
Engenharia de Resiliência

PAULO JORGE RICARDO ANDRADE
Outubro de 2018

Resilience Engineering

Paulo Andrade

A dissertation submitted in partial fulfillment of

the requirements for the degree of Master’s in Informatics Engineering,

Specialization Area of Software Engineering

Advisor: Isabel de Fátima Silva Azevedo

Enterprise advisor: Joaquim Vasco Oliveira dos Santos

Porto, October 2018

ii

iii

Dedicatory

To my family that support in every situation in my daily life, especially my two brothers and my

parents. The hard work they put every day is an inspiration to me and without them none of the

work done in my thesis was possible.

To my friends that are always present to hear my thoughts and to free my mind from work and

problems.

To my two advisors, Isabel Azevedo and Vasco Santos, that helped me a lot through this entire

thesis with innumerous revisions and suggestions. A big thank you for your attention.

iv

v

Abstract

This thesis presents a study of a new discipline called Chaos Engineering and its approaches,

that help to verify the correct behavior of a system and to discover new information about it,

through chaos experiments like the shutdown of a machine or the simulation of latency in the

network connections between applications. The case study was carried out at the company

Mindera, to verify and improve the resilience to failures of a client’s project.

Initially the chaos maturity of the project within the Chaos Maturity Model was in the first levels

and it was necessary to increase its sophistication and adoption by conducting experiments to

test and improve the resilience.

The cloud environment that the project uses, and the architecture is explained to contextualize

the components that the experiments will use and test. Different alternatives to test disaster

recovery plans are compared as well as the differences between the use of a test environment

and the production environment. The value of carrying out experiments for the client project is

described, as well as the identification of their value proposal. In the end, the analysis of the

different chaos tools is performed using the TOPSIS method.

The four performed experiments test the system's resilience to failure of a database’s primary

node, the impact of latency in the network connections between different components, the

system's reaction to the exhaustion of physical resources of a machine and finally the global

test of a system's resiliency in the face of a server failure. After the execution, the experiences

were evaluated by company experts.

In the end, the conclusions about the work developed are presented. The experiments carried

out were classified as important for the project. A problem was found after in the latency

introduction experiment and after changing the application’s code, the system reaction was

positive, and the number of responses was increased.

Keywords: Resilience Engineering, Chaos Experiments, Chaos Engineering.

vi

vii

Resumo

Esta tese apresenta um estudo de uma nova disciplina chamada Chaos Engineering e as suas

abordagens, que ajudam a verificar o correto funcionamento e a descoberta de novas

informações acerca de um sistema através de realização de experiências como o desligar de

uma máquina ou a simulação de latência nas ligações de rede entre aplicações. O caso de

estudo foi realizado na empresa Mindera, dentro de um projeto cliente, para verificar e

melhorar a sua resiliência a falhas.

Inicialmente a maturidade de caos do projeto dentro do Chaos Maturity Model encontra-se nos

primeiros níveis e tornou-se necessário aumentar a sua sofisticação e adoção através da

realização de experiências para testar e melhorar a resiliência.

O ambiente de cloud que o projeto usa e a sua arquitetura é explicada para contextualizar os

componentes que as experiências vão usar e testar. As diferentes alternativas de testar planos

de recuperação a desastres são comparadas, assim como, as diferenças entre a utilização do

ambiente de testes e de produção. O valor da realização de experiências para o projeto cliente

é descrito, assim como a identificação da sua proposta de valor. No final, a análise das

diferentes ferramentas de caos é realizada recorrendo ao método TOPSIS.

As quatro experiências executadas testam a resiliência do sistema perante a falha de um nó

primário de uma base de dados, o impacto da latência nas ligações de rede entre diferentes

componentes, a reação do sistema perante a exaustão de recursos físicos de uma máquina e

por último o teste global da resiliência de um sistema perante a falha de um servidor. As

experiências são posteriormente avaliadas por experts da empresa.

No final, as conclusões acerca do trabalho desenvolvido são apresentadas. As experiências

realizadas foram classificadas como importantes para o projeto. Um problema foi encontrado

na experiência de introdução de latência e após a alteração do seu código, a reação do sistema

foi positiva e o número de respostas aumentou.

Palavras-Chave: Engenharia de Resiliência, Experiências de Caos, Engenharia de Caos.

viii

ix

Contents

List of Figures... xi

List of Tables.. xiii

List of Source Code ... xv

List of Acronyms and Initialisms ... xvii

1 Introduction .. 1

1.1 Context .. 1

1.2 Problem .. 3

1.3 Objectives ... 5

1.4 Methodological Approach .. 5

1.5 Structure ... 6

2 Enterprise Context .. 9

2.1 Target Project .. 9

2.2 Monitoring .. 13
2.2.1 Statful ... 14
2.2.2 CloudWatch ... 16

3 State of the Art ... 17

3.1 Testing a Disaster Recovery Plan .. 17

3.2 Staging vs Production Environment ... 18

3.3 Game Days .. 20

3.4 Chaos Engineering ... 21
3.4.1 Necessary Conditions to Perform Chaos .. 22
3.4.2 Principles of Chaos .. 22
3.4.3 Design an Experiment ... 24
3.4.4 Chaos Maturity Model ... 25

3.5 Chaos Tools ... 26
3.5.1 Simian Army .. 26
3.5.2 Chaos Monkey and Similar Tools ... 28
3.5.3 Simoorg.. 33
3.5.4 Chaos Kong ... 33
3.5.5 Blockade .. 34
3.5.6 Chaos Proxies ... 35
3.5.7 Failure Injection Testing .. 38

x

3.5.8 Chaos Automation Platform .. 39
3.5.9 Lineage-driven fault injection ... 40
3.5.10 Some remarks .. 43

4 Value Analysis .. 45

4.1 Business and Innovation Process ... 45
4.1.1 Model Engine ... 46
4.1.2 Five Elements of the NCD Model... 47
4.1.3 Influencing factors .. 48

4.2 Value for the customer ... 49

4.3 Value proposal ... 52
4.3.1 Quality functional deployment .. 52

4.4 Multi-Criteria Decision Making ... 53

5 Design .. 57

5.1 Local Resilience Experiments .. 57
5.1.1 Database Systems Resilience ... 58
5.1.2 Unreliable Network Connection ... 61
5.1.3 Resource Exhaustion .. 65

5.2 Global Resilience Experiment .. 67

5.3 Future Experiments ... 69

6 Implementation and Evaluation .. 71

6.1 Database Systems Resilience ... 72

6.2 Unreliable Network Connection ... 74

6.3 Resource Exhaustion .. 79

6.4 Global Resilience .. 81

6.5 Evaluation .. 83

7 Conclusion .. 89

7.1 Results and Objectives Achieved .. 89

7.2 Contributions ... 90

7.3 Limitations and Recommendations for Future Research 91

References ... 93

Attachment A – QFD ... 99

Attachment B – Experiments .. 101

xi

List of Figures

Figure 1 – Deployment Diagram ... 11

Figure 2 – Component Diagram .. 12

Figure 3 – Riak TS System Metrics .. 15

Figure 4 – PowerfulSeal Setup (Bloomberg, 2018) ... 32

Figure 5 – FIT Experiment (Andrus et al., 2014) ... 39

Figure 6 – Example of a ChAP Experiment (Netflix, 2017a) .. 40

Figure 7 – Example of a System Execution (Alvaro et al., 2016) .. 41

Figure 8 – LDFI Simple Architecture Overview (Alvaro et al., 2016) .. 42

Figure 9 – The NCD model (Koen et al., 2002) .. 46

Figure 10 – Longitudinal Perspective of Value for the Customer (Woodall, 2003) 51

Figure 11 – MongoDB Replica Set Architecture ... 59

Figure 12 – MongoDB Fault Tolerance Mechanism.. 60

Figure 13 – MongoDB Replica Set After Elections .. 61

Figure 14 – Data API Setup ... 63

Figure 15 – Toxiproxy Integration ... 63

Figure 16 – Docker Compose Simulated Enviroment ... 64

Figure 17 – Watchlist Service Setup ... 66

Figure 18 – Chaos Monkey Integration... 68

Figure 19 – MongoDB QA Replica Set ... 73

Figure 20 – MongoDB QA Replica Set After Failure.. 73

Figure 21 – Real-time Metrics of the Experiment Steady State ... 75

Figure 22 – Real-time Metrics of Experiment with Latency ... 76

Figure 23 – Real-time Metrics of Experiment with Latency after Code Modification 78

Figure 24 – Statful Metrics with Watchlist Service Machines’ Memory Free 81

Figure 25 – Chaos Engineering Importance’s Evaluation ... 84

Figure 26 – Database Systems Resilience Experiment’s Evaluation ... 84

Figure 27 – Unreliable Network Connection Experiment’s Evaluation 85

Figure 28 – Unreliable Network Problem’s Evaluation... 85

Figure 29 – Resource Exhaustion Experiment’s Evaluation .. 86

Figure 30 – Global Resilience Experiment’s Evaluation .. 86

Figure 31 – Quality Function Deployment .. 99

xii

xiii

List of Tables

Table 1 – Simian Army Details .. 28

Table 2 – Chaos Monkey 2.0 Details ... 28

Table 3 – Chaos Lambda Details ... 29

Table 4 – Pumba Details ... 29

Table 5 – Kube Monkey Details .. 30

Table 6 – Chaos Lemur Details .. 30

Table 7 – Monkey Ops Details .. 31

Table 8 – Chaos Dingo Details ... 31

Table 9 – PowefulSeal Details ... 33

Table 10 – Simoorg Details ... 33

Table 11 – Chaos Kong Details .. 34

Table 12 – Blockade Details .. 34

Table 13 – Chaos HTTP Proxy Details .. 35

Table 14 – Toxy Details ... 36

Table 15 – Toxiproxy Details ... 37

Table 16 – Vaurien Details .. 38

Table 17 – Value Based Drivers (Lapierre, 2000) .. 49

Table 18 – Benefits and Sacrifices of the Value Proposal ... 50

Table 19 – Weights of the Attributes/Criteria .. 54

Table 20 – Chaos Tools’ Evaluation .. 54

Table 21 – Relativeness Closeness to the Ideal Solution .. 55

Table 22 – Database Systems Resilience Test... 58

Table 23 – Unreliable Network Connection Description .. 62

Table 24 – Resource Exhaustion Description.. 65

Table 25 – Watchlist Service ELB Configuration ... 66

Table 26 – Global Resilence Experiment Description ... 67

Table 27 – Results of Database System’s Resilience Steady State ... 72

Table 28 – Results of Database System’s Resilience During Failure ... 74

Table 29 – Results of Unreliable Network Connection Steady State ... 75

Table 30 – Results of Unreliable Network Connection with Latency ... 76

Table 31 – Results of Unreliable Network Connection with Latency after Code Modification.. 78

Table 32 – Results after Code Modification with an Increased Rate ... 79

Table 33 – Results of Resource Exhaustion Steady State ... 79

Table 34 – Results of Resource Exhaustion Using a Fork Bomb ... 80

Table 35 – Load Test Commands .. 101

Table 36 – Database System Resilience Commands ... 102

Table 37 – Unreliable Network Connection Commands .. 102

Table 38 – Resource Exhaustion Commands .. 104

xiv

xv

List of Source Code

Listing 1 – Vegeta Load Test ... 101

Listing 2 – Toxiproxy Configuration File .. 102

Listing 3 – Docker Compose Configuration YAML File .. 103

Listing 4 – Chaos Lambda Configuration File .. 104

xvi

xvii

List of Acronyms and Initialisms

ARN AWS Resource Name

ASG Auto Scaling Group

AWS Amazon Web Services

CE Chaos Engineering

CMM Chaos Maturity Model

CNF Conjunctive Normal Form

CPU Central Processing Unit

EC2 Elastic Cloud Compute

ELB Elastic Load Balancer

FIT Failure Injection Testing

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

ID Identifier

Oplog Operations Log

QA Quality Assurance

QFD Quality Functional Deployment

TCP Transmission Control Protocol

VPC Virtual Private Cloud

YAML YAML Ain't Markup Language

xviii

1

1 Introduction

In this chapter, the context is presented and the project under analysis is described. Then, the

problem that will be addressed is explained and the target project is classified within the chaos

maturity model. The main objectives are described as well as the methodological approach to

perform the experiments. This chapter ends with an overview of the structure of this document.

1.1 Context

Currently, most software applications are built as distributed systems and, increasingly, with a

microservice architecture. Thus, monolithic applications are divided into loosely coupled

components with different responsibilities and deployment processes, that work together to

fulfil a common end goal. As each component to have its own development cycle, adding new

functionalities, changing runtime configurations and creating deployments to production are

performed independently from other services.

However, these continuous changes increase the probability of failure in some parts of the

system. There are different approaches to design an application to prevent failures and still,

running applications struggle to be available after the deployment. Unit tests and integration

tests are important and can catch problems related with business logic, but many failures can

occur in deployment environments that are not addressed by those tests.

The formal verification of a large-scale system is not reasonable, there are too many paths to

search for failure. Model check methods (Alvaro & Tymon, 2017) need a formal specification

which may not exist for some services. Moreover, services communicate with messages and the

failures in communication usually results in the absence of message, detected with a timeout,

which causes correct services not to hold as a correct system under composition.

2

The impossibility to completely test these new architectures brought some new approaches,

such as fault injection and chaos engineering. Experiments against the system with introduction

of failures in a controlled environment are used to test and verify that fault tolerance

mechanisms work, and the system is prepared to hold against similar situations in production.

Chaos engineering allows to identify problems and provide ways to uncover system weaknesses

in the system by constantly test the system against failures and build confidence that those not

happen in the real environment. A problem that arises during these tests can immediately be

addressed and does not have the chance to cause a real problem. The team is aware of the

problem and is ready to mitigate it.

Different failures (Wasson, Bennage, & Buck, 2017) can be introduced such as shut down

instances, crash processes, expire certificates, exhaust physical resources, redeploy an

application, test unusual combinations of messages, latency introduction between the services

and other real problems that usually happen in a real environment. It is important to

complement these tests with a load testing tool, since there are some problems that only occur

under load such as a throttling of the service or a database being saturated with requests.

This work was developed in Mindera, where the complexity of many systems is very high. A

constant need of new features in products, many runtime configuration modifications and

improvements in performance, results in many deployments within a day. Every deployment to

production is previously tested with unit and integration tests, tested in different environments

similar to production. However, there is a need to reach another level of resilience.

Mindera is a Portuguese software company that was founded in 2014 and since then has

developed many software systems, with focus in web and mobile applications. The offices are

situated in Porto, the head office, but also in Leicester, San Diego and Chennai. The company

has many partnerships with clients in order to understand their needs and deliver high level

software that create an impact in the users and business all over the world. Clients such as TVG,

a horse betting platform, and Net-a-Porter, a luxury online store, have been working with

Mindera for a long time.

There is also own product development. There are products developed in Mindera such as

Statful – a telemetry system to monitor complex and high-performance environments – and

Player Index – an application for betting in football around performance of the individual

players.

The company works mostly with agile methodologies in a collaborative environment and

performance testing and delivering represent an important aspect for the company: “With

systems that are constantly evolving and changing, it is important to consider performance

testing as part of the continuous delivery pipelines. From our perspective, performance testing

is just another aspect of Quality Assurance and needs to be fully automated as part of the

integration testing and production deployments” (Mindera, 2018).

Mindera focus on building high performance software systems that can, by their complex

nature, be affected by many distinct fault combinations affect their behavior. These systems

3

need to be resilient and scalable, and other failure-testing solutions beyond the traditional ones

are near mandatory.

This thesis will be developed in a project from a client and ethical issues related to professional

obligations impose the project data to be treated with confidentiality. In order to address every

component of the system, the name used to address the project is C project, from client project.

The C Project is a Software as a Service platform that provides to the users a way to distribute

and manage their applications across multiple stores.

In order to provide value information to the users, the platform gathers information from many

stores and transforms it so that users can find what is happening with their application and

make informed decisions. This work is of special interest of the Data Intelligence Team.

1.2 Problem

A business supported by a digital system where people end up relying their lives on should

gracefully respond to failures. One way is to introduce failures and realize how people deal with

them, measuring time responses, and gathering other data as well to prepare the whole team

to real failures in production environment, which, in fact, can be used in the process.

Disaster and recovery plans should be tested and changed, if necessary, which is the purpose

of running Game Days. At Etsy (Allspaw, 2012) the steps in a Game Day evolve from imagining

a failure scenario and implement what is needed to prevent it from affecting the system, then,

cause this scenario to happen.

Whether to introduce failures in test environments, the safest option, or in the live production

application, is a matter to be considered carefully. At a first sight, the obvious choice is a testing

environment - it is safer and does not bring problems to the business (e.g. Loss of revenue, bad

reputation, risk of the scenario to drift apart and cause a real problem). Meanwhile, when

differences from the production environment exist, the tests are not completely valid and the

confidence in the system is not increased, one of the main purposes.

This thesis practical area will be focused in the improvement of the chaos engineering

approaches in a Mindera’s client project using fault injection tools and approaches to discover

more information about the system behavior and verify that fault tolerant mechanisms work

properly.

In this project the results for the two metrics (sophistication and adoption) in the evaluation of

the project in the chaos maturity model were the following:

• In sophistication the project is in the first level “Elementary”. The experiments do not

use production environment. The chaos is injected manually to perform simple actions

such as, shut down an instance. Only system metrics are considered

4

• In adoption, the chaos tools and methodologies used are also in the first level, “In the

shadows”. The chaos experiments are not sanctioned and not frequently adopted. Only

few systems are covered and there is a low organization awareness about the

experimentation.

Currently, the tools used to introduce chaos into the system are classified into the first levels -

both sophistication and adoption of the Chaos Maturity Model. To improve it, a plan to

introduce chaos must be developed; this involves running disaster scenarios such as Game Days

and the introduction of new programs into the system such as Chaos Monkey.

There are two dimensions in the project that are going to be tested and use these new

approaches to verify its resilience.

In the infrastructure, one of the main difficulties is that the underlying machines or virtual

machines where services are running may eventually fail. This problem can be overcome by

incorporating fault tolerance mechanisms into the system. Nevertheless, they should be proved

to work correctly by introducing a failure that causes the machine to fail. In the current

architecture, three databases are used to store data related to applications and are crucial to

the business. The first is MongoDB, the second ElasticSearch and the third is RiakTS. The main

identified issues regarding this area are the following:

• What happens when an application instance is shutdown, does the teams are correctly

informed? Is the team notified about it by the system or are the user complains who

notify the team?

• What happens when a machine where of the database is running goes down? Will it

cause data loss? Does it support data redundancy?

• What if the node is the primary?

