
Real-Time Awareness Scheduling for Multimedia
Big Data Oriented In-Memory Computing

著者 XU Jianwen, OTA Kaoru, DONG Mianxiong
journal or
publication title

IEEE Internet of Things Journal

volume 5
number 5
page range 3464-3473
year 2018-02-06
URL http://hdl.handle.net/10258/00009930

doi: info:doi/10.1109/JIOT.2018.2802913

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Muroran-IT Academic Resource Archive

https://core.ac.uk/display/222585361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2018 1

Real-Time Awareness Scheduling for Multimedia
Big Data Oriented In-Memory Computing

Jianwen Xu, Student Member, IEEE, Kaoru Ota, Member, IEEE, and Mianxiong Dong, Member, IEEE

Abstract—As one of the most striking research hotspots in
both academia and industry, Internet of Things (IoT) has been
constantly changing our daily life by joining together nearly all
we can imagine. From home furnishings and vehicles to urban
facilities, all these smart things need powerful managing and
processing capabilities to deal with mass multimedia data in
different content forms such as images, audios, videos. Nowadays,
since Moore’s Law is no longer applicable, conventional thinking
may not be adequate in facing the explosive growing amount
of data. Hence, in this paper we adopt the idea of in-memory
processing to solve the problem of real-time multimedia big
data computing in IoT. We apply closed-loop feedback in the
scheduling method design to integrate in-memory storages of
all devices within a 3-tier network structure. In addition, we
consider the respective conditions of different real-time required
levels and content forms. The analysis results show that our
scheduling method can achieve better workload allocation with
less latency in comparison of existing methods.

Index Terms—Internet of Things, Multimedia Big Data,
Scheduling Method, In-Memory Processing.

I. INTRODUCTION

S INCE the first Internet-connected device, a Coke machine
at Carnegie Mellon University came into our view in 1982,

the concept of a network made up of smart devices, Internet
of Things (IoT) has gone through 35 years of development.
Today we are already enjoying the comforts and conveniences
brought by smart things from wearable devices, home fur-
nishings to urban facilities. And in the future, even the Earth
may experience the smartness that understanding the health
conditions of our planet is just like the daily check on an
Apple Watch 3.

To achieve interconnection from city scale to global and
obtain the overall quantification and assessment such as traffic
conditions, air quality, population distribution and ecological
status, massive multimedia data collected by countless sensors
and actuators in different content forms (text, images, audio
and video) with strict real-time requirements put enormous
pressure on transmission and processing. That is to say, the
explosively growing multimedia big data needs IoT architec-
tures to handle the surge of devices and be scalable enough
to guarantee stable running.

Regarded as a recommended network standard of IoT,
6LoWPAN (IPv6 over Low power Wireless Personal Area
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Networks) defined by Internet Research Task Force (IRTF)
provides many technical standards aiming to apply the Internet
Protocol into all wireless devices [1]. Even the smallest and
low-power ones can participate in network exchange without
obstacles, which can well benefit IoT networking. Derived
from cloud computing, fog computing uses collaborative mul-
titudes of end-user clients and edge devices to implement
large-scale distributed processing and management, which also
support the development of IoT [2]. Together with other
frontier technologies in fighting the challenge of brought by
data amount, we are still looking for more possibilities outside
of conventional thinking since there exists no guarantee that
what we have always can meet what we want.

Fig. 1. Memory Hierarchy

In-memory, generally the RAM (Random Access Memory)
inside a computer, stands for high-speed operation capability
compared with NVM (Non-Volatile Memory). Used to be lim-
ited by volumes, sensitivities, fault-tolerance and consistency,
in-memory system has to rely on storage and management
capacities provided by hard disk. Generally computers input
data from peripheral devices and store in hard disks, then read
into RAM and wait for operations from processor. In-memory
here plays the role of assisting upper caches and processors
in quick addressing rather than mass storage taken by hard
disks, which means high latency can be generated from the
speed gaps between different levels in memory hierarchy as
shown in Fig. 1.
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In-memory processing is still a developing technology for
processing data in in-memory storage or database. The concept
first appears in the field of commercial database systems such
as Oracle, IBM DB2 and Microsoft SQL Server which aims
to meet business intelligence (BI) needs including real-time
analyzing, faster reporting and business decision making. The
last decade has witnessed the rapid development of multi-core
processors & larger and larger amounts of main memory with
decreasing cost, making it available to build an entire system
on in-memory. In a word, data processing based on in-memory
rather than hard disk can be achieved in the near future.

According to the demand of multimedia big data computing
in IoT, the real-time needs can just be satisfied by faster in-
memory processing. Its low volume and consistency issues
also are able to be alleviated through distributed processing
from edge devices and pointed scheduling method.

Inspired by the advantages and applicable conditions of in-
memory processing, our work focuses on how to maximize the
utilization of finite in-memory processing resources and reduce
latency to reach the real-time target as close as possible. We
propose an scheduling method based on closed-loop feedback
in workload allocation to integrate in-memory storages of all
devices in the network structure. The main contributions are
as follows.
• Formulate a mathematical model based on a 3-tier IoT

network structure including multimedia wireless sensors,
edge devices and central servers;

• Propose a closed-loop feedback scheduling method for
integrating in-memory storages of all edge devices and
servers and make rational workload allocation in different
sensor numbers and simulation time;

• Choose total latency and workload allocation proportion
as 2 metrics for evaluating the performances of our
scheduling method and two existing methods, one that
transmitting all raw data collected by wireless sensors
to central servers and the other one depending on edge
devices;

• Consider packets in different real-time levels and content
forms to analyze the actual time cost from latency results.

