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Zusammenfasssung 

Der Großteil der biologischen Funktionen innerhalb einer Zelle wird von Proteinen 

ausgeübt. Daher, ist es unumgänglich, dass die Gene, die diese Proteine kodieren, 

konserviert bleiben um die ordnungsgemäße Faltung ihrer Primärsequenz zu 

gewährleisten. Sequenzhomologie zwischen Genen verschiedener Arten erlaubt uns, 

Rückschlüsse über deren gemeinsame Herkunft zu ziehen. Komparative Genomanalysen, 

die sich mit dem Vergleich von DNA- und Proteinsequenzen beschäftigen, haben jedoch 

eine Vielzahl von protein-kodierenden Genen, sogennante Waisengene, hervorgebracht, 

die keine Sequenzhomologie außerhalb einer Gruppe nahe verwandter Arten aufweisen. In 

meiner Doktorarbeit habe ich den Fadenwurm Pristionchus pacificus als Modellsystem 

benutzt, um folgende Fragestellungen zu untersuchen: Sind Waisengene echt? Wenn ja, 

wie alt sind sie, wie evolvieren sie und was ist ihr Ursprung? Der Reichtum an 

beschriebenen Pristionchus Arten hat mir dabei ermöglicht, basierend auf neuesten 

Sequenziermethoden, einen Datensatz aus zehn Genomen zu erstellen, der maximal 

vergleichbar ist und dem eine leiterartige Phylogenie zugrunde liegt. Basierend auf 

Selektionsanalysen konnte ich die protein-kodierende Natur der meisten Waisengene 

nachweisen, da Selektion in ihnen gegen einen Austausch von Aminosäuren wirkt. Dabei 

korreliert die Stärke der Selektion mit dem Alter der Gene, was zeigt, dass Waisengene 

schneller evolvieren als konservierte Gene. Schließlich habe ich über den Vergleich nahe 

verwandter Genome unterschiedliche Mechanismen für die Enstehung von Waisengenen 

aufdeckt. Dies zeigt, dass Waisengene sowohl durch Divergenz von Genfragmenten 

entstehen können, als auch komplett de novo aus nicht-kodierenden Sequenzen. 

Zusammenfassend deuten die Ergebnisse meiner Arbeit daraufhin, dass Waisengene von 

hoher biologischer Bedeutung sind und deshalb auf keinen Fall vernachlässigt werden 

dürfen. 
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Summary 

Proteins perform the bulk of the activity inside each living cell. Thus, it is important that a 

gene coding for a given protein remains conserved to maintain the proper folding of the 

primary amino acid sequence. Sequence homology between genes from different species 

allows us to trace the shared ancestry of the individual genes and species. However, the 

field of comparative genomics, which deals with sequence comparison, is filled with protein-

coding genes that lack detectable sequence homology outside a species or a group of 

closely related species, such genes are classified as ‘Orphan genes’. During my doctoral 

research, I have tried to answer the following questions: Are Pristionchus pacificus orphan 

genes real or not? If yes, how old are these genes and how do they originate? I verified the 

protein-coding nature of orphan genes by estimating the selection pressure on their primary 

amino acid sequence. These findings indicate that the majority of orphan genes are under 

strong selection against non-synonymous amino acid changes and hence are real protein-

coding genes. Further, by sequencing the genomes of six Pristionchus and two non-

Pristionchus Diplogastrid species, I have generated a phylogenomic dataset with an 

underlying ladder-like structure around P. pacificus. This has allowed me to uncover the 

dynamics that shape the evolution of young and old gene families. Further, by 

demonstrating the diverse gene origin mechanisms, I have also determined that both 

sequence divergence and de novo gene creation contribute to the emergence of novel 

genes in Pristionchus nematodes. My results indicate that the genes without homology are 

biologically important and must not be ignored. 
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Chapter 1: Introduction  

Proteins are made from chains of amino acid residues. They are the workhorses that 

perform the majority of cellular activity. Since the information required to make proteins is 

embedded in the genome of an organism, the fidelity of DNA replication is of paramount 

importance. The genome holds the instructions for both the primary amino acids sequence 

of the proteins, which ultimately folds into the native protein structure, and the 

spatiotemporal regulatory information for their production. The primary sequence of proteins 

can be deciphered from the nucleotide sequence of the genome. This facilitates prediction 

of the protein-coding complement of an organism by recognizing the stretches of DNA, 

called open-reading frames (ORFs), that can be translated into proteins. Nevertheless, 

every sequence that has an ORF is not recognized as a bonafide protein. This raises the 

question, what is a bonafide protein?  

Functional annotation through experimental verification is considered the ultimate 

proof for the protein-coding nature of a gene. However, only a small fraction of conserved 

protein-coding genes have been functionally validated. Still most conserved genes are 

considered bonafide proteins, because an establishment of clear homology with 

experimentally annotated proteins is considered as a reliable evidence for the protein-

coding nature of most genes given that they have a complete ORF. It is at this stage that 

the orphan genes, which lack detectable homology with other known genes and hence fail 

to qualify as conserved genes, are not considered as bonafide proteins unless 

experimentally verified. Functional annotation at the protein level can establish an orphan 

gene as a real protein-coding gene. However, the absence of experimental data casts a 

proverbial shadow of doubt over the protein-coding nature of such genes. This was indeed 

the case when the first contiguous stretch of a eukaryotic DNA, the Chr III of 

Saccharomyces cerevisiae, was sequenced and it was reported that more than half of all 

the predicted ORFs lacked any function [1]. Although at that time these genes were not 

referred to as orphan genes, in principle they fell under the orphan gene category. My 

doctoral research has been aimed at finding evidence for protein-coding nature of P. 

pacificus orphan genes, characterizing their evolutionary trajectories, and illustrating 

mechanisms behind their origination. Thus, for the rest of this dissertation I will focus mainly 

on protein-coding genes and use the term gene to refer to protein-coding genes unless 

mentioned otherwise. 
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Orphan genes 

Orphan genes were introduced into the scientific lexicon by Dujon and Casari et al. [2,3]. 

They coined the term ‘Sequence orphans’ while defining the yeast proteins that lacked 

homologs in other species. Although what Dujon referred to as the “The mystery of the 

orphan genes” was already being discussed as early as 1992, when the yeast chromosome 

III was sequenced [1], still the term ‘orphan’ was brought to the fore when the entire yeast 

genome was sequenced and analysed. Subsequently such genes were also identified in 

microbes where they are referred to as ‘ORFans’ [4]. In 2001, Schmid and Aquadro carried 

out a comprehensive analysis of orphan genes from Drosophilla [5]. Based on the existing 

data on rapidly diverging genes of Drosophila [6], Schmid and Aquadro concluded that 

orphan genes are mainly constituted by rapidly diverging genes and annotation artifacts. 

However, careful functional examination of a mouse orphan gene revealed for the first time 

that a functional gene can emerge de novo from the non-coding DNA [7]. Since then, the de 

novo emergence of orphan genes has been reported in several species including humans 

[8–10].  

What is an orphan gene? 

Orphan genes are the set of genes and gene predictions that are made conspicuous by 

their lack of homology with an established set of conserved genes. Thus, in a given 

bioinformatic framework, any gene that is not recognized as a conserved gene gets 

classified as an orphan gene. These genes have also been known as sequence orphans, 

young, pioneer, or novel genes [2,11,12]. Generally, the homology of conserved genes is 

established through blast based similarity searches against known genes from other 

species. The lack of detectable homology leads to classification of a gene as an orphan 

gene, which also means that some genes can be identified either as an orphan or 

conserved gene depending on the sensitivity of the homology detection protocol. 

In the past two decades multiple studies have investigated orphan genes and this 

heightened interest in orphan genes is directly associated with the increase in the amount 

of whole genome sequencing data [13]. As the cost of genome sequencing has come 

down, more genomes are getting sequenced by the day. Predicting the entire protein-

coding complement of an organism is one of the main reasons motivating most genome 

sequencing project. Thus, draft genome assembly is immediately followed by annotation of 

protein-coding genes and this leads to identification of orphan genes. Orphan genes are 
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found in the genomes of each newly sequenced species [11]. This has led to the point that 

the total number of orphan genes has by far exceeded the total number of the known gene 

families [12]. However, annotation artifacts can also inflate the number of orphan genes in a 

genome [14]. Thus, in order to reduce the number of annotation artifacts, advanced gene 

annotation algorithms can construct their gene models based on the transcriptome 

evidence from the given species and protein homology evidence from other species [15]. 

Nevertheless, multiple ORFs lacking homologs in other species are predicted to code for 

proteins and hence get designated as orphan genes.  

Homology inference does not establish biological function 

The legibility of amino acid sequence allows homology inference among the protein-coding 

genes of various organisms. This also permits mapping of the functional attributes of a well-

annotated gene on to its homolog from a relatively less studied neighbor. However, the 

extent of functional conservation of homologous proteins between two species may depend 

on their phylogenetic distance [16,17]. Moreover, the ortholog conjecture suggests that the 

orthologous genes share greater functional similarity than the paralogs [18], which raises a 

question about the exact functional role of the paralogs. Nevertheless, homology detection 

can reliably establish the shared ancestry between genes. Thus, once a gene from a non-

model species is identified as a clear homolog of a functionally annotated gene from a 

model species, it is accepted as a bonafide protein even in the absence of experimental 

evidence. Conversely, lack of homology prohibits any readymade functional inference for 

orphan genes and raises doubts about the reliability of their gene models, unless they are 

clearly supported by functional data. Although it has been known for decades that not all 

conserved genes exhibit phenotypes that can be readily assessed through genetic screens 

[19], still the absence of experimental data greatly undermines the functional relevance of 

an orphan gene and raises doubt over its protein-coding nature.  

The abundance of orphan genes 

Most genomes contain 10-30% orphan genes and this number tends to be on the higher 

side in species from phylogenetically isolated taxa [11,12]. Pristionchus pacificus, the focal 

organism of my doctoral research, is placed within one such taxon [20]. P. pacificus 

belongs to the Diplogastridae family of nematodes [21]. The closest neighbors of these 

nematodes with sequenced genomes are from the Rhabditidae family, which includes C. 
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elegans [22]. These two families diverged from each other around 60-90 million years ago 

[23,24]. Thus, it did not come as a total surprise that only 20% of the P. pacificus predicted 

proteins share 1:1 orthology with C. elegans proteins, while nearly 1/3rd of all the genes 

predicted in P. pacificus are orphans [20]. Khalturin et al. have suggested that the 

homologs for many orphan genes will be found as genome data from closely related 

species becomes available [11]. If homologs of an orphan gene are found only within a 

closely related group of species belonging to a particular taxon, then such genes are 

labelled as lineage-specific or taxonomically-restricted orphan genes (Fig. 1.1). The number 

of taxonomically-restricted orphan genes is expected to increase with the depth of 

phylogenetic sampling within the taxon [11]. Moreover, finding homologs of orphan genes in 

closely related species increases the confidence in the reliability of these gene models 

because protein sequence homology of otherwise non-coding regions are unlikely to be 

maintained across species boundary [25]. Thus, conservation of orphan genes among 

closely related species points towards some functional role that might only be significant 

within the given taxon [11]. 

 

Figure 1.1: Taxonomically-restricted orphan genes. Three taxa each with three species are 
shown. In the beginning, genome of only one species is available from each taxon (shown as 
bold lines). Their orphan genes A, B, and D are represented as circles. Increased genome 
sampling for each taxa shows that some orphan genes A, C, and D are found in neighboring 
species and hence get classified as Taxonomically-restricted orphan genes, represented as 
rectangles. Also new orphan gene E is found. Figure adapted from Khalturin et al. 2009 [11]. 

Orphan genes play important role in lineage-specific adaptations 

Recent reports have indicated that orphan genes are involved in stress response, 

adaptation to fluctuating environment, lineage-specific adaptations and many other 

biological processes [11,26–29]. Taxonomically-restricted orphan genes, found only in a 
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particular taxon, have been shown to play an important role in lineage specific adaptation 

and can act as a drivers of phenotypic novelty [30]. In mammals, orphan genes have been 

shown to contribute to lineage specific traits such as milk production, immune response, 

and reproduction [31,32]. They are also identified as facilitator of major evolutionary 

innovations in other lineages [33,34].  

Mechanisms of gene origin 

Several models for the emergence of orphan genes have been suggested, but horizontal 

gene transfer, duplication-divergence, and de novo models remain the most widely 

accepted [2,11,12]. Gene duplication followed by sustained sequence divergence may 

cause a distant paralog to appear as an orphan gene (Fig. 1.2a). The de novo emergence 

of an open reading frame from a previously non-coding region has also been demonstrated 

as a possible mechanism facilitating the appearance of orphan genes (Fig. 1.2b). However, 

investigating whether an orphan gene fits one of these models is a difficult proposition and 

requires both exhaustive computational and manual analysis of individual cases. 

Duplication-divergence 

Gene duplication 

Gene duplication has been considered as the sole mechanism for new gene origin for the 

better part of the last century. Although Susumu Ohno’s acclaimed book “Evolution by 

Gene Duplication”, published in 1970, firmly placed gene duplication as the singular 

mechanism behind new gene origin, the discussion over the role of gene duplication in 

shaping the organismal evolution had already begun during the early part of the 20th 

century. The duplication of genetic material was first recognized by Kuwada, in 1911, as a 

chromosome duplication event in maize [35]. Soon chromosome copy number variations 

were reported in other plant varieties and species [36]. In 1918, Calvin Bridges suggested 

that the duplications could explain the increase in the length of Drosophila chromosomes 

carrying identical genes, which could mutate separately and diversify [37]. It is important to 

note that this suggestion already carried the conceptual seed for the later named 

“duplication-divergence” mechanism, even though at that time the proper concept of a gene 

was not yet formalized. In 1932, Haldane proposed the idea that duplication may be 

favorable as it opens up the possibility of altering the duplicated gene without being 
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disadvantageous to the organism and multi-copy genes would be less susceptible to 

harmful mutations [38]. The conceptual underpinning of the “sub-functionalization” 

mechanism was put forth by Serebrovsky in 1938 [39]. He concluded that “This principle of 

loss of duplicate functions by one of the homologues in the process of genic evolution . . . 

should result in a specialization of genes, when each then fulfills only one function which is 

strictly limited and important for the life of the organism” [39,40]. 

 By the early 1940s, links between gene duplication and organismal complexity were 

already being stipulated [41,42]. In 1947, Metz argued that “New elements must be added. 

Otherwise we would have to assume that the primordial amoeba was endowed with all the 

germinal components now present throughout the wide range of its descendants, from 

protozoa to man” [43]. The fomenting of ideas on gene-duplication in the 1940s was nicely 

capped by Stephens in his paper “Possible Significance of Duplication in Evolution” as he 

questioned the role of the accumulation of slow allelic mutation in shaping the organismal 

evolution and proposed that evolutionary progress could only be achieved by increasing the 

number of genetic loci, either by “de novo” synthesis of new loci from non-genic source or 

by duplication of existing genetic loci [44]. Thus, Stephens had not only expanded on the 

existing ideas of duplication-divergence but he also explicitly mentioned de novo gene 

creation as an alternative mode of new gene origin. However, he considered the origin of 

new genetic loci through duplication as a well-established phenomenon and postulated that 

finding evidence for de novo gene origin will be too difficult. Indeed, the rapid accumulation 

of evidence supporting the role of gene duplication made further exploration of de novo 

gene evolution an unproductive endeavor in the second half of the 20th century. 

The copious ideas about gene duplication, including subfunctionalization and 

neofunctionalization, in the preceding decades had poised the field for the publication of 

Ohno's book in 1970. In this book, he mainly summarized multiple pieces of evidence 

gathered from various studies, including his own previous work, and strongly argued in 

favor of gene duplication as the only plausible mechanism for new gene origin: “The 

creation of metazoans, vertebrates and finally mammals from unicellular organisms would 

have been quite impossible, for such big leaps in evolution required the creation of new 

gene loci with previously nonexistent functions. Only the cistron which became redundant 

was able to escape from the relentless pressure of natural selection, and by escaping, it 

accumulated formerly forbidden mutations to emerge as a new gene locus” [45]. 
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Divergence after duplication 

In 1935, while investigating duplication and insertion of short chromosomal fragments in 

fruit fly [46], Muller proposed that “Following such duplication, it is to be expected that the 

redundant loci will come to have divergent mutations established in them in the course of 

evolution, and so gradually will become more differentiated, until they can finally be 

regarded as quite non-homologous genes”. This statement by Muller highlights the principle 

behind the duplication-divergence scenario of the orphan gene origin. In other words, this 

mechanism posits that a new gene that is created through duplication is not restrained by a 

strong selective constraints and thus goes through a phase of sequence divergence 

through which all traces of homology, with the other copy, are lost (Fig. 1.2a). This loss of 

discernable homology leads to classification of the duplicated gene as an orphan [2,11,12]. 