In the application level, the interaction between different applications should be tested and the

behavior of a system measured when an event such as introduction of an unusual flow of users

and latency increase in the network connections between services. The clients (libraries within

an application) configuration to establish network connections should be tested and verified

that are working properly in the presence of latency and a high number of users. The main

issues that need to answered and fixed if needed are:

• What happens when a service is down? Do the calling services respond appropriately?

• How does the applications react to latency introduction in the connections to databases

and other services?

• If the connections are all turned off after a service is down, when it returns to active,

does the system recover correctly and has a graceful degradation? On the other hand,

is it necessary to manually restart the machine?

5

• Test if the alerts are correctly configured, i.e. if the service is malfunctioning is it

identified correctly as unavailable or it goes unnoticed?

These chaos engineering approaches would not be valid without the monitoring metrics of each

machine and application with an appropriate monitoring tool. It allows to visualize the status

of the system and configure important alerts for some metrics. After the system surpasses the

defined thresholds, there is a problem and the operations team will be alerted.

1.3 Objectives

In this thesis, approaches based on Chaos Engineering (CE), will be used to improve a system

resilience to failures. The thesis has the following objectives:

• Study and compare different alternatives of testing recovery plans, and measuring

failure/repair behavior of components and services;

• Ponder on the implications of using a staging/testing or a production environment to

test the plans;

• Study different approaches for chaos engineering and compare available tools;

• Considering different maturity levels, compare alternatives for using chaos engineering

methods and tools in testing and/or production environments and delineate a plan to

increase the CE sophistication and adoption by introducing chaos tools and events such

as Chaos Monkey and Game Days, respectively;

• Simulate different network and system conditions and monitor how the system

behaves in order to discover new information. Latency, unavailability and increase of

input/output bandwidth usage are some of the conditions that are going to be

simulated.

1.4 Methodological Approach

The development process and approach will be under the principles of chaos engineering. Using

the chaos maturity model to evaluate the current project’s level of chaos engineering as a start

point to select improvements in sophistication and adoption of this discipline.

The following approach will be used in the development process:

• Evaluation of a system state and how does in fit in the chaos maturity model;

• Analysis of available tools and choose the ones that fit to the project;

6

• Definition of experiments to test the system resilience and validate fault tolerance

mechanisms;

• Define the normal or steady state of the project using system metrics;

• Run an experiment;

• Compare the test results with the control group;

• Gather solutions and improvements to the resilience and adaptability of the system;

• Implement them.

After some research of the main components of the system, the experiments to carry out were

chosen:

• The first, an experiment where infrastructure and the recovery of a database from

failure is tested.

• The second experiment is to simulate problems in the connections between services. In

the network connections latency and unavailability are going to be simulated to

replicate real world events.

• The third experiment aims to measure the impact of physical resources exhaustion in a

service.

• At last, the experiments are going to be automated with the introduction of Chaos

Lambda. A lambda implementation of Chaos Monkey, that automatically and

continuously test the system against instance failures.

1.5 Structure

This document has the following structure:

• Introduction: in this chapter there is an overview of the context and problem, as well as

the objectives and the methodological approach that will be used;

• Enterprise Context: here, the project where this thesis will be developed is presented;

• State of the Art: in this chapter, the different topics used in this thesis are going to be

described and analyzed. First, the different approaches to test a disaster recovery plan

are enumerated and compared. Then, the environment choice is discussed and

compared, staging or testing vs production. After, the two main existing approaches are

7

fully address and is presented a way to design experiments in both. At the end an

analysis of existing chaos tools and comparison is done.

• Value Analysis: the innovation process used in this project is explained. After, the value

of this project is defined, and the value proposal is described. The quality function

deployment is explained as well as the customer requirements and the functional

requirements. In the end, the decision about the tools to use in the project is analyzed

using the multi-criteria decision-making method TOPSIS.

• Design: the experiments are described. The scope and type of attack, the affected

components and how does the faults are injected are explained as well as the expected

outcomes.

• Implementation and Evaluation: in this chapter, the experiments are executed. The

results are gathered, and, in each experiment, the steady state of the system is

compared with the metrics when the experiment is running. The hypotheses are tested

and disproved using the difference between the two groups, the control group and the

experiment group. If the difference is high, the system is not prepared to handle the

failure and needs to be changed.

In addition, there are the annexes:

• Attachment A – QFD: the house of quality of the QFD is presented and the relation

between the customer requirements and the functional requirements is identified and

evaluated.

• Attachment B – Experiments: additional details about the implementation, such as

executed commands and listings used to create the setups and to run the experiments.

8

9

2 Enterprise Context

In this chapter, the context of the company is given. First the cloud environment, where the

project is deployed is described and some information about different cloud services is

presented. After, the architecture of the system and the different components integration are

explained. At the end, more information about the monitoring and log system’s used is

described.

2.1 Target Project

Through the thesis, failures were introduced in a project, the C project, in order to analyze and

test its resilience and find existing problems and weaknesses. In this section the architecture of

the project is explained to give some context about the components affected, how and where

the failures can be introduced.

Resilience can be understood as the “ability of a system to recover from failures and continue

to function. It's not about avoiding failures, but responding to failures in a way that avoids

downtime or data loss. The goal of resiliency is to return the application to a fully functioning

state following a failure” (Wasson et al., 2017).

The client project was created in 2010 and evolved in the last years. The project is a Software

as a Service platform that provides the user app publishing to different stores, app management

and visualization of data such as download and revenue, rankings and reviews visualization

from different stores aggregated in one place, to identify trends and compare the owned apps

with other applications to create business decisions to improve the app ranking and popularity.

The project runs in Amazon Web Services (AWS) cloud platform that provides many services

and computing machines in order to run the applications and provide the final service to the

user. The main concepts that are going to be used in the project are the following:

10

• EC2: elastic cloud compute are the machines provided by AWS and are the basic

component of the cloud provider. The type of the machine is customizable and varies

with the computational needs. The EC2 instances are the core of the AWS services and

where the services are running.

• ELB: elastic load balancer is a component that allows redundancy in an application by

providing an interface that distributes the traffic to the underlying EC2 instances. The

ELB has another responsibility that is performing a health check request to the

applications in a given period of time. This request returns a success response and the

instances that do not respond to a configured number of health checks are considered

unhealthy, removed from the ELB and does not receive traffic.

• ASG: auto scaling group is a component that is responsible to manage and scale a

collection of EC2 instances with the same configuration. In the configuration, the user

provides the minimum, desired and the maximum number of instances. This

component also removes instances that are considered unhealthy and add instances to

replace them when required.

• VPC: virtual private cloud is a logical division of the cloud environment. In the project,

there are three different environments and each one has its VPC in order to create a

division and limit the access between them and the internet.

In Figure 1 is presented an overview of the components and an example of the request path

when a request is performed to the backend area of data intelligence in the project. This

area of the project is responsible to provide information about rankings, apps and

publishers.

11

Figure 1 – Deployment Diagram

In a component level, there are three different databases in the project:

• RiakTS, a time series database that gather information based on time. It is used in the

project to save rankings of mobile applications. A ranking has a position, application

identification, location and a timestamp. The aggregation of the information is based

on time. A primary key is a composed key of an ID and a timestamp. The structure of

the database is a NoSQL optimized to searches in time.

• MongoDB, a NoSQL database used to store large amounts of data. The advantages of

a document store database increase the performance to search large amounts of data.

Indexes are a way to group information based on a characteristic that turns the

response to be very fast when an indexed field is queried.

• ElasticSearch, a distributed, scalable and fast search engine that gives fast searches to

support the needs of low response times when there is a large amount of data to search.

12

The service that communicates with the front-end application is called APIGateway and it is the

entrance to the backend layer. Another important part of the project is the Data API service

that provides a HTTP interface to the user experience services that provide information to the

user.

UserManagement is a component responsible to manage the user session and authentication.

It is important to give context to the APIGateway that does the validation of the authentication

in every request using the user management service.

The component responsible for writing data is BatchWriter. It consumes messages from

different message queues (where data from different sources is inserted) and writes it into the

three different databases.

In Figure 2 is presented an overview of the main components in the project.

Figure 2 – Component Diagram

In the Figure 2, the data sources play an important role in the system. Other components of the

project search for data available in the internet and insert it in two different queues. One

related with apps and other with resources.

In terms of fault recovery there is an important aspect in the queue’s configuration. To prevent

the loss of data and to prevent a bottleneck of messages that cannot be processed, for each

existent queue, two more are created. One is the backup queue and the other is the dead letter

queue.

After a message has been processed, it is sent to the backup queue. In a given time, if there is

a loss of data or some problem in the database that data backups do not cover completely, the

BatchWriter can be configured to consume from the backup queue and populate again the

database.

The other queue is the dead letter. In order to prevent messages that are not possible to process

in the queue and decrease the number of messages that need processing and prevent a bottle

neck. After a message is consumed in the SQS, it goes to the “in-flight” mode. After a configured

time and if the message is not deleted from the queue, it returns to the original queue and

13

increases the receive count. In the original queue there is a redrive policy to configure a

message’s maximum receive count and after the value is hit, the message is sent to the dead

letter queue.

2.2 Monitoring

Monitoring (McCaffrey, 2016) is one of the solutions used that provides information about the

system behavior at software level (response times, status codes or requests’ count) or in a

hardware level (CPU usage, free disk space, memory usage and read/write disk operations).

The monitoring has evolved and it is now classified into two different types (Rogers, 2018):

white box monitoring that is the monitoring of an application on its metrics. Instrumenting the

code and knowing what is happening inside an application, metrics such as HTTP Status Codes,

throughput, error rates and response times of methods. The logs and tracing also play an

important part in the white box monitoring and are very useful for debugging purposes. On the

other side, black box monitoring that is more related with server's metrics, providing

information such as CPU, memory and disk operations.

As the complexity of the system has increased, more difficult and harder it was to monitor the

system and to debug problems. Observability is a superset of monitoring that better classifies

the current approaches to monitor the behavior of a system and its “about being about to

understand how does a system behaves in production” (Sridharan, 2017). The observability has

four different components: monitoring, alerting, distributed tracing systems and log

aggregation/analytics. Monitoring and alerting are a proactive way of identifying failures and

wrong behaviors. Tracing systems and logs provide context after the incorrect failure is found

and more related to identifying its root cause.

In the project, monitoring is both provided by the Statful and CloudWatch, log aggregation and

search is only provided by CloudWatch, alerting is a combination of Statful, CloudWatch and

PagerDuty. The last tool is responsible for the management of the alerts.

In this section, two tools are analyzed because they are largely used in Mindera, and one of

them (Statful) is an internal product that is used for both black and white monitoring, receiving

infrastructure metrics from the servers where the application run and application’s metrics

from code instrumentation. The other (CloudWatch) is mostly used for white monitoring

providing log aggregation and search, but also for black box monitoring with information about

every service that belongs to the cloud environment used in the project (e.g. ASG, ELB and SQS

information).

14

2.2.1 Statful

Statful (Statful, 2018) is a telemetry system that gather system metrics from software

applications, physical devices and present it to the user so that the current system status and

information can easily be accessed and interpreted.

In the architectural level, a time-series database receives data sent by the applications or

machine monitoring applications. The system receives data points and each one has a

timestamp, tags - that can be used to: identify the application, metric’s type, layer of the

application (controller, service, repository and others) and every relevant association. This

allows the data to be grouped and presented to the user.

After this, graphics can be created and visualized with the relevant information in order to

diagnosis problems and verify the correct behavior of the system. Figure 3 presents an example

of a dashboard in Statful. The metrics are from June and the IP addresses are omitted but each

one is mapped to an instance in the AWS. In the dashboard are four different widgets and each

one refers to a different metric in the RiakTS instances. The first one is the average of free

memory available in the disk used to store data in all the machines. The second is the CPU idle

percentage used to find indirectly how much the database is using. The last two are load and

the free space in the disk that holds the data in the different machines available. Other metrics

are configured such as disk write/read operations and network bandwidth.

The Figure 3 presents an example of a Statful dashboard showing the RiakTS system metrics.

15

Figure 3 – Riak TS System Metrics

16

The example presented in Figure 3, provides information about infrastructure metrics from the

servers where RiakTS is running. These metrics provide much information about the current

state of the machines that are hold a node of the RiakTS database cluster. The metrics are

indicators of what resources the database is using and can be used to find bottlenecks in the

infrastructure and configure alerts. E.g. limit the disk free space, so an alert is emitted after that

limit is reached and the operation to increase the disk capacity or add a new database node is

performed in time, without any data losses and performance decrease.

Applicational metrics are obtained by instrumenting the applications’ code to retrieve metrics

such as response times, successful/unsuccessful requests and memory usage, and send them

to Statful. The metrics are completely programable and every important indicator can be saved

in the monitoring system. Statful does not provide any automatic fault-recovery mechanism,

just provide information about the overall state of the system and alerting.

2.2.2 CloudWatch

CloudWatch is a monitoring service provided in AWS. This service collects data from both

service and infrastructure and provide a way to visualize all the data together in a single

platform. The data goes from monitoring metrics to logs and every amazon service provides it

as well as the instances deployed within AWS.

The custom instances deployed in AWS have a cloud watch agent configured that sends

infrastructure metrics such as CPU, memory and network bandwidth usage. These metrics can

be used to visualize the current state of the system and for example: see how many messages

are stored in an AWS queue, see how many instances running are in an ASG, see how many

requests an ELB received in the last hours. The metrics can be used to reduce the time that

takes to identify a problem in the platform.

Logs are another way to find the services’ errors that caused a problem to a user. CloudWatch

also provides a way to see the application logs from a deployed service. These logs reach the

CloudWatch by configuring a cloud watch agent to check the logs that a running application

send to a local file and redirect them to the monitoring platform.

Another important aspect of CloudWatch are the metrics can be used to configure auto scaling

policies in an ASG to scale up or down instances from a service. The ASG has three different

parameters that bound the limits of scaling, minimum, desired and maximum. The scaling

policies usually are increase capacity after an average CPU percentage was exceeded or

decrease capacity if the percentage is below a decrease limit.

At last, within CloudWatch alerts can be configured in order to alert the development team

about failures in the system. The logs are only store in the CloudWatch and this service is used

as a complementary monitoring system of Statful.

17

3 State of the Art

In this chapter, the different approaches to testing a disaster recovery plan and the main

differences between the preparation and production environment are described. Then, the

approaches of Game Days and Chaos are detailed. At the end, an analysis and evaluation of

existing chaos tools is done.

3.1 Testing a Disaster Recovery Plan

There are several reasons (Stechyson, 2015) for testing a disaster recovery plan and data

backups. First it increases trust in the current system, after a design, is more likely the system

to fail. The plans should be assured that work properly and the team can handle them correctly.

The business cannot be damaged - the system should be covered with every important part of

the infrastructure having a backup plan. At the end one of the important reasons to have a plan

tested is that tests cost less than outages in the real environment.

The resilience (Wasson et al., 2017) in a disaster recover differ from high availability when the

problem is wider and usually affects an entire region. It is not possible for the system to recover

from failure and manual intervention is needed. Availability is the ability from an application to

response and remain healthy, even in presence of problems.

In 2014, Facebook (Sverdlik, 2014) shutdown an entire data center to test his disaster recovery

plan. This test was in an entirely new scale of infrastructure testing failures, shutdown an entire

region. The service remained online, and the recovery plans proved to be correctly working.

The plans had only some failures that engineers could after review and improve.

This is one of the key aspects of this kind of testing. Have the recovery plan tested before a real

problem happen in reality and, when the team is not prepared so solve it. It can cause a system

18

outage when it happens and that will be a real problem. However, in a controlled situation, a

failure in the plan can be tackled and solved with more time than in a real scenario. Another

aspect of these tests is to embrace failure, Facebook encourages his employees to take risks

and do not have problems if a failure occurs. This improves the quality and velocity of the

released software.

There are two different approaches (Atchison, 2016) to test disaster recovery plans. One

approach of testing into the production environment is Game Days:

• This is the best way to start testing a recovery plan and since it involves a team being

ready to solve any issue, there is some guarantee that a problem can be solved.

• It helps with the adoption of failure and increase of the team response time to a future

similar failure in production.

• This testing is manual and can address any recovery plan, sometimes is hard to create

a tool that runs on a daily basis and automate it to create failures. Sometimes the

problem is not something that can be automated. Such as testing the resilience of a

database. This cannot be automated because the risks are too high.

Another approach is Chaos Engineering where the system is resilient to a consistent kind of

failures such as machine shutdowns. Chaos Monkey is a good example of this:

• The monkey will shut down a random instance replicating a problem that might occur,

ensuring that all services built are resilient to machine failures and the system does not

have a single point of failure.

• Running it on business hours ensures any problem that rises is tackled by and engineer

during its work hours.

• This increases the organization’s adoption of failure to the highest levels. Every service

that is built must have a fault tolerance mechanism to overcome the failure of a

machine.

3.2 Staging vs Production Environment

Test a recovery plan in staging or in a production environment is a question that must be

carefully approached.

At a first sight, the main difference is that staging environment is a safer option. Disruptive tests

that would raise problems to users in production can be performed without any fear in staging.

The environments must be totally decoupled so there is not any shared resource between them.

No production service can be using a staging database/service or the other way around.

19

The problem with using just staging is that usually the test environments are not scaled at the

production level. The main reason is the cost saving and those environments do not have the

same quantity of users. If there is a way to mimic the production environment and seed the

databases with the same quantity of information, it is a better approach of testing and should

cover the same failures that could happen in production.

Another problem with using a testing environment is “the existence of any differences in those

environments brings uncertainty to the exercise” and “the risk of not recovering has no

consequences during testing, which can bring hidden assumptions” (Allspaw, 2012). Since the

goal is to increase the confidence in the system, the choice of a test environment might bring

some doubts.

Test in production environment (Atchison, 2016) could be foolish to think but, on the other side,

there are many advantages that could result from this approach:

• First, the team gets involved. It modifies the behavior of a team to embrace failures and

to increase the awareness of the team. When a similar event happens in a normal day,

the team already knows how to proceed.

• It increases confidence in the system and it assures that a recovery plan works as

expected in production.

• The problems discovered during the testing will be improved before a real and

unexpected similar event would happen. An event could occur outside the business

hours and the team might not be ready. That would cause serious problems into the

live production.

Testing in production has other problems. The first one is that users can be affected by the

testing. Data could also be lost and not possible to recover from it without spending much time

or it can be lost forever. In addition, a chain reaction of failures in the system - that was not

programmed - can result in a long downtime of the services and a loss of money for a company.

In conclusion:

• For testing purposes, environments of testing are a good and safer option. At the end,

staging should always be the first approach and then production, only if it is needed.

• If there is not a similar environment to production, using it is the only way to be sure

that the recovery plans work as expected. Meanwhile the live environment must be

used only if the testing is carefully planned and the upsides of testing are more

advantageous than the downsides with losses to the business.