This paper is divided by six sections to systematically
elaborate our thoughts on in-memory scheduling. Section 2 in-
troduces related works in interdisciplinary field of multimedia
big data, IoT and in-memory processing. Section 3 formulates
the mathematical model of a 3-tier IoT network structure
and describes the problems to solve. Section 4 proposes the
scheduling method making use of in-memory storages of both
central and edge devices. Section 5 carries out simulation
experiments and analyzes the algorithm performance of in-
memory method and two existing methods. Section 6 summa-
rizes all the work.

II. RELATED WORK

Till now, the concept of Internet of Things already exceeds
the scope of connecting machines and devices. A convergence
of multiple technologies from embedded system, big data to
artificial intelligence, real-time analytics have cooperated with
IoT that leads to tremendous changes in industrial production
and our daily life.

As a cornerstone of IoT, multimedia big data combines the
advantages of relatively mature distributed processing tech-
nology and rich multimedia analysis theories and information
resources, which attracts worldwide attention in scientific
research fields. Financially sponsored by IEEE Computer So-
ciety, the 1st International Conference on Multimedia Big Data
(BigMM) took place in Beijing, China. Since then multimedia
big data has gradually evolved and become a new independent
research direction, with more and more researches focusing on
it [4].

Multimedia big data includes researches from basic theories
and models for multimedia computing [5], energy efficient
transmission [6], multimedia content analysis [7] to security
and privacy considerations [8]. There are also many interdis-
ciplinary studies such as health care and data visualization
combining technologies from multimedia big data. Zhang et
al. proposed a health cyber-physical system based on cloud
computing and big data [9]. Ota et al. summed up deep leaning
researches in mobile multimedia computing [10]. Ahmad et al.
illustrated a scale free network visualization in smartphone
based multimedia environment [11]. Sun et al. proposed a
trust-based framework for fault tolerant wireless multimedia
sensor networks [12] [13]. Li et al. adopted GPU-accelerated
cloud computing in multimedia processing [14] [15]. Lee et
al. looked into the prospect of service innovation and smart
analytics in multimedia big data under the background of the
4th Generation Industrial Revolution (Industry 4.0) [16].

On the contrary of out-memory like Hard Disk Drive
(HDD), flash memory and Solid-State Drive (SSD), in-
memory mainly refers to volatile Random Access Mem-
ory (RAM) with almost the same amount of time for data
reading/writing regardless of physical location. Although still
limited by fault-tolerance and consistent power supply, the last
decade has witnessed rapidly decreasing cost of main memory
and growing demand of high-speed computing which makes it
possible for in-memory processing to take place, turning RAM
into the new disk [3] [17].

Inspired by many interdisciplinary studies, we adopt new
idea in this paper of letting in-memory take on the workload
of disk storage to differ from the aforementioned works.
Researches of edge computing in the past mostly focused on
how to efficiently utilize the computing resources among edge
devices while we try to make use of the faster I/O speed but
smaller volume in-memory processing and storage to further
design a lightweight scheduling strategy to satisfy demands
of IoT big data. That is, cut the whole computing task into
more pieces and hand over to suitable devices which are idle
or about to finish. Moreover, we also consider to minimize the
time cost on waiting in order caused by small volume.

III. PROBLEM FORMULATION

In this section, we formulate the mathematical model of
a 3-tier IoT network system aiming at processing the mass
data collected by multimedia wireless sensors, make necessary
assumptions about conditions of the current scenario and
explain the chosen performance metrics.
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Fig. 2. A 3-tier IoT network structure

A. System Outline

As shown in Fig. 2, from outside to inside a 3-tier network
model can be described as follows.
• Sensor Tier: a tier including all-propose wireless general-

ized multimedia wireless sensors (cameras, thermometers,
motion sensors, air quality sensors, GPS compasses, etc)
for collecting raw data for processing;

• Edge Tier: devices in this tier include routers, switches,
integrated access devices (IADs) and etc. which all can be
used in edge processing besides their original functions;

• Server Tier: in conventional method prior to the advent
of edge computing, collected data are all delivered to this
tier, and here we define it as the tier of data storage &
management or data center.

In this model design, both edge devices and servers have
the capacities to process images, audios and videos received
from Sensor Tier. So as to deal with the multimedia big data
with high demand on real-time, a high performance scheduling
method on finite computing resource can help solving this
problem to a great extent.

The two existing ideas respectively puts workload on servers
and edge devices, the central method and edge method. In
contrast with conventional central method, transferring the pro-
cessing task to edge devices near the sensors can significantly
cut down workload on central server and improve overall
efficiency especially in large-scale distributed network infras-
tructure. Moreover, mass data that were originally centralized
in servers are now being assigned to a great deal of edge
nodes which may lessen communication bandwidths between
in-tier devices (the devices of the same tier) and decrease
the total data transmission [18]. However, edge computing
still have to face the problem of actual deployment since
available devices are very limited and there still exists room
for further improvement. After learning the advantages of in-
memory processing, we decide to apply it in reducing the total
latency to approach the target of real-time multimedia big data
analysis in Fig. 2.