Limited horizontal gene transfer in P. pacificus 

The exchange of genes among different evolutionary lineages is known as horizontal gene 

transfer, it can be considered as an extended duplication mechanism involving transfer of 

the duplicated copy to another species [12]. Although horizontal gene transfer frequently 

occurs in prokaryotes [47], so far it is known to play a limited role in the metazoan genome 

evolution [48,49]. The gain of orphan genes in P. pacificus nematodes through horizontal 

gene transfer has been investigated in two separate studies [22,50]. Both reports suggest 

that horizontal gene transfer makes a negligible contribution to the overall number of P. 

pacificus genes, hence obviating the need for further exploration of this mechanism in the 

evolution of P. pacificus genes and genome. 

De novo gene origin 

Both duplication-divergence and horizontal gene transfer involve reuse of existing proteins 

to give rise to new protein-coding genes. However, the de novo gene origin mechanism 

suggests that new proteins can arise from ancestrally non-coding sequences (Fig. 1.2b). 

These non-coding sequences can either be from non-genic loci or from an alternate reading 

frame of existing genic loci [44,51]. However, in the second half of the 20th century the de 

novo gene origin mechanism was mostly ignored as a plausible process of novel gene 

formation. Ohno was not the only influential scientist of the 20th century who favored 

duplication-divergence as the sole mechanism behind new gene origin. Francois Jacob in 

his 1977 paper titled “Evolution and Tinkering” claimed that “Evolution does not produce 
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novelties from scratch….. The probability that a functional protein would appear de novo by 

random association of amino acids is practically zero . . . . creation of entirely new 

nucleotide sequences could not be of any importance in the production of new information” 

[52]. The most potent line of argument against de novo gene origin was the lack of 

experimental evidence that clearly supported origin of novel genes from ancestrally non-

coding regions. Nonetheless in 2008, the first demonstration of a functional protein arising 

from previously non-coding RNA was done in yeast [53]. Stephens had envisaged in 1951 

that the investigation of de novo origin of new genes will be a difficult proposition and this 

remains true till date. However, now we know that the probability of functional protein 

arising out of random non-coding genomic region is non-zero. In fact, the first clear piece of 

evidence supporting de novo gene origin was put forward in 1984 by none other than Ohno 

himself [54]. While analyzing an enzyme that gave Flavobacteria the ability to degrade 

nylon, Ohno found that this protein is a result of an evolutionary innovation that allows it to 

be coded from the genomic locus of a previously existed protein but in an alternative 

reading frame. As the alternative reading frame was previously non-coding, this makes the 

nylon degrading enzyme a de novo protein. However, Ohno chose not to pursue further 

exploration into the de novo origin of such genes. 

 

Figure 1.2: Gene origin. a. Duplication-Divergence mechanism: First a gene gets duplicated and 
then one of the duplicates starts to diverge while the other copy remains under purifying 
selection. Persistence duplication can remove the signatures of homology and thus the gene 
gets classified as an orphan gene, marked in yellow. b. De novo gene origin: A new gene 
arises de novo in species B from ancestrally non-coding sequence. This is established by 
identifying the corresponding non-coding genomic segment in a sister species A. 
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Overprinting 

New protein-coding genes can evolve in two ways. First, by de novo evolution of an open 

reading frame within previously untranslated stretches of the genome, either from intronic or 

intergenic regions. Second, by utilizing an alternate reading frame of a previously existing 

gene to gain a novel ORF. Actualization of more than one ORFs from the same locus is 

known as overprinting [51]. The nylon degrading enzyme discussed in the previous section 

would be a perfect example of overprinting if its ancestral reading frame was also 

maintained [54]. Overprinting can result from de novo opening of an alternate reading 

frame, which overlaps with the ancestral gene. As the new ORF comes from a previously 

non-coding reading frame the gene is considered to posit de novo origin [51,54]. Kesse and 

Gibbs analyzed several loci in viruses that present two ORFs and concluded that most loci 

had one ORF that belonged to old genes, while the other ORF was new and appeared de 

novo [55]. Over the last two decades, several studies have identified candidate loci for 

overprinting in eukaryotic genomes [56–64]. Thus, de novo formation of genes from 

alternate reading frame of ancestrally coding transcripts has also been established as a 

verified mechanism of orphan gene origin. 

De novo gene origin at ancestrally non-coding loci 

Generation of new genes through overprinting involves utilization of previously coding 

genomic loci in an alternate fashion, however recent studies have shown that new genes 

can also arise from ancestrally non-coding segments of the genome [10,39]. These non-

coding segments can either be intergenic (between two old genes) or intronic. De novo 

gene formation from such loci involves two steps, one of which is to gain an ORF and the 

other is to gain transcriptional and translational regulation [12]. Recently, Carvunis et al. 

have proposed that the de novo birth of genes from non-genic sequences takes place 

through an intermediate but reversible proto-gene stage [26].They suggested that the proto-

genes first get transcribed and then the non-coding transcripts gains an ORF. Although the 

reverse order of these events could not be ruled out, as their model was based on the 

reported translation of non-coding transcripts throughout the genome, this pervasive 

translation could already provide raw material for natural selection [65].  

The selective constraint on most de novo genes is likely to be extremely weak and 

hence from the entire set of de novo genes present in a genome only a small fraction will be 

retained in long-term. Thus, the complement of de novo genes shows poor overlap even 
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between closely related taxa. As a result, majority of de novo genes identified till date are 

restricted to a particular lineage or species. This also introduces difficulty in the verification 

of a de novo candidate because the criterion requires identification of the homologous non-

coding segment in a related species, and due to lack of strong selective constraints such 

regions are rarely found in the neighboring species [25]. Hence, even though de novo 

genes have been discovered in many eukaryotic lineages including yeasts, animals, and 

plants, each individual analysis has verified only a small number of candidates 

[7,8,10,26,53,66–74]. Further, to my knowledge, de novo gene origin has never been 

reported in nematodes. 

Pristionchus pacificus 

Nematodes are one of the most species-rich taxa with around 30,000 described species, 

but their actual number is estimated to be over a million [75–77]. Although Pristionchus 

pacificus is among the most extensively studied nematodes [78], unlike Caenorhabditis 

elegans, it has not yet been established as a model organism for widespread scientific 

research. This is also indicated by the observation that out of the 28 nematode genomes 

available on the Wormbase (ftp://ftp.wormbase.org/pub/wormbase/species, release 

WS254) eight belong to Caenorhabditis genus and only two belong to Pristionchus genus. 

During the course of my doctoral research, I have made an effort to generate comparable 

genome data within the Pristionchus genus. This will provide genomic resources to 

expedite comparative genomic analysis of Pristionchus nematodes and will also help in 

establishing Pristionchus pacificus as a major model organism. 

Pristionchus pacificus is an emerging model organism 

P. pacificus is a model organism that has been used to do comparative evo-devo studies 

with C. elegans and other nematodes [79]. In recent years, it has also been used for in-

depth analysis into phenotypic plasticity using its mouth-form dimorphism [80]. Our lab has 

established several genetic and molecular tools including CRISPR making the species 

genetically amenable [81]. Moreover, it has a chromosome scale genome assembly, which 

is one of the best-assembled nematode genomes [82]. Thus, the expertise available within 

the lab enables us to carry forward genetics, reverse genetics, and comparative genomics 

analysis to answer many interesting biological questions. Furthermore, P. pacificus is 

known to be associated with scarab beetles in the wild [83]. This association has allowed 
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our lab to sample more than 40 culturable Pristionchus species and over one thousand of 

P. pacificus strains from different parts of the world and it is evident that we have yet not 

reached the species saturation levels within the genus [84].  

Phylogenomics 

The dense phylogenetic sampling within the Pristionchus genus provides an opportunity to 

employ the comparative method for conducting a phylogenomic analysis of Pristionchus 

nematodes [85]. Phylogenomics is a combination of genome analysis and evolutionary 

studies that involves the study of genomes under a given evolutionary framework [86]. 

Originally, phylogenomics was employed to predict the function of a new protein through 

common ancestry [87,88]. However, as more genome data became available, a new 

approach was used to study the traits restricted to the particular taxon of the phylogenetic 

tree. This aspect of phylogenomics is especially relevant to the study of orphan genes and 

has allowed a better understanding of the lineage-restricted genes based on the width of 

their distribution [89–92]. Mainly, there are two requirements for a comprehensive 

phylogenomic analysis. First, an accurate species tree that helps with the selection of 

species that are best placed to study a particular question. Second, the generation of 

comparable genome data for the selected species. Susoy et al. generated a robust 

molecular phylogeny for the Pristionchus genus [84]. This has enabled me to carry on an in-

depth phylogenomic analysis of Pristionchus nematodes (Fig. 1.3). 

Aims of the thesis 

My doctoral thesis has been motivated by the large number of orphan genes that are found 

in P. pacificus. Although in the recent years several studies have investigated orphan genes 

in various organisms, at the inception of my doctoral research none of the reported studies 

had systematically investigated the protein-coding nature of orphan genes. Thus the first 

question that I have tried to answer in this thesis is: Are orphan genes real protein-coding 

genes or merely prediction artifacts? In order to answer this question, I established a 

method that could distinguish between real protein-coding genes and annotation artifacts. 

In chapter three of this thesis, I discuss this method and the associated results.  

The next question raised in this thesis is based on the proposed abundance of 

orphan genes in phylogenetically isolated species. The hypothesis proposed by Khalturin et 

al. suggests that as we sequence more genomes around an otherwise isolated species, the 
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homologs of more orphan genes are found and they can be reliably placed in taxonomically 

restricted gene families. Thus, the second question I have tried to answer in this thesis is: 

Can deep taxon sampling help us in furthering our understanding of the evolutionary 

dynamics of novel gene families? In order to answer this question, I created a dataset of 

assembled genomes of different Pristionchus and diplogastrid species, which allowed me to 

carry a phylogenomic analysis of Pristionchus nematodes. In chapter four, I explain the 

methods used to ensure comparability of different genome assemblies and the first insights 

that I gained using these assemblies. 

The ladder-like phylogeny of assembled genomes created around P. pacificus 

allowed me to investigate origin of its orphan genes. In chapter five, I address the questions 

about the age of orphan genes, their rate of emergence, and the ratio of Species-specific 

and taxonomically-restricted orphan genes. Finally, in chapter five, I try to answer the 

question: What are the mechanisms that lead to creation of novel genes?  

Main results 

● Majority of orphans are real genes. This is based on selection analysis, which has 

predictive power to identify real genes even in the absence of other lines of 

evidences. 

● Deep taxon sampling allows age estimation of Pristionchus gene families. 

● Young genes are frequently lost and remain under relaxed selective constraint. 

● Old genes are concentrated at chromosome centers but are generally under strong 

selective pressure irrespective of their location. 

● A steady rate of gene birth is observed along the pacificus lineage. 

● Novel genes can arise from existing genes either through divergence or ORF 

switching. 

● Novel nematode genes can also arise de novo from ancestrally non-coding regions. 
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Figure 1.3: Phylogeny of Pristionchus species inferred from 18S and 28S rRNA genes and 27 
ribosomal protein genes by Susoy et al. 2016 [84]. Asterisk represent node support of 100% 
posterior probability. Arrows represent species analysed in this study.  
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Chapter 2: Background 

Selection analysis based on codon substitution 

Due to the degeneracy of codons, many substitutions at the nucleotide sequence level do 

not get reflected at the amino acid level and are hence referred to as ‘synonymous or silent 

substitutions’, which can be easily distinguished from ‘non-synonymous or replacement 

substitution’ that lead to substitutions at the amino acid level (Fig. 2.1). Since natural 

selection mainly acts at the protein level, the strength of selection acting on the 

synonymous and non-synonymous mutations vastly differs and they also get fixed at 

different rates. Hence, the comparison between these two substitution rates is considered a 

reliable method to uncover the effect of natural selection at the protein level [93–96]. Such 

comparisons do not require a prior knowledge of the species divergence times or absolute 

substitution rates. 

 

 
Figure 2.1: Codon table. Overview of the codons and the three letter codes for their corresponding 
amino acid residues. 
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Generally, distances for both synonymous and non-synonymous substitutions are 

calculated and then get defined as the number of synonymous substitutions per site (dS) 

and the number of non-synonymous substitutions per non-synonymous site (dN), 

respectively. Although it is possible to employ the heuristic counting method for dS and dN 

estimation, in this thesis, I have used the maximum likelihood method for two main reasons 

[97]. First, the maximum likelihood method is simple and unlike the counting method does 

not require the explicit estimation of different transition and transversion rates or catering for 

unequal codon frequencies. Second, the maximum likelihood method can also 

accommodate more realistic models of codon substitution, such as general time reversible 

or GTR model [98], which is not possible under the counting methods. 

I have estimated the dS and dN values with the codeml suite of the PAML software, 

which also gives a value for their ratio called ω (dN/dS) that measures the strength of 

selection acting at the protein level [99,100]. If the dS is greater than dN, then the ω value 

will be less than one and the protein is considered to be under purifying or negative 

selection. If the dN is greater than dS, then the ω value will be more than one and the 

protein is considered to be under adaptive or positive selection. However, if a protein is not 

under selection and evolves neutrally then both rates should be equal and the ω value will 

be equal to one. Considering that the annotation artifacts or pseudogenes should not be 

under purifying selection at the protein level, my null hypothesis is that the ω value for such 

genes should not show significant deviation from one (see methods section from chapter 3), 

which means that they should portray neutral evolution. Thus, a statistically significant ω 

value of less than one indicates that the gene is under purifying selection to preserve its 

protein sequence and hence unlikely to be an annotation artifact. 

Gene structure annotation 

Although the drastic decrease in the sequencing cost brought on by the next-generation 

sequencing protocols has greatly expedited the rate at which new genomes are being 

sequenced, these protocols generally do not match the genome contiguity of the previously 

used shotgun sequencing approach. The fragmented genomes, as well as the lack of pre-

existing high-quality gene models for most organisms, complicate the task of reliable gene 

structure prediction. Prediction of accurate protein-coding gene models remains one of the 

most important steps of genome sequencing projects because any error introduced at this 
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level will persist in subsequent analysis and will cast doubt over inferences made regarding 

gene family evolution.  

Gene structure prediction of phylogenetically isolated organisms involves the use of 

ab initio gene prediction software. Some software, such as SNAP and AUGUSTUS 

[101,102], can utilize existing transcriptome for initial training. Employment of a prior 

training step is known to yield more reliable gene models [103,104]. Further, it is also 

possible to merge gene predictions from several methods and use additional evidence to 

select one or more predicted gene models from a particular locus. In this thesis, I have 

used Maker2, which is one such ‘chooser’ pipeline, that can select the most representative 

prediction based on evidence, allows multiple isoform predictions from the same loci, and 

can also add UTRs by inferring the RNA-seq data [15]. Most importantly, Maker2 also 

allows the simultaneous use of protein sequences from closely related species and the 

transcriptome assembly of the given species to improve the accuracy of the gene 

predictions. This function is especially useful for large taxon genome projects that need to 

annotate several genomes at once because it allows splice-aware mapping of pre-existing 

proteins from closely related species and facilitates reliable gene structure prediction, even 

if only limited transcriptome evidence exists for most species within the taxon. However, the 

major drawbacks of the Maker2 pipeline include generation of a large number of temporary 

files and long running time, especially if multiple iterations are needed to run, even after 

massive parallelization. Although these issues can impede the genome projects, still 

parallel annotation of several related genomes through the Maker2 pipeline yields accurate 

and highly comparable protein predictions (see BUSCO columns in Table 4.1). This tends 

to limit technical artifacts and allows more reliable inferences regarding the gene and gene 

family evolution. 
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Chapter 3: Are orphan genes real? 

 
This chapter contains content from the following publication. The copyright holder 
has granted the re-use permission. 

Prabh N, Rödelsperger C. Are orphan genes protein-coding, prediction artifacts, or non-coding RNAs? 
BMC Bioinformatics. 2016;17: 226. 
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In this chapter, I have examined the protein-coding nature of orphan genes in P. pacificus 

using three criteria. First, I assessed whether they are expressed. Second, I searched for 

direct support towards the protein-coding nature of an orphan gene by finding a match in 

available proteomic data. Third, in the absence of peptide data I used negative selection 

that constrains the rate of non-synonymous amino acid substitutions as an indirect 

evidence for the protein-coding nature. Orphan genes that get expressed but do not fulfill 

any of the other two criteria were considered as candidates for non-coding RNAs. The 

results posit that between 39–77% of orphan genes are protein-coding, indicating that 

orphan genes play a significant role in the biology of P. pacificus. Application of this 

methodology on other taxonomically under-sampled groups will further support the veracity 

of orphan genes and their biological significance. 