20

3.3 Game Days

Game Days (Chang & Talwai, 2017) are an approach of testing a recovery plan with the creation

of a potentially harmful scenario in a controlled and safer environment. They can be used to

discover weaknesses in the system, create useful alerts and fix services in order to respond in

failure scenarios.

In Gremlin, Game Days (Kolton, 2017) are used to verify the system as a whole. First in test

environments and at last into production. It gives a way to proactively test the system and the

team can decide its own terms of engagement.

The first step is to identify what to test. A database shutdown, an entire region failure through

the simulation in the cloud provider or the failure of a critical service. These tests need to be

carefully planned.

The most important points in a Game Day testing are the following (Kolton, 2017):

• First, the best way is to communicate across the teams. Communication is key. Any

problem that surges can be solve soon as possible.

• Starting small and using a test environment is the safer way to start. Test the systems

at a functional level. The systems handle errors correctly, what about latency. Then

increase the scope and the blast radius.

• Intensify the testing; create new scenarios that test your entire system. What happens

if the traffic increases? What if the database is slow, there are timeouts to prevent it

from killing other services?

• At last, run the Game Day into production. The live environment is what important to

test, is where the customers are, and the revenues comes from.

• One of the most important outcomes from Game Days other than test recovery plans

are increase the team ability to solve incidents in production. This is a proactively way

to train the team, so it can act more quickly to find solution and with more confidence

when a problem surge.

In Etsy, these are the steps to run Game Days (Allspaw, 2012) :

• Imagine an event that can happen and affect your system;

• Study and implement what is needed to prevent it from affecting your users and

business;

• Introduce the failures or events simulation into production and verify that your system

is resilient to it. Increase the confidence to withstand against these events.

21

At Stripe, there is a similar approach (Hedlund, 2014):

• Gather the team and imagine scenarios of failure that could occur in the system;

• Have the documentation about the architecture of the system ready and find the

existing dependencies between the services and databases of the testing component;

• Find one or more failures that could be injected into the system;

• Record one or more outcomes scenarios that could come from those failures;

• Have data backup and plans to be ready if something goes wrong;

• Inject the failures and watch the results. See if the plans work as expected and save the

findings – metrics, bugs, failures and improvements.

At the end of the Game Day, it is important to report what happened. The following answers

must be present into the summary (Chang & Talwai, 2017):

• The scenario tested: what needs to be tested and how it will be verified.

• Expected outcomes: the expected behavior of the system or service to the failure.

• Actual outcomes: what actually happened, work as expected and what went wrong.

• Follow-up actions: List of improvements and new plans to solve the existing problems

or to address the new ones discovered. It is also good to write down a description of

Game Days to do in the future.

Conclusion: To plan a Game Day, the two different approaches of Etsy and Stripe can be

combined ending with writing down the conclusions about the experiments. As outcomes of

the event, the increase of confidence in the system and the verification of the recovery plans

are the most important. The follow up actions are important to change the system in order to

increase its resilience.

3.4 Chaos Engineering

Chaos Engineering (Netflix, 2017b) is the “the discipline of experimenting on a distributed

system in order to build confidence in the system’s capability to withstand turbulent conditions

in production”.

This discipline (Rosenthal et al., 2017) differs from usual testing because the goal is to generate

new information about the system behavior instead of testing conditions. This information is

related to events in production such as a sudden increase into traffic, race condition between

22

applications, uncommon combination of events, delays between services and identify how the

system reacts in these conditions.

The idea behind Chaos Engineering is to find how the system behaves in those situations and

improve its resilience. Experimentation will reveal weaknesses in the system that could cause

outages and create problems to the users. These issues can be address and solved in a

proactively way without letting it cause chaos in your live system.

There is another important property of the software development that Chaos Engineering helps

to improve. Usually the performance, availability and fault tolerance are the optimized

properties in the applications. There is a fourth property in Netflix, that is velocity of feature

development and its related to how fast a new functionality is implemented and released to

the user. Chaos Engineering helps “by supporting high velocity, experimentation, and

confidence in teams and systems thought resilience verification” (Rosenthal, Hochstein,

Blohowiak, Jones, & Basiri, 2017).

In Google (Beyer, Jones, Petoff, & Murphy, 2016) there is also a sense of finding a balance

between maxing out availability and how fast new features are developed. Site reliability

engineers find the balance between the benefits of innovation and efficient functionalities, and

the possible risk of unavailability in order to increase user’s satisfaction.

3.4.1 Necessary Conditions to Perform Chaos

There are two different conditions in the system that are needed in order to perform chaos

(Rosenthal et al., 2017):

• The system must be resilience to service failures and network latency. There is no need

to introduce chaos engineering if the project already has unsolved issues. After the

problems are solved with timeouts, circuit breakers, redundancy or other fault

tolerance mechanisms, this discipline can be applied.

• The system must have a monitoring system. The behavior of the services must be

observed in order to compare and identify what the chaos cause to the system.

If these two points are checked into the system, chaos engineering is a good way to start the

identification of weaknesses and improvement of the resilience.

3.4.2 Principles of Chaos

The principles of chaos are guidelines to create an experiment in order to discover system issues.

There are four fundamental steps should be considered (Netflix, 2017b):

• First, one is to start by defining what the normal state of the system is through outputs

and metrics analysis. This state is referred as its “steady-state”.

23

• Hypothesize about the status of the experimental group “steady-state” compared with

the control group. The assumption is, the experimental group’s state is the same after

the chaos introduction.

• Expose the experimental group with the introduction of failures in the system such as

machine failures, latency introduction, malformed responses, traffic spikes or others.

• Test the hypothesis and try to disprove it. Compare the results of the experimental

group with the control and see the differences.

At last, the harder it gets to mess with the “steady-state” of your system the higher is the

confidence in it. If the hypothesis is disproved and weaknesses are uncovered, improvements

can be done without any problems caused to the user. These issues could have been at a larger

scale and cause serious harm to the business.

There are some advanced principles that must be considered after the chaos introduction

experiments is done at a small scale and there is a necessity to increase the scope of the tests.

The advanced principles are the following (Netflix, 2017b):

• “Hypothesize about a steady state”: here the usual state of the system must be

measured in order to analyze its behavior. Here the system is considered as a whole

instead of analyzing metrics such at an application level, metrics such as system errors,

response time and downtime are considered.

• “Vary real-world events”: Consider variables that reflects an event into the system.

Here hardware failures must be considered such as unexpected machine termination,

CPU usage in the maximum levels, no memory RAM available (this could be caused by

a memory leak) and other real-world events such a spike of users, a mal intentioned

user in the system or even an exploit attack.

• “Run experiments in production”: In order to increase the confidence into the system

and make sure that there is resilience to fault in the real environment, it is preferable

to use production.

• “Automate experiments to run continually”: this is one important principle that is

create automation. Manual testing is an intense and time costly task that is not scalable

when there is a need to be applied to several applications or many times.

• “Minimize the blast radius”: At last, decrease the affected area of a chaos experiment.

In order to use production, customer problems must be avoided. It is not possible to

eliminate them. For a short period – if there is a problem discovered in production –

users can be affected. The goal of this principle is to affect only a small quantity of users

by routing a small percentage of traffic to the experimental group and another to the

24

control group. This way the hypothesis can be tested with a small amount of real

problems.

3.4.3 Design an Experiment

Designing an experiment is similar to the one of a Game Day, since it is also a way of introducing

chaos. Here are the steps in order to do it (Rosenthal et al., 2017):

• First, start from choosing a hypothesis: Identify an event or problem that can occur

into your system. Gather your team and brainstorm scenarios of failure or events that

in the past cause many problems to the system.

• Choose the area of experiment: it is important to minimize the impact on the users

since the ultimate goal is to run the experiment into production, so the risk must be

carefully address. First test environments must be used since they are safer and then

the experiments start to increase the scope until they end in production. In production

start small and increase the scope if needed.

• Identify the behavior and metrics that are going to be observed: This step is very

important. These metrics are your guarantee that the experiment is being monitored

and it is possible to shut down the experiment if there is an unusual spike of errors.

• Advice your team and organization that there is chaos incoming: This is important to

create awareness in the team, so a situation can be immediately solved. In the initial

experiments is better to increase the confidence of the people doing the experiment

and reduce the tension.

• Execute the experiment: after all the above steps is time to release the chaos. First, the

monitoring is very important to see what is happening and if the availability is the same

as before. Alerts should be configured in order to reduce the possible problems to the

users because a cascading failure can be caused, and it might be necessary to terminate

the experiment. The goal is not to cause any problem to the user but to verify the

resilience of the system.

• Interpret and extract information from the results: This is important to disapprove or

verify the hypothesis and see if the system can withstand to the introduced failure or

real-world event. This can be considered the most important point of the experiment.

Follow up actions and improvements come from the result analysis.

• Expand the scope of the experiment: here the area covered by the chaos experiments

is increased. First, the experiment starts in a small scale, then it is expanded so that

weakness that are only uncovered at a larger scale are discovered.

25

• Evolve and automate the experiment: the experiments are easier to reproduce, and

they must run continuously to uncover new fragilities all over the system. This way your

system can be considered resilience to the events inserted in the experiments.

3.4.4 Chaos Maturity Model

To formalize the chaos engineering, Netflix has developed a model to classify the state of a

chaos program in each organization. This model is called Chaos Maturity Model (CMM) and it

gives a methodology that helps to delineate a plan to adopt and improve chaos.

This model is an important component to identify the status of the tools used in the

experiments and create a way to improve it. There are two dimensions in this model,

sophistication and adoption.

Sophistication is related to the safety and validity of the experiments. There are four different

levels in this dimension (Rosenthal et al., 2017):

• “Elementary”: The production environment is not used to perform the experiments.

The process is not automated, and it needs to be run manually. The outcomes of the

experience are application metrics and not related to the business. There are only

simple events simulated (e.g. manually turn down of a machine).

• “Simple”: Here the environment used is very similar to the production. The process of

setting up the experiment is automated and only the execution and termination needs

to be manually performed. Events that are more complex are simulated/introduced,

such as, network latency into the tests. The outcomes are manually aggregated in order

to compare. The tool provides a historic of data to compare the test and the control

groups.

• “Sophisticated”: In this level, the sophistication of the tool is now very high. The

production environment is used. The process of setup, termination and analysis is all

automated. Here the metrics are upgraded to a system level: business metrics are used,

instead of application level. There is an increase in the complexity of events and now a

combination of failures is introduced to measure the impact in the services. The tool

provides a way to visualize the information and compare the results between the two

different groups of testing.

• “Advanced”: experiments run in the entire environment and in each step of the service

development. Everything is fully automated, from the setup to the termination. The

blast radius of the experiment is reduced, using techniques as A/B testing in order to

route small percentages of traffic to the experimental group. The events simulated are

now more sophisticated. The events are now more complex and simulate real world

events such as a change in a normal combination of messages, an unusual number of

26

retries in a functionality and state or corruption of messages. The business metrics are

now interpreted to create business indicators.

Adoption is associated with how much is the awareness that a tool gives to an organization in

terms of chaos and how extent and wide are the experiments. Increases the scope of the

experiment, exposing more issues and giving more confidence in the system. There are four

different levels (Rosenthal et al., 2017):

• “In the shadows”: there is a low or inexistent awareness about the existing experiments

into the organization. Research and new projects around chaos are not incentivized and

support. Only a small quantity of systems is addressed. The tests are not frequent.

• “Investment”: The projects are now supported. There are resources assigned in order

to perform chaos. Several teams are engaged and involved in the experiments. Critical

services are now tested. Chaos is still not performed actively.

• “Adoption”: In this level, the adoption is now very high. Teams are fully dedicated to

performing experiments in the system. Alerts and operations team responses are

integrated with the tests. Critical services are often and actively tested. Game Days are

used as a common practice in order to create awareness.

• “Cultural Expectation”: Chaos engineering is now fully adopted, and the services are

built resilient in order to “survive” to the tests. Every critical service is frequently tested,

and the other are tested more regularly. Experimentation is part of the development.

3.5 Chaos Tools

In this section, an overview of the existing chaos tools is described. The tools play an important

role in automating the introduction of failures into a system, removing the manual steps

required to conduct an experiment and increasing the sophistication of the experiments.

3.5.1 Simian Army

Chaos Monkey was the first tool released that randomly shutdown instances in production. The

focus of this tool was to prevent single point of failure in the system. The tool cause failures to

happen more regularly and to uncover systemic failures in services that cannot handle correctly

instance failure. Also, the engineering teams across an organization are aligned to build resilient

systems that withstand against machine failures.

After this first success, Netflix (Netflix, 2012) created the Simian Army, a collection of tools that

with the purpose of introducing chaos in a cloud environment to test and improve the system’s

resilience. The Chaos Monkey belongs to the army and his companions are the following:

27

• Latency monkey was created to introduce latency and increasing the latency to a very

high level to simulate instance shutdown. This tool was important to measure how a

component react to other dependencies failures without compromising the whole

system since the latency were introduced at the upstream of the service. This monkey

is now removed from the army since one of the advanced principles in the chaos

principles is reduce the blast radius and this tool introduced failures too extensive and

could damage the user experience.

• Conformity monkey was built to verify that an instance was following with predefined

rules of good practices and send a notification the owner of the instance. This monkey

is helpful to keep the standards and prevent misconfigurations that could become

harmful.

• Security monkey (Netflix, 2018) is a monkey that monitor the Amazon web services and

google cloud platform accounts to prevent insecure configurations and changes in the

policies. This tool helps to record every change previously done to present the user

what was changed and when it occurred. This is important when managing a micro

service architecture system where is hard to be aware of the whole system current

state.

• Janitor monkey is a monkey that identify unused resources in the cloud and clean them

up. This tool is helpful since the cloud environment provides unlimited resources and is

very easy to lose track of them. This tool must be defined with a set of rules and when

it identifies an unused resource marks it and schedule a cleanup.

• 10–18 Monkey is a monkey to test application resilience to different languages and

charsets that were needed to serve users that vary in language, culture and region.

• Chaos Gorilla is a monkey that simulates the failure of an entire amazon availability

zone. This tool was used by Netflix to test if the region failover mechanism was working

and could manage to redirect all the requests to another available region without

manual intervention and impact to the users.

The only remaining monkeys of the simian army are Chaos Monkey, Conformity Monkey and

Janitor Monkey. The others were removed after an update. Latency, Chaos Gorilla, 10-18

monkey are not present in the Simian Army project and not available outside of it. Security

monkey is available but as a standalone project.

Simian Army is a project and only are considered the existing Chaos Monkey since it is the only

tool that introduces chaos.

About the tool, Table 1 presents some additional details.

28

Table 1 – Simian Army Details

Characteristic Value

Cloud Provider AWS.

Layer Machine Instance Termination.

Popularity 6185 Stars in GitHub.

Sophistication level 3rd.

 Adoption level 3rd.

 Open Source (Y/N) Yes.

3.5.2 Chaos Monkey and Similar Tools

One of the most important monkeys that inspired many other tools was Chaos Monkey. It

automatically and continuously test the system against instance failures This tool follows one

of the advanced principles of chaos engineering that is “automate the experiments to run

continuously”. Automated tools are useful since manual testing is a time-consuming task and it

is not scalable.

Automation (Lafeldt, 2016) is useful to discover systemic weaknesses and should be used

instead of manually shutdown instances. Meanwhile, Game days are also necessary since they

gather a team together to discuss failure modes and setup chaos experiments that are good to

share different ideas and approaches that are impossible to automate.

3.5.2.1 Chaos Monkey 2.0

In 2016, Chaos Monkey (Netflix, 2017c) was upgraded to the version 2.0 and it was integrated

with Spinnaker. This integration made possible the use of this tool in different cloud

environments other than AWS. The only downside is that continuous delivery platform

Spinnaker must be used in order to run this new version. Also, there were some improvements

in the interface and now instance terminations can be tracked by sending metrics that indicate

an instance termination to another external system.

The tool is detailed in Table 2.

Table 2 – Chaos Monkey 2.0 Details

Characteristic Value
Cloud Provider AWS, Google Compute Engine, Azure, Cloud

Foundry or a Kubernetes Environment.

Layer Machine Instance Termination.
Sophistication level 4th.

Adoption level 4th.

Popularity 3682 Stars in GitHub.

Open Source Yes.

29

Requirement Spinnaker.

3.5.2.2 Chaos Lambda

Chaos Lambda (Shoreditch Ops, 2018) is a server less implementation of the chaos monkey that

runs as an AWS lambda to randomly terminate instances within the cloud environment. This

implementation is not so complete, less functionalities than the Chaos Monkey and only runs

in a small set of regions. On the other side is very easy to deploy, has a small code base and

does not need maintenance. Since Chaos Monkey is now integrated with Spinnaker, this

implementation can be very useful if this deployment platform dependency is not available in

the project.

About the tool, Table 3 shows more details.

Table 3 – Chaos Lambda Details

Characteristic Value

Environment AWS Lambda

Cloud Provider AWS

Layer Machine Instance Termination
Sophistication level 3rd.

Adoption level 3rd.

Popularity 165 Stars in GitHub.
Open Source Yes.

3.5.2.3 Pumba

Pumba (Gaia Dev Analytics, 2018) is a tool developed to test and introduce random failures in

a Docker environment. It can be configured to randomly remove or stop running containers –

lightweight virtual instances in Docker – or to simulate internet adverse conditions. This tool is

used to continually introduce chaos into the Docker system and see how the system is prepared

for these chaotic conditions.

Pumba supports the injection of different failures in the running containers and for a given

period of time. The tool has different commands such as kill, pause, stop and remove a

container and the possibility to add latency to every request that it receives and to add packet

losses. This tool can be easily used to introduce entropy in a docker instance and verify if it is

prepared for a production environment.

About the tool, Table 4 presents a more detailed view.

Table 4 – Pumba Details

Characteristic Value

30

Environment Docker hosts. Orchestrators that use Docker
as the container engine such as Kubernetes
or Docker Swarm

Cloud Provider Generic

Layer Machine instance termination and network
Sophistication level 3rd.

Adoption level 3rd.

Popularity 781 Stars in GitHub.

Open Source Yes.

3.5.2.4 Kube Monkey

Kube Monkey (Sobti, 2018) is a chaos monkey implementation for a system running in

Kubernetes clusters. It randomly deletes pods - instances in a Kubernetes system – to verify that

services are resilient to system failures.

About the tool, Table 5 presents more details.

Table 5 – Kube Monkey Details

Characteristic Value

Environment Kubernetes
Cloud Provider Generic

Layer Machine Instance Termination

Sophistication level 2nd.

Adoption level 2nd.

Popularity 681 Stars in GitHub.

Open Source Yes.

3.5.2.5 Chaos Lemur

Introduction: This monkey (Hale, 2018) is an adaptation from Chaos Monkey that randomly

terminates virtual machines in an environment managed using BOSH.

About the tool, Table 6 show some additional details.