B. Model Setup

For the purpose of achieving a low latency scheduling
method based on in-memory processing in the designed 3-
tier network system, some condition assumptions and model

setups are needed to standardize and simplify the actual supply
and demand of the current scenario.

Wireless sensors are already a familiar part of our daily life.
For instance, inside almost omnipotent mobile phones that still
are being updated rapidly there are many embedded sensors
like accelerometers, digital compasses, gyroscopes, etc [19]. It
is the same with sensors, wearable devices and vehicles, which
are moving in different directions and speeds. To consider
more actual details and fit all situations, we apply the Random
Waypoint (RWP) model into setup of node distribution of
mobile sensors [20].

In a typical random waypoint model design, we have to set
intervals for moving speed V ([vmov,min, vmov,max]), moving
time T ([tmov,min, tmov,max]), pause time ([tpau,min, tpau,max])
and moving direction Θ ([θmin, θmax]) and then obtain the
consecutive movements. Distance and position modification
of a simple example yield

dStD = |(xS, yS), (xD, yD)| = vmovtmov

xStD = |xS − xD | = dStD/sin θ
yStD = |yS − yD | = dStD/cos θ
vmov ∈ V, tmov ∈ T, θ ∈ Θ

(1)

We divide all sensors into 4 kinds according to different
content forms: image, audio, video and interactive content.
Each kind of sensors may own its packet size limit and priority
level of real-time. Interactive content packets are always level
1 which will be forwarded first, packets of the other three
kinds may be marked as level 2 or 3 and take turns. Positions
of devices in Edge Tier and Server Tier are fixed.

C. Performance Metrics

To test the performance of our proposed scheduling method
using in-memory processing and meet the demand of real-time
as much as possible, we choose total latency and resource
allocation ratio as 2 metrics.

1) Total Latency: There are many latencies/delays in dif-
ferent kinds of network systems. In our model the total latency
(Ltot (t)) means the response time between data collection and
processing which include 2 parts, end-to-end latency (Lend(t)),
processing latency (Lproc(t)). t stands for the time-slot of the
current number of packets in calculation [21].

Ltot (t) = Lend(t) + Lproc(t) (2)

The end-to-end latency stands for the time taken for packets
to travel across a network from source to destination. Here
we use Lend(t) to denote the across-tier (data transmission
between different tiers) time cost which is made up of 2 parts,
transmission delay (Dtran) and propagation delay (Dprop).

Lend(t) =
n∑
i

(Dtran
t (i) + Dprop

t (i))

=

n∑
i

(Zpkt (i)/Rbit + lend(i)/vprop)
(3)

As shown in Equation (3), there are n packets generated
in t with size of Zpkt in bytes and physical distances lend .
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Rbit and vprop mean the bit rate and wave propagation
speed, respectively. As a result, Dtran only cares about the
packet length and has nothing to do with how far it will be
transmitted. On the contrary, Dprop depends on travel distance
and communication medium such as air (wireless, speed of
light, c), copper wire (generally ranges from 0.59c to 0.77c).
From Sensor Tier to Edge Tier and Edge Tier to Server Tier
there are Lend

s,e and Lend
e,c , which means end-to-end latency of

packets processed in Server Tier includes both segments.
For Lproc(t), we also consider 2 aspects, processing de-

lay measured from maximum transfer rate (MTR) for CPU
addressing and queue time caused by finite memory (in our
model, read from in-memory or disk). In consideration of the
real-time level, packets form in prior level can take the lead
in transmitting and processing within the time-slot t.

Lproc(t) =

Zpkt
proc(t)

t∑
j=t−τ

n∑
i=1

Zpkt
wat ( j)

vMTR

(4)

where Zpkt
proc(t) and Zpkt

wat (t) respectively represent the total size
of n packets under processing within time-slot τ and waiting
in order.

2) Workload Allocation Proportion: Besides transmission
latency and processing latency, we also pursue rational work-
load allocation on each device in the same tier and overall
proportion of Edge Tier and Server Tier.

Pedge(t) =
Zpkt
edge
(t)

Zpkt
edge
(t) + Zpkt

ser (t)
× 100%

Pser (t) =
Zpkt
ser (t)

Zpkt
edge
(t) + Zpkt

ser (t)
× 100%

(5)

Pedge(t) and Pper (t) stand for workload proportions of in-
memory scheduling method by percentages after summing up
all packets in bytes. We are going to compare the simulation
results according to amount of data in unit time and time-slot.

IV. SCHEDULING METHOD

In this section, we propose a closed-loop feedback based
scheduling method for applying in-memory processing to
solve the real-time aware multimedia big data problem.

A. Closed-Loop Feedback Scheduling

As shown in Figure. 3, we regard one central server and
edge devices connected to it as two systems. When the central
server in System 1 faces multimedia data input exceeding the
current processing capacity, it may send instructions back to
all lower edge devices to raise the proportion of workload
distribution later. The relatively decentralized System 2 may
also have to deal with the balance of utilization rate on
computing resource of each edge device besides the overall
capacity. Input and Output respectively stands for the work-
load allocation before and after a closed-loop feedback, which
means our target is to schedule the succeeding transmission

Fig. 3. A Closed-Loop Feedback Based 2-System Model

rather than causing extra end-to-end latency by returning
multimedia data.

