994). The possible role of 

the cortex in postural control has been discussed and there is reference in 

literature to the pre-motor cortex influence in APA production (Massion, 1992) 

and to the supplementary motor area as potential focus of control for APA 

generation (Jacobs et al., 2009).  

Human gait 

Appropriate mechanisms for controlling muscle tone are essential to 

maintain stable postural and locomotor synergies in bipedal gait performance. 

The dependency between postural control and movement may be justified by 

the connection between the cortex and the reticular formation. In fact, muscle 

tone and the locomotor system can be controlled, in parallel, by a combined 

input to the brain stem of net inhibition from the basal ganglia, and net excitation 

from the motor cortex (Takakusaki et al., 2004). Specifically, an important 

neuronal circuit that allows the coexistence of postural adjustments and 

execution of movement is the cortico-ponto-cerebellar pathway, which allows 

the connection of the cortex with the nucleus of the brain stem and cerebellum 

(Ito, 2006). With this circuit the postural control can be organised ipsilateraly to 

the activated side with respect to the control of movement in the contralateral 

side. This relationship between movement and postural control through the 

activation of ventro-medial and dorso-lateral systems, as well as the importance 

of the coactivation mechanism between the two lower limbs (Dietz et al., 2002) 



to keep the body CoM over the feet (Dietz et al., 1992; Dietz et al., 1989), justify 

the study of mechanisms that occur in both sides of the body in relation to a 

unilateral movement like gait initiation as well as in relation to the gait cycle.  

Basic structures involved in the control of locomotion and postural muscle 

tone are located in the midbrain (Takakusaki et al., 2004).  Some circumscribed 

regions have been identified as relevant in activating and controlling the 

intensity of spinal locomotor CPG operation, maintaining equilibrium during 

locomotion, adapting limb movement to external conditions and coordinating 

locomotion to other motor acts (Armstrong, 1986; Jordan, 1986; Orlovsky, 

1991). Among the main supraspinal centres involved are the sensorimotor 

cortex and the supplementary motor area (Kapreli et al., 2006; Mackay-Lyons, 

2002; Miyai et al., 2002) the cerebellum, the basal ganglia (Garcia-Rill, 1986; 

Mackay-Lyons, 2002), the midbrain locomotor region (Kandel et al., 2000; 

Mileykovskiy et al., 2000) and the spinal cord (Dietz et al., 1992). The 

sensorimotor cortex is involved in the preparation for and execution of 

movement (Nelson, 1996). The cerebellum receives copies of CPG output to 

motoneurons via ventral spinocerebellar tract and spinoreticularcerebellar 

pathways, as well as information about the activity of the peripheral motor 

apparatus via the dorsal spinocerebellar tract (Orlovsky, 1991). Based on these, 

influences motoneurons indirectly via vestibulospinal, rubrospinal, reticulospinal 

and corticospinal pathways (Orlovsky, 1991). The cerebellum main role may be 

the timing of muscle activation, “fine-tuning” the output by adapting each step 

(Lansner & Ekeberg, 1994). Nevertheless, both the cerebellum and the basal 

ganglia seem to play an important role in timing of sequential muscle activation, 

with the basal ganglia operating at the level of planning, initiation, execution, 

and termination of motor programs as well motor learning (Mackay-Lyons, 

2002; Wichmann & DeLong, 1996). The midbrain locomotor region activates 

“muscle tone excitatory system” and “rhythm generating system” (Takakusaki et 

al., 2004). Although not being relevant in gait, the motor cortex is involved in the 

modification of CPG activity in unstable surfaces or when gait needs a visual 

orientation (Mackay, 1999). The degree of supraspinal and spinal influences in 

movement generation is determined by context (Mackay-Lyons, 2002). 



In Figure 1 are presented important structures involved in postural control 

as well the neural connection between postural control and movement control in 

functional tasks like walking and upright standing. The relevant role of afferent 

input, specifically the proprioceptive input, in postural and movement control 

justify the study of the role of Golgi tendon organ and muscle spindles and their 

afferences in standing and walking. 