Table 6 – Chaos Lemur Details

Characteristic Value
Environment CF BOSH

Cloud Provider Generic

Layer Machine Instance Termination
Sophistication level 2nd.

Adoption level 2nd.

Popularity 48 Stars in GitHub.

31

Open Source Yes.

3.5.2.6 Monkey Ops

Introduction: Monkey Ops (Produban, 2018) is a tool similar to Chaos Monkey that run chaos

inside an OpenShift environment.

More details are present in the Table 7.

Table 7 – Monkey Ops Details

Characteristic Value

Environment OpenShift

Cloud Provider Generic

Layer Machine Instance Termination

Sophistication level 2nd.

Adoption level 2nd.

Popularity 23 Stars in GitHub.

Open Source Yes.

3.5.2.7 Chaos Dingo

Chaos Dingo (Spring, 2018) is a tool that can be used to bring chaos in Azure services.

About the tool, Table 8 presents additional information.

Table 8 – Chaos Dingo Details

Characteristic Value

Environment Generic

Cloud Provider Azure
Layer Machine Instance Termination

Sophistication level 2nd.

Adoption level 2nd.

Popularity 8 Stars in GitHub.
Open Source Yes.

3.5.2.8 PowerfulSeal

Powerful seal (Bloomberg, 2018) is a tool to introduce chaos in a Kubernetes environment. It is

similar to Chaos Monkey and can shut down pods in Kubernetes and virtual machines.

The tool has 3 different running modes:

32

The interactive, that allows the user to discover information about the cluster, manually

introduce chaos in order to see what happens to the system. This mode can be used to work on

nodes, pods, deployments and namespaces. This mode can be used to acquire knowledge about

the system and, after some time, build testing policies.

• The autonomous where the seal reads scenarios introduced in a policy file and starts to

introduce chaos in the environment based on it. The policy file has scenarios and each

one is composed from matches, filters and actions. The matches are the criteria used

to select the chaos targets. The filters are used to filter the selection of matches and

add some different criteria such as, work only during business hours. The actions are

the fault injections that are going to be introduced.

• The label mode is an alternative more controlled than the autonomous mode. Only the

pods and allows the user to specify what pods can be killed, the schedule and the

probability to happen.

• The setup is achieved in four different steps: pointing the tool to the Kubernetes

cluster using the Kubernetes configuration file, specify the cloud driver and the

credentials to create the connection to the cloud, guarantee that the tool has SSH

connection to the environment and specify a set of policies.

The Figure 4 shows the setup and the interactions between the different components using

the PowerfulSeal.

Figure 4 – PowerfulSeal Setup (Bloomberg, 2018)

As described in the Figure 4, the tool can shut down, start and delete nodes. Uses an API to find

pods, deploys and namespaces available in the Kubernetes cluster and can SSH to the

Kubernetes nodes in order introduce chaos.

33

About the tool, Table 9 shows some additional information.

Table 9 – PowefulSeal Details

Characteristic Value
Environment Kubernetes

Cloud Provider Generic

Layer Machine Instance Termination

Sophistication level 3rd.

Adoption level 3rd.

Popularity 519 Stars in GitHub.

Open Source Yes.

3.5.3 Simoorg

Simoorg (LinkedIn, 2018) is a framework developed by LinkedIn that can be used to introduce

failures in a service and log the observations. It is important to find issues and fix them before

they happen in the production environment.

This is a framework highly customizable that can be used to schedule failure injection against

an application cluster with a mechanism to revert the cluster to a healthy state. This framework

has a modular architecture that provides a way to add new plugins to modify the current

behavior and add more functionalities needed to test specific requirements of a project.

This tool was built to work in different operating systems and to introduce more failures than

simulating instance or hardware failures.

About the tool, more details are presented in Table 10.

Table 10 – Simoorg Details

Characteristic Value

Environment Generic

Cloud Provider Generic

Layer Customizable Framework to Introduce Chaos
Sophistication level 3rd.

Adoption level 3rd.

Popularity 155 Stars in GitHub.

Open Source Yes.

3.5.4 Chaos Kong

After the AWS dynamo DB failure in US-EAST-1 region (AWS, 2011) in the Elastic Cloud Compute

instances that caused an outage and many customers to lose their services. Netflix (Netflix,

2011) had prepared to similar failure situations and the customers did not notice any problems,

34

only a higher error rate and latency during the incident. The problem was solved with a manual

intervention that involved changing the deployment and configuration, to move set of services

to another region. As lessons learned, there was the need automation of region failover and

recovery process and create a tool that simulate a total region failure.

The tool to simulate was created and named, first Chaos Gorilla but then renamed to Chaos

Kong (Netflix, 2015). It was developed after the success of the Chaos Monkey and to increase

the scope of the experiments. Instead of shutting down a single instance, it simulates the failure

of an entire AWS region. Netflix uses this tool once a month to simulate exercises of a region

outage and identifies systemic weaknesses and proves that region failover mechanisms works

correctly and transfers all the traffic to another available region.

Netflix had been prepared for region failure situations using frequently Chaos Kong experiments

and after another AWS outage in US-East region occurred (AWS, 2015), the traffic was correctly

transferred to another available region and the users did not experienced any problems with

the service, as mentioned in the Netflix report (Netflix, 2015).

A more detailed view is presented in Table 11.

Table 11 – Chaos Kong Details

Characteristic Value

Environment Generic.

Cloud Provider AWS.

Layer Region Failure.
Open Source No.

3.5.5 Blockade

Blockade (Freeman & LaBissoniere, 2018) is a framework to test network failures and cluster

partitions in applications running in a Docker environment. This is a typical use case that

happens in distributed databases that have a master slave architecture. When the master node

has a failure and becomes unhealthy a slave node must be elected master and the cluster should

work as usual. This framework can be used to test these situations.

About the tool, Table 12 shows more details.

Table 12 – Blockade Details

Characteristic Value

Environment Docker
Cloud Provider Generic

Layer Network and Cluster Partitions

Sophistication level 2nd.

Adoption level 2nd.

Popularity 522 Stars in GitHub.

35

Open Source Yes.

3.5.6 Chaos Proxies

Chaos proxies are tools that allow the user to simulate unexpected network failures in different

network protocols. In order to create failure scenarios in a machine, there is the need of root

access to it and a good knowledge about operating system. Proxies are a good way to avoid it

and easily simulate failures between applications and databases.

3.5.6.1 Chaos HTTP Proxy

Chaos HTTP proxy (Bounce Storage, 2017) is a proxy to introduce failures at HTTP protocol level.

This tool supports many failures that can happen when using HTTP such as error responses or

server errors, request or response Content-MD5 header’s corruption, simulate timeouts,

redirects and other failures. It is a simple tool that can be used to provide information about

how a service handles network and server failures.

About the tool, Table 13 presents some additional details.

Table 13 – Chaos HTTP Proxy Details

Characteristic Value

Environment Generic

Cloud Provider Generic
Layer Network - HTTP Protocol Chaos

Sophistication level 1st.

Adoption level 1st.
Popularity 114 Stars in GitHub.

Open Source Yes.

3.5.6.2 Toxy

Toxy (Tomás, 2018) is a more complete HTTP proxy that can be used to simulate unexpected

network chaos and failures scenarios to test system resilience. The tool is designed to test the

system fault tolerance mechanism in disruption-tolerant networking and service-oriented

architectures, where the network connectivity failures happen regularly.

The proxy allows the introduction of poison that intercept the flow of an HTTP request and

introduce some failures such as delaying network packets, add some latency jitter, replying with

custom error or status code or limit the bandwidth.

36

The proxy has rules are validation filters that inspect each request and match some request

properties such as headers, method, query parameters. The requests with a positive match are

injected with the poisons defined to the request path.

Toxy is built on top of rocky API and its provided methods, features and middleware layer can

be used to configure the proxy programmatically. The proxy also provides an HTTP interface, to

extend and change the proxy in runtime.

The ability to extend completely the proxy, create new poisons and rules provide a simple and

powerful way to create failure scenarios and completely test the system fault tolerance

mechanisms.

About the tool, some details are presented in Table 14.

Table 14 – Toxy Details

Characteristic Value

Environment Generic.

Cloud Provider Generic.

Layer Network - HTTP protocol chaos.

Sophistication level 2nd.

Adoption level 2nd.

Popularity 2394 Stars in GitHub.

Open Source Yes.

3.5.6.3 Toxiproxy

Toxiproxy (Shopify, 2014) is a TCP proxy that can be used to simulate different network

conditions, such as latency, service unexpected shutdown and can be used to proxy different

calls to any service using the TCP protocol.

The Toxiproxy can listen in different ports and send the requests to different upstream and has

this advantage in comparison to other proxies available. It is comparable to a server that offers

a HTTP interface to add proxies and change its behavior adding toxics, unexpected network

conditions that can be introduced in a given proxy, to each request. The toxic can be applied to

the upstream or downstream. The upstream is the connection between the proxy and the

service that is the next destination. The downstream is applied before the response is returned

by the proxy.

The proxy has client libraries that can be used to dynamically add or change the ports that listen

and send traffic to the upstream or to add "toxics" to each route. The clients communicate with

the proxy using HTTP. Also, there is a command-line application called “toxiproxy-cli” that is

installed as a companion and can be used to interact with the tool to check the available proxies,

create another one and add new toxics.

37

Shopify (Eskildsen, 2015) has been using it as part of their development to increase resilience

in the system and verify that the system will continue to work when some components are

down.

Shopify uses a resilience matrix to both document the relation between a service and a business

capability and how the failures in the services affect its functionalities. After the matrix is

completed, an integration test is created for each interaction between a service and a business

area.

The Toxiproxy connects with the application under test to create unexpected network

conditions to verify that fault tolerant mechanisms are correctly configured to handle the

failures. The failures simulate a service unavailability, latency in the responses or request

timeouts. Another use of the proxy is to have it deployed in a test environment and simulate

failures in an environment closer to production.

Timeouts bound the time that a request must take in order to get a response from the service

called. After the calls to a service start to timeout, the following requests probability also will

not return in time. The successive calls do not return a successful response and add more work

to the called service instead of giving some time for it to recover.

Circuit breakers are a way to prevent this situation and configure an error threshold, that after

it is reached the circuit opens and does not allow more requests to pass. Usually the call has a

configured fallback behavior that returns a message or have another way to obtain a response.

Toxiproxy creates a very simple way to simulate these failures scenarios and to test, for example,

a circuit breaker’s configuration within an application.

About the tool, Table 15 presents a more detailed view.

Table 15 – Toxiproxy Details

Characteristic Value

Environment Generic.

Cloud Provider Generic.

Layer Network - TCP Protocol Chaos.

Sophistication level 2nd.
Adoption level 2nd.

Popularity 2464 Stars in GitHub.

Open Source Yes.

3.5.6.4 Vaurien

Vaurien (Mozilla, 2018) is a TCP proxy that allows the user to introduce chaos in the network

connections. At the start it is just a proxy that receives data and follow it to a backend service.

The tool has different protocols such as TCP, HTTP, Redis and Memcache. The TCP is default

38

one and it should be enough to delay network connections and simulate the unavailability of a

service.

Vaurien work with behaviors that are classes invoked each time that a request goes through

the proxy. The available behaviors are used to delay the request, simulate errors and hang

without returning any response. The chaos is introduced in the proxy with the manipulation

behaviors in a given execution.

The tool brings some built-in protocols and behaviors, meanwhile it is completely extensible

and custom implementations of the can be implemented. The tool offers a command line

interface that allows to setup the proxy defining different variables. The address where the

Vaurien is going to listen, the backend where the traffic is sent and the different behaviors.

In order to control the Vaurien live, the “http” option can be specified, and it will provide a

server that runs in localhost on the default port 8080. The interface provided by the server is

used to put and get behaviors to the proxy.

More details are presented in Table 16.

Table 16 – Vaurien Details

Characteristic Value
Environment Generic.

Cloud Provider Generic.

Layer Network - TCP protocol chaos.
Sophistication level 1st.

Adoption level 1st.

Popularity 325 Stars in GitHub.

Open Source Yes.

3.5.7 Failure Injection Testing

Failure Injection Testing (FIT) is “a platform that simplifies creation of failure within our

ecosystem with a greater degree of precision for what we fail and who we will impact. FIT also

allows us to propagate our failures across the entirety of Netflix in a consistent and controlled

manner” (Andrus, Gopalani, & Schmaus, 2014).

Latency monkey was used to introduce latency into the system, meanwhile the blast radius was

so high that it could be harm to the system instead of helpful. FIT was built in order to reduce

the impact of failures and increase the safety of the experiments.

The FIT service updates the Zuul proxy with failure metadata. The metadata has the failure

scope that only apply to targeted requests. After a request match to the failure scope, the

request’s context is decorated with failure details metadata that travel with it. The Figure 5

presents a FIT experiment.

39

Figure 5 – FIT Experiment (Andrus et al., 2014)

The different steps involved in a FIT experiment are described in Figure 5 as well as where the

failures are injected. Netflix uses Hystrix to isolate failures and define callbacks, Ribbon as

communication layer to a remote service, EVCache client to access Memcached cached data

and Astyanax client to communicate with Cassandra.

In the different libraries enumerated above, are different injection points where failures can be

simulated. The services are prepared to receive the details metadata and create different

failures. It can be a delay in the service’s response, a timeout in the request to a remote service

or raise an exception to simulate a server error.

This tool is not open source but describes a way to start exploring the introduction of failures

in a controlled way into the system in order to minimize the blast radius of the experiments.

3.5.8 Chaos Automation Platform

ChAP (Netflix, 2017a) is a chaos automation platform built to reduce the blast radius of the test

and increase the safety and frequency of the experiments. FIT was used to introduce chaos at

a service level but the experiment metrics and the global were mixed. ChAP provides a way to

overcome this issue.

Canary analysis is a process that is used to prevent potential harmful releases to be deployed

into production environments. It uses a “deployment pattern in which new code is gradually

40

introduced into production clusters” (McCaffrey, 2016). In the deployment framework

(Spinnaker, 2018) this technique can be used where the new code is release and a percentage

of the current traffic is redirected to it. The results of the new version are compared against the

old version to decide if the deployment should proceed or must be cancelled.

Figure 6 – Example of a ChAP Experiment (Netflix, 2017a)

In the Figure 6 is presented an experiment using ChAP. It uses the technique of canary analysis

to perform the experiments. A small percentage of the traffic is routed to the experimental

group and an equal one to the control one. After a failure is introduced, the results between

the groups are compared. If there is a significant deviation between them, an improvement

needs to be performed.

This split in the traffic reduces the impact in the users without affecting the validity of the

experiment. It follows the advance principle of chaos engineering that is “Reduce the blast

radius”. This service was integrated with the continuous deployment platform in order to

continually test services and discover weaknesses. Only the non-critical services are currently

tested in this way.

3.5.9 Lineage-driven fault injection

The current approaches in chaos engineering are performed using an engineer guided search

and using random fault injection. The first one, using the expertise of a team member, deep

paths and combinations of events can be found. Meanwhile, it is a time expensive task and is

not scalable as the system complexity increases. The random failures can be automated but

some combination of events that could happen in production are difficult to discover using this

technique.

Lineage-driven fault injection (Alvaro, Rosen, & Hellerstein, 2015) is an approach that considers

the data lineage of an application that resulted in a “good” outcome and go backwards to find

what failures in the execution could prevent it. The lineage is the computational steps that lead

to a given outcome. It is a step to create an automated process that can find the critical paths

in an application and test combination of failure events that are missed from the random failure

injection.

41

The LDFI considers that fault tolerance is all about redundancy. The components involved in a

given good outcome can fail at any time and have two different states that are running or

crashed. An action in the system, for example user login, has a defined path and different steps

that go through different services.

Figure 7 – Example of a System Execution (Alvaro et al., 2016)

A lineage can be converted formula in the conjunctive normal form with the different

combinations of failures that could cause the system to fail. Using the example in the Figure 7,

the four different components between the client and the stable write outcome could cause

the system to fail.

The resulting CNF formula with the failures combinations is (Bcast1 ∧ 𝑅𝑒𝑝𝐴) ∨ (𝐵𝑐𝑎𝑠𝑡2 ∧

𝑅𝑒𝑝𝐴) ∨ (𝐵𝑐𝑎𝑠𝑡1 ∧ 𝑅𝑒𝑝𝐵) ∨ (𝐵𝑐𝑎𝑠𝑡2 ∧ 𝑅𝑒𝑝𝐵). There are four services that can fail between

the client and the stable write, resulting in a total search space of 16 (24) combinations.

Meanwhile, there are some failures combinations that would never affect the system. For

example, failing the Bcast1 and the RepA at the same time would not cause any problem, the

path Bcast2 to RepB gives another way to perform a stable write. Using a SAT (satisfiability)

solver and using the formula in the CNF as input, the combinations of failures is reduced only

to the ones that could really impact the system. The search space is dramatically reduced from

sixteen to only two failures in the example. The failure of two broadcasts (Bcast1 and Bcast2)

or two replicas (RepA and RepB) at the same time could prevent a stable write.

42

Figure 8 – LDFI Simple Architecture Overview (Alvaro et al., 2016)

The Figure 8 show the LDFI architecture. It starts with a successful pass through the system and

tries to figure out what the steps are that make the request successful, the system’s lineage.

The lineage is encoded into a CNF formula that is solved in order to discover the combinations

of failures that would break the flow. The different combinations of failures are injected and if

there is a counter example that would prevent the “good” outcome, the program ends and

show the lineage to help in the debug. After all the combinations are tested and there are no

failures in the outcome, the system is proven to be correct under a specific configuration.

The problem in this approach is the requirement of the program specification in the Dedalus

language and that is not reasonable to create it for a large-scale system with a large number of

services.

Netflix (Alvaro et al., 2016) has implemented the research prototype LFDI in their systems in

order to automate the failure testing in the company. The LDFI was integrated with de FIT tool

that was already developed, in order to test the generated experiments from running the LDFI.

The first step that needed to be solved was that measuring a system is hard and sometimes the

HTTP status codes are not enough to measure the success or failure in a user functionality. The

problem was solved using real user metrics reported by the different devices used to run the

Netflix’s application. The absence of a message manifested as a timeout is considered an error.

Also, when a user does not report a metric, it is considered an error. There is a high probability

that the introduced chaos caused the application to crash.

The next step was to find the lineage in a flow in order to discover the different paths and

combinations of faults that could be injected. Using the tracing system available annotated with

the different injection points, a graph similar to the lineage could be generated.

Another problem was the message replay. It is not possible to replay a method within the

system. The state of the data changes and the outcome could not be the same. All the failure

testing in the company used the production environment with real traffic. In order to solve it,

each request that could cause the same behavior in the back end were treated as if they were

the replay of a single request. Creating equivalence classes that represent different interactions

with the system and, for each request, predict the class where it belongs solved the problem.