Zpkt
total
(t) = Zpkt

1 (t)︸  ︷︷  ︸
Input 1

+

n∑
i=1

Zpkt
2,i (t)︸       ︷︷       ︸

Input 2

(6)

As shown in Equation (6), Input 1 represents the all the
packets sent upstream to Server Tier while Input 2 consists
of packets allocated to each edge devices. Zpkt

1 (t) and Zpkt
2,i (t)

are total sizes of packets summed up. n stands for the number
of overloaded edge devices.

Output 1 = (1 −
Zpkt

1 (t) − pCproc
1

Cproc
1

) · Zpkt ′
1 (t) + Zsup

1

=
(p + 1)Cproc

1 − Zpkt
1 (t)

Cproc
1

· Zpkt ′
1 (t) + Zsup

1

(7)

Output 2 =
n∑
i=1
{[1 −

Zpkt
2,i (t) − qiC

proc
2,i

Cproc
2,i

] · Zpkt ′
2,i (t)} + Zsup

2

=

n∑
i=1
[
(qi + 1)Cproc

2 − Zpkt
2,i (t)

Cproc
2

· Zpkt ′
2,i (t)] + Zsup

2

(8)
In Equation (7) and (8), Cproc

1 and Cproc
2,i respectively

denotes processing capacity of single device in two systems.
p and qi are integers to make sure that both Input 1 and Input
2 are positive which keeps the feedback loop going.{

Zpkt
1 (t) − pCproc

1 ≥ 0

Zpkt
1 (t) − (p + 1)Cproc

1 < 0
(9)

{
Zpkt

2,i (t) − qiC
proc
2,i ≥ 0

Zpkt
2,i (t) − (qi + 1)Cproc

2,i < 0
(10)

The prime symbol means the Input of next t time-slot. Zsup
1

and Zsup
2 are supplements of packet size generated by current

scheduling in time-slot t which yield
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Zsup
1 + Zsup

2 =
Zpkt

1 (t) − Cproc
1

Cproc
1

Zpkt ′
1 (t)

+

n∑
i=1
[

Zpkt
2,i (t) − Cproc

2,i

Cproc
2,i

Zpkt ′
2,i (t)]

(11)

We prefer the cut packets from Input of next time-slot t
after scheduling be reallocated to two systems according to
processing capacities of devices.

Zsup
1 =

Cproc
1

Cproc
1 +

N∑
i=1

Cproc
2,i

{
Zpkt

1 (t) − Cproc
1

Cproc
1

Zpkt ′
1 (t)

+

n∑
i=1
[

Zpkt
2,i (t) − Cproc

2,i

Cproc
2,i

Zpkt ′
2,i (t)]}

(12)

Zsup
2 =

N∑
i=1

Cproc
2,i

Cproc
1 +

N∑
i=1

Cproc
2,i

{
Zpkt

1 (t) − Cproc
1

Cproc
1

Zpkt ′
1 (t)

+

n∑
i=1
[

Zpkt
2,i (t) − Cproc

2,i

Cproc
2,i

Zpkt ′
2,i (t)]}

(13)

where N represents the number of all devices in System 2.
Since number of packets waiting for processing in front of

System 1 and System 2 is not the same, workload allocation
after last adjustment on data stream may be affected in various
degrees. That is, the scheduling work can not be done at once,
we need to continually approach the steady state by closed-
loop feedback.

B. Real-Time Level Priority Processing Algorithm

In case of finite computing resource and our different de-
mands on multimedia content forms and contents themselves,
the priority of data transmission also may bring variations to
latency calculation.

As shown in Algorithm 1, when multimedia mass data flood
in and overpass the processing capacity of edge devices &
servers at once. Packet set Spkt represents the data size that
can be handled currently according to the hardware indexes
of devices. Before grouping, line 4-12 sort all packets in the
order of real-time levels (RTlv) and size in bytes (Zpkt ), that
is, packets with higher real-time level and smaller size can
obtain priority among all the others in time-slot t.

Then we consider the quantified analysis of the proposed
framework and algorithm in terms of complexity. In this paper
we design a closed-loop feedback scheduling method and a
real-time level priority processing algorithm to help solve the
problem of multimedia big data in IoT. First we assume that
there are N edge devices in Edge Tier, in which n ones
are overloaded in current time-slot (n ≤ N). In the worst
case, which means we have to reschedule computing resources
in all edge devices (n = N), as a result it takes O(Output