Results 

More than 80% of orphan genes are transcribed 

I used a previously published dataset of orphan genes (N = 9,885), conserved genes (N = 

20,999), and 14 RNA-seq experiments in P. pacificus to assess the transcription of both 

orphan and conserved genes [105]. This dataset was also used to examine the 

correspondence between the total number of expressed genes and the number of included 
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RNA-seq samples (Fig. 3.1a). First, I defined two different thresholds on the magnitude of 

expression, which was measured as fragments per kilobase transcript per million fragments 

(FPKM) sequenced. While a value of FPKM > =10 indicates robust expression, any value of 

FPKM > =1 can still be accepted as a reliable evidence of expression because many 

functionally annotated genes display FPKM values well below 10 [106,107]. Even though 

conserved genes show higher levels of both expressed (N = 18997,~90%) and robustly 

expressed genes (N = 14010, ~67%), still in this analysis 7997 (81%) of orphan genes are 

expressed in at least one of the samples (Fig. 3.1a). 

 
Figure 3.1: Transcription and differential expression of orphan genes. a) RNA sequencing data 
from 14 experiments are used to determine the number of both orphan and conserved genes 
getting expressed over the expression threshold of FPKM 1 and 10. b) Differential expression 
pattern of both orphan and conserved genes from 6 Microarray based differential expression 
analysis experiments. 

Orphan genes are integrated into gene-regulatory networks 

Apart from using transcription as a necessary criterion for a real gene, I also quantified the 

genes that are differentially expressed under variable conditions such as distinct 

developmental stages or exposure to different pathogens. The rationale behind this 

analysis is the assumption that an orphan gene that gets differentially expressed under 

varying conditions is most likely integrated into an existing gene-regulatory network. 

Therefore, differential expression further supports the protein-coding nature of an orphan 

candidate. On the other hand, other orphan genes that posit constitutively low or negligible 

expression levels may not have had enough time to be integrated into any existing 

regulatory network. Further, this also suggests that most older genes must have already 

integrated into a gene network and they will posit a stronger differential expression pattern 
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compared to new genes. Consistent with this assumption, previous research from our group 

has shown that conserved genes are significantly enriched among the genes that are 

developmentally regulated [105]. However, by analyzing previously conducted 

transcriptome profiling studies (N = 6 gene sets) [108,109], I find that along with 8623 (41%) 

conserved genes even 2165 (22%) P. pacificus orphan genes are differentially expressed. 

This implies that these orphan genes must have persisted for a considerable amount of 

evolutionary time within the genome for them to be integrated into a regulatory circuit. 

Only 4% of orphan genes shows direct evidence for translation 

Next, I assessed the direct evidence for the translation of genes by testing for matches in 

available proteomics data [20,110]. Employing 100% sequence identity over the full peptide 

length as a criterion to search through the peptide data (N = 51,224 peptide sequences), I 

found peptide evidence for 428 (4%) orphan genes. This number is considerably low with 

respect to the 5177 (25%) conserved genes that have peptide evidence, but it is compatible 

with a previous study that reported the depletion of orphan genes in transcriptome and 

peptide data [110]. However, it is also clear that three-quarters of conserved genes also 

lack peptide evidence, thus suggesting that the absence of peptide evidence is not a 

sufficient criterion to distinguish real protein-coding genes from potential artifacts or non-

coding RNAs. Hence, I employ genomic resources to obtain indirect evidence for protein-

coding genes, i.e. selection against non-synonymous substitutions. 

Comparative genomics of orphan genes 

As most orphan genes are not present in peptide data, I use selection against non-

synonymous substitutions in protein-coding genes as an indirect evidence for translation. 

However, to estimate this evolutionary constraint, which is called negative or purifying 

selection, at least two sequences are needed. This is problematic for orphan genes since 

they do not have homologs in other species. However, this problem can be overcome by 

doing comparative analysis with the genome data from a closely related species. To this 

end, I use P. exspectatus, the recently sequenced sister species of P. pacificus. The P. 

pacificus and P. exspectatus genomes show roughly 10% sequence divergence in 

alignable regions [105,111]. For further analysis, all genes from both the species were 

segregated into 14,656 different orthologous clusters using OrthoMCL [112]. Fig. 3.2a 

depicts the distribution of these clusters into six different categories based on the number of 
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genes of each species present in the clusters. Evidently, the majority of clusters contain 

only two members, i.e. one from each species. After removing P. exspectatus specific 

clusters, hybrid clusters, and the short peptide containing clusters or poorly aligning clusters 

(see Methods), I was left with 10,327 clean clusters containing one or more P. pacificus 

conserved genes and 3,273 clusters carrying one or more P. pacificus orphan genes. 

These two cluster sets contain 3,891 orphan and 13,103 conserved genes from P. 

pacificus. Both the conserved and the orphan gene clusters were subdivided into two 

datasets. The first dataset made by the clusters that contain at least one gene from both the 

species was called ‘orthologous clusters’. The second dataset was called ‘paralogous 

clusters’ and consisted of all the clusters containing more than one P. pacificus, however, 

all P. exspectatus genes were removed from this dataset. When combined together both 

the datasets represent all P. pacificus genes from the 10,327 clean cluster except the 

singleton genes, which are present only as single copy genes in P. pacificus and lack a 

corresponding homolog in P. exspectatus. In order to include P. pacificus singletons and 

study selection at a closer timescale, I created a third dataset called ‘clade A1-A2 orthologs’ 

(N = 30,884). This dataset was employed to compare the divergence of orthologous gene 

pairs (cluster size = 2) across two geographically isolated P. pacificus lineages [111]. 

Both orphan and conserved genes are under negative selection 

I used the ratio of synonymous to non-synonymous rate of amino acid substitution (dN/dS), 

also called omega (ω), as the measure of selective pressure for each cluster of the three 

above-mentioned datasets using the PAML suit [99]. An ω  value equal to 1 indicates 

neutral evolution, while ω < 1 can be interpreted as evidence for negative selection. The 

estimation of ω value of orthologous clusters showed that the conserved gene clusters are 

under relatively stronger negative selection than the orphan gene clusters (Fig. 3.2b). 

Nonetheless, the majority of orphan gene clusters were also under negative selection. The 

results from similar analysis done on the paralogous dataset were also comparable, given 

that only 11% of conserved clusters and 15% of orphan clusters were present in this 

dataset (Fig. 3.2c). The results for clade A1-A2 dataset also maintains the trend of showing 

stronger selection on conserved genes. Nevertheless, the orphan genes were also shown 

to be under robust negative selection (Fig. 3.2d). 
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Ortholog, paralog, and intra-species comparisons complement each other 

Similar to the expression data analysis, I defined both a liberal and a conservative criterion 

to estimate the number of genes under negative selection. First, I arbitrarily chose ω < 0.6 

as the liberal cutoff for a cluster to be considered as evolving under negative selection. 

Further, the conservative criterion required that the negative-selection model posits a 

statistically significant difference when compared with a neutral model. Thus, for each 

cluster the PAML was run twice, once allowing a single but free to change ω value for the 

entire cluster tree (alternate model: HA) and then for the second tree ω was fixed at 1 for 

the entire cluster tree (null model: H0). For each cluster, the likelihood ratio test was 

conducted with one degree of freedom and at P-value < 0.05 (FDR adjusted) for each 

cluster to determine the significance of the alternate model. The combination of ω < 1 and 

FDR adjusted P-value < 0.05 was used as the second more conservative criterion. It is to 

be noted here, that the lack of statistical significance does not exclude the presence of 

evolutionary constraint. In many cases, the lack of statistical significance manifests from the 

low statistical power of comparison between small proteins or due to the little divergence 

between the sequences. 

Figure 3.2: Orphan genes are under strong negative selection. a) Distribution of gene clusters 
based on the number of homologs between Pristionchus pacificus and Pristionchus exspectatus. b) 
Comparison of the variation in the proportion of Orphan gene clusters and conserved gene cluster 
(Y-axis) under given ω value in the P. pacificus – P. exspectatus orthologous clusters dataset. c) 
Comparison of the variation in the proportion of Orphan gene clusters and conserved gene cluster 
(Y-axis) under given ω value in P. pacificus paralogous clusters dataset. d) Comparison of the 
variation in the proportion of Orphan gene clusters and conserved gene cluster (Y-axis) under given 
ω value in clade A1 – clade A2 paralogs dataset. 

Employing both of the above-mentioned criteria I compared orphan candidates from 

all three datasets, which were found to be under negative selection. Using the cutoff of ω 

value lower than 0.6, I identified 7545 (76%) orphan genes under negative selection in at 

least one of the three datasets (Fig. 3.3a). Here, the largest contribution came from the 

intra-species comparison. However, since the evolutionary distances in the intra-species 

comparison are rather small, random fluctuations in the number of non-synonymous and 

synonymous substitutions can also generate ω values below 0.6. Given that the drive for 
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positive selection is unlikely to cause substitutions along complete genes, ω > 1 are 

generally due to such random fluctuations; based on this I consider that a subset of the 

identified orphan genes with ω < 0.6 can be due to random noise. Therefore, I emphasize 

that the liberal cutoff of ω < 0.6 has to be regarded as the upper limit of the estimated 

number of negatively selected orphan genes. 

Using the likelihood ratio test I identified 3818 (39%) orphan genes that show 

statistically significant negative selection in at least one of the three datasets (Fig. 3.3b). 

Moreover, out of 3273 orthologous orphan clusters 2899 clusters (89%) posit significantly 

better goodness of fit for negative selection compared with the neutral evolution model. The 

corresponding figure for the conserved clusters is 9838 (95%) out of 10,327. In the 

paralogous clusters dataset, 297 (57%) out of 514 orphan clusters and 997 (82%) out of 

1222 conserved clusters posited significant goodness of fit for negative selection. In clade 

A1-A2 dataset, only 769 (8%) out of 9885 orphan gene clusters and 4767 (23%) out of 

20,999 conserved gene clusters showed significant goodness of fit supporting negative 

selection, suggesting that the divergence between two P. pacificus lineages is in general 

not sufficient to gather robust evidence for negative selection at the single gene level. 

In order to further evaluate both the liberal and the conservative criteria, I compared 

the expression evidence available for the candidates identified under each criterion (Fig. 

3.3c). This demonstrated that a cutoff of ω < 0.6 on one hand captures almost all examples 

of significant negative selection, while on the other hand it also minimizes the fraction of 

candidate orphan genes that lack expression evidence. I have also observed that changing 

this cutoff value to 0.5 or 0.7 exceedingly impairs this balance. In summary, my analysis 

suggests that a large fraction (39–76%) of orphan genes are under strong negative 

selection. 
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Figure 3.3: Complementary of different datasets. a) Venn diagram for three different datasets 
using a definition of < 0.6. b) Venn diagram for three different datasets using a definition of ω < 1 
and P<0.05. c) Comparison of different thresholds to define negative selection. d) Overlap between 
orphan genes that lack any expression data, are under significant negative selection and also have 
ω value less than 0.6 in at least two of the three datasets. 

The evolutionary constraint can predict gene expression 

The previous result confirmed that a considerable number of orphan genes are under 

negative selection. Next, I combined the expression data with the results of the selection 

analysis to screen for orphan genes that show evidence for negative selection but lack 

expression evidence. To this end, the list of 3818 orphan genes showing statistically 

significant negative selection was intersected with two other lists: first, the list of orphan 

genes without expression data (N = 550, FPKM = 0 in all 14 RNA-seq experiments) and 

second, the list of genes that had ω < 0.6 in at least two out of the three datasets (Fig. 

3.3c). In total, 29 genes were found to be present in all three lists, out of which eleven 

genes having more than 2 exons in their predicted open reading frame were chosen as the 

candidates for validation by RT-PCR using primers overlapping predicted exon-exon 

junctions. PCR products for three out of the 11 candidate genes were obtained and then 

sequenced, but only when PCR was done using cDNA and not genomic DNA as the 

template (Fig. 3.4a). Sequencing of the PCR products resulted in expressed sequence tags 

that matched the gene predictions (Fig. 3.4b). This result demonstrated that even in the 

absence of evidence from 14 RNA-seq samples, RT-PCR was able to detect expression 

evidence of orphan genes in standard mixed-stage worm cultures. As expression profiles 

can be highly stage and tissue-specific, I speculate that sequencing of more stage and 

tissue-specific RNA samples can validate predicted gene structures of many orphan genes 

that are not supported by transcriptome evidence generated thus far. 
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Figure 3.4: Validation of orphan genes. a) PCR validation experiments for eleven candidate 
orphan genes. Genomic DNA (odd numbers) and cDNA (even numbers) was amplified using the 
same primer pairs. In three cases, we obtained bands in the expected size range. b) Sequencing of 
amplification products resulted in ESTs that confirmed the gene structure. 

Differences among various gene classes 

Based on the available expression data and estimates for negative selection, I divided all P. 

pacificus genes into four distinct classes. The first class was made of 497 potential 

prediction artifacts or pseudogenes (orphan genes with FPKM values below or equal to one 

and not under strong negative selection, i.e. ω < 0.6 in any analyses). The second class 

contained 837 candidates for non-coding RNAs (FPKM greater than 10 in at least one RNA-

seq dataset, but not under strong negative selection). The conserved genes and the 

orphans that either showed statistically significant negative selection or were found in the 

peptide data constituted the third and the fourth classes respectively. I compared four gene 

features (Transcript length, number of exons, GC content, and contig size percentile) 

across all four gene classes (Fig. 3.5). While the conserved and the negatively selected 

orphan genes tend to be longer and have more exons than the potential prediction 

artifacts/pseudogenes and the non-coding RNA candidates (P < 0.001, Wilcoxon ranksum 

test, Fig. 3.5a-b), at the level of GC content and the contig size percentile no obvious 

differences were detected (Fig. 3.5c-d). Given that the fragmented assemblies were 

identified as a potential source of prediction artifacts, it was interesting to observe that in all 

the four gene classes nearly 90% of genes reside within the top 1% of largest contigs. 

There were no significant trends towards aggregation of potential artifacts on the smaller 
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contigs. Thus, partial gene models resulting from fragmented contigs are an unlikely source 

for the majority of prediction artifacts or pseudogene candidates. 

Figure 3.5: Differences between various gene classes. a) Comparison of transcript length for 
potential prediction artifacts/pseudogenes, non-coding RNA candidates, negatively selected orphan 
genes, and conserved genes. The y-axis denotes the fraction of genes at a given transcript length. 
b) Comparison of number of exons. c) GC content distribution for all four gene classes. d) 
Distribution of contig size percentiles among all four classes. The top 1% of largest contigs harbors 
roughly 90% of genes for all four gene classes. 

Conclusion 

Based on these results, I make two main conclusions. First, majority of P. pacificus orphan 

genes are real protein-coding genes. This conclusion is mainly supported by the intra-

species selection analysis, however, both the selection analysis with the sister species and 

transcriptome evidence point towards the same general direction. Nevertheless, having 

based my main conclusion on the selection analysis, I also wanted to check if selection 

analysis results also have predictive power on the protein-coding nature of genes. Based 

on the analysis of candidate genes shown to be under strong negative selection at the 

protein level, but lacking transcriptome evidence, I conclude that the selection analysis can 

itself predict protein-coding nature of genes, which then can be verified with further 

experimental analysis. 

Methods 

Orphan definition and homology clustering 

Orphan genes were defined previously using blastp comparisons against 14 non-

diplogastrid nematode outgroup genomes [105]. This procedure identified orphan genes 

that were restricted to the family Diplogastridae. In total, 20,999 genes were identified as 

conserved genes and remaining 9,885 genes were classified as orphan genes. I used the 

OrthoMCl software [112], with default parameters, to create homologous protein clusters 
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between P. pacificus (version TAU) and P. exspectatus (version SNAP2012) genes. This 

allowed me to estimate selection pressure at an interspecies (orthologous clusters) as well 

as intra-species level (clusters with paralogs). The clusters were divided into orphan and 

conserved categories. I identified 253 ‘hybrid clusters’ carrying both orphan and conserved 

genes of P. pacificus. Closer analysis of these clusters showed that events such as gene 

fusion, gene split, pseudogenization, and variation in divergence rates lead to mixing of 

orphan and conserved genes in a single cluster. Therefore, I decided to exclude these 

hybrid clusters from further analysis. 

Transcription and translation analysis 

Expression evidence for the predicted genes was assessed using previously generated 

RNA-seq [105] and microarray data [108]. The correspondence between the total number 

of genes with expression evidence and the number of analyzed RNA-seq samples was 

assessed using random permutations of RNA-seq samples (N = 14, Fig. 3.1a) and 

differentially expressed gene sets (N = 6, Fig. 3.1b). 

Mass spectrometry data from earlier experiments was analyzed to gather evidence 

for translation [20,110]. The peptide sequences generated from the mass spectrometry 

experiments were compared with the predicted protein database using blastp. A predicted 

gene was accepted as a translated gene, only if it had a blastp hit matching entire peptide 

length with 100% identity. 