43

The Netflix test the implementation in the App Boot, a part of the system critical to the business

and responsible for the startup of the application. The case study has 100 different services.

The resultant search space was 2100 that is a number of failures combinations impossible to

test. The experiments were reduced to only 200 that resulted in the discovery of 6 critical bugs

that could affect and prevent system startup.

3.5.10 Some remarks

There are different tools that can be used in order to introduce chaos into the system to verify

and improve the resilience of a system. The layers that each tool operates are different from

machine failures to simulate network conditions and application errors.

At a machine failure level, the most relevant and sophisticated tools are Simian Army and Chaos

Monkey 2.0. These tools offer a trustful relationship and provide many configurations to the

user.

In order to simulate network conditions, proxies of TCP and HTTP can be used. The most

relevant proxies in each protocol are Toxiproxy and Toxy, respectively. They can be integrated

with other tools and integrated in the development pipeline in order to simulate different error

scenarios and network chaotic conditions.

The most sophisticated tools now have a reduced blast radius and run continuously. In order to

reach that level, chaos should be introduced at a small scale first and with introduce simple

failures. After the chaos automation, the scope should be increased and there is when the more

sophisticated tools are used.

In the analysis of the tools, only the open source tools are considered and compared. The

project runs in AWS and the tools compatible with the project are the following: Simian Army,

Chaos Lambda, Simoorg, Chaos HTTP proxy, Toxy, Toxiproxy and Vaurien.

44

45

4 Value Analysis

In this chapter will be presented the value analysis of the thesis. First it will be described the

innovation process that resulted in the opportunity identification and analysis, idea generation

and selection, and finally the concept definition. Then, the value of the project is analyzed, and

it is described the value for the customer. As a result, the value proposal is defined. In the end,

the decision about the tools to use in the project is analyzed using the multi-criteria decision-

making method TOPSIS.

4.1 Business and Innovation Process

There are three different areas of the innovation process:

• The first one is the Fuzzy Front End (FEE) – where the opportunity is identified, some

ideas are generated, and a new concept of product is created.

• The second one is the New Product Development (NPD) – in this area, a concept is

developed, and a new product is built and produced.

• Last one is the Commercialization – where the product is promoted and distributed.

There are many formal ways to managing projects that are situated in the NPD but there is a

lack of research in the formalization of the Fuzzy Front End.

The New Concept Development (Koen et al., 2002) is a model that helps to formalize it, offering

a common language and the key definition of his main components “in order to increase the

46

value, amount and success probability of “high-profit” concepts entering product development

and commercialization”.

Figure 9 – The NCD model (Koen et al., 2002)

In Figure 9 is presented the NCD model. This model is divided in three different parts:

• The model engine;

• The five elements of the NCD;

• The influencing factors;

4.1.1 Model Engine

The model engine is the power of the five elements of the model. It represents the senior and

executive managers’ level of support to keep the process working and it is related to everything

that an organization provides leadership, culture and business strategies.

In Mindera, an important aspect of organization culture is to consider change as a good thing.

The embrace of change and open mind of the workers helped to gather information about the

47

existent and failures that can occur in the project as well as find new solutions to improve the

resilience.

4.1.2 Five Elements of the NCD Model

There are five different elements in the NCD model and each one will be explored according to

the project where the thesis will be developed.

Opportunity Identification

The main opportunity identified in this project is need of increase the resilience of the system

and the verification of existing fault tolerant mechanisms and recovery plans.

In the project, there is no defined approach to do experimentation in the system thought failure

injection and there are no chaos tools integrated in the development process. In addition, there

is no approach to continuously test the system against a type of failures such as machine failures.

The project already has a monitoring system and it is a need to learn how the system reacts to

some real events. The new information comes from analyzing the previous state of the system

and how it reacted after the entropy creation.

In the identification of those situations and opportunities the following methods, tools and

techniques were used:

• Identification of existing problems in the project. With the development of some

functionalities during the time in the company, e.g. development of a service that used

a client to connect to a database.

• Companies trends to use new approaches and methodologies to introduce chaos in a

system;

• Research of existing chaos tools and analysis in order to study what value they could

bring to the project;

• Scenario planning – imagine a situation in the future that could affect the project and

could cause problems to the users.

Opportunity Analysis

In the opportunity, analysis there were identified several testing approaches and tools used by

other companies and what value does this testing can bring to the company.

This opportunity to introduce new ways of testing is valuable because of the improvement of

the resilience of the system and there is the development of a culture to embrace failure. Failure

48

carefully introduced increases the acquisition of new information about the system and

improves the preparation of the team to troubleshoot and solve a future problem.

Testing recovery plans bring two improvements to the project. First, one is the resilience

improvement. The system is going to handle more failure scenarios. The second one is the

increase of confidence in the system.

Idea Generation and Enrichment

There were found two different approaches that can be used in order to perform chaos into the

project. Game Days that are an event where a team is gathered and manually run experiments

to test the system.

Chaos engineering that is a discipline that contemplates more complex ways of introducing

failures into to the system. Many tools can be used to create chaos conditions into the system.

Idea Selection

To address the problem in the project a combination of both approaches was chose. First, the

experiments will start with Game Days with some manually introduced chaos. Then those

experiments are going to be automated and chaos tools are going to be integrated in the project.

Concept Definition

To improve the resilience of the system at first small tests will be done using the Game Days

approach. Failures will be introduced at an infrastructure level to test the resilience of the

databases. Then another experimentation using the Game Days will be done but in an

application level. The databases will be simulated to be down and the client services that use

them will be monitor and test if there is a graceful degradation of them. At last, chaos tools will

be integrated in the project and the experiments will be automated.

4.1.3 Influencing factors

The influencing factors “are the corporation’s organizational capabilities, customer and

competitor influences, the outside world’s influences, and the depth and strength of enabling

sciences and technology” (Koen et al., 2002).

In this thesis the main influencing factor is that “modern distributed systems are simply too

large, too heterogeneous, and too dynamic for these classic approaches to software quality to

take root” (Alvaro & Tymon, 2017) . So new approaches of testing must be used and one of

them is through experimentation.

49

4.2 Value for the customer

To define the value of a product or service, first the customers must be identified. Mindera is

the company where the thesis will be developed and the main interested part in the project.

The objective is to increase the resilience in the system of a client by finding new ways of testing

recovery plans and fault tolerant mechanisms. This way it is possible to increase the confidence

into the system and increase the project’s availability.

First the main concepts of value, value for customer and perceived value are going to be

explained.

Value: “has been defined in different theoretical contexts as need, desire, interest, standard

/criteria, beliefs, attitudes, and preferences” (Nicola, Ferreira, & Ferreira, 2012).

Value for customer: “is any demand-side, personal perception of advantage arising out of a

customer’s association with an organization’s offering, and can occur as reduction in sacrifice;

presence of benefit (perceived as either attributes or outcomes); the resultant of any weighed

combination of sacrifice and benefit (determined and expressed either rationally or intuitively);

or an aggregation, over time, of any or all of these” (Woodall, 2003).

Perceived Value: “different customers perceive different value for the same products /services.

In addition, organizations involved in the purchasing process can have different perceptions of

customers’ value delivery” (Wolfgang Ulaga & Eggert, 2006).

Different values-based drivers have a direct influence in the perception of the value of a product

or service to the customer. In the Table 17 presented some of the existing ones.

Table 17 – Value Based Drivers (Lapierre, 2000)

Scope Benefits Sacrifices
Product Alternative

solutions
Product Quality
Product
Customization

Price

Service Responsiveness
Flexibility
Reliability
Technical
Competence

Price

Relationship Supplier’s
Image
Trust
Supplier’s
Solidary with
Customers

Time/Effort/Energy
Conflict

50

In Table 18 includes sacrifices such as time and effort associated with the services use and

research, and benefits that increase the value of the proposal, according to the project.

Table 18 – Benefits and Sacrifices of the Value Proposal

Domain / Scope Service Relationship

Benefits Responsiveness
Flexibility
Reliability
Technical
competence

Image
Trust

Sacrifices Time/effort/energy
Conflict

Analyzing the Table 18 the following benefits and sacrifices have a direct influence into the

value of this thesis in relation with the improvement of the system resilience:

• Responsiveness: provide fast answers and solutions to problems. Learn from the

problem and improve the efficiency of the response.

• Flexibility: increase in the ability to handle change and the velocity of feature

development.

• Reliability: improve the resilience of the system and verify that recovery plans work as

expected. This increase the availability of the system and turns it more reliable.

• Technical competence: the users in the future will have less problems and increased

availability of the system.

• Image: increase of the credibility and reputation with a high available system.

• Trust: the confidence in the system is improved after

• Time/effort/energy: time is needed to implement and discuss the approaches. The

approach of Game Days requires a lot of team effort and energy.

• Conflict: the approaches of testing through experimentation could be unpredictable

sometimes and carry some temporary issues to the project.

Longitudinal perspective of value

Value for customer has four different temporal positions that are presented in the Figure 10.

51

Figure 10 – Longitudinal Perspective of Value for the Customer (Woodall, 2003)

Explaining the Figure 10, the different temporal positions can be used to situate the benefits

and sacrifices of the value for customer in the different points (Woodall, 2003):

• Ex Ante VC: the pre-purchase position where there is a need to identify where the

customer is going to find the value in the product/service. The value that the client

desire to receive from it.

• Transaction VC: the value experienced at the point of trade or when using the product.

• Ex Post VC: post-purchase and acquisition of product and service. Here is where the

performance, received and delivered value have impact on the customer.

• Disposition VC: after the use or experience.

In this project, in the Ex Ante VC the value that the project will give to the customer is a more

reliable software with an increase of flexibility of the process development.

In the Transaction VC the service will be more technical competent, flexible and responsive.

The identification of problems is done in a proactively way that protects the service from having

outages and downtime in the future.

After the experience of the service in the Ex Post VC, as the confidence of the system and the

resilience is improved, the trust and image of the service also improves. The users will

experience fewer errors and have a more reliable system.

In the Disposition VC. The failure introduction in the system improved the responsiveness and

now the teams will provide a better answer to possible problems. The confidence in the system

overall is increased.

52

4.3 Value proposal

The value proposal indicates the set of (tangible) products or services (intangible) that create

value for a specific segment of customers (Osterwalder, Pigneur, Bernarda, Smith, & Papadakos,

2014).

Value proposal of this project: Increase the confidence in the system capability to resist in

unexpected and turbulent conditions with the introduction of testing through experimentation

approaches and resilience improvement.

The main goal of the project is the identification of problems in the system and implement

solutions to minimize or solve them. This way, the overall resilience is increased as well as the

confidence of the system resistance against failures.

4.3.1 Quality functional deployment

The quality functional deployment ensures that the focus through the development is focused

in the customer requirements. In the QFD model, the house of quality, identifies the relation

between the user requirements and the functional requirements. The functional requirements

are the experiments that are going to be performed to test the system, the analysis of the

results and identification of problems, and the solutions that are going to be implemented.

The current project situation and project after the experiments are compared in order to

compare what the project should look like after. The identification of problems and integration

of new chaos tools to increase the verification of the system. The solutions to minimize the

impact and solve the problems increase the system resilience to failure.

Figure 31 presents the QFD house of quality. The customer requirements are the following:

• Improve the flexibility of the service: the service handles well change and provides new

features more frequently.

• Improve the team responsiveness: the team is more responsive to problems and more

easily find solutions.

• Improve the confidence in the system: the confidence in the project is increased.

• Discover problems and weaknesses in the system: one of the two most important

points. The main goal of the experiments is to find problems and weaknesses in the

system and provide a way to improve the resilience.

• Improve the system resilience: After the problems and weaknesses are discovered, new

solutions to minimize or improve the problems are implemented.

The functional requirements are the following:

53

• Test the resilience to a database primary node failure: it aims to test the resilience of

the system to database failures.

• Measure the impact of latency in a service: test the application behavior when the

latency in the network connections increases.

• Measure the impact of resource exhaustion in a service: test the behavior of the system

when a server goes out of resources such as memory and CPU.

• Test the global resilience in the project using the Chaos Lambda tool: continuously and

randomly, test the system against machine failures.

• Analyze the results and identify possible problems or weaknesses: Important to

discover problems and weaknesses. The outcomes of each experiment are analyzed

and interpreted, and follow-up actions are created.

• Implement solutions to improve the system's resilience : as a final goal, the

implementation of solutions to improve the resilience against failures and unexpected

conditions.

The aim is to improve the project in all the customer requirements. The relation between results’

analysis and the improvement of the resilience is very high. There is a high correlation between

them. The Game Days and the Chaos Monkey are experiments and the results created need to

be analyzed.

4.4 Multi-Criteria Decision Making

In order to decide the most valuable chaos tool the Technique of the Order Preference by

Similarity to Ideal Solution method was applied. TOPSIS (Nicola, 2018) is a multi-criteria

decision making method that considers three different aspects in order to measure what is the

ideal alternative:

• Attributes or criteria of quality that are benefits to the ideal solution;

• Attributes or criteria of quantity that are benefits to the ideal solution (more is better);

• Attributes or criteria that are costs and disadvantages (more is worst);

There are two different hypotheses that are used in order to find the ideal solution:

• The ideal solution – the one with the best values for the different attributes in the

decision;

• The negative ideal solution – the one with the worst values.

54

The different attributes and criteria considered to analyze the tools were the following:

• Reliability – measured by analyzing the popularity of each GitHub repository. This helps

to find the most trustful to use.

• Sophistication – the level of the tool in the CMM. This attribute indicates which

experiments are safer and better.

• Adoption – the level in the CMM that indicates the adoption of the tool within

organization. It is related with how many systems are covered and what is the use and

awareness of the experiments.

• Compatibility – a binary value that indicates if the tool is compatible with the project.

All those attributes mentioned above are a benefit to the ideal solution. The weights of the

attributes/criteria are presented in Table 19.

Table 19 – Weights of the Attributes/Criteria

Attribute/Criteria Reliability Sophistication Adoption Compatibility

Weight 0.25 0.15 0.1 0.5

In the Table 19 are described the different weights used to measure the ideal alternative. The

preference was reliability > sophistication > adoption and the compatibly with the highest value

and an influence of 50 % in the result.

In the measurement of the weights the following criteria was used:

• Reliability is preferred to sophistication and adoption, so the tool does not cause any

harm to the project.

• Sophistication has more value than adoption. A tool that has more valid experiments

and safer is better than a widely adopted.

• Compatibility is a necessary condition to apply the tool in the project. The value of 50

% is to influence the result to bring more value to a compatible program.

Another component of the TOPSIS are the different alternatives to study. The final goal is to

find the closest alternative to the ideal solution. The evaluation of the Chaos tools are presented

in the Table 20.

Table 20 – Chaos Tools’ Evaluation

Weights 0.25 0.15 0.10 0.5
Reliability Sophistication Adoption Compatibility

Simian Army 6185 3 3 1

55

Chaos Monkey 2.0 3682 4 4 0

Chaos Lambda 165 3 3 1

Pumba 781 3 3 0

Kube Monkey 681 2 2 0

Chaos Lemur 48 2 2 0

Monkey Ops 23 2 2 0

Chaos Dingo 8 2 2 0

Powerful Seal 519 3 3 0

Simoorg 155 3 3 1

Blockade 522 2 2 0

Chaos HTTP Proxy 114 1 1 1

Toxy 2394 2 2 1

Toxiproxy 2464 2 2 1

Vaurien 325 1 1 1

In the Table 20 are presented the different evaluation of the tools (alternatives) within the

different attributes and criteria. The values were obtained after a careful analysis of each tool

and the following criteria was applied:

• In the reliability were considered the stars in the GitHub repository. The stars mean the

people that follows and are interested in the project.

• Every tool was evaluated within the CMM in terms of sophistication and adoption.

There are four different levels in the model from the 1st to the 4th level.

• The compatibility is 1 if the chaos tool can be used in the project and 0 if it is not possible.

The Table 21, presents the relativeness closeness to the ideal solution and the ranking of the

chaos tools.

Table 21 – Relativeness Closeness to the Ideal Solution

Chaos Tool Score Rank

Simian Army 0.93 1.0

Toxiproxy 0.63 2.0

Toxy 0.62 3.0

Chaos Lambda 0.51 4.0

Simoorg 0.51 5.0

Vaurien 0.50 6.0

Chaos HTTP Proxy 0.49 7.0

Chaos Monkey 2.0 0.38 8.0

Pumba 0.15 9.0

Powerful Seal 0.14 10.0

56

Kube Monkey 0.09 11.0

Blockade 0.08 12.0

Chaos Lemur 0.07 13.0

Monkey Ops 0.07 14.5

Chaos Dingo 0.07 14.5

In the Table 21 are the relativeness closeness to the ideal solution of the tools. These are the

results of the evaluation using the TOPSIS method. Analyzing the results, there are 5 different

tools that are going to be considered in first place to introduce chaos in the project. Simian

Army, Toxiproxy, Toxy, Chaos Lambda and Simoorg. These are the best tools in terms of

reliability, sophistication, adoption and compatibility.

57

5 Design

In this chapter, the experiments conducted to test the resilience of the system are explained,

as well as the points where the failures were injected. These experimentations were designed

considering the Maturity evaluated in the section 1.2, both sophistication and adoption were in

the first level. To increase adoption and sophistication, experiments were performed and two

chaos tools were introduced: Toxiproxy to simulate unstable network conditions and Chaos

Lambda to globally test the resilience of the system against instance failure.

As point of start in the project to test the system resilience and as mentioned in the 3.4.3 section,

the designed experiments are performed in a test environment and with a small scope. After

the confidence in the test increases, the production environment should be used, and the scope

increased.

5.1 Local Resilience Experiments

The experiments were designed to introduce failures in the different components of the project

to discover weaknesses and improvement possibilities. Thus, the experimentations were as

follows:

• The first, described in section 5.1.1, is an experiment where the recovery of the system

from the failure of the primary node of MongoDB is tested.

• The second experiment (see section 5.1.2) is to simulate problems in the connections

between services. In the network connections latency and unavailability are going to be

simulated to replicate real world events, that is an advanced principle of chaos as

described in section 3.4.2.

58

• The third experiment, which is detailed in section 5.1.3, aims to measure the impact of

physical resources exhaustion in a service.

• At last, the experiments were automated with the introduction of Chaos Monkey (see

section 5.2).

5.1.1 Database Systems Resilience

A machine eventually is going to fail. This chaos experiment aims to prepare the system to a

database instance failure. This test is going to be performed in the testing environment and the

results are going to increase the confidence regarding this problem and to discard some

misconfiguration in the database. The Table 22 presents additional details about the

experiment.

Table 22 – Database Systems Resilience Test

Hypothesis MongoBD and RiakTS are resilient to
machine failure, the fault tolerance
mechanisms configurations provide
the guarantee that at least one
machine can go down. Alerts need to
be correctly configured and after a
machine failure an alert should be
triggered to notify the team.