Algorithm 1 RPPA: RTL Priority Processing Algorithm

Input: Pkt
i , i ∈ [1, M] ←all M packets sent in time-slot t

Output: Spkt
i , i ∈ [1,m] ←all m sets of packets to be

processed in order
1: Zpkt ←packet size in bytes
2: RTlv ←real-time level of data packet
3: Cproc ←processing capacity of device
4: for i = 2 to M do
5: for j = M to i do
6: if Pkt

j .RTlv < Pkt
j−1.RTlv then

7: swap Pkt
j and Pkt

j−1
8: else if Pkt

j .RTlv = Pkt
j−1.RTlv && Pkt

j .Zpkt <

Pkt
j−1.Zpkt then

9: swap Pkt
j and Pkt

j−1
10: end if
11: end for
12: end for
13: for i = 1 to m do
14: while

∑
Pkt
x ≤ Cproc do

15: put the front x Pkt into Spkt
i

16: end while
17: end for

1)+O(Output 2)=O(1+ |N + 1|2)+O(|N | + |N + 1|2)=O(|N |2).
Second to respectively sort the packets in different types,
suppose that there are M packets being sent and m sets of
packets to be processed in order in the current time-slot, it
takes O(|M × (M − 1)/2| + |m|) to finish the whole procedure.
Thus the overall time complexity is O(|N |2 + |M |2 + |m|).

V. SIMULATION AND ANALYSIS

In this section, we carry out experimental simulations to
validate the performance of proposed scheduling method and
compare with the other two existing methods on network
latencies and workload allocation proportion.

The experimental scenario is a 10 km2 square open area in
urban city, and we set up 2,000 to 20,000 wireless multimedia
sensors which are moving continuously under the RWP model
after each packet delivery. There are 150 routers as edge
devices and three central servers. We carry out simulation
experiments by taking time-slots for packets sending and
processing. In a single time-slot t, the number of packets
generated by each sensor obeys a Poisson distribution.

Table I gives details of experiment setups, including bit rates
& wave propagation speeds of transmission part and device
settings. We carry out 10 time-slots for experiment and the
simulation environment is MATLAB R2016a.

A. Total Latencies of Three Methods

Fig. 4 gives the simulation results of end-to-end latencies,
processing latencies and their totals. On the whole, with the
increase in sensor numbers which means more packets are
generated in the same time, all three latencies show linear
growth patterns.

In Fig. 4a, when there are only 2,000 sensors in Sensor
Tier, end-to-end latencies in three methods stay the same.
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Fig. 4. Latencies in Three Methods of Varied Sensor Numbers

TABLE I
EXPERIMENT SETUPS

Bit Rate of Transmission

Wireless (802.11ad) 6.8 Gbit/s

Ethernet 10 Gbit/s

Wave Propagation Speed of Transmission

Wireless (air) c (speed of light)

Ethernet (thick coax) 0.77 c

Device Settings

MTR of Disk (SATA3) 750 MB/s

MTR of In-Memory (DDR3) 6.4 GB/s

Disk Volume of Edge 256 MB

Disk Volume of Server 500 GB

In-Memory Volume of Edge 16 MB

In-Memory Volume of Server 4 GB

Then as more sensors join in, the gap between Center (blue
broken line) and Edge (Red broken line) appears. Based on
Fig. 2, multimedia packets being processed in Server Tier
may have to travel longer and be forwarded more hops than
those in Edge Tier, resulting in higher latencies on propagation
and transmission. When the sensor number reaches 20,000,
packets generated take about 20% time on transmission in
Central Method than Edge Method. By virtue of both Edge
Tier and Server Tier, multimedia packets in our proposed In-
Memory Method can choose to give their workload to either
tier according to scheduling strategies on reducing the total
latencies, workload allocation on 2 tiers and requirements
from real-time levels & content forms. End-to-end latencies
of In-Memory Method (green broken line) stay between
Central and Edge and closer to the former one which means
our method seems to rely more on Server Tier. Some more
experiment results are needed to help supporting this inference.

In Fig. 4b, the other main part of total latency, response
time intervals in packet processing procedure show different
patterns to Fig. 4a. Firstly we also consider the comparison
between Central and Edge, latencies of packet processing on
Server Tier cost more time than Edge Tier, which means in
the current 3-tier network model, edge computing does help

reducing time while facing mass multimedia data compared
to conventional way. Besides, at the minimum and maxi-
mum number of sensors, Edge comes closer to Central, i.e.
broken line of Central owns higher linearity degree than
Edge. Consequently, Edge method that multiple distributed
devices sharing workload behaves more sensitive to amount
of data (sensor number) in a unit time. Although taking the
advantage of locality and low risk on network congestion,
relatively lower processing latencies can be achieved compared
to Central, Edge method still faces unbalanced workload
allocation among edge devices in-tier especially when amount
of data is too much or too little. In-Memory Method aims to
combine the advantages of the other two existing methods
to approach the real-time target as well as rational work-
load allocation to maintain stable performance under different
levels of workload. From Fig. 4b, In-Memory gets very
low in numerical value and growth rate which means under
ideal conditions in the current model computing based on
in-memory rather than disk can greatly reduce time cost on
processing part.

In summary, the total latencies of three methods show
smooth linear relationships between sensor numbers and la-
tency values. Taking account of the analysis above, our pro-
posed scheduling method using in-memory processing can
further reduce time cost in the 3-tier network model shown in
Fig. 2. The great advantages on maximum transmission rate
of in-memory reserve large space for continuous growth of
multimedia big data.

B. Workload Allocation Proportion of In-Memory Method

As the other target besides total latency, we also focus
on how workload are assigned to each device in Edge Tier
and Sensor Tier. 2 subfigures in Fig. 5 display the workload
allocation results of In-Memory method by percentages.