 
Figure 1: A conceptual schematic diagram illustrating the main structures 

involved postural control in both standing and walking. 

2.2 The role of afferent information 

Upright standing 

The ability to reweight sensory information depending on the context is 

important to maintain stability when an individual moves from one context to 

another (Peterka, 2002). For instance, while vestibular information may not be a 

large contributor for the control of upright stance (Winter et al. 1998) and for 

triggering or coordinating muscle activation patterns associated to ankle 

strategy (Horak et al., 1990), it is likely to play a crucial role during moments of 

increased postural instability (Fitzpatrick and McCloskey 1994). As in normal 

conditions proprioceptive information assumes more relevance than other 



sources, in this paper focus has been given to the role of proprioceptive 

information.  

It is well known that the mechanoreceptors (i.e. specialised sensorial 

receptors responsible for transduction of mechanic events into neural signs 

(Grigg, 1994)) accounting for proprioceptive information are primarily founded 

on muscles, tendons, ligaments and capsule (Hogersvorst & Brand, 1998; Jami, 

1992; Johansson et al., 1991). Receptors located in the deeper skin tissue and 

fascia are traditionally associated with touch receptors, being categorised as 

additional sources (Edin & Johansson, 1995; Grigg, 1994; Macefield et al., 

1990). Support has been given to the role of the Golgi tendon organs in 

providing afferent input from “gravity-dependent” receptors required to indicate 

the projection of the body’s CoM within the base of support (Dietz, 1996; Dietz, 

1998; Dietz & Colombo, 1996; Dietz et al., 1992). Also, the small magnitudes of 

sway observed during quiet standing may be enough to alter muscle lengths, 

resulting in changes of Ia-afferent input onto the motoneuron pool of the lower 

limbs. Recent studies by (Loram et al., 2005b) have suggested this possibility, 

whereby muscle length changes in the gastrocnemius and soleus muscles 

during quiet standing have been detected within the range at which muscle 

spindles are sensitive to movement (Proske et al., 2000). Support has been 

given to the role of medium latency responses from group II during standing 

(Corna et al., 1996; Nardone et al., 1996; Schieppati et al., 1995). Indeed there 

is evidence that muscle spindle type II fibres play a more relevant role than 

group Ia fibres in the control of bipedal stance (Marchand-Pauvert et al., 2005) 

as only medium latency responses have a stabilising effect during perturbations 

of stance, and also because these fibres are more influenced by the “postural 

set” (Nardone et al., 1990). Findings obtained by Grasso et al, 1996, 

demonstrate the existence of crossed neural pathways fed by these fibres, 

which explains the bilateral electromyographic responses to unilateral 

perturbations during standing. This finding is supported by (Dietz, 1996), as this 

author argues that a complex bilateral coordination of leg muscle activation 

(mediated by a spinal mechanism (Dietz & Berger, 1984)) is needed for upright 

postural control during locomotion.  

All the receptors mentioned above and the corresponding afferents input 

may allow a modulation of postural activity in relation to muscle length and 



tension variation, but only a combination of afferent inputs can provide the 

necessary information to control body equilibrium (Dietz, 1996). The role of 

proprioceptive information from ankle muscles has been highlighted in various 

studies (Fitzpatrick et al., 1994; Fitzpatrick et al., 1992a; Gatev et al., 1999; 

Loram et al., 2005a). Some authors go further, arguing that normal subjects can 

stand in a stable manner when receptors of the ankle muscles are the only 

source of information about postural sway (Fitzpatrick et al., 1994; Fitzpatrick et 

al., 1992a). The soleus and the gastrocnemius have traditionally been 

considered the source of muscle proprioceptive information signalling changes 

in body position (Fitzpatrick et al., 1992b; Loram & Lakie, 2002a; Loram et al., 

2005b). These muscles act predominantly as active agonists and, because the 

foot is constrained on the ground, they prevent forward toppling of the body, 

whose centre of gravity is maintained in front of the ankle joint (Fitzpatrick et al., 