Divergence estimation between different P. pacificus lineages 

In order to study selection at a microevolutionary time-scale, I used whole genome 

resequencing data from two deeply sampled P. pacificus clades [111], clade A1 from Asia 

(N = 15 strains), clade A2 from Southern and Central America and the Indian ocean (N = 16 

strains). These two clades are geographically isolated and show approximately 1% 

genome-wide divergence. I extracted fixed differences to the reference genome 

(N = 485,795 for clade A1 and N = 618,650 for clade A2), which were covered in all 

sequenced strains per clade (by at least two reads with a samtools genotype quality above 

20) and mapped them onto the reference genome. 

Estimation of selection pressure 

For each cluster, the predicted proteins were aligned using MUSCLE [113] and the resulting 
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protein alignments were converted into codon alignments using PAL2NAL [114]. A 

minimum cutoff of 150 bases codon alignment was set to avoid bias introduced in the 

analysis by poor alignment or short peptides, as a result of which 231 clusters were 

removed from further analysis. RAXML was employed to create the phylogenetic tree for 

each cluster containing three or more proteins, for clusters smaller in size an unrooted tree 

was created. For each cluster, the Codeml package of the PAML suite [99] was run twice: 

first to obtain a single omega (ω) value for the entire tree (alternate model, HA) along with 

its associated maximum likelihood score, and then again to obtain the maximum likelihood 

score for the model with a fixed ω value of one for the entire tree (null model, H0). 

In order to test the statistical significance of the estimated ω value, I performed 

Likelihood ratio tests (LRT) for each cluster using the maximum likelihood score generated 

from both the runs. Considering that my null model is the model where ω is fixed at one and 

my alternate model is where a single ω value is freely estimated for the entire cluster tree, 

the required assumption for a LRT i.e. that two models are nested is readily fulfilled. The 

test statistic is double the difference in log-likelihood (lnL) scores for the two models (LRT 

statistic = 2 (lnL HA - lnL H0)). For large samples, LRT statistic follows a chi-square 

distribution with degrees of freedom that is the difference in the number of freely estimated 

parameters between the alternate and null models. Here the only parameter that differs 

between the models is ω and thus the degree of freedom is 1. Hence the P-value of the 

LRT statistic was calculated from a chi-square distribution with a degree of freedom of 1 

and then adjusted for false discovery rate (FDR). The alternate model was considered 

significantly better than the null model if the LRT statistic P-value (FDR adjusted) was less 

than 0.05. 

Worm collection, DNA extraction, and RNA preparation 

P. pacificus worms were grown on nematode growth media agar plate and the Escherichia 

coli strain OP50 was used as food source [115]. Adult worms were washed from the plate 

using M9 buffer and frozen at −80 °C with Trizol for RNA preparation and without Trizol for 

DNA extraction.DNA extraction was performed using Sigma GenElute Mammalian Genomic 

DNA Miniprep kit (Catalog number G1N70-1KT) as per manufacturer’s instructions. 

For RNA preparation, worm pellets frozen with Trizol were put through three 

freeze/thaw cycles in liquid nitrogen, followed by vigorous vortexing and 10 min incubation 

at room temperature. After centrifugation at 14000 rpm for 10 min at 4 °C, 100 μl chloroform 
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was mixed with the supernatant, vortexed and incubated for 5 min at room temperature. 

The samples were again centrifuged at 14000 rpm for 15 min at 4 °C and the upper phase 

containing the RNA was transferred into a new tube. RNA precipitation was carried out by 

adding 0.5 μl glycogen blue and 250 μl isopropanol and then incubating at −20 °C for a few 

hours. The precipitated RNA was centrifuged at 14000 rpm for 10 min at 4 °C and then the 

pellet was washed with ethanol. Genomic DNA was digested using Promega RQ1 DNAse 

(Catalog number M6101). The dried pelleted RNA was resuspended in 20 μl TE-buffer and 

incubated at 60 °C for 10 min to dissolve [107]. Invitrogen SuperScript® II Reverse 

Transcriptase kit (Catalog number 18064–014) was used to reverse transcribe cDNA as per 

manufacturer’s instructions. 

Candidate validation 

PCR primers pairs ranging between 24 to 26 nucleotides in length were designed for all the 

11 candidates (Supplemental Table S3.1) and then ordered to Eurofins for synthesis. PCR 

reaction was carried out using these primers against both P. pacificus genomic DNA and 

cDNA. The PCR program was 5 min at 94 °C, then 35 cycles of 3 steps - 94 °C for 30 s, 60 

°C for 30 s and 72 °C for 30 s and then 72 °C for 10 min. The PCR products were run on 

1.5% agarose gel for 60 mins to check their size range. Finally, the PCR products were 

sequenced using BigDye v3.1 Cycle Sequencing Kit (Catalog number 4337457) from the 

Thermo Fischer Scientific as per instruction. The sequences derived from sequencing 

reaction were manually aligned to corresponding candidate regions.  
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Chapter 4: Evolutionary dynamics of novel gene families 
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Although in the previous chapter I established that the majority of orphan genes are real 

protein-coding genes, still all orphan genes with homologs in sister species were bracketed 

in a single age group and hence were only estimated to be at least as old as the last 

common ancestor of P. pacificus and P. exspectatus. Thus, in order to overcome the lack of 

dense genomic sampling around P. pacificus, I decided to sequence the genomes of six 

other Pristionchus species and two non-Pristionchus diplogastrid species. In this chapter, I 

set out to illustrate generic features of Pristionchus genome evolution by first creating a 

dataset of comparable genomes and then analyzing the evolutionary dynamics of 

Pristionchus gene families. The results suggest that old genes are robustly expressed, 

show lower substitution rates, and remain concentrated at chromosome centers. On other 

hand, novel genes are mainly present at chromosome arms, show higher substitution rates, 

get expressed at a lower level and show higher propensity towards gene loss. 
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Results 

Genome assemblies of 10 diplogastrid nematodes as a platform for comparative 
phylogenomics 

To understand the dynamics of gene gain and loss within the Pristionchus lineage, I 

sequenced eight new diplogastrid genomes to complement the two existing draft genomes 

of the sister species P. pacificus [82] and P. exspectatus [111]. Specifically, I sequenced 

genomes of three gonochoristic species (P. arcanus, P. maxplancki and P. japonicus) and 

three hermaphroditic species (P. mayeri, P. entomophagus and P. fissidentatus) of the 

genus Pristionchus along with the gonochoristic Micoletzkya japonica and Parapristionchus 

giblindavisi [84,116]. Additionally, I resequenced the genome of the hermaphroditic P. 

pacificus on Illumina platform to increase comparability (see Methods for details). Each 

species was carefully chosen to generate a deep taxon sampling within the Pristionchus 

genus based on our current knowledge of the molecular phylogeny [84]. Furter, the two 

non-Pristionchus species were selected as outgroup (Fig. 4.1a, Fig. 1.3). The genome sizes 

of Pristionchus species in the scaffolded assemblies varied between 151 Mb and 297 Mb 

(Table 4.1). Studies conducted in Caenorhabditis nematodes have reported that 

hermaphroditic mode of reproduction can result in reduced genome size [117–120]. In this 

study, gonochoristic species do not generally have larger genomes than hermaphroditic 

species. However, while comparing the P. pacificus with its two closest relatives, P. 

exspectatus and P. arcanus, I found that the trend for smaller genomes in hermaphrodites 

holds true (Fig. 4.1a, Table 4.1).  

To assess the quality of the genome assemblies, I compared measures of contiguity 

(N50: numbers of scaffolds), completeness (BUSCO: percentage of raw reads reads 

represented in the assembly) and correctness (paired ends in proper orientation and 

ambiguous fraction). The largest differences were caused due to the switching of assembly 

strategy during the course of this study. Particularly, the older and more aggressive 

ALLPATHS-LG assembly strategy, which was based on an initial assembly of overlapping 

read pairs, generated substantially fewer contigs at the cost of higher levels of ambiguous 

base calls [121]. The more recent approach, implemented through the DISCOVAR de novo 

software (https://software.broadinstitute.org/software/discovar), yields an initial assembly 

based on a PCR free library. These assemblies tend to have higher number of contigs, but 

also considerably reduced levels of ambiguity (Table 4.1). Nonetheless, these differences 
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between assembly strategies do not have an obvious impact on the N50, BUSCO, or any of 

the other assembly quality measures. Therefore, I conclude that all our assemblies are of 

comparable quality. 

Table 4.1: Summary of basic assembly features. Genome size denotes the range between 
assembled and scaffolded genomes.  

Species Genome 
size 
(Mb) 

Number 
of 

scaffolds 

N50  
(kb) 

Assembler Depth Fraction 
of  

mapped 
reads (%) 

Read pairs 
in correct 

orientation 
(%) 

Ambiguous 
fraction 

BUSCO 
(%) 

P. pacificus 143-151 33,047 438 DISCOVAR 73 X 92-93 94 1.1 x 10-4 87 

P. exspectatus 167-178 4,412 142 ALLPATHS-LG 97 X 90 95-96 1.5 x 10-3 91 

P. arcanus 195-203 4,263 271 ALLPATHS-LG 72 X 96-97 96-97 1.3 x 10-3 92 

P. maxplancki 222-266 69,506 309 DISCOVAR 50 X 95 95 3.9 x 10-4 91 

P. japonicus 199-223 33,291 448 DISCOVAR 49 X 96 96 1.6 x 10-4 90 

P. mayeri 267-297 84,599 235 DISCOVAR 32 X 95 93 1.5 x 10-4 87 

P. entomophagus 242-264 72,722 369 DISCOVAR 36 X 97 97 1.0 x 10-4 87 

P. fissidentatus 233-247 56,870 443 DISCOVAR 39 X 98 94 1.1 x 10-4 90 

P. giblindavisi 178-201 7,303 112 ALLPATHS-LG 50X 94-95 81-92 1.3 x 10-3 79 

M. japonica 180-202 137,965 189 DISCOVAR 61 X 97 87 4.8 x 10-4 87 

Single evolutionary events can explain the majority of gene families  

The ladder-like phylogenetic tree (Fig. 4.1a) first allowed the tracking of the phylogenetic 

origin of genes on nine ancestral nodes and then the assignment of genes into Age 

classes. I predicted gene annotations based on protein homology and RNA-seq data for all 

10 species (Supplemental Table S4.1) and created orthologous gene clusters with 

OrthAgogue [122] (Fig. 4.1b). OrthAgogue is a faster re-implementation of the extensively 

used OrthoMCL pipeline [112]. In total, 38,639 clusters with two or more genes were 

generated, they contain 68-81% of genes in a given genome (Fig. 4.1c). More than 5000 

clusters contained at least one gene from each species and hence their origin could be 

mapped back to the last common ancestor of all 10 diplogastrid nematodes (Fig. 4.1d). 

Such clusters were marked as 'Age class ix' in our analysis (Fig. 4.1b). Clusters that were 

only missing M. japonica genes, but had at least one gene from the other nine species, 

were designated as 'Age class viii' (Fig. 4.1d). It is important to note that such clusters 

either represent an M. japonica-specific loss or a taxon-restricted gain. Further, multiple 

clusters were restricted within a monophyletic sublineage and were marked as 'Age class vii 
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- i' (Fig. 4.1d). Thus, the lower the Age class, the more recent was the origin of the genes in 

it. 

 
Figure 4.1: Gene classes of Pristionchus nematodes and their distribution on P. pacificus 
chromosomes. (a) Overview of phylogenetic relationship among the 10 diplogastrid species. (b) 
Distribution of genes within orthology classes across the 10 diplogastrid genomes. (c) Numbers of 
total clusters per species and the percentage of all genes within these clusters, followed by the 
number of Species-specific clusters, and clusters that have been exclusively lost in the given 
species. (d) Graphical representation of the Age classes, light rectangle indicates presence of a 
gene family in the given species and dark rectangle indicates absence of this gene family. The 
roman numerals at the top of the box indicate the relative age of the Age class. (e) Top 10 species 
distribution patterns in Patchy clusters. (f) Distribution of all orthology classes in non-overlapping 
500 Mb windows across chromosomes suggests that older genes are overrepresented at the 
chromosome centers. Chromosome II, III, IV, and V have their centers at the middle, Chromosome I 
has two chromosome centers and Chromosome X has no obvious center.  
 

Next, I identified clusters in which the species distribution of the genes could be 

parsimoniously explained by gene loss restricted to a sublineage ('Lost in sublineage', Fig. 

4.1b). There were multiple clusters having at least one gene from all but one species. I 

recognized such clusters as 'Species-specific loss' (Fig. 4.1c). Finally, there were many 
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clusters with genes only from a single species, such clusters were classified as 'Species-

specific' clusters. They were constituted by Species-specific genes that got duplicated and 

thus form entire clusters made of paralogs (Fig. 4.1c). Consistent with the phylogeny that 

governs our study design [84], longer branches between the extant taxa and the more 

ancestral inner nodes show elevated levels of Species-specific duplications and gene 

losses. As it can be difficult to distinguish true losses from missing evidence [123,124], the 

numbers of Species-specific losses within most of the Pristionchus species seem rather 

stable and show substantial increase only in the two outgroups (Fig. 4.1c).  

In addition to the cluster categories described thus far, I was left with the genes from 

every species that were not present in gene clusters. Such genes were classified as 

'Singletons'. Although I suspect that some Singletons can be gene annotation artifacts, the 

results from previous chapter suggests that the majority of Singletons are real protein-

coding genes. However, the lack of homologous sequences prohibits any type of selection 

analysis. Therefore, I focused on orthologous gene clusters with members from at least two 

species. Taken together, the analysis of these cluster showed that up to 67% of P. pacificus 

gene families can be parsimoniously explained by singular evolutionary events such as a 

gene gain or a gene loss. 

Young gene families are frequently lost  

Although the orthologous clusters can be explained by a single evolutionary event, still, 

38% of all clusters showed uneven distribution patterns and could only be explained by 

taking more than one evolutionary event into account. Such clusters were labelled as 

'Patchy clusters'. Further analysis of the most common species distribution patterns among 

the Patchy clusters revealed that most of the top 10 patterns can be explained by just two 

evolutionary events, i.e. a gain at some internal node within the Pristionchus genus, 

followed by a loss either at one of the derived internal nodes or in an extant species (Fig. 

4.1e). Specifically, nine out of the 10 most abundant Patchy cluster patterns were not older 

than the common ancestor of P. pacificus and P. japonicus. This indicates that younger 

gene families are more susceptible to gene loss. Further, I found the most abundant Patchy 

clusters could not distinguish the two different modes of reproduction. Thus, I conclude that 

the majority of observed genomic changes are better explained by phylogeny. 

A chromosome-scale assembly of the P. pacificus genome [82] gave me the 

opportunity to map the genes from different categories onto the six chromosomes. I created 
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non-overlapping windows of 500 kb on each chromosome and calculated the proportion of 

genes falling into different categories or Age classes within a given window (Fig. 4.1f). The 

majority of chromosomes showed enrichment for old cluster categories , Age class ix, at the 

chromosome centers. Note that chromosome centers are not centromeres, as nematodes 

have holocentric chromosomes [125]. Instead, chromosome centers were defined based on 

genomic signatures such as high gene density, low repeat content, and reduced nucleotide 

diversity [82]. Thus, P. pacificus Chromosome I seems to have two center-like regions. The 

finding that the Patchy clusters are preferentially situated at chromosome arms is also 

consistent with the fact that they mostly represent young gene families that have been 

secondarily lost in one of the species [126–128]. 

 

Figure 4.2: Expression increases over time. (a) Expression values for P. pacificus genes from 
different Age classes in an RNA-seq dataset of late larvae and adults (Late 1) indicate that older 
Age classes are expressed at higher levels. (b) Age class ix genes are expressed at a constitutively 
high level in all 10 developmental transcriptomes. (c) Distribution of expression classes across the 
P. pacificus chromosomes. 
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Expression levels increase with gene age 

To study the evolution of gene expression over time, I compared different Age classes and 

their gene expression profiles from several developmental stages of P. pacificus [105]. I 

observed that in all samples, the younger Age classes (Age class i-vii) were expressed at a 

lower level than the old Age classes (Age class ix and viii), this suggests that the 

expression levels increase with gene age (Fig. 4.2a, Supplemental Fig. S4.1). Also, Age 

class ix genes were expressed at relatively high levels in all samples (Fig. 4.2b). Although 

the correlation between the Age classes and their expression levels was relatively weak 

(Spearman’s rho=0.33, P-value < 2-64, Fig. 4.2a), this was improved by calculating the 

mean expression value of all genes in all samples (Spearman’s rho=0.46, P-value < 2-64). 

While mapping gene expression levels along 500 kb non-overlapping windows on each 

chromosome, I observed that the genes with highest expression values (mean FPKM >= 

10) are also enriched at the chromosome centers (Fig. 4.2c). Incidentally, at the 

chromosome centers some windows also had the highest concentration of genes without 

any expression evidence (mean FPKM = 0), this is most likely due to the presence of older 

genes with precise spatio-temporarily regulated expression. In summary, the analysis of 

expression data suggests that young genes generally have either low or spatio-temporarily 

regulated expression and that their expression tend to rise or become broader over time. 