Attack Instance failure.

Scope Single instance.

Important metrics Available instances and number of
successful responses.

Expected results There are no data losses in the
database. The steady state of the
system changes, with some instances
from the database receiving more
traffic. An alert is triggered after the
database node is turned down. After
the recovery, the system is expected
to be back to normal. If the primary
node of the database is down, a replica
should be promoted to primary.

Setup This experience will be performed in
the QA environment. This
environment already has a MongoDB
replica set deployed and running. The
fault tolerance mechanism of this
database is going to be tested.

59

In this environment MongoDB architecture is a replica set that consists in a group of Mongo

processes that hold the same data set. Replication (MongoDB, 2018c) provides, in addition to

load balancing, redundancy and availability of the data. Since every process that belongs to a

replica set holds the same data, if one instance where the mongo process is running is shutdown,

the database continues running without data losses and downtime.

The architecture of the database is the same in production and QA environment. Meanwhile in

QA there is only one replica set. In Figure 11 is presented the MongoDB replica set architecture.

Figure 11 – MongoDB Replica Set Architecture

In the Figure 11 deployment diagram, there are 2 nodes that are secondary, 1 node responsible

for reporting metrics and a primary node. The latter receives read and write operations and

replicates the write ones to all the other nodes. Without a primary node, write operations

cannot be performed. This node is similar to those that are secondary but was elected as the

principal.

A secondary node holds the same data set as the primary but can only receive read operations

and has vote and priority values equal to 1. The votes are necessary for the primary node

elections and the priority is the eligibility of a node. In the elections, the highest priority node

becomes the primary.

The reporting node holds the same dataset as the other secondary nodes. It has 0 priority and

cannot be elected as primary or start an election. Meanwhile, this node participates in the

elections with also 1 vote. The responsibility of this node is to report statistics.

According to the MongoDB documentation (MongoDB, 2018b), the number of instances that

can be shut down in a four-membered replica set is one at a time. With 4 members, the majority

needed for an eligible node to win an election is three, which means that if more than one

instance is shutdown, this majority will never be achieved.

60

In Figure 12 is presented where the fault is introduced and the fault tolerance mechanism that

exists in MongoDB.

Figure 12 – MongoDB Fault Tolerance Mechanism

In this experiment, the primary node is going to be manually shutdown. In the Figure 12, the

fault tolerance mechanism main concepts.

The first concept is the replication. Operations that modify the data present in the database are

recorded in a collection called Oplog – operations log – that keeps a record of the latest

operations in the database. Only the primary node can receive write operations so the primary’s

Oplog have the current state of the database. The other nodes copy the primary Oplog and

apply those operations maintaining the same dataset.

The other concept is a heartbeat. Replica set members send heartbeats to each other every 2

seconds and if the ping does not have a response within 10 seconds, it is marked as unreachable.

After the primary node is marked as unreachable a process called automatic failover is triggered

and a node that can be elected starts the election to become the primary. During the elections

the database does not provide write operations since there is no primary. The mean time to

complete an election should not exceed 12 seconds.

The Figure 13 present the state of the replica set after the primary node is shut down and after

the elections with a secondary node winning the election. This is the scenario that is going to

be tested in order to make sure that the fault tolerance mechanism work as expected.

61

Figure 13 – MongoDB Replica Set After Elections

After the shutdown of a node, number of members of the replica set is three and from that

moment, the database is no longer tolerant of instance failures. A node needs the majority of

the votes (also known as quorum) to be elected as primary node and, in a replica set with 4

members, 3 votes are needed. In the Figure 13 there are only 3 members left, after another

member is shutdown down, it is not possible to elect a new primary node. Moreover, without

a primary, the replica set cannot perform write operations so, it is not fault tolerant to instance

failure at this point. Meanwhile, read operations are still possible and the dataset is saved. Even

if more nodes are disabled, the data is safe.

Finally, the old primary will be turned on and it should return to the replica set. The node will

copy the last missing operations from the primary’s Oplog, apply them and everything will

return to normal.

5.1.2 Unreliable Network Connection

In the modern software development, with increase of distributed systems and more common

micro-service architectures, network connections are highly need as they ensure

communications between services. This chaos experiment aims to simulate poor network

conditions between different services in order to see how the system responds when latency is

increased and when the unavailability is simulated. The main idea is to test clients’ connection

to services and databases in order to, for example, adjust the timeouts in the applications if

there is a window to improvements, but also identify misconfigurations or application’s

resilience problems.

The problem with using just timeouts is that it can put too much backpressure in other

components. Too much calls to another service do not give it time to recover and eventually

will break it.

62

There are different alternatives to solve this problem. The first one needs a circuit breaker.

Instead of keep calling a service that returns timeouts or reject connections, there is an error

threshold that after hit, the circuit break will open and do not allow more requests to a given

service. This way, the other service can recover and after some configured time, the circuit

should close.

In order to simulate a huge consumption of input/output bandwidth, an unusual flow of users

can be introduced. This test is aim also to test if the queries to the database are optimized and

if there are indices to support them. In this experiment the DataAPI connection to other

databases are going to be tested. Every other service that are connected using network could

also be tested. The Table 23 has some additional information about the experiment.

Table 23 – Unreliable Network Connection Description

Hypothesis The application is prepared to handle
latency, unavailability and database Input/O
bandwidth.

Attack Unavailability, latency and I/O.
Scope Single instance.

Important Metrics to Watch Response time and number of successful
responses.

Expected Results After the database unavailability is simulated
and application business logic in test flows
through them, server errors are expected.
After the latency is increased, traffic is
reduced and slower. The timeout limits are
tested and may be tuned if necessary. As the
latency increases the number of users that
receive successful responses decreases. At
some point the service reject more requests.

Setup In this experiment, the TCP proxy Toxiproxy
was introduced in order to simulate chaos in
the different databases. The proxy is going to
be deployed into a local development
environment and different conditions such as
unavailability and latency are going to be
introduced. There is a proxy for each
database and in each one, chaotic network
conditions are going to be simulated. This
test aims to test the resilience of DataAPI, a
service that consumes data from three
different databases.

The service Data API is connected to the three different databases and consume from each one

of them. The Figure 14 shows what is the setup of the Data API without the integration of the

Toxiproxy.

63

Figure 14 – Data API Setup

The databases are responsible for different use cases in the project. ElasticSearch provides a

fast way to search data, RiakTs a fast way to retrieve rankings data and MongoDB has all the

data related with Apps. To show the differences between the setups, the Figure 15 shows where

the chaos is introduced and how the Toxiproxy does connects to the databases and DataAPI.

The setup is simple, and the service has three different clients that connect to each existing

database.

Figure 15 – Toxiproxy Integration

Toxiproxy has an HTTP interface to insert proxies, which are represented by the following

properties: the name of the proxy, the host and port where the proxy is going to listen and the

upstream where the traffic should flow. The interface has another resource to introduce chaos

in the proxies called toxics. It is used to introduce latency, simulate unavailability and other

unreliable network conditions.

This experiment requires three different databases, one application, Toxiproxy and one load

testing tool. The load testing tool is important to simulate users and to discover how the chaos

affects them.

64

At first, the steady state of the system is defined using the system without any chaos introduced.

This is the control group of this experiment and is going to be compared with the results of the

experiments performed.

In order to create the setup of this environment the chosen tool was Docker Compose. Compose

is a tool to running multiple containers. It consists in the YAML file to define the configuration

for the different applications. After the configuration creation and with the command “docker

compose up” the setup is created.

More important, Compose simulates an isolated environment similar to the ones that exists in

the QA and production environment. The differences are in the network connection that in the

local environment does not have any latency and components that exist only in the AWS cloud

that provide redundancy. The simulated environment is presented in the Figure 16.

Figure 16 – Docker Compose Simulated Enviroment

Analyzing the Figure 16, in comparison with QA and production, the simulated environment in

this experience does not have an ELB to distribute load for each available DataAPI instance and

ASG responsible for scale up and down the number of instances. However, the development

environment is sufficient to begin to identify the impact of latency and unavailability on a

running application.

65

5.1.3 Resource Exhaustion

Resources eventually hit their limit and an application is forced to run under this situation. As

the users’ flow increases, more CPU, memory and disk are needed to fulfil the requirements. It

is possible to scale horizontally or vertically in order to prevent resource exhaustion. This is a

simulation of the resource exhaustion in a chaos experiment to see how the system behaves.

About the experiment, the Table 24 shows a more detailed description.

Table 24 – Resource Exhaustion Description

Hypothesis The system considers the instance where this
test is applied as unhealthy. The traffic is
routed to another instance by the elastic load
balancer and the system is protected against
single instance resource exhaustion

Attack CPU, memory and disk

Scope Single instance

Important Metrics to Watch CPU, memory and disk usage. Response
times and number of successful responses.

Expected Results The response times become higher, there is
an error increase and a reduction of
successful responses. After the instance is
recovered, the system state should return to
normal

Setup The QA environment is going to be used in
the experiment. The Store Service is going to
be the service under test. In the production
environment the minimum number of
instances running a critical service is three.
This provides redundancy and the system
becomes fault tolerant to two instances
shutdown

The number of instances is three, as described in Figure 17, so after two instances are down,

the elastic load balancer redirects all traffic to one instance and the system does not become

unavailable. Watchlist Service has three different instances in production to allow redundancy.

Before the experiment, the service in the QA environment is going to be scaled to three

instances, so the tests become closer to production.

A fork bomb is a denial-of-service attack where a process creates continually new processes to

completely exhaust the resources in a machine. In order to perform this test, a fork bomb is

going to be used to exhaust the machine resources and turn it unreachable. At first the system

is slowed down until the resources to run an application are unavailable and then it becomes

unresponsive.

66

The elastic load balancer performs a health check to every service instance. The current health

check configuration in the watchlist service ELB is presented in the Table 25.

Table 25 – Watchlist Service ELB Configuration

Variable Value

Timeout 15 seconds

Interval 30 seconds

Unhealthy Threshold 5
Healthy Threshold 2

Analyzing the Table 25, the configuration means that after 5 consecutive times that a health

check fails, the instance is considered unhealthy, removed from the ELB and does not receive

more traffic. Then the auto scaling group removes the instance and launch a new one to replace

it. The health check is an HTTP request to the URI /health and a response with a status code of

200 is considered a success.

The Figure 17 shows the current setup of the watchlist service and how does the chaos is going

to be introduced.

Figure 17 – Watchlist Service Setup

Using the load test tool Vegeta (Senart, 2018) to simulate users, this test aims to find out what

the impact of resource depletion on the system is. The number of successful responses and the

response time will be monitored. The time an instance takes to become unhealthy and to be

replaced is going to be measured.

67

5.2 Global Resilience Experiment

In this integrative experiment, Chaos Monkey was implanted for automation of instance failure.

Chaos Monkey randomly chooses a running instance and turns it off. Making the occurrence of

failure more frequent is beneficial to the system. All services deployed after tool execution must

be fault tolerant for instance’s failure.

A new service that does not handle this failure will cause the system to fail and an alert to be

triggered. The monkey only works during business hours, so the problem can be solved

immediately by the working teams. The Table 26 presents a detailed description of the

experiment.

Table 26 – Global Resilence Experiment Description

Hypothesis The entire system is resilient to instances
unexpected shutdown.

Attack Instance failure.
Scope Multiple instances.

Important metrics to Watch Instances available and number of successful
responses.

Expected Results The steady state of the system does not
change. Some instances start receiving more
traffic. An alert is triggered after the machine
is turned down. After the recovery, the
system is expected to be back to normal.

Setup In this experiment, the chaos monkey that is
going to be used is the Chaos Lambda. It will
target different services, but databases are
out of the scope of this experiment.

Services are stateless, and an instance failure does not cause any harm to the system. There is

no data to be lost and if there is an identified problem it can be solved without causing any

relevant problem. Databases are stateful and are going to be target in manual experiments

where the actions can be taken, and the experiments run knowing of what can possibly happen.

Running the chaos monkey against databases can cause problems and that is not the purpose

of chaos engineering. In this experiment, only the stateless services are going to be tested to

avoid causing irreversible failures.

Chaos Lambda has a serverless architecture and it is very easy to implement in comparison to

Simian Army’s Chaos Monkey. This monkey runs in a lambda function and target different auto

scaling groups and identify its instances. There is a probability that decides if an instance is

shutdown in a given execution.

A CloudWatch Event is launched in a configured schedule that triggers the execution of the

function. These two components, events and function are the only components necessary in

order to deploy chaos lambda.

68

Chaos Lambda is a node package that already has the deployment methods created and the

only necessary steps is to install it in a local machine, define a lambda role in AWS, setup the

credentials, create a configuration file and then run it. The role is a set of permissions that are

associated with the lambda function and allow it to terminate instances. The credentials are

needed in order to run the methods that deploy the chaos lambda function to the AWS.

The creation of a configuration file is necessary in order to define the frequency that the chaos

lambda runs and what are the targeted auto scaling groups. The configuration file consists in a

JSON file with three fields: “interval”, “enableForASGs” and “disableForASGs”. The interval in

minutes that is the frequency which the function is called, the enable field is the white list of

auto scaling groups that are going to be targeted and the disable is the black list of ASG that

should not be touched by the tool. The Figure 18 presents how does chaos monkey is going to

be integrated in the project.

Figure 18 – Chaos Monkey Integration

The tool runs in the configured interval and targets the ASG defined in the configuration file and

try to shut down one instance. In the beginning, the ASG of the DataAPI and APIGateway will

be the target. After the first weeks of having the tool running, the scope is going to be increased.

69

This tool aims to test the global resilience of the system against a machine failure. Alerts should

be configured in order to know what cause the application to be shutdown.

5.3 Future Experiments

A set of experiments, discussed in previous sections, were chosen to be carried out in a short

time. Others were also designed and will be conducted in the next months. In fact, the proposed

work represents just the start of a more and intense work to increase the system resilience

against failures.

The principles of chaos mentioned in the section 3.4.2 were used to design the experiments but,

the run experiments in production and minimize of the blast radius principles were not

addressed. To perform future experiments in the production environment, a tool similar to

Failure Injection Testing is going to be developed in order to reduce the blast radius and safety

of the experiments. Failures and latency increase for specific requests should be easy to

simulate without harming the project and creating problems to the clients, using a tool similar

to FIT.

The people involved in the experiments and the awareness of this project in Mindera were low

and as a future work, the results and follow up actions of the experiments should be

documented and exchanged with other projects so that chaos tools should be used globally in

Mindera. In the company, there are other projects that already performed chaos experiments

testing the system against region failover and deployed chaos monkey into their infrastructure.

The future experiments can be performed in other projects other than the target project of this

thesis, to increase the adoption of chaos engineering in the company.

70

71

6 Implementation and Evaluation

The experiments followed the principles of chaos (Netflix, 2017b) that provide a guideline to

develop experiments. The tests aimed to test the resilience of the system and build confidence

that the system withstand against specific failures. The resultant weaknesses are identified and

fixed, before they manifest in the real environment and cause unexpected problems to the

business. The harder it is to disturb the system behavior, the greater is the confidence in the

system's capability to handle failures.

In every experiment, the Vegeta (Senart, 2018) load testing tool together with Jaggr (Poitrey,

2018a) and Jplot (Poitrey, 2018b). The command used is presented in Error! Reference source

not found. and explained in Table 35. The combination of the tools provides a real time analysis

of the results and a graphical perspective of what is happening during the experiment.

In the realization of the experiments, the following steps were used:

1. The definition of the “steady state” of the system. This state is the normal behavior of

the system and the measured output was used to define a control group for the

experiment. In order to create some requests and help to define a baseline to compare

the effects of the failures in the system, the load testing tool Vegeta was used. In the

experiments, the first step was running a load test with some requests and save the

results. The results have a measured output of the system behavior defined by the

metrics: requests per second, HTTP status codes, latency percentiles and, bytes in and

out.

2. The definition of the hypothesis that the experiment would hold the same “steady state”

in the control group and in the experiment group. The introduced failures do not cause

problems to the state of the system proving that system is resilient against a specific

failure. The hypotheses are defined in the section 5.

72

3. The third step is the introduction of failures to simulate real-world problems and events

in the system. The tests reveal weaknesses in the system and validate the existing fault

tolerance mechanisms. At the start of the experiment, the load testing was used to

replicate the same traffic simulated in the first step. After the applications start to

receive requests, the chaos is introduced, and the results are saved.

4. In the final step, the results of the control and the experiment group are compared and

based on the difference between the observations, the hypothesis is tested and

disproved “steady state” is not maintained.

6.1 Database Systems Resilience

The experiment aimed to test the MongoDB resilience against node failure and particularly, the

primary node. The shutdown of the primary node should not provoke any data losses and the

steady state of the system should be the same during and after the failure injection. The test

was performed in the QA testing environment and the failures were introduced manually as

described in the section 5.1.1.

Before the introduction of the primary node’s shutdown, the results of the load testing, that

represent the normal behavior of the system, are present in the Table 27. The table shows the

load testing using Vegeta and targeting DataAPI, a consumer of MongoDB.

Table 27 – Results of Database System’s Resilience Steady State

Requests Total=18000 Rate=30

Duration Total=10 minutes

Latencies Mean≈71.6ms P50≈65.0ms P95≈83.4ms P99≈234.6ms Max≈1.3s

Bytes In Total=390897000 Mean=21716.5

Bytes Out Total=0 Mean=0

Success 100%

Status
Codes

200=18000

The system uses the MongoDB Cloud Manager (MongoDB, 2018a) to manage the infrastructure

and monitor, automate and back up the data. The state of the QA MongoDB replica set is

presented in the Figure 19.

73

Figure 19 – MongoDB QA Replica Set

In the Figure 19, the current primary node of the replica set is mongo-public-qa-nodes-2. This

node is going to be the target of the failure. The commands used are simple and described in

the Table 36. After the failures were introduced, the automatic failover was triggered, and a

new primary node was elected.

The Figure 20 shows the replica set after the mongo process in the primary instance was shut

down and a secondary node was promoted to primary.

Figure 20 – MongoDB QA Replica Set After Failure

Analyzing the Figure 20, the new primary node is mongo-public-qa-nodes-1. The fault tolerance

of the MongoDB was tested and works as expected.

74

Another load testing was performed during the introduction of the failure to measure the

system behavior to the database primary node’s shut down. The load testing targeted the

DataAPI and the results are present in the Table 28.

Table 28 – Results of Database System’s Resilience During Failure

Requests Total=18000 Rate=30

Duration Total=10 minutes

Latencies Mean≈ 89.6ms P50≈64.4ms P95≈83.3ms P99≈1.0s Max≈5s
Bytes In Total=

390897000
Mean=21716.5

Bytes Out Total=0 Mean=0.0

Success 100%

Status
Codes

200=18000

Analyzing and comparing the difference between the results of Table 27 and Table 28, the

steady state of the system was not changed. The success rate is 100% and the latencies does

not change looking at the P95. The maximum of 5 seconds could be related to the leader

election, during this time the system response time was higher. After the election, the system

returned to the normal behavior. The system is resilient to the failure of a primary MongoDB

node.