1992a; Lakie et al., 2003; Loram & Lakie, 2002a; Loram et al., 2005a; Maki & 

Ostrovski, 1993). The problem with muscle spindles as position sensors is that 

they are able to generate impulses in response to muscle length changes as 

well as from fusimotor activity (Proske, 2006). According to (Di Giulio et al., 

2009) the best proprioceptive information may come from un-modulated 

muscles crossing the joint in parallel with the active agonist. In fact earlier 

studies stated that, depending upon the stance conditions, muscle stretch does 

not necessarily result in a compensatory stretch reflex response but instead 

results in an antagonistic muscle activation (Gollhofer et al., 1989; Hansen et 

al., 1988). Based on this, it has been argued that reciprocal patterns of muscle 

activation are typically involved in postural control (Di Giulio et al., 2009; Latash, 

1993). Neurophysiologically, reciprocal inhibition is mediated, at least in part, by 

a dysinaptic circuit in the spinal cord that is subject to several supraspinal as 

well as segmental modulator mechanisms (Jankowska, 1992) and varies 

according to the way in which antagonist muscles are activated (Lavoie et al., 

1997). Synergies between antagonist muscles include simple patterns of 

reciprocal activation, co-contractions, and complex triphasic activation patterns 

(Lavoie et al., 1997). There is evidence that the strength of dysinaptic inhibition 

is reduced during co-contraction of antagonist muscles compared with 

reciprocal activation (Nielsen & Kagamihara, 1992). Another source of 

proprioceptive information may come from the cutaneous afferents of the feet 



as there is a large distribution of cutaneous receptors at various locations on the 

sole of the foot (Kennedy & Inglis, 2002). It has been suggested that this source 

of proprioceptive information contributes to both the coding and spatial 

representation of body posture during standing (Roll et al., 2002) and that the 

architecture and physiology of the foot appear to contribute to the task of 

bipedal postural control with great sensitivity (Wright et al., 2012).  

Human gait 

During gait afferent feedback adapts dynamically, through a reciprocal 

relationship, the response of the CPG to environmental requirements and 

assumes multiple roles in regulating the production of motor patterns, such as: 

(1) the production of detail in the temporal pattern of muscle activation 

sequence (Ivanenko et al., 2006; Pearson, 1993), (2) the reinforce of ongoing 

motor activity, particularly those involving load-bearing muscles, such as the 

extensor muscles during the stance phase of gait (Pearson, 1993; Sinkjær et 

al., 2000; Stephens & Yang, 1996), and (3) the control of transition from one 

phase of movement to another (Lacquaniti et al., 1999; Pearson, 1993). Swing 

is initiated when the leg is extended (stretching the flexor muscles) and 

unloaded (reduced force in extensor muscles sensed by the Golgi tendon organ 

of the extensor muscles) (Zehr & Duysens, 2004). Consequently gait cycles 

depend on the afferent input from peripheral receptors as the muscle force 

production at a given level of motor unit recruitment can change according to 

length (velocity) and tension variations (Frigo et al., 1996) 

The monosynaptic excitation of spinal motoneurons from the large 

diameter group Ia afferent fibres related to short latency response (Matthews, 

1991) has been demonstrated when an expected stretch of the ankle extensors 

is imposed during gait (Sinkjaer et al., 1996; Yang et al., 1991). Also a phasic 

modulation of Ia input has been demonstrated by changes in the magnitude of 

H-reflex over the course of the gait cycle, with the greatest attenuation occurring 

during flexion (Schneider et al., 2000; Yang & Whelan, 1993). This modulation 

is consistent with the fact that the maximum soleus length occurs during foot off, 

when maximum plantar flexion of the foot occurs, which is coincident with its 

maximum force production (Orendurff et al., 2005). The modulation of the H-



reflex is a reflection of: (1) the background excitability of the motoneuron pool, 

(2) the modulation associated to the activation of the antagonist muscle, and (3) 

presynaptic inhibition of the primary afferents (Yang & Whelan, 1993) that 

seems to be related partially to Ia afferents from the hip and knee extensor 

muscles (Brooke et al., 1997). Medium latency response from group II has been 

demonstrated during gait (Dietz et al., 1985) and some authors argue that this 

group is more important to feedback in the stance phase than group Ia (Grey et 

al., 2001; Grey et al., 2002; Nielsen & Sinkjaer, 2002; Sinkjær et al., 2000). 