All Age classes are evolutionarily constrained 

Next, I investigated the selective pressure acting on the different Age classes. To this end, I 

estimated the rates of non-synonymous changes (dN), synonymous changes (dS) and ω 

(dN/dS) for 1:1 orthologs of P. pacificus and every other species. The rates of synonymous 

changes (dS) obtained from the pairwise species comparisons were used as a proxy for 

divergence time and the peak of the dS distribution was consistent with the species 

phylogeny (Fig. 4.3a). The two closest neighbor of P. pacificus, i.e. P. exspectatus and P. 

arcanus, showed dS peaks at 0.2 and 0.5 substitutions per site. The ω distributions 

exhibited that all Age classes are under evolutionary constraint (Fig. 4.3b). Additionally, the 

ω distributions also reflected the species phylogeny, indicating that the older species pairs 

were under stronger selection (Fig. 4.3b). However, it should be noted that the patterns of 

ω distribution may also reflect the fact that longer time intervals facilitate the removal of 

deleterious alleles [111,129,130]. Therefore, I decided to narrow my focus on a fixed 
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evolutionary distance by only considering P. pacificus - P. exspectatus pairwise dataset for 

further analysis. 

 

Figure 4.3: Divergence estimates across different time-scales and their chromosomal 
distribution. (a & b) Pairwise dS (a) and ω (b) distribution between P. pacificus and all other 
species support the underlying species phylogeny [84]. (c) dS value of each 1:1 ortholog between P. 
pacificus and P. exspectatus were mapped on the P. pacificus chromosomes with a running mean 
for each window (in blue). 

Divergence profiles reflect fast evolving chromosome arms and stable centers 

A previous report from our lab has concluded that nucleotide diversity is non-uniformly 

distributed across the P. pacificus chromosomes [82]. This suggests that dS may also vary 

between different chromosomal locations. To investigate dS variation across the 

chromosome, I plotted the dS values for all pairwise P. pacificus - P. exspectatus 
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comparisons for 500 kb non-overlapping windows and the running mean for each window 

(Fig. 4.3c). Median dS between P. pacificus and P. exspectatus was 0.33 (IQR= 0.21-0.51), 

which would roughly correspond to a divergence time of 1-5 mya [131]. Similar to the 

nucleotide diversity profile across the chromosomes [82], I observed that the dS values are 

lower at the chromosome centers and are higher at the arms. Previously, while analyzing 

evolutionary rates in Arabidopsis, Yang and Gaut proposed three non-exclusive processes 

to explain similar variation in divergence rates, which are codon bias, a non-uniformly 

distributed mutation rate, and population genetic processes such as background selection 

[132]. I ruled out codon bias and mutation rate as the main processes behind this variation, 

as mutation accumulation line experiments in P. pacificus and some other nematodes could 

not provide evidence supporting mutation rate biases [133,134], and the positive correlation 

between dN and dS (Spearman’s rho = 0.63 with a P-value < 2-64) restricts the role of codon 

bias, thus only leaving background selection as a plausible explanation. Further, since the 

spatial aggregation of Age classes coincided with the dS distribution and previous analysis 

of evolutionary constraint have reported old genes to be under stronger purifying selection 

(Fig. 4.3b), I hypothesized that differences in distribution of Age classes can give the 

impression of faster evolving chromosome arms and slower evolving chromosome centers.  

Young genes evolve more rapidly 

Finally, I wanted to examine if chromosomal location determines the level of divergence via 

background selection. Therefore, I tested whether the degree of selective pressure differs 

between Age classes. To this end, I decided to look at the ω distribution of different Age 

classes by segregating them into two dS ranges (0 - 0.4 and 0.4 - 0.8). While the lower dS 

range largely represented chromosome centers, the upper range mainly captured genes at 

chromosome arms (Fig. 4.3c). In both categories, I observed that the old Age classes were 

under strong purifying selection (Spearman’s rho = 0.56, P-value < 2-64, Fig. 4.4a-b). 

Although the segregation of dS corrected for synonymous divergence, I also compared ω 

distribution for different Age classes along the chromosomes. For this, I divided the Age 

classes into 'young' (Age class i-viii) and 'old' (Age class ix), and then plotted their ω 

distribution along 5 Mb non-overlapping window (Fig. 4.4c-d). Again, I observed that the old 

genes remained under strong purifying selection, while the young genes evolved more 

rapidly, demonstrating that it is the different proportion of Age classes within a given 
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chromosomal region that explains the non-uniform divergence along chromosomes (Fig. 

4.3c).  

Further, I quantified the significance of the comparisons of dN, dS, and ω along the 

chromosomes (Supplemental Fig. S4.2). These comparisons were generally statistically 

significant, supporting the idea that selection can act on individual genes. I conclude that at 

large evolutionary distances, as the separation among different Pristionchus species, the 

major determinant of the strength of evolutionary constraint acting on most genes are the 

genes themselves. 

Conclusion 

Based on the results discussed in this chapter I make four main conclusions. First, the 

ladder-like phylogeny of the 10 diplogastrid nematode genomes allowed me to trace the 

evolutionary history of the majority of P. pacificus genes including orphan genes, which did 

not show any homology outside the diplogastrid family [135]. The availability of a 

chromosome-scale assembly enabled me to map the P. pacificus gene predictions to 

chromosomes based on their respective Age classes [82], portraying that old genes are 

concentrated at the chromosome centers. This is consistent with the general tendency of 

new genes to cluster in certain chromosomal segments, which has been associated with 

other features such as late replication timing and transposons [126,136,137].  

 Second, young gene families are lost more frequently than the old gene families. 

This conclusion was based on the distribution of the top 10 patchy clusters, which is 

skewed towards the genes that originated within the pacificus clade but have been lost in 

one or more species.  

Third, the results show that older Age class genes are either more broadly or more 

highly expressed compared with genes from younger Age classes. This trend persists at 

every life stage that I looked at, suggesting that in general gene expression increases or 

becomes broader with time. This finding is also consistent with previous studies in animals 

and plants [137–139].  

Fourth, although the chromosome arms and centers show distinct levels of 

divergence, this pattern is mainly created by differences composition of young and old Age 

classes, which themselves show different levels of evolutionary constraint. Additionally, in 

agreement with prior studies [137,140,141], younger Age classes evolve more rapidly than 

older Age classes. This suggests that at evolutionary time-scales, such as the separation 
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among different Pristionchus species, selection tends to act on individual genes 

independent of their chromosomal location.  

 

Figure 4.4: Young genes evolve more rapidly. (a & b) ω values decrease with age in both the dS 
ranges indicating that young genes evolve rapidly and become more constrained over time. The ω 
values of 1:1 orthologs between P. pacificus and P. exspectatus of Age class ix (c) and Age class i-
viii (d) in 5 Mb windows show that young genes are less constrained irrespective of the 
chromosomal location. For comparison, in both panel c and d, corresponding windows on each 
chromosome have the same color.  
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Methods 

DNA extraction, sequencing, assembly, and scaffolding 

All nematodes worms were grown on nematode growth medium (NGM) plates and 

gonochoristic species were inbred for 10 generations before DNA extraction. I rinsed the 

plates with M9 buffer and collected worm pellets by centrifugation at 1300 rpm for 3 minutes 

at 4°C. Then I followed the method specified by Rödelsperger et al. for DNA extraction [82]. 

Overlapping and mate pair illumina libraries for P. arcanus and P. giblindavisi were 

generated based on the protocol specified by Rödelsperger et al [111,121]. For the other 

species, PCR free libraries were generated using TruSeq DNA PCR-Free Library Prep kit 

following the manufacturer’s protocol and the sequencing was done on Illumina MiSeq. 

These species included P. pacificus itself, which I chose to resequence and assemble de 

novo in order to make the datasets more comparable. Initial assemblies were created with 

the DISCOVAR de novo assembler (version r52488, 

https://software.broadinstitute.org/software/discovar). I checked for E. coli contamination by 

blastn search against in-house and NCBI E. coli genomes and removed dubious contigs 

after manual inspection. Final scaffolding was done with SSPACE_Basic_v2.0 [142] using 

mate pair libraries of sizes 1.5, 3, 5, and 8 kb, which were generated with Nextera Mate 

Pair Sample Preparation Kit.  

Assembly evaluation  

To evaluate the completeness of final assemblies, I calculated the fraction of raw reads 

represented in each final assembly. This was done by aligning reads from individual 

libraries using BWA (version 0.7.12-r1039) and stampy (version v1.0.21 r1713), and 

extracting the fraction of aligned reads from the SAMtools flagstat program (version 0.1.19-

96b5f2294a) output [143–145]. The SAMtools flagstat output also provided information on 

the fraction of correctly oriented paired-ends reads that can be interpreted as a measure of 

correctness. Additionally, based on the realignments, I defined the ambiguous fraction as 

the fraction of genome assembly with heterozygous variant calls [111]. Finally, I employed 

the universal single-copy orthologs benchmarking (BUSCO, version 3.0.1) approach as an 

extra measure for assembly completeness [146]. Based on the qualification of the BUSCO 

gene set to be conserved as single copy >90% of genomes, the effective maximum 



 

 41 

expected score should be slightly above 90% and is attained for the P. arcanus (Table 4.1) 

genome as well as the earlier published P. pacificus genome [82].  

RNA extraction, sequencing and assembly 

Worm pellets for all species were gathered by the above mentioned methods and were 

resuspended in 10 volumes of TRIzol. RNA extraction was done using Direct-zol RNA 

miniprep kit (Zymo research) and library preparation was done with Illumina TruSeq RNA 

Library Prep Kit v2. These libraries were sequenced on Illumina HiSeq 3000. I assembled 

the transcriptome with ‘trinityrnaseq-2.2.0’ [147]. For P. pacificus, I also generated a strand-

specific transcriptome assembly using previously published RNA-seq data [148,149]. 

Gene annotation 

I employed both AUGUSTUS (3.2.2) and SNAP within the Maker2 (v2.31.8) pipeline for 

protein-coding gene prediction [15,101,102]. Three iterations of this pipeline were run, in 

the first run the gene finders were trained on the given transcriptome assembly. In the 

second run, I generated gene models that were at least partially supported by the given 

transcriptome (AED_threshold < 1). In the final run, along with all the evidence used in the 

second run, I additionally used gene models resulting from the second run of all other 

species as protein homology data. Moreover, in the final run, I retained predicted gene 

models without any transcriptome or homology evidence (AED_threshold ≤ 1). For runs 2 

and 3, I used minimum contig length of 2 kb (min_contig=2000). PFAM domains were 

annotated with InterProScan-5.19-58.0 [150]. In order to visualize the genomic features 

distribution across chromosomes, P. pacificus protein annotations were mapped on to the 

El Paco assembly of P. pacificus using the exonerate protein2genome program (version 

2.2.0) [151].  

Orthology clustering and inference of gene gain and loss 

I ran pairwise blastp (E-value < 10-5) between all species pairs in our analysis and created 

orthologous gene clusters with OrthAgogue and MCL (both programs were run with default 

settings) [122,152]. Based on the presence and absence of genes from different species, 

each cluster was segregated into different categories. Based on maximum parsimony, 

clusters were classified into Age classes, each of which corresponds to a single origin at an 

internal branch of the phylogeny (Fig. 4.1a).  
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Expression analysis 

I mapped stage-specific transcriptome data, from 10 samples, generated by Baskaran et al. 

to the P. pacificus genome using TopHat2 [105,153]. Then, I computed the expression 

values for the P. pacificus annotations in each sample with Cufflinks 2.2.1 [154]. Expression 

patterns, mean expression values, and mapping of mean expression pattern on 

chromosome were generated with custom Python scripts. 

Estimation of evolutionary constraints 

Pairwise 1:1 orthologs between P. pacificus and other species were extracted by selecting 

only those clusters that have only one gene each from P. pacificus and the other species. I 

aligned 1:1 orthologs with MUSCLE [113] and converted protein alignments into codon 

alignments using PAL2NAL [113,114]. These codon alignments were passed on to PAML 

to compute the rate of synonymous (dS) and non-synonymous (dN) substitution, and ω 

(dN/dS) values [99]. 
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Chapter 5: Illustrating diverse mechanisms of orphan gene emergence 

 
This chapter contains content from the following manuscript.  

Prabh N, Rödelsperger C. The diversity of orphan gene origin - illustrated. 

Author Author 
Position 

Scientific 
ideas % 

Data 
generation % 

Analysis and 
interpretation % 

Paper 
writing 

N.P. 1 70 NA 75 80 

C.R. 2 30 NA 25 20 

Title of the paper:  The diversity of orphan gene origin - illustrated. 

Status:  Submitted 

 
 
In the last chapter, I employed deep taxon sampling of nematode genomes to probe the 

evolutionary dynamics of novel genes. In this chapter, I focus on Species-specific orphan 

genes (SSOGs) and show that they account for roughly 10% of all genes in each 

Pristionchus spcies irrespective of the sampling depth. Phylostratigraphic analysis indicates 

an exceptionally high number of SSOGs, which could be explained by the presence of a 

rapidly evolving gene pool or by a constant fraction of annotation artifacts. Based on 

sequence searches in other closely related genomes, I found traces of homology for 61% of 

P. pacificus SSOGs, which allowed me to gain mechanistic insights into their emergence. 

Manual inspection of high-confidence SSOGs revealed heterogeneous divergence 

mechanisms including chimeric origin, alternative reading frame usage, and gene splitting 

with subsequent exon gain. In addition, I present two cases of complete de novo origination 

from non-coding regions, which represents the first report of de novo genes in nematodes.  

Results 

Roughly 10% of all genes are Species-specific irrespective of the sampling depth  

To investigate how variable is the fraction of orphan genes across the diplogastrid 

genomes, I applied a three-step filtering procedure to define a robust orphan gene set for 

the eight Pristionchus and two outgroup species (Fig. 5.1a). Given that all 10 genomes 

have around one third of genes classified as orphan, I next explored how conserved these 

genes are within the family Diplogastridae. First, I identified orphan genes that have a 
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blastp hit (E-value < 10-3) in at least one other diplogastrid. If an orphan gene fulfilled this 

criterion, it was labelled as ‘Taxonomically-restricted orphan gene’ or ‘TROG’, otherwise it 

was classified as ‘Species-specific orphan gene’ or ‘SSOG’. According to this classification, 

more than 70% of all orphan genes are classified as TROGs for every Pristionchus species 

except for P. fissidentatus (Fig. 5.1b, Supplemental Fig. S5.1). Thus, approximately 10% of 

all predicted genes in different Pristionchus species lack any homology at the protein level 

with any other species and fall in the SSOGs category. This lack of phylogenetic signal is 

unexpected, since the taxonomic sampling is much deeper around the focal species P. 

pacificus (Fig. 5.1a) and encompasses the two sister species, P. exspectatus and P. 

arcanus, that can still form viable but sterile hybrids with P. pacificus [155]. Hence I naively 

anticipated that this should result in a much lower fraction of SSOGs in the focal species 

and its close neighbors. While I cannot rule out that a constant fraction of erroneous gene 

annotations partially contributes to this pattern, however, these results are consistent with 

the idea that novel genes are frequently generated as a result of pervasive transcription but 

rarely reach fixation and are rapidly lost [156]. 

 
SSOGs make the most gene rich phylostratum 

To gain more detailed insights into the age distribution of P. pacificus orphan genes, I 

separated them into different phylostrata that can be mapped to the most recent common 

ancestors of P. pacificus and the other diplogastrid species (Fig. 5.1c). Based on the 

parsimonious assumption that the breadth of a gene’s phylogenetic distribution is an 

indicator of its age, a gene that is shared with a distantly related species is expected to be 

older than a gene that is only shared with a close neighbor. Thus, each orphan gene was 

placed into the phylostratum that points to the most recent common ancestor of P. pacificus 

and its most distantly related species that has a homolog of this gene [157]. Additionally, 

the P. pacificus SSOGs were placed in the ‘Phylostratum 0’. I found that the number of 

genes in a given phylostratum correlates with the amount of divergence between its 

ancestor to the next extant species (Spearman’s rho = 0.6, Fig. 5.1d), suggesting a 

constant rate of fixation of novel genes within the Pristionchus lineage. I have excluded 

phylostrata 8 and 9 from this analysis, as I have previously shown that novel gene families 

have a high propensity of being lost, which could lead to an underestimation of the number 

of genes gained at these ancient splits. ‘Phylostratum 0’ constitutes an exception as it has 

by far the highest number of genes among all 10 phylostrata, yet the length of the terminal 
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branch leading towards P. pacificus, which depicts this phylostratum, is relatively short (Fig. 

5.1a, 1d). Given that the number of genes in this phylostratum is exceptionally high, this 

further supports that most gene-like sequences are not long-lived enough to survive a 

speciation event. 