First in Fig. 5a, the same as Fig. 4, the proportion of
workload on Server Tier and Edge Tier of different sensor
numbers shows the task allocation between servers and edge
devices facing increase of data amount. Blue and red bars stand
for percentage results of 2 tiers, respectively. When there are
not many multimedia sensors, we assign most workload to
Edge Tier since edge can well deal with small quantity of
data (even 100 % by Edge for 2,000 sensors). Then as the
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Fig. 5. Workload Allocation Proportion by Tier 2&3 in In-Memory Method

number rises, proportion of Edge rapidly decrease lower to
Server . Combined with analysis of Fig. 4a, our scheduling
method depends more on Server Tier according to different
current computing capacities. Moreover, when amount of data
reaches another magnitude, about 16,000 sensors as packet
senders, the situation has been reversed. Proportion of Edge
increases like a rebound after reaching the bottom which even
shows that our method owns some scalability.

Second in Fig. 5a, we change the x axis to time-slots to
analyze and verify the closed-loop feedback design shown
in Fig. 3. Percentage values of 2 tiers do not experience
much violent change like in Fig. 5a. After a small peak from
2,000 to 4,000 sensors, the ratio of Server and Edge is
gradually stabilized to 4:1. Although still fluctuating within a
narrow range, under the function of closed-loop feedback, our
proposed scheduling method does play the role of rationally
allocating workload to infinite computing resources as well as
keeping certain stability in the 3-tier network model.

C. Latencies in consideration of Real-Time Levels and Con-
tent Forms

In order to be competent in real-time multimedia big data
computing in IoT network infrastructure, we also have to
consider the conditions of different content forms and time
requirements. For example, in social network service (SNS)
there exist many interactive contents which require service
users’ active engagement and get real-time, hyper-relevant
returns they immediately care about. As a result, we can

TABLE II
CONTENT FORMS OF MULTIMEDIA PACKETS

Content Form Packet Size Scope (byte) Real-Time Lv.

image 34 ∼ 1024 2 or 3

audio 512 ∼ 1536 2 or 3

video 1024 ∼ 2304 2 or 3

interactive content 34 ∼ 2304 1
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Fig. 6. Latencies of Three Real-Time Levels in In-Memory Method

give interactive contents a higher real-time level for priority
transmission/processing to ensure the quality of service (QoS).

As shown in Table II, we set 4 content forms in minimum
size of 34 composed by frame check sequence (FCS) &
header and maximum size of 2304 as maximum transmission
unit (MTU) in IEEE 802.11 standards. Then we use a real-
time level to make distinctions among varied requirements on
different contents and evaluate the latency performance in the
current network model with different transmission priorities
and multimedia content forms.

In Fig. 6, we add up latencies of all packets in the same
real-time level respectively with the increase of sensor number
and time-slot. Now that the packet numbers being generated
in each real-time level (so does each content form) are on the
basis of Poisson distribution whose latency results can not be
compared directly, we adopt the total packet sizes to get the
time cost per gigabyte (GB).

First in Fig. 6a, with more sensors involved in simulation,
latencies of three real-time levels show varied patterns. Lv.2
(red) and Lv.3 (green) are marked upward trends and until



INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2018 8

2 4 6 8 10 12 14 16 18 20

Number of Sensors (  10
3
)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

L
a

te
n

c
ie

s
 o

n
 4

 C
o
n

te
n
t 

F
o

rm
s
 (

s
/G

B
)

Image

Audio

Video

Int_Con

(a) Sensor Number Result

1 2 3 4 5 6 7 8 9 10

Time-Solt t

1.8

2

2.2

2.4

2.6

2.8

3

L
a

te
n
c
ie

s
 o

n
 4

 C
o
n

te
n

t 
F

o
rm

s
 (

s
/G

B
)

Image

Audio

Video

Int_Con

(b) Time-Solt Result

Fig. 7. Latencies on Total Packet Size of Four Content Forms in In-Memory
Method

sensor number reaching 14,000 that the priority is reflected
in figure. Lv.1 (blue) is slightly lower in numerical value
and maintain similar increase pattern in the left half. When
the amount of data is far from reaching the capacity of
our designed 3-tier network model, most packets can be
transmitted and processed instantaneously (in such condition,
packets in Lv.1 seize the few opportunities of faster Green
Channel), resulting in a relatively narrow gap of latencies
in different real-time levels. Then a critical point in sensor
number is reached (about 12,000), besides the differentiation
of Lv.2&3 even an abnormal valley appears which may be
explained by a rebound pattern of Fig. 5a that during the
interval of workload proportion adjustment, packets in Lv.1
are just filling up the regular network throughput.

Second in Fig. 6b, we also can obtain the performance of
our closed-loop feedback based scheduling method. Growth
trends of packets in three real-time levels are alike that tend
to fluctuate narrowly after climbing. The gap between Lv.1
and Lv.2&3 is relatively stable that about 0.2 more second
per gigabyte. As a result, function of closed-loop feedback
does help multimedia packets in higher real-time level gain
advantage in reducing latencies.

Except direct time requirement, in multimedia big data
computing we also pay attention to performance in different
content forms with respective packet size scopes.