Earlier studies have suggested that strong central effects of group II muscle 

afferents are mediated via a complex neural pathway influenced by supraspinal 

input and peripheral input during walking (Dietz et al., 1987; Yang et al., 1991). 

Specifically, there is evidence for the role of vestibulo- and reticulo-spinal 

pathway (Davies & Edgley, 1994) which supports the hypothesize that the 

facilitation of the relevant lumbar propriospinal neurons by descending tracts 

neurons would be stronger over group II during maintenance of posture than 

during voluntary contractions (Marchand-Pauvert et al., 2005). Also, the role of 

group Ib load-sensitive afferences related to medium latency response has 

been reported to contribute to the regulation stance phase of gait (Stephens & 

Yang, 1999) associated to a disynaptic Ib reflex-reversal (Stephens & Yang, 

1996). Findings obtained in (Grey et al., 2007) suggest that tendon organ 

feedback via an excitatory group Ib pathway contributes to the late stance 

phase enhancement of the soleus muscle activity. The combination of the 

different afferent inputs plays an important role on gait dynamics related to the 

ipsilateral limb but also on the contralateral limb, as it has been demonstrated 

that unilateral leg displacement during gait evokes a bilateral response pattern, 

with a similar onset on both sides (Dietz & Berger, 1984). From a functional 

point of view, this interlimb coordination is necessary to keep the body’s CoM 

over the feet (Dietz, 1996).  

Figure 2 summarizes the role of proprioceptive receptors and respective 

afferences in standing and walking. Important networks related to integration of 

proprioceptive information (cerebellum) and to the modulation of afferent 

information at spinal cord (reticulospinal and vestibulospinal tracts) are 

represented.  



 
Figure 2: Representation of the most important proprioceptive receptors 

and afferences and their role in standing and stance phase of gait (a). There are 

also represented important networks related to proprioceptive information (b). In 

this part of illustration (b), dotted lines represent efferent pathways and solid 

lines represent afferent pathways. 

2.3 Biomechanical aspects 

Upright standing 

Upright stance is associated with small deviations from an upright body 

position, which results in a gravity-induced torque acting on the body, causing it 

to accelerate further away from the upright position. Corrective torque must be 

generated to counter the destabilizing torque due to gravity. This process of 

continuous small body deviations countered by corrective torques creates a 

pattern known as spontaneous sway. The mechanisms underlying spontaneous 

sway are not fully understood, and controversy remains regarding the 

organisation of sensory and motor systems contributing to spontaneous sway. 

Numerous authors have suggested that active feedback control mechanisms 

contribute to the maintenance of upright stance (Fitzpatrick et al., 1996; 

Johanson & Magnusson, 1991; Peterka & Loughlin, 2004; Peterka & Benolken, 

1995; van der Kooij et al., 2001). Recent studies have shown that a model 

based primarily on a feedback mechanism with a 150- to 200-ms time delay can 



account for postural control during a broad variety of perturbations (Peterka, 

2002; Peterka & Loughlin, 2004; Peterka & Benolken, 1995) and can yield a 

spontaneous sway pattern that resembles normal (Peterka, 2000) or 

pathological spontaneous sway (Parkinson’s disease; (Maurer et al., 2003)). 