Most P. pacificus SSOGs have traces of homology in closely related genomes 

The deep taxon sampling around the focal species P. pacificus allowed me to screen for 

traces of homology of P. pacificus SSOGs in the genomes of sister species, which could be 

indicative of their mechanism of origin. To this end, I performed various blast searches 

against the annotated transcripts, genome assembly, and transcriptome assembly (Fig. 

5.1e). While tblastn searches against the genome assembly of other species may identify 

homologous non-coding regions of de novo candidates, I additionally performed a blastn 

search against the annotated transcripts to screen for potential cases of ORF switching, 

and a blastn search against the transcriptome assembly to assess the degree of missing 

homology due to assembly gaps. 504 (32%) of P. pacificus SSOGs show blast hits in all 

three target database types, which after closer investigation was seen to be largely due to 

overlapping gene structures such as 3’ UTR overlap of neighboring genes [149,158]. 

Another 479 (31%) of P. pacificus SSOGs did not show hits in any of the databases and 

were labeled ‘Untraceable’. Among the remaining SSOGs, I found only 29 (2%) with a hit in 

the transcriptome assembly but not in the genome or the annotated transcripts. The fraction 

of putative assembly gap genes is constantly low for all the genomes supporting their 

comparable quality [23]. In total, 1082 (61%) of P. pacificus SSOGs exhibit detectable 

traces of homology in the genomes of other closely related species, demonstrating that the 

taxon sampling of the phylogenomic dataset is sufficient to study the mechanisms of origin 

for the most P. pacificus SSOGs in greater detail. 

Identification of a high-confidence candidate set for origin analysis 

Given that more than a thousand P. pacificus SSOGs have traces of homology in closely 

related sister species and the gene structures of orphan genes in general are poorly 

supported by expression evidence [135], I first needed to define a high-confidence 

candidate set of SSOGs that could be used for detailed gene origin analysis. I only 

considered SSOGs with more than one annotated exon, because I hypothesized that this 

additional layer of regulated expression involving the proper splicing of the transcripts would 
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yield a more likely protein-coding gene candidate with confirmed regulated expression as 

opposed to pervasive transcription of non-genic sequences [159]. Additionally, the splice 

sites can be informative to better predict the correct orientation of the gene, which is 

essential to elucidate their origin. I manually inspected all P. pacificus SSOGs except the 

Untraceable genes, in total 1082 candidate loci, to find gene structures that are fully 

confirmed by raw read alignments of existing RNA-seq datasets and I insisted on finding a 

minimum of two raw RNA-seq reads that aligned with each coding exon and two spliced 

reads that span such exons. Eventually, I established 29 SSOGs with fully confirmed gene 

structures (Fig. 1e) which formed the high-confidence candidate set. Based on my 

investigation, I provide examples for six plausible mechanisms that explain the origin of 

SSOGs including two examples of de novo genes. Most of the remaining high-confidence 

candidates are either instances of the proposed mechanisms or their origin cannot be 

unambiguously concluded.  

Divergence by recycling of ancestrally protein-coding fragments 

The first mechanism alludes to chimeric gene formation resulting in an SSOG with two 

exons that are derived by partial duplication from distinct source genes. The paralogous 

exons from both the ancestral source genes are duplicated and then inserted in close 

proximity to facilitate the formation of a novel ORF (Fig. 5.2a). Considering that such genes 

can be created by minimal contribution from existing genes, local alignment based tools 

may fail to detect the homology of these genes with their paralogous exons. For example, 

PS312-mkr-S378-0.29-mRNA-1 is a P. pacificus SSOG with two exons. Its first exon has 

100% protein identity with an exon from a P. exspectatus gluthatione peroxidase gene, 

while its second exon shows partial identity with an exon of another conserved gene 

(exspectatus-mkr-S_440-0.48-mRNA-1, Fig. 5.2b). Orthologs of both P. exspectatus genes 

are maintained in P. pacificus. Based on blastp comparison, neither of the two exons of the 

candidate gene match their paralogous exons from the two P. exspectatus genes. This 

suggests that even if high percentage-identity is retained between paralogous exons, 

chimeric genes can lack detectable blast homology with related genic parts from other 

species leading to their classification as SSOG. 

The second mechanism of SSOG creation is based on splitting of an ancestral gene (Fig. 

5.2c). After the split, either both or one of the fragments can diverge from the ancestral 

sequence and can also acquire new exons. If the length of the ancestral exon or exons in a 
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given split gene is small, a moderate level of divergence can result in a failure to detect 

homologous sequences. Based on synteny information and spliced alignment, I mapped 

the first exon of this gene to the first exon of a conserved gene (exspectatus-mkr-S_158-

0.48-mRNA-1) in P. exspectatus, another P. pacificus gene is homologous to the remaining 

exons of the P. exspectatus gene. Upon manual inspection, I found that the first exon of the 

P. pacificus SSOG has acquired an insertion that shifted its reading frame and renders 

protein homology undetectable. Although some of the N-terminal residues are identical to 

the P. exspectatus protein (Fig. 2e), the remaining residues from the first exon of the 

candidate gene were found to be derived from other reading frames of the orthologous P. 

exspectatus exon. Hence, it is clear that the predicted ORF from the first exon of the 

candidate gene is mainly derived from the non-ancestral reading frame. Moreover, the initial 

segment, which partially retains the ancestral ORF, is not large enough to facilitate 

homology detection. Ancestry of the second exon of the P. pacificus SSOG could not be 

established even after manual inspection. This suggests that the second exon has been 

acquired de novo. Thus, origin of the candidate gene can be attributed to gene split, partial 

ORF shift, and de novo acquisition of a new exon. 

New gene creation through alternative reading frame usage  

So far, I have discussed two mechanisms of new gene creation that require deviation from 

an existing gene structure but maintain the ancestral reading frame either fully or partially. 

Here I discuss a third mechanism that involves strand switching, which results in a 

completely new ORF (Fig. 5.3a). The P. pacificus SSOG PS312-mkr-S198-1.6-mRNA-1, 

which has two coding exons, is an example of such a mechanism. In P. pacificus, this gene 

is placed within an intron of a conserved gene (Supplemental Fig. S5.2). This intron is 2.1 

kb long in P. pacificus. The corresponding intron of the P. exspectatus ortholog is 1.4 kb 

long and shows no homology to the candidate SSOG at the nucleotide or the protein level 

(Supplemental Fig. S5.2). Spliced alignment of the candidate SSOG on to the P. 

exspectatus genome did not generate any match. Thus, I performed a blastn match against 

the P. exspectatus genome at a relaxed threshold of E-value < 10 (Fig. 5.3b). The resulting 

aligned genomic section was traced to a single exon of exspectatus-mkr-S_1052-0.1-

mRNA-1 gene whereby the candidate has some sequence identity with a reading frame 

from the reverse strand of the P. exspectatus gene (Fig. 5.3b-c).  



 

 48 

 
Figure 5.1: Fraction of SSOGs is consistent within the Pristionchus genus irrespective of 
divergence time (a) The maximum-likelihood phylogenetic tree of the species analysed in this 
study, adapted from Rödelsperger et al. 2018 [160]. Branch lengths denote the number of amino 
acid substitutions per site. The numbers correspond to the phylostrata from panel c. (b) The 
horizontal stacked bars show the fractions of conserved genes, TROGs, and SSOGs. (c) The 10 
phylostrata depict the origin of P. pacificus orphan genes along the diplogasrid lineage. Blue boxes 
indicate presence of P. pacificus orphan genes and the most distant diplogastrid species that has 
homologs of these gene, red bars indicate absence of homologs, and grey bars indicated homologs 
may or may not be present. The number of P. pacificus orphan genes in each phylostratum are at 
the bottom. (d) On x-axis I have the divergence estimate for each phylostratum and on y-axis I have 
the number of genes in them. Phylostratum 0 is the clear outlier that has the highest number of 
genes within little divergence time. (e) The heatmap shows traces of homology for P. pacificus in 
predicted transcripts, genomic, and transcriptomic data of other species. The rectangles indicate 
whether traces of homology were found (blue) or not (red). Manual inspection of P. pacificus RNA-
seq data resulted in a high-confidence dataset of 29 P. pacificus SSOGs which were taken as the 
starting point for origin analysis. 
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Figure 5.2: Sequence divergence and ORF shift erode evidence of homology. (a) The 
schematic overview shows an example of an SSOG with chimeric origin. Two exons gained from 
partial duplication of two distinct genes are joined together and with time sequence divergence 
occurs. Thus, traces of sequence homology with the original exons become hard to detect and such 
genes get classified as an SSOG. (b) This example shows a P. pacificus SSOG (PS312-mkr-S378-
0.29-mRNA-1) of chimeric origin and its alignments with parts of two conserved P. exspectatus 
genes. Identical amino acid residues are labelled in black between the P. pacificus and P. 
exspectatus exons. Even though the first exon is 100% identical with its homolog, the stretch of 
alignment is not long enough to be detected by blastp at the stipulated E-value cutoff. (c) Schematic 
overview of a gene split with subsequent exon gain which results in an SSOG (d) The P. pacificus 
SSOG PS312-mkr-S390-0.42-mRNA-1 is homologous to the first exon of a conserved P. 
exspectatus gene. The neighboring gene shows homology with the remaining exons, indicating that 
the SSOG is derived from a gene split event. (e) The alignment of the P. pacificus SSOG with P. 
exspectatus is spread over multiple reading frames. Amino acid identity between the predicted 
reading frame of both the proteins are marked in black and those from the other reading frame of 
the exspectatus gene are marked in saffron. The residues corresponding to the P. pacificus SSOG 
in different reading frames of the P. exspectatus sequence are also labelled in black.  
 

Although the identity between the candidate and its putative homologous exon from 

P. exspectatus is not substantial (tblastn E-value = 2.37), based on this alignment I propose 

that the candidate SSOG gene and the homologous exon of the P. exspectatus gene, share 

a common ancestry. I propose that the exon was duplicated in the lineage leading to P. 

pacificus, was split by gaining an intron, and switched strand to gain a novel ORF. The 

evidence for strand switching comes from strand-specific RNA-seq data (Supplemental Fig. 

S5.2).   
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Figure 5.3: Switching to an alternate reading frame gives rise to SSOGs. (a) Partial duplication 
in combination with an intron gain can allow opening of a new reading frame from the opposite 
strand. (b) The P. pacificus SSOG, PS312-mkr-S198-1.6-mRNA-1, is an example of both strand 
switching and exon splitting. Here I show amino acid identity and similarity between my candidate 
SSOG with the translation from the P. exspectatus genome. (c) This is a two exon gene, and both 
the exons share a remote homology with opposite strand of one single exon of a P. exspectatus 
gene at the aligned locus. The identical amino acid residues between the P. pacificus SSOG and its 
corresponding P. exspectatus ORF are marked in saffron. (d) The schematic overview illustrates a 
case of actualization of an alternative reading frame by duplication. Overprinting describes a gene 
with two alternate ORFs. Gene prediction tools generally do not annotate alternate overlapping 
ORFs from the same strand. However, duplication might generate gene copies where the 
alternative ORF will be annotated. Nevertheless, in species with single copy of this gene only one 
ORF gets predicted and due to lack of protein homolog in other species the alternate ORF will be 
categorized as SSOG. (e) PS312-mkr-S49-3.6-mRNA-1 is a four exon, HT category SSOG. Its P. 
exspectatus homolog is predicted from the same strand but in a different reading frame. Both genes 
maintain both ORFs. I found a P. pacificus gene, PS312-ag_msk-S49-3.55-mRNA-1, which is 
predicted in the P. exspectatus ORF and their identical amino acid residues are marked in turquoise 
between their exons and also in corresponding reading frame of my candidate SSOG. Comparison 
of this reading frame between the two P. pacificus genes shows two residues, in saffron, that are 
uniquely found in these genes. This indicates that SSOGs can be generated by prediction of an 
alternate ORF. 
 

The fourth mechanism deals with genes that can have more than one overlapping 

ORFs. This phenomenon is known as overprinting and has been reported in several studies 

[51,54–60,62,64]. Generally, gene prediction tools only annotate non-overlapping ORFs 

from the same strand of the DNA. However, if an ancestral gene with two overlapping same 

strand ORFs gets duplicated in a lineage, one of the duplicates can switch to the less 

common ORF (Fig. 5.3d). This will lead to classification of the duplicated gene as a SSOG, 

as the corresponding ORF has not been annotated in any other species. I found that the P. 

pacificus SSOG PS312-mkr-S49-3.6-mRNA-1 is one candidate for such a scenario as it 
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lacks protein homologs with any other species. Interestingly, this gene has a paralog, 

PS312-ag_msk-S49-3.55-mRNA-1, at the predicted transcript level (blastn E-value = 0.00, 

identity = 92.34%). However, the protein predicted from the candidate SSOG is in a reading 

frame that differs from that of the transcript level paralog. I found that both ORFs are 

available to both paralogs. The predicted ORF of the paralog is conserved within the genus 

and has its orthologous ORF in P. exspectatus (Fig. 5.3e). Selection analysis indicates that 

the predicted P. pacificus ORF shows an ⍵ value of 1.6 whereas the ancestral ORF shows 

evidence of negative selection (⍵ = 0.38), suggesting that the predicted P. pacificus ORF is 

an annotation artifact. However, in the absence of conclusive evidence, I cannot completely 

reject the predicted reading frame. Therefore, it is plausible that gene duplication allows 

actualization of such alternative ORFs. 

 
Heuristic failures in homology detection contribute to classification as SSOGs 

The fifth mechanism of SSOG formation specifically deals with the fact that blast programs 

implement a heuristic approach to find sequence matches and that these programs are 

typically run with default settings. It is obvious that lowering thresholds (e.g. E-value) or 

switching to a more sensitive alignment approach (e.g. exonerate) facilitates the 

identification of homologous sequences for a number of P. pacificus SSOGs that were 

missed by blast programs. This has been illustrated by the identification of homologous 

regions for the previously described divergence cases (Fig. 5.2b, 3b). During my 

investigation of high-confidence SSOG candidates, I encountered two repeat rich SSOGs, 

PS312-mkr-S142-0.63-mRNA-1 and PS312-mkr-S81-0.14-mRNA-1, where more detailed 

investigation of the syntenic region facilitated the identification of a homologous region in 

the P. exspectatus genome. However, it appears that even when blast’s repeat filtering is 

switched off, it fails to detect homology due to the combination of a small non-repetitive 

match and indels as well as substitutions in the repeat-rich region (Fig. 5.4b). Even though I 

cannot be sure how specific this behaviour is to repeat-rich genes, these two examples, 

together with the previous examples illustrate how the failure of any heuristic approach to 

detect homology will inevitably lead to the classification of certain genes with homologs as 

SSOGs. 
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Figure 5.4: Failures in homology detection lead to classification as SSOGs. (a) The P. 
pacificus SSOG PS312-mkr-S142-0.63-mRNA-1 is found in a conserved syntenic region with the P. 
exspectatus TROG exspectatus-mkr-S_68-1.70-mRNA-1. Both proteins are ‘GGX’ repeat rich 
proteins and share a small non-repetitive part, but blastp failed to identify both proteins as 
homologous. 
 

 
Figure 5.5: De novo gene birth. (a) A de novo gene can originate as an antisense transcript in the 
intron of another gene. De novo creation of such an ORF can be verified by finding the 
corresponding intron in a related species that lacks this ORF. (b) PS312-mkr-S23-6.60-mRNA-1 is 
two exon P. pacificus gene that is located in an intron of another P. pacificus host gene. Based on 
the identification of orthologous intron of the host gene in other species, I have created an alignment 
of my candidate and translation of its corresponding reading frame from other species. It is clear 
that the same ORF also exists in P. exspectatus. However, P. arcanus has two stop codons (＊) in 
the middle of the 2nd exon and P. maxplancki has two stop codons in the 1st exon itself. (c) Selection 
analysis done on the alignment from panel b, indicates that the predicted ORF has been under 
strong selection towards the P. pacificus lineage. This trend may have started from the common 
ancestor of P. pacificus, P. exspectatus and P. arcanus. (d) A de novo gene can originate from 
ancestrally intergenic region. (e) PS312-man-S356-0.37-mRNA-1 gene contains a single coding 
exon and its homologous reading frame in P. exspectatus is found at a non-transcribed intergeneic 
location and has an early stop codon (＊). This gene does not show sequence homology with any 
other species but P. exspectatus, and hence has most likely emerged in P. pacificus lineage post 
speciation. 
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Evidence for de novo genes in P. pacificus 

All the five mechanisms described in the previous sections portray how new genes can be 

created from old genes. Some of these mechanisms may involve the acquisition of new 

exons from non-coding segments of the genome, but they mainly contain exons that are 

derived from ancestrally coding segments of the genome. PS312-mkr-S23-6.60-mRNA-1 is 

a P. pacificus SSOG with two coding exons, placed within a single intron of a the P. 

pacificus homolog of C. elegans C27F2.7 (Supplemental Fig. S5.3).  