Fig. 7 gives the latency results of four content forms in
sensor number and time-slot. In both Fig. 7a and 7b, the order
of latency values from high to low is Image (blue), Audio
(red), Video (green) and Int_Con (yellow) which means

TABLE III
AVERAGE PACKET SIZE OF FOUR CONTENT FORMS

Content Form Packet number Average Packet Size (byte)

image 277237475 528.09

audio 274960500 1020.09

video 266098575 1650.64

interactive content 280357075 1169.37

2 4 6 8 10 12 14 16 18 20

Number of Sensors (  10
3
)

1

1.4

1.8

2.2

2.6

3

3.4

L
a
te

n
c
ie

s
 o

n
 4

 C
o
n

te
n
t 

F
o

rm
s
 (

s
/1

0
5
 p

k
t)

Image

Audio

Video

Int_Con

(a) Sensor Number Result

1 2 3 4 5 6 7 8 9 10

Time-Solt t

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

L
a

te
n
c
ie

s
 o

n
 4

 C
o
n
te

n
t 
F

o
rm

s
 (

s
/1

0
5
 p

k
t)

Image

Audio

Video

Int_Con

(b) Time-Solt Result

Fig. 8. Latencies on Packet Number of Four Content Forms in In-Memory
Method

dealing with the same amount of data, larger packet size can
save more time. As shown in Fig. 7, broken line of Image
with the smallest average packet size rises very high to 3.2/3
second per gigabyte while the other three lines stay relatively
close to each other. Packets in interactive content form have
the widest packet size scope in wireless environment, both
the average packet size and its position in figure are between
Video and Audio. That is, growth patterns of three forms in
two subfigures yield to the average packet size order. The small
valley at 14,000 sensors in Fig. 7a also confirms the previous
analysis since only packets in Int_Con own real-time level 1.

Finally, to verify the analysis about average value of packet
size in four content forms and look for new experimental
conclusions, we add the statistical results by packet numbers.

In Fig. 8, total latencies added up by number of generated
packets show different pattern in four content forms compared
to Fig. 8. The order of latency numerical values in figure is
reversed which means packets in larger size do need more
time to get transmitted and processed. Rising trends in Fig. 8a
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shows that when there are more sensors competing for infinite
computer resources, any content form has to cost more time.
Moreover, gaps between either 2 of them in Fig. 8a and Fig. 8b
are distinct and stable which even correspond with the average
size differences of three forms in Table III. Lastly, higher
real-time level earns no advantages in reducing latencies for
same number of packets more than right half of Fig. 8b with
sensor number more than 14,000. When amount of data is
large enough, our in-memory based scheduling method can
lay more emphasis on interactive content packets.

VI. CONCLUSION

In this paper, we focus on a real-time awareness scheduling
method using in-memory processing to integrate the finite
computing resources and allocate to multimedia data according
to different real-time requirements. With great advantage in
maximum transfer rate, in-memory processing can earn large
space for continuous growth of multimedia big data. Based on
this point, our work starts from a designed 3-tier IoT network
model including a mass of multimedia sensors for data col-
lection and sending, edge devices and central servers for data
processing in different methods. We adopt the idea of closed-
loop feedback in scheduling method aiming to continually
allocate the varied workload to the finite in-memory processing
capacities of edge devices and servers. In simulation part, we
respectively compare the latencies of end-to-end, processing
and their addition as well as real-time levels and content forms
of multimedia data. From analyzing the experiment results, we
prove that in-memory processing can greatly reducing total
latencies dealing with multimedia big data and our proposed
scheduling method achieves the rational workload allocation
in facing different amount of data. In consideration of packets
in different real-time levels and content forms, the method also
can make corresponding priorities.

In the future, we will consider more details memory hier-
archy and computational model inside device. The simulation
part also needs to be designed more specific and use more
metrics to analyze the performance in different experiment
settings.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number JP16K00117, JP15K15976, and KDDI Foundation.
Mianxiong Dong is the corresponding author.

REFERENCES

[1] G. Mulligan, "The 6LoWPAN Architecture," Proceedings of the 4th
Workshop on Embedded Networked Sensors, pp. 78-82, Jun. 2007.

[2] A. V. Dastjerdi and R. Buyya, "Fog Computing: Helping the Internet of
Things Realize Its Potential," Computer, vol. 49, no. 8, pp. 112-116, Aug.
2016.

[3] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan and M. Zhang, "In-Memory
Big Data Management and Processing: A Survey," IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920-1948, Jul.
2015.

[4] Y. Tian, S. C. Chen, M. L. Shyu, T. Huang, P. Sheu and A. D. Bimbo,
"Multimedia Big Data," IEEE MultiMedia, vol. 22, no. 3, pp. 93-95, Jul.
2015.

[5] C. Hu, Z. Xu, Y. Liu, L. Mei, L. Chen and X. Luo, "Semantic Link
Network-Based Model for Organizing Multimedia Big Data," IEEE
Transactions on Emerging Topics in Computing, vol.2, no. 3, pp. 376-
387, Sep. 2014.

[6] S. Ehsan and B. Hamdaoui, "A Survey on Energy-Efficient Routing Tech-
niques with QoS Assurances for Wireless Multimedia Sensor Networks,"
IEEE Communications Surveys Tutorials, vol. 14, no. 2, pp. 265-278,
2012.