However, the relevance of feedback mechanisms for postural control is still 

debated. Some authors concluded from their experiments that corrective torque 

originating from feedback control is insufficient for stabilizing the body 

(Fitzpatrick et al., 1996). Others suggested additional sources for corrective 

torque, like prediction (Morasso et al., 1999; van der Kooij et al., 2001), or have 

proposed more complex concepts (Baratto et al., 2002; Collins & De Luca, 

1993; Loram & Lakie, 2002b). Postural sway has been viewed as a result of a 

correlated random-walk process (Collins & De Luca, 1993), a result of 

computational noise (Kiemel et al., 2002), and/or a moving reference point 

(Zatsiorsky & Duarte, 1999). The possible importance of postural sway as a 

reflection of a hypothetical search process within the system of postural 

stabilization has been emphasised (Mochizuki et al., 2006; Riley et al., 1997). 

From a functional point of view, the control of human upright posture 

stability is commonly viewed as a continuous stabilization process of a multilink 

inverted pendulum, where the main controlled parameter is the CoM position 

within the limits of the supporting base (Maurer & Peterka, 2005). This aspect 

as been described as biomechanical constraints that determines patterns of 

postural coordination (Buchanan & Horak, 2003). In stance, the limits of stability 

- that is, the area over which individuals can move their CoM and maintain 

equilibrium without changing the base of support - are shaped like a cone 

(McCollum & Leen, 1989a). Thus, equilibrium is not a particular position but a 

space determined by the size of the support base and the limitations on joint 

range, muscle strength and sensory information available to detect limits. The 

CNS has an internal representation of this cone of stability that it uses to 

determine how to move to maintain equilibrium (Horak, 2006). Gatev et al., 

1999, reported a significant correlation between spontaneous body sway and 

the activity of the gastrocnemius muscle. They also discovered that 

gastrocnemius activity preceded temporally CoM displacement, suggesting a 

central program of control of the ankle joint stiffness working to predict the 



loading pattern. More recent studies proposed that the actual postural control 

system during quiet standing adopts a control strategy that relies notably on 

velocity information of CoM and that such a controller can modulate muscle 

activity in an anticipatory manner without using feedforward mechanisms 

(Masani et al., 2003). According to this view, velocity feedback can play a 

significant role in anticipating body position changes because it carries 

information about the subsequent state of the body, i.e., a change in CoM 

velocity indicates the direction and intensity with which the current CoM 

displacement will be changed in the following time instant. It has been 

hypothesised that the integration of proprioceptive and plantar cutaneous 

sensations would play a significant role in the velocity feedback mechanism 

(Masani et al., 2003). Another biomechanical constraint is related to frequency 

of postural sway (Nashner et al., 1989), as when postural sway is lower than 0.5 

Hz the body can be compared to a simple inverted pendulum (McCollum & 

Leen, 1989b), and when it is higher than this value the body can be compared 

to a double inverted pendulum with the fulcrum at the hip level (Yang et al., 

1990).  

Human gait  

The coordination between posture and movement involves the dynamic 

control of the CoM in the base of support (Stapley et al., 1999). Consequently, 

to access the simplified concept of locomotion it is necessary to consider the 

behavior of the CoM during gait cycles. The trajectory described by the CoM in 

the plan of progression is a sinusoidal curve that moves vertically twice during 

one cycle and laterally in the horizontal plan and that is similar in form to that 

found in the vertical displacement (Gard et al., 2004; Norkin & Levangie, 1992). 

Peak-to-peak amplitude is described as being about 4-5 cm for adults at freely 

chosen speed and has been used to estimate exchanges of mechanical energy, 

efficiency, work, and to describe the symmetry as an indicator of the quality of 

gait (for more information see (Gard et al., 2004)).   

The human gait results from a complex interaction of muscle forces, joint 

movements and neural commands. Variables including electromyographic 

activity, muscle torque, ground reaction forces, kinematics and metabolic-



energy costs have been measured and quantified. This data set requires an 

interpretation and organisation of the fundamental principles that elucidate the 

mechanisms of gait. Several models have been suggested to describe human 

gait mechanisms (Cavagna & Kaneko, 1977; Cavagna & Margaria, 1966; 

Donelan et al., 2002b; Kuo et al., 2005; Kuo et al., 2007; Saunders et al., 1953; 