The intronic location of my candidate SSOG within a conserved gene helped me in 

identifying the orthologous genomic locations in other Pristionchus species. Based on the 

spliced alignment of my candidate on the genomes of other species I was able to extract 

the orthologous sequences from P. exspectatus, P. arcanus and P. maxplancki (Fig. 5.5b). 

No transcriptional evidence for the genomic regions corresponding to their extracted ORFs 

was found in P. exspectatus, P. arcanus and P. maxplancki (Supplemental Fig. S5.3). 

Nevertheless, the length of the P. exspectatus ORF matches that of the P. pacificus 

prediction. Additionally, the P. arcanus ORF aligns well with the P. pacificus ORF but 

contains two stop codons in the middle of the second exon. Furthermore, the sequence 

extracted from P. maxplancki has stop codons at the 11th and 14th position, and no 

Methionine thereafter to make an abridged ORF. This suggests that the ORF at this locus 

was engendered in the common ancestor of P. pacificus, P. exspectatus, and P. arcanus. 

Moreover, the lack of ORF in P. maxplancki and alignable region in other species confirms 

the de novo origin of this gene. To further support the protein-coding nature of my de novo 

candidate, I carried out selection analysis on the predicted ORF of P. pacificus and the 

protein translation from the other species. In this analysis, I allowed each branch of the tree 

to have an independent ω value. Here, the branches leading from the common ancestor of 

P. pacificus, P. exspectatus and P. arcanus, towards the P. pacificus lineage are under 

extremely strong negative selection (Fig. 5.5c). This suggests that since its emergence, the 

de novo gene has been maintained as a protein-coding gene in the lineage leading to P. 

pacificus.  

Our second de novo candidate PS312-man-S356-0.37-mRNA-1 is a two exon gene 

with its entire coding sequence in the 2nd exon. Since the candidate could be mapped on to 

the genomes of none of the other species but P. exspectatus, I was only able to extract the 

orthologous P. exspectatus sequence from a conserved syntenic region (Supplemental Fig. 

S5.4). Nevertheless, the absence of transcription in P. exspectatus and the presence of a 
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stop codon at the 4th position of the extracted P. exspectatus sequence confirms the non-

genic and non-transcribed status of the P. exspectatus sequence. Thus, I conclude that the 

P. pacificus SSOG PS312-man-S356-0.37-mRNA-1 is a de novo gene that has emerged 

from a previously non-coding intergenic region in the P. pacificus lineage. 

Conclusion 

To my knowledge, the analysis done in this chapter is the first of its kind in nematodes and 

allows me to make three major conclusions. First, the number of SSOGs is exceptionally 

high. Given the dense taxonomic distribution of the pacificus clade species, i.e. P. pacificus, 

P. exspectatus, P. arcanus, P. maxplancki and P. japonicus, in my analysis, I expected 

these species to be depleted in SSOGs. However, my results posited comparable fractions 

of SSOGs across the Pristionchus genus, which does not correspond with the difference in 

their relative divergence (Fig. 5.1a-b). The lack of correspondence between divergence 

time and number of SSOGs is also observed in the phylostratigraphic analysis.  

Second, the high phylogenetic resolution of my dataset allowed me to find 

homologous traces for 1082 (61%) SSOGs of P. pacificus in the genomes of closely related 

sister species. This demonstrates the usability of my phylogenomic dataset to study the 

origin of P. pacificus SSOGs. 

Third, both divergence of existing genic segments and de novo creation of new genic 

segments contribute towards birth of SSOGs. Based on manual inspection of the 29 fully 

supported candidate SSOGs, I found evidence for six mechanisms that potentially explain 

their origin. I demonstrate that the first five mechanisms involve recycling of ancestrally 

protein-coding gene segments to engender new genes. The final mechanism is illustrated 

by two de novo genes that have fully emerged from ancestrally non-coding regions 

Methods 

Identification of orphan genes 

The genome, protein and transcript data of 24 non-diplogastrid nematodes were obtained 

from Wormbase (WormBase web site, http://www.wormbase.org, release WS254, date 

7/18/16). The phylogenomic dataset for the 10 diplogastrid nematodes was gathered from 

my previous publication [23] and is available at http://www.pristionchus.org/download. All 

the Uniprot knowledgebase taxonomic divisions SwissProt data was downloaded from 
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ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisi

ons/. The invertebrate taxon contained a single Pristionchus species gene, Q9NHZ4, which 

was removed from further analysis. 

We first identified all conserved genes for the 10 diplogastrid nematodes using the 

following approach: 

 

1. Classify all genes that have blastp match (E-value ≤ 10-3) with any non-diplogastrid 

nematode protein as ‘Conserved genes’. For the remaining genes go to step 2. 

2. Classify all genes that have a tblastn match (E-value ≤ 10-5) in any non-diplogastrid 

nematode genome as ‘Conserved genes’. For the remaining genes go to step 3. 

3. Classify all genes that have blastp match (E ≤ 10-3) with any protein from any 

Uniprot knowledgebase taxonomic divisions as ‘Conserved genes’. The proteins 

classified as conserved genes at this step are candidates for horizontal gene 

transfer. 

 

The remaining genes were classified as ‘Orphan genes’. All blast runs were conducted, with 

version 2.6.0+, under default parameters (including no filtering of low complexity regions by 

SEG) unless mentioned otherwise. 

Classification of orphan genes 

The availability of 10 diplogastrid genomes provided me with the opportunity to further 

investigate the Pristionchus orphan genes. my first aim was to identify the orphan genes 

that have a homolog in at least one other diplogastrid species. Thus, for each species I 

selected the subset of orphan genes that have blastp match (E-value ≤ 10-3) with at least 

one other diplogastrid species. This subset of orphan genes was classified as TROGs. The 

remaining orphan genes were classified as SSOGs, as they did not show blastp match with 

any other species. It is important to note here that for the identification of TROGs I have 

only used protein homology. I did not employ tblastn against genomes to avoid detection of 

pseudogenes or non-coding genomic regions as protein homologs. Further, since a ladder-

like species phylogeny exists around the focal species P. pacificus (Fig. 5.1a) [160], I 

decided to trace the origin of P. pacificus TROGs and SSOGs on this phylogeny. For this, I 

employed the phylostratigraphy approach [157]. This approach is based on finding the 

oldest ancestral node of a given phylogenetic tree where the founding member of a gene 
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family can be traced back to. Thus, I divided the diplogastrid family tree into nine 

phylostrata. ‘Phylostratum 1’ corresponds to the most recent common ancestor of P. 

pacificus and P. exspectatus. Additionally, I created ‘Phylostratum 0’ that includes P. 

pacificus SSOGs and hence is the youngest phylostratum.  

Mapping of gene models on the genome of other species 

The synteny relation between genes from P. pacificus and the other species was derived 

using CYNTENATOR [161]. Pairwise blastp results for each species pair and two files 

containing genomic location of genes in both the species, were provided as input to the 

software. The output file contained a list of genes from both species within the syntenic 

blocks. Spliced alignment of gene models from one species to the genome of another 

species was done by employing the protein2genome model of the Exonerate tool [151]. 

Gene structure validation 

One of the main aims of this study was to elucidate the mechanistic details underpinning 

the birth of new genes. However, even with my structured approach of dividing the orphan 

genes into several categories and subcategories, I was unable to put forward a clear 

hypothesis on this matter. Thus, I decided to create a set of most reliable candidate genes 

to better understand the processes that foster new P. pacificus genes. For this, I limited 

myself to the P. pacificus SSOGs with confirmed gene structure. The validation of predicted 

gene structure was done by visual inspection, in IGV [162], of raw RNA-seq data aligned 

with the P. pacificus genome [23,163]. I used TopHat v2.1.1 and STAR version 020201 for 

aligning the raw reads to genome [153,164]. Single exon genes were filtered out. Only 

multi-exon genes with minimum two spliced RNA-seq reads aligning to all coding exons and 

minimum two spliced reads straddling such exons, were assigned ‘fully confirmed gene 

structure’ status. If, only few, but not all exons of a gene satisfiedthese criteria, then it was 

assigned ‘partially confirmed gene structure’ status. For overlapping genes from opposite 

strands, strandedness of strand-specific RNA-seq data was used as an additional 

confirmation step.  

Selection analysis 

For selection analysis of the SSOG candidates, their orthologous reading frames (including 

in-frame stop codons) from sister species were extracted and manually adjusted. Protein 
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alignment of the candidate and its corresponding reading frames from one or more sister 

species was done using MUSCLE and visualisation was done with SeaView [113,165]. The 

protein alignment was converted to codon with PAL2NAL [114]. Selection analysis was 

done with codeml suite of PAML [99]. Species tree was passed as gene tree to PAML. If 

the corresponding homologous region from only one sister species was included in the 

analysis I generated a single ω value for the entire tree, else I generated independent ω 

values for each branch of the tree. The statistical significance of the resulting ω values was 

calculated using the likelihood ratio test at the P-value threshold of 0.05. Only the 

statistically significant results were reported.  
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Chapter 6: Conclusion and Discussion 

During the course of my doctoral research, I have attempted to bring the comparative 

method to the genomics of Pristionchus nematodes [85]. To my knowledge, this is the first 

phylogenomic study of nematodes, where 10 species of a family were chosen to create a 

ladder-like phylogeny so that P. pacificus, the focal species, invariably remains under a 

monophyletic clade. Additionally, whole genome sequencing and annotation of each 

species were done within a single lab, ensuring that the resultant genomes and gene 

annotations are highly comparable. Analysis of the resultant dataset allowed me to 

comprehensively address the questions that I set out to answer at the beginning of my 

doctoral research. In the following sections, I discuss the results presented in chapter three, 

four, and five. 

Orphan genes are real 

Although all genomes are reported to have orphan genes [11], a comprehensive test for 

protein-coding nature of such genes was unavailable at the inception of my doctoral 

research. In chapter three, I presented a bioinformatic pipeline that systematically searches 

for evidence supporting the protein-coding nature of each orphan candidate. Relying on 

selection analysis, which shows that 76% of orphan genes are under negative selection, I 

concluded that the majority of P. pacificus orphan genes are not annotation artifacts but real 

protein-coding genes. Besides, this finding is in agreement with several other studies from 

primates, fish, and insects [140,166–170]. It is important to point out that most technical 

artifacts such as incorrect alignments, pseudogenes, and mispredictions will bias signal 

towards neutral selection. Hence, further error correction will only increase the fraction of 

orphan genes with reliable protein-coding evidence. 

The protein-coding nature of orphan genes was further supported by the orthologous 

clustering data generated in chapter four, which covers 81% of P. pacificus genes, and the 

classification of 79% of P. pacificus orphan genes as TROGs in chapter five. Given that P. 

pacificus and its closest neighbor diverged 1-5 million years ago, the identification of an 

orthologous gene in a sister species is in itself a strong evidence for selection acting to 

preserve the protein-coding nature of an orphan gene, because in the absence of purifying 

selection most genes will fail to maintain an ORF and thus will quickly get pseudogenized. 
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Deep taxon sampling is pivotal for uncovering the evolutionary 
dynamics of genes and gene families 

After establishing the protein-coding nature of orphan genes through multiple lines of 

corroborating evidence, I tried to investigate the evolutionary dynamics that shape the 

genomes of Pristionchus nematodes. The generation of a ladder-like phylogeny around P. 

pacificus proved to be instrumental in this regard. The usefulness of the deep taxon 

sampling, with emphasis on creating a highly comparable dataset, was made obvious by 

the observation that single evolutionary events could explain the origin of up to 67% of P. 

pacificus gene families, which could be segregated into distinct Age classes. Here, I chose 

to identify the Age classes based on orthologous clustering rather than adopting a 

phylostratigraphy approach [157], because the clustering methods are able to break large 

gene families into small but densely connected clusters and hence can split the clusters 

that arose by recent duplication. Since my aim was to study the evolutionary processes that 

act on young genes irrespective of their origin, I intentionally included recently duplicated 

genes which are known to follow distinct evolutionary trajectories [141,171–175]. 

Further, the origin of most of the remaining gene families, which belong to the patchy 

clusters category, can be explained with just two evolutionary events. Additionally, this 

result also revealed that the young gene families are especially prone to gene loss and thus 

portray a patchy distribution pattern. To this end, the pairwise selection analysis showed 

that the young genes are evolutionarily less constrained and this increases their 

susceptibility towards deleterious substitutions, which can then lead to gene loss. 

Conversely, old genes were observed to be under strong purifying selection and thus are 

less likely to be lost. 

The classification of genes into Age classes also revealed that old genes are 

enriched at the autosome centers, which also portray low substitution rates. However, any 

suspicion over a link between chromosomal location and evolutionary rates was put to rest 

by comparing the ω distribution of both young and old genes in non-overlapping windows 

along each chromosome. The results clearly showed that selection acts on individual genes 

irrespective of their chromosomal location and the low substitution rates observed at the 

autosome centers are an artifact of the enrichment of old genes at these locations. A similar 

pattern was also observed with expression data, as old genes were shown to be highly 

expressed and the autosome centers retained the highest expression values. 
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Phylostratigraphy reveals that the SSOGs make the most gene rich 
phylostratum  

Although the orthologous clustering approach yielded deep insights into the evolutionary 

dynamics of Pristionchus gene families, in order to trace the evolutionary origin of P. 

pacificus orphan genes I decided to use the phylostratigraphy approach [157]. This method 

allowed me to estimate the number of genes that originated at each internal node on the 

Pristionchus phylogeny. The resulting data presented a steady rate of gene gain within the 

Pristionchus genus as the number of genes in each phylostratum and its estimated 

divergence was shown to be correlated. However, the phylostratum corresponding to the P. 

pacificus SSOGs is an exception, as it is by far the most abundant phylostratum but also 

happens to be one of the least divergent. This raises the question whether the abundance 

of SSOGs is due to erroneous gene annotations and missing gene models in sister species, 

or if it actually represents a rapidly evolving gene pool with high rates of gene gain and loss. 

 Given the widespread evidence of pervasive transcription [159], it is plausible that 

the novel gene-like sequences arise much faster than they become fixed in a population. 

Apart from suggesting that novel genes can result from pervasive transcription and 

translation [26,176], some independent studies in insects, mammals, and nematodes 

indicate that many novel genes are rapidly lost [23,69,140,156]. In my opinion, both 

processes, rapid emergence of gene-like sequences and erroneous annotations, 

substantially contribute to the abundance of SSOGs. However, since SSOGs are poorly 

supported by transcriptome data, future functional genomic or population-scale studies will 

be needed to conclusively distinguish annotation artifacts from real genes.  

Both sequence divergence and de novo gene origin contribute to the 
emergence of the orphan genes  

To prioritize the list of candidate SSOGs that was to be manually investigated, I defined 

high-confidence candidates based on gene structure and transcriptional evidence. 

Exclusion of single exon genes was one of the major contributors towards the acceptance 

of fewer genes as high-confidence candidates. Although de novo origin of single exon 

genes has been reported in both animal and plant species [69,177,178], due to limited 

proteome and transcriptome data for P. pacificus orphan genes [135], in this study, I 

emphasized on the alignment of spliced raw RNA-seq reads as the primary requirement to 
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confirm regulated expression of my candidates [179]. Under the assumption that de novo 

genes typically arise as single exon genes with subsequent intron gain, the analyzed high-

confidence SSOGs might represent an older age class of more established genes that in 

addition may also display a different composition of origin mechanisms. 

The protein homology of SSOGs with their ancestrally coding gene segments was 

rendered undetectable mainly due to two reasons. First, when the alignable region is small, 

chimeric, non-contiguous, or repeat-rich, then divergence decreases the sensitivity of 

homology detection. Formation of novel genes due to rapid evolution of repeat-rich low 

complexity sequences and chimeric genes is well documented in the literature [180–186]. In 

chapter five, I have shown examples of both chimeric and repeat-rich genes being 

classified as SSOGs. Second, when the ancestral ORF gets fully or partially replaced by an 

alternate ORF, then the process of reading frame shift eliminates sequence homology at 

the protein level [187]. Maintenance of both the ancestral and alternate ORFs within the 

same gene is called ‘overprinting’ [51,55]. In chapter five, I have shown two cases of 

potential frame shifts, the first case shows the replacement of the ancestral reading frame, 

while the second case could represent an example for overprinting. My candidate gene 

from the first case, PS312-mkr-S390-0.42-mRNA-1, can also be taken as an example of a 

mix between divergence and de novo formation, as the alternate ORF is largely non-

existent in other species. The formation of this gene results from several steps, which 

include splitting of the ancestral gene, sequence divergence, reading frame shift and de 

novo acquisition of a new exon. Thus, I argue that this gene is a product of ‘mixed origin 

mechanism’, as both divergence and de novo origin mechanisms have contributed to its 

birth. Given the limited number of cases that could be analyzed at this level of detail, I 

cannot comment on the extent to which the proposed mechanisms contribute to the 

emergence of novel genes and in future more comprehensive studies will be needed to 

quantify their contributions. 