6.2 Unreliable Network Connection

The main goal of the experiment was to measure the impact of latency in a service and the

target of the tests was the Data Api, a Spring Boot application. The setup used is described in

the Figure 15 and has four components: Data Api connected to Toxiproxy and the proxy connect

to three databases, ElasticSearch, MongoDB and RiakTS. In the tests, Vegeta was used and

targeting the Data Api.

In the simulation, Docker Compose was used and described in the Listing 3. The configuration

file has a MongoDB container, named mongo and serving in the port 27017, the ElasticSearch

container, named elastic and listening to the port 9200, the RiakTS container, named riak and

listening in the ports 8087 and 8098. The mongo-seed is a custom container with mongo, just

to insert the schema and feed data in the MongoDB instance, using the mongos client. Then the

Toxiproxy container, named toxiproxy, with the start command of the proxy to use the

configuration file defined in “/config/toxiproxy.json” and listening in the port 8474, used by

the client toxiproxy-cli, and other three ports that proxy the calls for each database.

The configuration file is defined in Listing 2, named “toxiproxy.json”, and it is available inside

the Toxiproxy container using a volume. The 33000 port is connected with Elasticsearch, the

33001 connected with MongoDB and 33002 connected with RiakTS. At last, the DataApi

75

container that is connected to the 3 different ports of the Toxiproxy. The connection between

the service and the Toxiproxy is defined in a properties file in the DataApi service.

An important aspect of the setup is the use of container names directly as hostnames inside

the Compose environment in order to connect containers. The hostname is resolved with the

IP Address inside the simulated environment.

The Table 37 shows the commands used in this experiment. At first, the environment was

created using the command “docker-compose up -d”. After the setup was completed, a load

testing was performed to measure the “steady state” output of the system. The Figure 21 shows

the normal behavior of the system.

Figure 21 – Real-time Metrics of the Experiment Steady State

Analyzing the Figure 21, the behavior of the system without any problems have a request per

second rate of 30 and only 200 status codes, and, a latency around 9 milliseconds. About the

“steady state”, Table 29 presents some additional details.

Table 29 – Results of Unreliable Network Connection Steady State

Requests Total=18000 Rate=30

Duration Total=10minutes

Latencies Mean≈8.37ms P50≈8.18ms P95≈11.7ms P99≈16ms Max≈53.8ms
Bytes In Total=113589000 Mean=6310.5

Bytes Out Total=0 Mean=0

Success 100%

Status
Codes

200=18000

76

After the normal behavior was measured, a latency toxic was introduced in the connection

between the Toxiproxy and MongoDB using the Toxiproxy Client. The command used is

described in the Table 37, that introduced a latency of 100 milliseconds with a variation (jitter)

– positive and negative – of 25 milliseconds. Then, another load test was performed to measure

the impact of latency in the service. The metrics during the experiment with latency are

presented in the Figure 22.

Figure 22 – Real-time Metrics of Experiment with Latency

Analyzing the Figure 22, the latency increases to 30 seconds sometime after the start of the

experiment and the service only respond with 8 RPS, since the beginning of the experiment.

The successful responses, represented with a status code of 200 are the same as the responses

per second and after a while, the service only start to respond with 500 HTTP status code and

the RPS returned to 30 – all the requests received a timeout. The Table 30 presents some

additional details about the results.

Table 30 – Results of Unreliable Network Connection with Latency

Requests Total=18000 Rate: 30

Duration Total=10minutes

Latencies Mean≈248.3ms P50=0s P95=0s P99≈11.8s Max≈29.8s
Bytes In Total=1823235 Mean=101.3

Bytes Out Total=0 Mean=0.0

Success 1.64%

Status
Codes

200=295
500=17705

Error:
timeout
awaiting
response
headers

Analyzing both Table 29 and Table 30, the differences between the results were very high and

only for 30 request per second. After the latency introduction, the service could only handle

some requests (8 or 9 per second) and after some time, the requests stopped to receive a

77

response. The ratio was reduced from 100% of successful responses to 1,64%. The maximum

latency was 30 seconds, meanwhile, the latency introduced was only of 125 milliseconds

maximum.

A strange behavior was that after the completion of the load test, the service remained

unresponsive for a while. In the container logs, there was an exception

“org.springframework.web.context.request.async.AsyncRequestTimeoutException:null”

repeated several times. Another problem was, during the service being unresponsive, the

health check always returned a successful response, responding that the service was up and

healthy.

Digging further in the problem, the use of “CompletableFuture.supplyAsync()” in the controller

methods was causing the problems. All the requests would use the same pool

“ForkJoinPool.commonPool()” and that caused a bottleneck in the service.

The Common Pool is configured by default to have as many threads as the number of cores

available in the machine, using the method “Runtime.getRuntime().availableProcessors()”. In

the container, the number of available processors was 4. After adding the latency of 100

milliseconds, a request took a mean of 400 milliseconds to be performed (because there is more

than one call to the MongoDB Database) and the requests are synchronous.

So, the number of threads in the pool is 4 and the latency is 400 milliseconds, causing the service

to process 8 requests per second. The other 22 requests were queued after the request timeout

configured was surpassed, the requests start to receive a timeout, but the task associated with

the request, was not removed from each threads task’s queue, causing a really long queues

(that was why the service remained unresponsive after the test, it was still processing the

requests).

The health check does not use the thread pool, so it returned a successful response, even with

the service being unresponsive. The results turn to be very expressive and the use of the

common pool a problem when performing blocking requests. The common pool should never

be used to perform blocking operations since it is used also in another operations of Java such

as parallel streams, and if not used carefully, can cause bottlenecks and problems in a Java

application.

As a way to solve the problem two different approaches were considered:

• Turn the requests to be synchronous and avoid using a thread pool. The difference

between this approach, is the increase of the load to the request acceptor threads, in

case of this service, the Tomcat thread pool. When all the threads are busy, the service

start to reject requests.

• Instead of using the common pool, create a custom thread pool with more threads and

use it when processing the requests. This solution is good and would prevent the

acceptor threads from being occupied.

78

Comparing the two approaches, the first one was chosen. The reason was that there was no

problem identified using the first option and the default. The code has been changed to

transform the requests to synchronous and to use the acceptor threads to process them. The

real-time metrics are presented in the Figure 23.

Figure 23 – Real-time Metrics of Experiment with Latency after Code Modification

Analyzing the Figure 22 and Figure 23, the changes are significant. The requests after the code

modification show a constant latency and the request successes and rate returned to 30 per

second. The “steady state” is now maintained in comparison to the control group. About the

experiment after the modification, Table 31 presents some additional information.

Table 31 – Results of Unreliable Network Connection with Latency after Code Modification

Requests Total=18000 Rate: 30

Duration Total=10minutes

Latencies Mean≈410ms P50=409ms P95=458ms P99≈475ms Max≈781ms

Bytes In Total=
113589000

Mean=6310.50

Bytes
Out

Total=0 Mean=0.0

Success 100.00%

Status
Codes

200=18000

79

Analyzing the Table 31, the success ratio is now again in 100% and the latency increase to 400

milliseconds, time that a request takes with a latency of 100 milliseconds. Comparing to the

Table 29, the system can withstand the introduction of latency.

The load test rate has been increased to 100 to prove that the system can now handle correctly

slow database requests. The Table 32 shows the results after the code modification and with

an increase of the request per second.

Table 32 – Results after Code Modification with an Increased Rate

Requests Total=60000 Rate: 100

Duration Total=10minutes

Latencies Mean≈408ms P50=408ms P95=456ms P99≈474ms Max≈804ms

Bytes In Total=378630000 Mean=6310.50

Bytes
Out

Total=0 Mean=0.0

Success 100.00%
Status
Codes

200=60000

Analyzing the Table 32, the service responded to 100 request per second and the success ratio

is 100%. The latency was kept within 400 milliseconds. In conclusion, the code modification

proved to solve the problem and turned the service to be available under the introduction of

latency.

6.3 Resource Exhaustion

The experiment of resource exhaustion aimed to measure the impact in the system of a

machine with unavailable resources to run an application. Every service needs memory and CPU

resources for a normal operation, and without it, an application starts to slow down and

eventually, is terminated.

The design of the experiment is described in the section 5.1.3. The service under test is the

Watchlist Service but the results are equal to every other application in the system. The use of

a fork bomb attack continuously creates processes that need memory and CPU to run, until the

machine goes out of resources and becomes unresponsive.

Before the experiment, the Watchlist auto scaling group was scaled to three instances as

described in Table 38. The Table 33, presents the steady state of the Watchlist Service using the

Vegeta to perform the load testing and targeting the Watchlist Elastic Load Balancer. The ELB

distributes the traffic for all the three instances available.

Table 33 – Results of Resource Exhaustion Steady State

Requests Total=60000 Rate: 100

80

Duration Total=10minutes
Latencies Mean≈86.2ms P50=71.6ms P95=97.9ms P99≈406.4ms Max≈4.4s

Bytes In Total=8640000 Mean=144.00

Bytes
Out

Total=0 Mean=0.0

Success 100.00%

Status
Codes

200=60000

Analyzing the Table 33, the usual latency of a request is 98 milliseconds and all the requests are

succeeded. In order to perform the experiment, the commands were used as described in the

Table 38. After the ASG was scaled and the normal behavior of the system measurement, the

load testing was performed again, and the failure was introduced. The commands consisted in

the manual connection to the instance with secure shell (SSH) and the introduction of the fork

bomb. The Table 34, presents the results of the Watchlist Service with chaos.

Table 34 – Results of Resource Exhaustion Using a Fork Bomb

Requests Total=60000 Rate: 100

Duration Total=10minutes
Latencies Mean≈147.9ms P50=70.1ms P95=113.8ms P99≈2.8s Max≈9.2s

Bytes In Total=8639588 Mean=144.00

Bytes
Out

Total=0 Mean=0.0

Success ≈100.00%

Status
Codes

200=59998
504=2

Error:
Gateway
Timeout

Analyzing and comparing both Table 33 and Table 34, the results are very similar and the

differences between the latency are not significant, a change from 98 to 114 milliseconds in the

P95. The two response with a 504 HTTP status code, occur when the Watchlist Service running

is not capable to answer to the request. After the service becomes unresponsive, the health

check requests that ELB performs against the Watchlist Service start to fail and the instance

stops receiving traffic.

The Statful receives metrics from the all the services running in the system. The Figure 24 are

presented the monitoring of the memory of the machines running the Watchlist application.

81

Figure 24 – Statful Metrics with Watchlist Service Machines’ Memory Free

Analyzing the Figure 24, at first, there was only the machine 4 with 1GB of free memory. After

the service was scaled, two more machines are started with 2GB free memory each. The

experiment started around 15:30 and targeting the machine 3 and after some time, its free

memory was reduced, and machine became unavailable. The machine 2 was launched to

replace the machine 3 by the Watchlist ASG and everything returned to the normal. At 16:05

the experiment was completed and the ASG scaled down to one instance.

As a conclusion, the use of three machines and the cloud components ELB and ASG, described

in Figure 17, provide redundancy and a self-healing mechanism – health check that indicates if

a machine is healthy or not, and the replacement of an unhealthy instance by the ASG – turn

the system resilient to resource exhaustion.

6.4 Global Resilience

The experiment Global Resilience objective was to continuously test the overall system against

a single point of failure. A machine will eventually fail and this experiment, bring the failure of

a machine more often, to validate the capability to withstand against those failures and build

more confidence in the system. The Chaos Lambda (Veldstra, 2018) is a Chaos Monkey (Netflix,

2017b) serverless implementation that runs in a configured schedule and in each execution,

identifies a EC2 instance that matches the ASG present in a configuration file and terminates

based on a probability.

The implementation uses the AWS Lambda (AWS, 2018) service that allows to deploy a function

that only runs when triggered by an event and is executed by the AWS. This approach uses a

serverless architecture that removes the need of configuration of a server (EC2 instance) to run

the application, allowing to save more resources. The codebase is small and easy to understand,

and the deployment is very easy to perform.

82

At first a fork from the source code was created, so the code was changed and the changed

code is available at Chaos Lambda, a fork from the original Chaos Lambda (Veldstra, 2018). The

schedule of events that trigger the Chaos Lambda was changed to only run hourly during

business hours (from 9 a.m. to 3 p.m.) so the developers could solve any problem that would

rise in the development environment – as a way of preparation for a real failure in a machine

in the production environment.

The steps necessary to deploy the Chaos Lambda into de AWS are the following:

1. Clone the source code available in GitHub and run the command “npm install -g” in the

project root, to install the project and make it available globally in the local machine.

2. Create a new profile to deploy the lambda, using the AWS Client. The command needed

is “aws configure --profile Chaos” and the insertion of an Access Key ID, a Secret Access

Key, the Region Name and the optional Output Format. This configures a new profile

to connect from the AWS Client to the user account, to deploy the Chaos Lambda.

3. Set the region and the profile environment variables, using “export AWS_REGION=eu-

west-1” and “export AWS_PROFILE=Chaos”. The variables are used in the deployment.

4. Create a custom policy with EC2.describeInstances and EC2.terminateInstances in the

Identity and Access Management (IAM). Create a new role and attach the created

custom policy and also the CloudWatchLogs policy. These are the needed policies for

the Lambda function. The permission to describe existing EC2 instances and to

terminate one of them. The CloudWatchLogs is necessary to send logs from the

function execution.

5. The first step to deploy the Chaos Lambda is using the command “chaos-lambda deploy

-r RoleArn”. The command will create the Lambda in the AWS and associate it with the

created role in the previous step. The Lambda deployed will not do anything because

this step does not configure the CloudWatch Events Rule necessary to trigger the

function execution. After the first deployment, a file named chaos_lambda_config.json

created with the FunctionArn and LambdaRoleArn. AWS resource names (ARN)

identify uniquely a resource.

6. The second step is running the command “chaos-lambda deploy -c

CustomChaosFile.json” and the deployment is completed. The JSON file has the

configuration of interval which the function runs, the termination probability, the

definition of the targeted ASGs and an optional slack hook. The tool has two different

modes of operation: one with a whitelist defined by the property enableForASGs that

specifies the ASGs to be targeted; the second, targeting every ASG, except for those

defined in the disableForASGs array, that are not touched. When both enableForASGs

and disableForASGs are present, only the rules inside the enableForASGs are used. As

a complement, the enableForTags allows to consider as targets the instances with one

of the defined tags.

83

The second deployment, creates a new CloudWatch Events rule that create events in a

defined schedule, configures the lambda to be triggered by a cloud watch event and

then, associates the CloudWatch Event Rule with the lambda. The Chaos Lambda is now

activated and ready.

7. It is possible to check the status of the function after the deployment, running the

command "chaos-lambda status". The command "chaos-lambda enable" will enable

and "chaos-lambda disable" will disable the event creation and consequently the

lambda will be activated/deactivated, respectively.

After the completion of the steps, from 1 to 6, the Chaos Lambda was deployed successfully,

and the setup is described in the Figure 18. Each time the function executes, it targets the

defined ASGs and terminate one of its instances, based on a 20 % probability, as defined in

Listing 4. The function was only deployed in a simulated environment using a different AWS

account other than the client project account. It was not possible to gather results about this

experiment.

6.5 Evaluation

In order to measure the impact of the work performed in this project, four experts from

Mindera evaluated the experiments and results. The developers have some years of experience

developing several high-performance, scalable and resilient software systems.

In order to obtain a better classification of the experiments, a questionnaire was developed.

The first question classified the importance of using Chaos Engineering approaches in a project.

The questions from 2 to 6 evaluated each experiment and the problem found in the Unreliable

Network Conditions experiment. The questions were evaluated from a scale from 1 to 5 in the

level of importance, from “Not Important” to “Very Important”. The last question was an open

question to gather more feedback about the experiments and about chaos engineering. The

questions and the respective answers are the following:

1. Chaos engineering is the discipline of performing experiments on a system to build

confidence and validate that it is prepared to withstand against turbulent conditions in

production. How do you classify the use of this methodology in a project?

The responses are presented in Figure 25.

84

Figure 25 – Chaos Engineering Importance’s Evaluation

2. Database Systems Resilience. In this experiment, the MongoDB fault tolerance

mechanism against the primary node failure was tested. After the failure of the node,

the automatic failover was triggered, and a new primary node was elected. The system

proved to handle correctly the failure and the database correctly configured. How do

you classify this experiment?

The results are described in Figure 26.

Figure 26 – Database Systems Resilience Experiment’s Evaluation

3. Unreliable Network Connection. In this experiment, the impact of latency in an

application was measured. The service under testing started to fail after some minutes

and proved to be intolerant to low levels of latency. The problem was related to the

exhaustion of the threads by using a thread pool to perform blocking operations. The

problem was solved, and the application started to respond to a higher rate of requests

per second (from 8 to 100). How do you classify this experiment?

The classifications are presented in Figure 27.

85

Figure 27 – Unreliable Network Connection Experiment’s Evaluation

4. In the Unreliable Network Connection, a problem was found, and the tested

application was not capable to withstand against the latency introduction in the

connections to the database. How do you classify the importance of the problem found?

The question’s evaluations are described in Figure 28.

Figure 28 – Unreliable Network Problem’s Evaluation

5. Resource Exhaustion. In this experiment, the impact of resource exhaustion in a given

application was evaluated. Sometime after the start of the experiment, the instance

where the chaos was introduced became unresponsive. The system proved to be

resilient to this kind of failure. The health check of the ELB considered the application

unhealthy and instance under test was terminated. A new instance was created by the

ASG to replace it and the system returned to normal behavior. How do you classify this

experiment?

The Figure 29, presents the results of the question.

86

Figure 29 – Resource Exhaustion Experiment’s Evaluation

6. Global Resilience. In this experiment, Chaos Lambda was deployed to AWS. The tool is

a lambda implementation of Chaos Monkey that runs in business hours and randomly

terminates an instance in the environment (it only targets the instances under the

configured ASGs names). An instance will eventually fail, and the tool cause this

common failure to happen more regularly in order to uncover systemic failures in

services that cannot handle correctly instance failure. The tool also plays an important

role in the adoption of chaos within an organization, every member developing a

service after the deployment of the chaos tool must build and deploy the application to

be resilient to instance failure, otherwise the service is going to fail. How do you classify

this experiment?

The evaluation of the final experiment is presented in Figure 30.

Figure 30 – Global Resilience Experiment’s Evaluation

7. What is your opinion about the experiments performed and how does use of chaos

engineering can help a project to achieve higher levels of resilience?