Waters & Mulroy, 1999). The six determinants of gait theory (Saunders et al., 

1953), based on the premise that vertical and horizontal CoM displacements 

are energetically costly, proposes a set of kinematic features that help to reduce 

CoM displacement. However, there is evidence that some determinants have a 

non-significant role on the CoM vertical displacement and that there is higher 

metabolic expenditure when subjects voluntary reduce vertical displacement of 

CoM (for review see (Kuo et al., 2007)). The inverted pendulum model proposes 

that most of the work during gait is performed by a passive mechanism of 

exchange of gravitational potential and kinetic energies (60-70%)(Cavagna et 

al., 1977; Griffin et al., 2003). However this model cannot reproduce the 

existence of two peaks in vertical ground reaction force (Pandy, 2003; Zajac et 

al., 2003) and does not account for the costs which are not considered 

responsible for work, like isometric force stabilisation and body weight support 

(Kuo et al., 2005). The difference in the percentage of energy recovery in 

relation to an ideal inverted pendulum has been related mostly to double 

support phase (McGeer, 1990). Indeed, it has been demonstrated a low 

percentage of energy recovery in the double support phase (Geyer et al., 2006) 

related to the interruption of the energy-conserving motion of single support by 

an inelastic collision of the swing leg with the ground, leading to changes in 

velocities of the legs and the CoM (Kuo et al., 2007). This energy loss can be 

reduced by 75% through the application of a propulsion impulse in the trailing 

leg immediately before collision of the leading leg (Kuo, 2002). Simulations 

suggest that the ankle plantar flexor (soleus, gastrocnemius) and the uni- and 

bi-articular hip extensors (gluteus maximus, hamstrings) dominate work output 

over the gait cycle (Neptune et al., 2004). These muscles, being active in the 

late stance and in the beginning of stance, are therefore restoring energy to the 

body near double-support (Zajac et al., 2003).  



Ankle plantar flexors are the primary contributors for forward progression 

and vertical support (Kepple et al., 1997), before midstance they hinder 

progression (Neptune et al., 2001) and during midstance they maintain body 

support and the forward motion of the trunk and leg, which is consistent with 

inverted-pendulum-like ballistic walking as the synergy of these muscles in this 

subphase occurs with minimal metabolic energy expenditure, as expected in 

ballistic-like walking (Zajac et al., 2003). Biarticular hip extensors generate 

forward acceleration during the first half of stance, while uniarticular quadriceps 

muscles and the uniarticular hip extensors decelerate the body mass centre and 

provide body support (Liu et al., 2006; Neptune et al., 2004). The biarticular 

quadriceps muscle is a significant contributor to forward progression in late 

stance (Neptune et al., 2004). 

According to Donelan, 2004, lateral stabilisation exacts a modest 

metabolic cost as walking requires active lateral stabilisation. It has been 

demonstrated that the gluteus medius, although acting primarily outside the 

sagittal plane in walking, contributes to support and slows progression (less 

than the other muscles) in the first half of stance and contributes to support in 

the second half (Liu et al., 2006). Also, is has been demonstrated that the body 

lateral motion is partially stabilised via medio-lateral foot placement (Donelan, 

2004; Kuo, 1999).  

3. Movement efficiency 

The relationship between muscle activity and whole body mechanics it too 

variable and complex to allow direct control of the later without an intermediate 

kinematic representation (Lacquaniti et al., 1999). There is evidence that 

supports the idea that global kinematic gait is controlled (Ivanenko et al., 2004). 

Kinematics is relatively invariant in various modes of locomotion, while the 

electromyographic activity patterns to produce the required kinematic patterns 

can vary considerably (Grasso et al., 1998; Ivanenko et al., 2004). These 

findings suggest that neural circuitry can somehow specify limbs kinematics and 

the appropriate muscle synergies would be determined in a subordinate and 

flexible manner to adapt to the current mechanical constraints (Lacquaniti et al., 

1999; Lacquaniti et al., 2002). The basic biomechanical control signal may exert 



its action through an appropriate model of inverse dynamics and feedback 

device that determines the muscle torque necessary to achieve kinematic 

patterns (Ivanenko et al., 2004). The significance of muscle redundancy would 

then be to allow the same movement to be carried out by means of different 

combinations of muscle activity under different environmental circumstances, 

for instance, to cope with fatigue or changes in load (Lacquaniti et al., 1999).  