The analysis of two de novo origin genes in chapter five revealed that in Pristionchus 

nematodes such genes can emerge from both intronic and intergenic loci. The older gene 

originated within an intronic region of a conserved gene, intronic origin of de novo genes 

has been reported in other studies [188–190]. The younger de novo gene originated from 

an intergenic region within the P. pacificus lineage. De novo origin of novel genes has been 

discovered, generally in small numbers, in many different lineages including yeast, insects, 

primates and plants [7,8,10,26,53,66–74]. To my knowledge, this is the first instance of de 

novo gene identification in nematodes. De novo genes are reported to be expressed at a 
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low level and in a tissue-restricted manner [72]. I speculate that the generation of more 

tissue and stage-specific transcriptome data will facilitate the validation of many more de 

novo genes. Moreover, in this study, a large fraction of P. pacificus SSOGs remain 

classified as Untraceable genes. I assume most de novo genes, which originated within P. 

pacificus lineage, have lost all traces of sequence similarity with other species and will thus 

fall into the Untraceable gene class. My assumption is supported by a study carried out on 

insect genomes, which concluded that the DNA corresponding to novel domains of de novo 

origin was rarely found in sister species [25]. Thus, I propose that in order to investigate de 

novo origin of more P. pacificus SSOGs, genomes of several divergent P. pacificus strains 

should be assembled [111].  

In summary, I have established that the majority of P. pacificus orphan genes are 

real protein-coding genes by using a robust bioinformatic pipeline that tests the level of 

selection acting at the protein level and by tracing the origin of most P. pacificus orphan 

genes on a ladder-like phylogeny, which was especially created for this study. This has 

facilitated the identification of a large number of TROGs, which are likely to be involved in 

lineage-specific adaptations [191]. The ladder-like phylogeny of Pristionchus nematodes 

has also allowed me to uncover the evolutionary dynamics that shape their novel gene 

families. The high phylogenetic resolution of my data allowed me to study the mechanism of 

origin for most P. pacificus SSOGs. Ultimately, I have shown that both de novo and 

divergence mechanisms play a role in the birth of new genes and in some cases both 

mechanisms can contribute collectively towards this phenomenon.  
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Chapter 7: Appendix 

Contributions 

In the following section, I list all the publications and manuscripts I have been part of during my 
doctoral research and describe in detail, as far as possible, my contribution and that of everyone 
else. 

Publications 

N Prabh, W Roeseler, H Witte, G Eberhardt, R J Sommer, C Rödelsperger: Deep taxon 
sampling reveals the evolutionary dynamics of novel gene families in the Pristionchus 
genome. Genome Research 2018 

 Contributions: N.P., R.J.S., and C.R. conceptualized the project. N.P. and C.R. 
developed the methodology. Formal analysis and visualization were the responsibility 
of N.P. Experiments were carried out by N.P., W.R., H.W., and G.E. W.R., H.W., 
G.E., and R.J.S. gathered resources. N.P. and C.R. wrote the original draft, and N.P., 
R.J.S., and C.R. helped with writing, review, and editing. C.R. supervised the project.  

M S Werner, B Sieriebriennikov, N Prabh, T Loschko, C Lanz, R J Sommer: Young genes 
have distinct gene structure, epigenetic profiles, and transcriptional regulation. 
Genome Research 2018 

 Contributions: M.S.W. and R.J.S. conceived and designed all experiments. M.S.W. 
conducted ChIP- and ATAC-seq with assistance from T.L.; M.S.W, B.S., and C.L. 
performed Iso-Seq; N.P. conducted phylogenetic analysis and prepared evolutionary 
gene category datasets; M.S.W. performed all bioinformatic analysis. M.S.W. wrote 
the manuscript with assistance from R.J.S. 

E Moreno, M Lenuzzi, C Rödelsperger, N Prabh, H Witte, W Roeseler, M Riebesell, R J 
Sommer: DAF-19/RFX controls ciliogenesis and influences oxygen-induced social 
behaviours in Pristionchus pacificus. Evolution & Development 2018 

 Contributions: N.P. did bioinformatics analysis with C.R.  

C Rödelsperger, W Roeseler, N Prabh, K Yosida, C Weiler, M Hermann, R J Sommer: 
Phylotranscriptomics of Pristionchus nematodes reveals parallel gene loss in six 
hermaphroditic lineages. Current Biology 2018 

 Contributions: Conceptualization, C.R.; Investigation W.R.; Formal Analysis, C.R.; 
Resources,M.H., C.W., N.P., and K.Y.; Writing – Original Draft, C.R.; Writing – 
Review& Editing, C.R. and R.J.S; Funding Acquisition, R.J.S. 

B Sieriebriennikov, N Prabh*, M Dardiry*, H Witte, W Roeseler, M Kieninger, C 
Rödelsperger, R J Sommer: A Developmental Switch Generating Phenotypic 
Plasticity Is Part of a Conserved Multi-gene Locus. Cell Reports 2018  * Equal 
contribution 

 Contributions: Conceptualization, B.S., N.P., M.R.K., and R.J.S.; Methodology, B.S., 
N.P., M.D., C.R., M.R.K., and R.J.S.; Formal Analysis, B.S. and N.P.; Investigation, 
B.S., N.P., M.D., H.W., and W.R.; Resources, H.W. and W.R.; Writing – Original 
Draft, B.S. and R.J.S.; Writing – Review & Editing, B.S., N.P., M.D., and R.J.S.; 
Visualization, B.S. and N.P.; Supervision, C.R. and R.J.S. 

C Rödelsperger, J M Meyer, N Prabh, C Lanz, F Bemm, R J Sommer: Single-Molecule 
Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode 
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Model Organism Pristionchus pacificus. Cell Reports 2017 

 Contributions: C.R. and R.J.S. conceived and supervised the study. J.M.M., C.L., and 
N.P. performed the experiments. C.R, N.P., and F.B. analyzed the data. C.R., N.P., 
F.B., J.M.M., and R.J.S. wrote the manuscript. 

N Prabh, C Rödelsperger: Are orphan genes protein-coding, prediction artifacts, or non-
coding RNAs?. BMC Bioinformatics 2016 

 Contributions: C.R. conceived and supervised this project. N.P. carried out the 
experiments. N.P. and C.R. analyzed the data. N.P. and C.R. wrote the manuscript. 
Both authors read and approved the final manuscript. 

P Baskaran, C Rödelsperger, N Prabh, V Serobyan, G V Markov, A Hirsekorn, C Dieterich: 
Ancient gene duplications have shaped developmental stage-specific expression in 
Pristionchus pacificus. BMC Evolutionary Biology 2015 

 Contributions: C.D. conceived and supervised the project. A.H. carried out the staging 
and RNA-seq experiments. P.B., C.R., and C.D. analyzed the data. N.P. and V.S. 
performed the qRT-PCR experiments. G.V.M. contributed to the manual curation of 
orthologous gene datasets. P.B., C.R., and C.D. wrote the manuscript. All authors 
read and approved the final version of the manuscript. 

Unpublished manuscripts 

Submitted 

N Prabh, C Rödelsperger: The diversity of orphan gene origin - illustrated.  

 Contributions: Conceptualisation, N.P. and C.R.; Methodology, N.P. ; Formal 
Analysis, N.P.; Writing – Original Draft, N.P.; Writing – Review & Editing, N.P. and 
C.R.; Visualisation, N.P.; Supervision, C.R. 

In preparation 
N Prabh, C Rödelsperger: Phylogenomic analysis of P. pacificus nematodes using draft 

genomes of six new strains. 

 Contributions: N.P. generated all data. C.R. is supervising the project. 

N Prabh, H Witte, E Moreno, J Lightfoot, M Dardiry, C Rödelsperger, R J Sommer: Tracing 
the origin of novel P. pacificus genes. 

 Contributions: N.P., C.R. and R.S. conceived the project. N.P., H.W., E.M. J.L., M.D. 
and R.J.S perform the experiments, N.P. has done and will do all data analysis, N.P. 
will write the manuscript with C.R. and R.J.S., R.J.S. is supervising the project. 
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Supplemental Figures 

 
Supplemental Figure S4.1: (a-j) Gene expression levels are correlated with gene age . Transcriptome 
expression values for P. pacificus genes from different Age classes in all 10 RNA seq samples. (k) Heat map 
of FDR corrected P-values of pairwise Wilcoxon ranksum test for expression values between subsequent age 
classes in all samples.  
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Supplemental Figure S4.2: On y-axis we have the P-values for Wilcoxon ranksum test for dS, dN and ω 
distributions between P. pacificus and P. exspectatus orthologs of Age class ix and Age class i-viii mapped on 
the chromosomes of P. pacificus, in a non-overlapping window of 5 Mb. Here, we see that both dN and ω 
show significant difference between young and old genes in multiple windows and dS is least different. 
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Figure S5.1: Pristionchus orphan gene identification. (a) Cartoon representing the distribution of 
nematode species with assembled genomes on Wormbase till 2017. The two Pristionchus species are labeled 
in black. (b) The total number of protein-coding genes for the eight Pristionchus species and the two non-
pristionchus diplogastrid species is shown, followed by the fraction of orphan and conserved genes as 
horizontally stacked bars. The box shows the different blast methods and databases used to identify the 
conserved genes in panel a and b. Nematode proteins do not include proteins from the diplogastrid family 
nematodes (c) Number of conserved genes identified using the additional filtering steps. (d) TROGs and 
SSOGs as a fraction of orphan genes in each Pristionchus species. The box shows the different blast 
methods and databases used.  
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Figure S5.2: Novel gene formation by duplication and insertion of exonic sequences into an intron. (a) 
This IGV screenshot shows a 2.3 kb region on scaffold198 of the P. pacificus genome. Different tracks denote 
gene annotations, coverage profiles and alignments of various RNA-seq samples. The P. pacificus candidate 
SSOG PS312-mkr-S198-1.6-mRNA-1 is located within the intron of another gene (PS312-mkr-S198-1.17-
mRNA-1, host gene). The same intron also contains a second transcriptionally active region (around position 
156,600 bp) which presumably represents a short isoform of the host gene. (b) This screenshot shows the 
orthologous intron in P. exspectatus that was identified by exonerate alignment of the host gene. The genomic 
span is roughly 800 bp less compared with the P. pacificus region suggesting one or multiple insertions of a 
novel sequences in the P. pacificus lineage which gave rise to the candidate SSOG. (c) The genomic span 
carrying our candidate SSOG is roughly equal to the difference in the intron size between P. pacificus and P. 
exspectatus. Alignment of strand-specific raw reads shows that many spliced reads cover the two coding 
exons in the correct orientation. 
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Figure S5.3: Intronic de novo gene. (a) This IGV screenshot shows a 1.1 kb region on scaffold23 of the P. 
pacificus genome harboring the candidate de novo SSOG, PS312-mkr-S23-6.60-mRNA-1. The candidate 
SSOG is within the intron of another gene (PS312-mkr-S23-6.103-mRNA-1, host gene). Strand-specific RNA-
seq reads confirm that the gene is predicted in the correct orientation. Raw reads spanning the two coding 
exons are not found. The ends of spliced reads exceeding the left boundary of the displayed region align to 
the next intron and form the 5’UTR of the candidate SSOG. (b, c) The length of corresponding introns from P. 
exspectatus (b) and P. arcanus (c) genomes are comparable with the P. pacificus intron. The spliced 
alignment of our candidate genes onto the genome of sister species allows extraction of corresponding ORFs 
from these species. Except for a single unspliced read in P. arcanus, no transcriptional evidence is found in 
the two sister species.  
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Figure S5.4: Intergenic de novo gene. (a) This IGV screenshot shows a 614bp region on scaffold356 of the 
P. pacificus genome harboring the candidate SSOG PS312-man-S356-0.37-mRNA-1. (b) Spliced alignment 
of our SSOG on the P. exspectatus genome shows no ORF exists in the sister species and raw RNA-seq 
reads do not align at this locus. (c) The neighboring P. exspectatus genes are syntenic with other P. pacificus 
genes mapped to the P. exspectatus genome and our candidate has emerged within this syntenic block. 
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Supplemental Tables 

Table S3.1 – Primer pairs for the candidate genes 
Gene Identifier Primer Identifier Primer sequence 

Contig1-snapTAU.32 C1.32F1 TCTGTCCAGAGGAACGAATGGGATC 
  C1.32R1 TGCACACTAACAAGTCTTCCCTCAG 
  C1.32F2 CAGGAAAGATCGTCAAACAGGACCA 
  C1.32R2 TGATTTCTCTTCAGGAGACACTCAG 

Contig115-snapTAU.38 C115.38F1 GTCAGAGTGGAAATCAGTGCAACTG 
  C115.38R1 TCACTTCCGTGTGTACGATTGACTT 
  C115.38F2 ATGCCGAGCACAGAACAAATGCTGC 
  C115.38R2 ACCGAGATTGCGGAAAACAGCGCAA 

Contig159-snapTAU.23 C159.23F1 TTCATCGCTGACGATCACAGGCACA 
  C159.23R1 AGATCATCATGCAGCCCTCCTTTGC 
  C159.23F2 ATGCTCAAACTCCTCGTCTTCACCA 
  C159.23R2 ACGATTTGACTGCGGGCTCTGCCTT 

Contig162-snapTAU.8 C162.8F1 ATCAATGGCAATAAATCCGCTTACG 
  C162.8R1 ATAAAGCCGTGAAGGTAATTCTCAT 
  C162.8F2 AATAAATCCGCTTACGAACCAATCG 
  C162.8R2 GGTAATTCTCATATTTGATGATTCC 

Contig163-snapTAU.25 C163.25F1 GCAATCCCTCTACTGGCAGAATCTC 
  C163.25R1 ATTGCATGGAGAGTACGTATCCGAC 
  C163.25F2 AACTATGAAGGCGGTGATTCATTGG 
  C163.25R2 GTTCGTTGAAAATCCACACTTTTCG 

Contig27-snapTAU.5 C27.5F1 ACAAGAAGGCATACATGATGTACCC 
  C27.5R1 AGTAGTCGAGGTGATGCTGTCAGGA 
  C27.5F2 AACTGCATCTCAGACGCATCGGACA 
  C27.5R2 TTTGACCTTGAACGCTTTCCTCCCG 

Contig51-snapTAU.126 C51.126F1 ATGCTTGCGTGCATTGGGATCATCG 
  C51.126R1 TAGCTCATTGAGATCAATGTCTTCG 
  C51.126F2 TGACCTTCCTCGGCGGATGTTCCA 
  C51.126R2 AGTTCACTTAGGCTCTCAAATGAGG 

Contig57-snapTAU.76 C57.76F1 AGGAGATGATCGATAAACACAAAGCC 
  C57.76R1 TCTTCTTCTGCAGCTGATTTGCCAC 
  C57.76F2 TCGACAAGTGCTTCAAAGCCGAGCT 
  C57.76R2 AAGATCCTCAAACTTCTCGCTGTG 

Contig62-snapTAU.17 C62.76F1 TGCAAGTTGCACATCTCAACCACCT 
  C62.76R1 ACACTTGGTTTCTTGAATGAGCTAAC 
  C62.76F2 TGGGGATATCAAGTGCAAAGGCACTG 
  C62.76R2 TTGGCTGGTTGGCTCTCGAATACTG 

Contig67-snapTAU.30 C67.30F1 ATTCGACGTCTACTCTCACGCAACA 
  C67.30R1 ATACGAAGTACAACATCACCTTGAG 
  C67.30F2 TTCCGGCACACTTCTCATCATTCTC 
  C67.30R2 AAATGAACGAGTACAACAGTAAACC 

Contig68-snapTAU.138 C68.138F1 ACTGATTGCTGCTCATACAGATCGA 
  C68.138R1 ACTGAGGAGCATCGTAAGCTGACTC 
  C68.138F2 TCTTATTGGCTATACTGATTGCTGC 
  C68.138R2 ATCCACTTTCCTGTCGAATTGACGC 
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Supplemental Table S4.1: The table gives an overview about the genome annotations in all 10 species. The 
first two columns indicate the number of RNA sequencing experiments and the size of the resulting 
transcriptome assembly (including isoforms). The last three columns show the number of final gene 
annotations along with their total exon and intron length. 

Species 
RNA 

sequencing 
experiments 

Assembled 
Transcriptome 

Size (Mb) 

Gene 
Count 

Exon 
Length 
(Mb) 

Intron 
Length (Mb) 

P. pacificus 6 44 21,311 30 84 

P. exspectatus 6 64 31,172 39 90 

P. arcanus 6 71 35,909 45 112 

P. maxplancki 1 51 31,765 43 109 

P. japonicus 1 49 31,996 40 93 

P. mayeri 1 62 36,554 37 114 

P. 
entomophagus 1 49 37,279 38 107 

P. fissidentatus 1 45 25,634 30 110 

P. giblindavisi 1 36 35,770 30 91 

M. japonica 1 60 24,971 26 99 
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