“Chaos engineering helps to enforce higher levels of resilience in a software system, by

exposing the reaction of system when facing a failure. In perspective of reactive systems

(see reactive manifesto), chaos engineering helps to achieve (or "measure") some

characteristics of a reactive system: responsive, resilient and elastic” from Mehul Irá.

87

“These experiments are of extreme importance. It's easy to assume things will work

seamlessly and withstand failures, specially when working in cloud environments where

many products/services are managed and withstand failures. Having the confidence

that things will continue to operate and the system will self-heal is of the utmost

importance so that customers don't get impacted and the image of the

company/product is preserved” from Vasco Santos.

“The application of chaos engineering principles and techniques to this project allowed

us to obtain valuable insights into the underlying properties of the system. Since

production loads are typically predictable and the overall development cycle prioritizes

solving these production problems, it is well possible that an apparently resilient system

still has undiscovered, serious faults, but only exhibited when certain rare conditions are

met. One example of such issues that these experiments helped to flag was the thread

exhaustion by using a common thread pool at the applicational level. Raising awareness

to this issue helped solve it in other services and even other projects” from João Costa.

“Chaos engineering is essential to guaranteeing the resilience of a project. It gives you

measurable data that you can act upon. The need for resilience testing in an automated

manner also grows with a project's scale, like any form of process automation, and can

give a much greater level of confidence when shipping with very little long term work”

from Gabriel Pinto.

Analyzing the four experiments’ evaluation, the evaluation was very positive, and all the

experiments had a good average classification (3.75, 4.75, 4, 4.5), respectively. The overall

average classification of the experiments was 4.25 and were considered important for the

project. The experiment with a higher average classification (4.75) was the Unreliable Network

Connection with the highest impact in the project. The problem identified was classified with

4.75 and considered important. The experiment of Database Systems Resilience obtained the

lower classification and as a future work, more testing in the database’s area should be

performed.

88

89

7 Conclusion

This thesis was a case study in testing using experimentation, to identify problems and

weaknesses in a system. The experiments were performed in the testing environment of QA

and local development machine’s environment. This is the starting point to introduce new

methodologies of testing in a client project and Mindera.

As a start, when performing chaos engineering is recommended to start with a testing

environment and in a small area. As the confidence in the testing increases, the scope should

be increased, and the environment changed to production to really verify the system resilience.

The differences between the test environment and the production environment are relevant to

the experiments; some problems in the QA environment may not be replicable in production.

Therefore, there is an evaluation of each problem regarding the replication in the production in

order to have measure the real relevance of the problems.

7.1 Results and Objectives Achieved

In the implementation, there were four different experiments executed to verify the resilience

of the system and to measure the impact of latency in an application. The system proved to be

resilient to the introduced failures: shutdown of the primary node of the MongoDB and

resource exhaustion in a machine. The latency introduced made the system to be unavailable

and a problem was identified related with the exhaustion of a thread pool. After the problem

was solved, the system proved to be capable to withstand against latency introduction in the

connections between a service and a database.

Regarding the evaluation, the results were very positive, and experiments proved to be

important to the project. The problem was important to find an application’s bottleneck and to

gather more information about threads exhaustion and how possible problems can easily occur

90

when latency is introduced. Some company members helped in the problem resolution and

several solutions were identified.

Answering the questions defined in the section 1.2:

• After a node of the database is shutdown the teams are informed, and the alerts are

only configured in production. The was not the possibility to test this case in production.

• There is a redundancy in the data and after the shutdown of a node or a primary node,

there are no losses in the data and the system remain responsive.

• When a service is down, the other systems respond with an error message. More

redundancy could be added in this behavior.

• The latency impact in an application was very high but now the problem was identified,

and the code application needs to be changed to overcome the problem.

The last two questions could not be tested and answered. The future work should be done to

answer them by performing experiments that address the problems. The database being down

and how does it affect a service (e.g the service should be identified as unhealthy and shut down)

should be investigated. A more proactive way to test the alerts and to measure the response

time to each one, needs be achieved by performing experiments and Game Days to engage the

team and embrace failure.

The objectives were successfully achieved. Information about testing disaster plans and use of

different environments to perform chaos are presented. The chaos tools are analyzed in the

section and compared, resulting in some tools to have a higher classification and the only

considered to the project. Toxiproxy and Chaos Lamda were the only used to improve the chaos

maturity and to improve the system resilience. In the last objective, only latency was simulated,

and other real-world events were not possible to test.

7.2 Contributions

As contributions to the project, the resilience test of some components of the system was

important to discover problems and to build confidence in the system. At the start, the project

chaos maturity level was in the first level both in adoption and sophistication. Performing the

experiments and using the chaos proxy to achieve the latency introduction, the project maturity

was improved to 2 in sophistication with the use of the chaos proxy but in the adoption

remained in the first level.

Contributions to Mindera were very important. The research in the area and about chaos tools

was important to discover more information about chaos engineering and to think more about

testing through experimentation. The setup of chaos proxy and the Chaos Lambda (even with

91

the tool was not be used in the target project) was valuable to understand how simple

experiments can be performed in a project.

7.3 Limitations and Recommendations for Future Research

There were some limitations through the thesis. The project under test was a client project and

confidentially was a need in order to perform the experiments and use the project. This caused

some information about the project and business to be treated carefully and the focus moved

only to the implementation details and some context about the project was lost, even with the

freedom to perform experiments in the project.

The experiments were performed without the engagement of a team and only the testing

environment was used to perform the experiments. As a future work, experimentation in the

production environment should be the way to get more accurate results about the system

behavior, always without causing problems to the business.

The last experiment was not possible to be performed using the target project because the

moment was not the ideal to perform chaos. This is a related problem with chaos engineering

because the maturity of the project must be extremely high to adopt this discipline and to

embrace failure. In the client project, the product was not developed enough, and the adoption

chaos engineering was not a need to start having people dedicated to the area.

Future work also goes through the achievement of the higher levels of chaos maturity and more

advanced principles of chaos. Simulate more real-world events, automate experiments to run

continuously and reduce the blast radius by only introducing failures to a small number of users.

Reducing the blast radius and scope of the experiment is the way to safely start to perform the

experiments in production.

92

93

References

Allspaw, J. (2012). Fault Injection in Production. Communications of the ACM, 55(10), 48.

https://doi.org/10.1145/2347736.2347751

Alvaro, P., Andrus, K., Sanden, C., Rosenthal, C., Basiri, A., & Hochstein, L. (2016). Automating

Failure Testing Research at Internet Scale. In Proceedings of the Seventh ACM

Symposium on Cloud Computing (pp. 17–28). New York, NY, USA: ACM.

https://doi.org/10.1145/2987550.2987555

Alvaro, P., Rosen, J., & Hellerstein, J. M. (2015). Lineage-driven Fault Injection. In Proceedings

of the 2015 ACM SIGMOD International Conference on Management of Data (pp. 331–

346). New York, NY, USA: ACM. https://doi.org/10.1145/2723372.2723711

Alvaro, P., & Tymon, S. (2017). Abstracting the Geniuses Away from Failure Testing. Commun.

ACM, 61(1), 54–61. https://doi.org/10.1145/3152483

Andrus, K., Gopalani, N., & Schmaus, B. (2014). FIT: Failure Injection Testing. Retrieved from

https://medium.com/netflix-techblog/fit-failure-injection-testing-35d8e2a9bb2

Atchison, L. (2016). Architecting for Scale: High Availability for Your Growing Applications (1st

ed.). O’Reilly Media, Inc.

AWS. (2011, April 29). Summary of the Amazon EC2 and Amazon RDS Service Disruption in the

US East Region. Retrieved 5 October 2018, from

https://aws.amazon.com/message/65648/

AWS. (2015, September 20). Summary of the Amazon DynamoDB Service Disruption and

Related Impacts in the US-East Region. Retrieved 5 October 2018, from

https://aws.amazon.com/message/5467D2/

94

AWS. (2018, August 10). Amazon Lambda - AWS. Retrieved 8 October 2018, from

https://aws.amazon.com/pt/lambda/

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site Reliability Engineering: How Google

Runs Production Systems. O’Reilly Media, Incorporated. Retrieved from

https://books.google.pt/books?id=81UrjwEACAAJ

Bloomberg. (2018). Powerful Seal. Bloomberg. Retrieved from

https://github.com/bloomberg/powerfulseal

Bounce Storage. (2017). Chaos HTTP Proxy. Bounce Storage. Retrieved from

https://github.com/bouncestorage/chaos-http-proxy

Chang, E., & Talwai, A. (2017, August 31). 3 lessons learned from an Elasticsearch game day.

Retrieved 13 February 2018, from https://www.datadoghq.com/blog/elasticsearch-

game-day/

Eskildsen, S. (2015). Building and Testing Resilient Ruby on Rails Applications. Retrieved from

https://shopifyengineering.myshopify.com/blogs/engineering/building-and-testing-

resilient-ruby-on-rails-applications

Freeman, T., & LaBissoniere, D. (2018). Blockade. worstcase. Retrieved from

https://github.com/worstcase/blockade

Gaia Dev Analytics. (2018). Pumba. Gaia Dev Analytics. Retrieved from https://github.com/gaia-

adm/pumba

Hale, B. (2018). Chaos Lemur. Strepsirrhini Army. Retrieved from

https://github.com/strepsirrhini-army/chaos-lemur

Hedlund, M. (2014, October 28). Game Day Exercises at Stripe: Learning from `kill -9`. Retrieved

27 January 2018, from https://stripe.com/blog/game-day-exercises-at-stripe

Koen, P. A., Ajamian, G. M., Boyce, S., Clamen, A., Fisher, E., Fountoulakis, S., … Seibert, R. M.

(2002). Fuzzy Front End : Effective Methods, Tools, and Techniques.

95

Kolton, A. (2017, July 11). It’s Gameday. Retrieved 13 February 2018, from

https://www.gremlin.com/it-is-gameday/

Lafeldt, M. (2016, June 16). Chaos Monkey for Fun and Profit. Retrieved 30 January 2018, from

https://mlafeldt.github.io/blog/chaos-monkey-for-fun-and-profit/

Lapierre, J. (2000). Customer-perceived value in industrial contexts. Journal of Business &

Industrial Marketing, 15(2/3), 122–145. https://doi.org/10.1108/08858620010316831

LinkedIn. (2018). Simoorg. LinkedIn. Retrieved from https://github.com/linkedin/simoorg

McCaffrey, C. (2016). The Verification of a Distributed System. Commun. ACM, 59(2), 52–55.

https://doi.org/10.1145/2844108

Mindera. (2018). Mindera. Retrieved from https://www.mindera.com/

MongoDB. (2018a, May 10). MongoDB Cloud Manager. Retrieved 5 October 2018, from

https://www.mongodb.com/cloud/cloud-manager

MongoDB. (2018b, May 10). Replica Set Deployment Architectures. Retrieved 5 October 2018,

from https://docs.mongodb.com/manual/core/replica-set-architectures

MongoDB. (2018c, August 22). Replication. Retrieved 22 August 2018, from

https://docs.mongodb.com/manual/replication/

Mozilla. (2018). Vaurien. Community Libs. Retrieved from https://github.com/community-

libs/vaurien

Netflix. (2011, April 29). Lessons Netflix Learned from the AWS Outage. Retrieved 5 October

2018, from https://medium.com/netflix-techblog/lessons-netflix-learned-from-the-

aws-outage-deefe5fd0c04

Netflix. (2012). Simian Army. Retrieved from https://github.com/Netflix/SimianArmy

Netflix. (2015). Chaos Engineering Upgraded. Retrieved from https://medium.com/netflix-

techblog/chaos-engineering-upgraded-878d341f15fa

96

Netflix. (2017a). ChAP: Chaos Automation Platform. Retrieved from

https://medium.com/netflix-techblog/chap-chaos-automation-platform-

53e6d528371f

Netflix. (2017b). Principles of Chaos Engineering. Retrieved from http://principlesofchaos.org/

Netflix. (2018). Security Monkey. Netflix, Inc. Retrieved from

https://github.com/Netflix/security_monkey

Netflix, N. (2017c). Chaos Monkey. Retrieved from https://github.com/Netflix/chaosmonkey

Nicola, S. (2018, February). Multi-Criteria Decision Making - TOPSIS method. Apresentação.

Nicola, S., Ferreira, E., & Ferreira, J. J. P. (2012). A NOVEL FRAMEWORK FOR MODELING VALUE

FOR THE CUSTOMER, AN ESSAY ON NEGOTIATION. International Journal of Information

Technology & Decision Making, 11(03), 661–703.

https://doi.org/10.1142/S0219622012500162

Osterwalder, A., Pigneur, Y., Bernarda, G., Smith, A., & Papadakos, T. (2014). Value Proposition

Design: How to Create Products and Services Customers Want. Wiley. Retrieved from

https://books.google.pt/books?id=LCmtBAAAQBAJ

Poitrey, O. (2018a). jaggr. Go. Retrieved from https://github.com/rs/jaggr

Poitrey, O. (2018b). jplot. Go. Retrieved from https://github.com/rs/jplot

Produban. (2018). Monkey Ops. Produban. Retrieved from

https://github.com/Produban/monkey-ops

Rogers, K. (2018, August 10). Black Box vs. White Box Monitoring: What You Need To Know.

Retrieved 11 October 2018, from https://devops.com/black-box-vs-white-box-

monitoring-what-you-need-to-know/

Rosenthal, C., Hochstein, L., Blohowiak, A., Jones, N., & Basiri, A. (2017). Chaos Engineering

(Mike Loukides). 1005 Gravenstein Highway North, Sebastopol, CA95472, United States

of America: O’Reilly Media, Inc.

97

Senart, T. (2018). Vegeta. Go. Retrieved from https://github.com/tsenart/vegeta

Shopify. (2014, October). Toxiproxy. Retrieved 30 January 2018, from

https://github.com/Shopify/toxiproxy

Shoreditch Ops. (2018, January 30). Chaos Lambda. Retrieved 30 January 2018, from

https://artillery.io/chaos-lambda/

Sobti, A. (2018). Kube Monkey. Retrieved from https://github.com/asobti/kube-monkey

Spinnaker. (2018, January 29). Spinnaker. Retrieved 29 January 2018, from

https://www.spinnaker.io/

Spring, J. (2018). Chaos Dingo. Retrieved from https://github.com/jmspring/chaos-dingo

Sridharan, C. (2017, October 4). Monitoring in the time of cloud native. Retrieved from

https://cdn.oreillystatic.com/en/assets/1/event/262/Monitoring%20in%20the%20tim

e%20of%20cloud%20native%20Presentation.pdf

Statful. (2018, January 29). Statful. Retrieved 29 January 2018, from

https://statful.com/index.html

Stechyson, J. (2015, May 5). 8 Reasons to Test your Data Backups and Disaster Recovery Plan.

Retrieved 10 February 2018, from https://hostedbizz.com/eight-reasons-to-test-your-

data-backups-and-disaster-recovery-plan/

Sverdlik, Y. (2014, September 15). Facebook Turned Off Entire Data Center to Test Resiliency.

Retrieved 10 February 2018, from

http://www.datacenterknowledge.com/archives/2014/09/15/facebook-turned-off-

entire-data-center-to-test-resiliency

Tomás. (2018). Toxy. Retrieved from https://github.com/h2non/toxy

Veldstra, H. (2018). Chaos Lambda. JavaScript, Shoreditch Ops. Retrieved from

https://github.com/shoreditch-ops/chaos-lambda

98

Wasson, M., Bennage, C., & Buck, A. (2017). Designing resilient applications for Azure. Retrieved

from https://docs.microsoft.com/en-us/azure/architecture/resiliency/

Wolfgang Ulaga, & Eggert, A. (2006). Value-Based Differentiation in Business Relationships:

Gaining and Sustaining Key Supplier Status. Journal of Marketing, 70(1), 119–136.

https://doi.org/10.1509/jmkg.2006.70.1.119

Woodall, T. (2003). Conceptualising ‘Value for the Customer’: An Attributional, Structural and

Dispositional Analysis. Academy of Marketing Science Review, 12.

99

Attachment A – QFD

Figure 31 – Quality Function Deployment

100

101

Attachment B – Experiments

Vegeta

Table 35 – Load Test Commands

Description Command

Create a load test with a constant rate of 30
request per second, targeting the requests
defined in the file targets.txt with a duration
of 10 minutes and send the results to the
standard output

Vegeta attack -rate 30 -duration 10m -targets
targets.txt

Receive the results from the previous
command and save them into a file. At the
same time, send the results to the standard
output. This command is good to save the
results in a file and, after the experiment,
create a report using the command “vegeta
report results.bin”

Tee results.bin

Encode every result received from the
previous command as JSON.

Vegeta encode

Aggregate in real time the JSON logs received
in every second (configurable time) and send
the aggregation with RPS, histogram with the
status codes, latencies and bytes exchanged
to the standard output

Jaggr @count=rps \
 hist\[100,200,300,400,500\]:code \
 p25,p50,p95:latency \
 sum:bytes_in \
 sum:bytes_out

Plot the aggregated results in the terminal to
present real time statistics of the experiment

Jplot rps+code.hist.100+code.hist.200\
+code.hist.300+code.hist.400\
+code.hist.500 \
 latency.p95+latency.p50+latency.p25 \
 bytes_in.sum+bytes_out.sum

Listing 1 – Vegeta Load Test

102

Database Systems Resilience Experiment

Table 36 – Database System Resilience Commands

Description Command
Connect to the MongoDB Instance ssh -i key.pem user_x@mongo_ip_x

Find the Process ID of the Mongo Process ps aux | grep mongod

Kill the Process kill mongod_pid

Unreliable Network Connection Experiment

Table 37 – Unreliable Network Connection Commands

Description Command

Setup the Environment docker-compose up -d

Inspect the Available Proxies toxiproxy-cli list

Create a new latency toxic with 100 ms
latency and 25 ms jitter (variation)

toxiproxy-cli toxic add
dataapi_dev_mongoDB -t latency -n
mongoLatencyToxic -a latency=100 -a
jitter=25

Listing 2 – Toxiproxy Configuration File

103

Listing 3 – Docker Compose Configuration YAML File

104

Resource Exhaustion

Table 38 – Resource Exhaustion Commands

Description Command
Scale Up the Auto Scaling Group to a
Production Level

aws autoscaling update-auto-scaling-group --
auto-scaling-group-name watchlist-qa-asg --
min-size 3 --max-size 3

Connect to a Watchlist Instance ssh -i key.pem user_x@watchlist_ip_x

Introduce the Fork Bomb bomb(){ bomb|bomb& };bomb

After the test is done. Revert the scaling. aws autoscaling update-auto-scaling-group --
auto-scaling-group-name watchlist-qa-asg --
min-size 1 --max-size 1

Global Resilience

Listing 4 – Chaos Lambda Configuration File