The major function of muscles in gait is to generate and absorb energy; 

such function is largely ignored in neurophysiological research (Winter & Eng, 

1995). The body has the capacity of transferring energy between segments 

across the joint centres and can store and recover energy in the passive elastic 

tissues in the tendon and muscles. However, this last energy conserving 

mechanism is quite small in walking (Winter & Eng, 1995). The CNS has learnt 

how to create motor patterns to conserve much of the energy that was 

generated earlier in the gait cycle. It has been estimated that of the total energy 

changes of all body segments over the gait cycle only 33% are caused by active 

muscle generation and absorption, while 67% are due to the passive transfers 

between segments (Pierrynowski et al., 1980). Considering this it is important to 

quantify the movement also on the criterion of efficiency (Fetters & Holt, 1990; 

Sparrow & Newell, 1998).  

In biomechanical and physiological research, efficiency of movement is 

normally defined as the ratio of the mechanical work performed and the 

metabolic cost of performing the work (Stainsby et al., 1980). Typically an 

efficiency formula will take the form: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑤𝑜𝑟𝑘
𝐸𝑛𝑒𝑟𝑔𝑦 𝑤𝑜𝑟𝑘

× 100 

Energy expenditure during walking can be characterised through 

mechanical energy estimations (Cavagna et al., 1963; Saibene & Minetti, 2003; 

Willems et al., 1995) or metabolic energy measurements (Waters, 1999). 

Mechanical energy is generally estimated by one of three approaches: (1) 

analysis of energy changes of the CoM relative to the surroundings (external 

work) and of the body segments relative to the CoM (internal work) (Cavagna & 

Margaria, 1966; Cavagna et al., 1963; Willems et al., 1995); (2) analysis of the 



energy changes of moving body segments (sum of segmental energies) or (3) 

measurement of muscle power around the joints (net joint work) (Winter, 2005). 

In all mechanical energy estimations the actual amount of work performed is 

underestimated as additional metabolic work resulting from isometric muscle 

contractions or antagonist co-contractions is not taken into account (Fetters & 

Holt, 1990; Winter, 2005). This problem is overcome when assessing metabolic 

energy i.e. measuring oxygen consumption during walking (Fetters & Holt, 

1990; Vandewalle, 2004). The relation between metabolic cost and the 

mechanical work performed by stance limb muscles to lift and accelerate the 

CoM during walking has been already demonstrated (Donelan et al., 2001; 

Donelan et al., 2002a) and has been considered a valid predictor of walking 

performance (Anderson & Pandy, 2001). Metabolic energy expenditure can be 

accessed through indirect calorimetry, where oxygen consumption and/or 

carbon dioxide production is measured and converted into energy expenditure 

using formulae (Cunningham, 1990; Garby & Astrup, 1987) which have been 

reported as a valid method (Levine, 2005). Mechanical and metabolic energy 

analyses allow monitoring how the CNS takes advantage of energy conserving 

mechanisms in order to achieve a more efficient movement.  

Summary/Concluding remarks 

 Postural control has been vastly explored in the scientific community. 

However, the complexity of the interrelations between neural and mechanical 

aspects and environment leads to the need of studying postural control in a 

holistic way. In addition, the study of postural control needs to reflect the 

dynamic inter-relation of the different components of human movement on the 

basis of movement efficiency. The adaptability, vulnerability and continuous 

dependency of afferent information on the postural control system turns this 

area a focus of clinical interest. Considering that the postural control system has 

the capacity of reorganization for higher movement performance, it is important 

to understand in detail the static and dynamic postural control mechanisms and 

strategies and how these mechanisms influence other systems and are 

influenced by changes in afferent and efferent information. 
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