[7] K. Kambatla, G. Kollias, V. Kumar and A. Grama, "Trends in Big Data
Analytics," Journal of Parallel and Distributed Computing, vol. 74, no.
7, pp. 2561-2573, Jul. 2014.

[8] Y. Li, K. Gai, Z. Ming, H. Zhao and M. Qiu, "Intercrossed Access
Controls for Secure Financial Services on Multimedia Big Data in Cloud
Systems," ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no.
4s, pp. 67:1-67:18, Nov. 2016.

[9] Y. Zhang, M. Qiu, C. W. Tsai, M. M. Hassan and A. Alamri, "Health-CPS:
Healthcare Cyber-Physical System Assisted by Cloud and Big Data,"
IEEE Systems Journal, vol. 11, no. 1, pp. 88-95, Mar. 2017.

[10] K. Ota, M. S. Dao, V. Mezaris and F. G. B. De Natale, "Deep Learning
for Mobile Multimedia: A Survey," ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13(3s), no.
34, Jul. 2017.

[11] A. Ahmad, M. A. Rahman, B. Sadiq, S. Mohammed, S. Basalamah and
M. R. Wahiddin, "Visualization of a Scale Free Network in a Smartphone-
Based Multimedia Big Data Environment," 2015 IEEE International
Conference on Multimedia Big Data (BigMM), pp. 286-287, Apr. 2015.

[12] Y. Sun, H. Luo and S. K. Das, "A Trust-Based Framework for Fault-
Tolerant Data Aggregation in Wireless Multimedia Sensor Networks,"
IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 6,
pp. 785-797, Nov. 2012.

[13] H. Luo, J. Luo, Y. Liu and S. K. Das, "Adaptive Data Fusion for Energy
Efficient Routing in Wireless Sensor Networks," IEEE Transactions on
Computers, vol. 55, no. 10, pp. 1286-1299, Oct. 2006.

[14] H. Li, K. Ota, M. Dong, A. Vasilakos and K. Nagano, "Multimedia
Processing Pricing Strategy in GPU-Accelerated Cloud Computing,"
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1-1, Feb.
2017.

[15] H. Li, K. Ota, M. Dong and M. Guo, "Mobile Crowdsensing in Software
Defined Opportunistic Networks," IEEE Communications Magazine, vol.
55, no. 6, pp. 140-145, Jun. 2017.

[16] J. Lee, H. A. Kao and S. Yang, "Service Innovation and Smart Analytics
for Industry 4.0 and Big Data Environment," Procedia CIRP, vol. 16, pp.
3-8, 2014.

[17] S. Robbins, "RAM is the New Disk...," [Online]. Available:
www.infoq.com/news/2008/06/ram-is-disk, accessed Jul. 2017.

[18] L. Liu, X. Zhang and H. Ma, "Optimal Node Selection for Target
Localization in Wireless Camera Sensor Networks," IEEE Transactions
on Vehicular Technology, vol. 59, no. 7, pp. 3562-3576, Sep. 2010.

[19] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury and A. T.
Campbell, "A Survey of Mobile Phone Sensing," IEEE Communications
Magazine, vol. 48, no. 9, pp. 140-150, Sep. 2010.

[20] C. Bettstetter, G. Resta and P. Santi, "The Node Distribution of the
Random Waypoint Mobility Model for Wireless Ad Hoc Networks," IEEE
Transactions on Mobile Computing, vol. 2, no. 3, pp. 257-269, Jun. 2003.

[21] S. Sarkar, S. Chatterjee and S. Misra, "Assessment of the Suitability of
Fog Computing in the Context of Internet of Things," IEEE Transactions
on Cloud Computing, vol. PP, no. 99, pp. 1-1, Oct. 2015.

[22] T. Camp, J.Boleng and V. Davies, "A Survey of Mobility Models
for Ad Hoc Network Research," Wireless Communications and Mobile
Computing, vol. 2, no. 5, pp. 483-502, Aug. 2002.

Jianwen Xu received the B.Eng degree in Electronic
and Information Engineering from Dalian University
of Technology (DLUT), China, in 2014, and M.Eng
degree in Information and Communication Engi-
neering from Shanghai Jiaotong University (SJTU),
China, in 2017. He is currently pursuing the Ph.D.
degree in Electrical Engineering at Muroran Institute
of Technology, Japan. His main fields of research
interest include distributed system, Internet of things.



INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2018 10

Kaoru Ota was born in Aizu-Wakamatsu, Japan.
She received M.S. degree in Computer Science from
Oklahoma State University, USA in 2008, B.S. and
Ph.D. degrees in Computer Science and Engineering
from The University of Aizu, Japan in 2006, 2012,
respectively. She is currently an Assistant Professor
with Department of Information and Electronic En-
gineering, Muroran Institute of Technology, Japan.
From March 2010 to March 2011, she was a visiting
scholar at University of Waterloo, Canada. Also she
was a Japan Society of the Promotion of Science

(JSPS) research fellow with Kato-Nishiyama Lab at Graduate School of
Information Sciences at Tohoku University, Japan from April 2012 to April
2013. Her research interests include Wireless Networks, Cloud Computing,
and Cyber-physical Systems. Dr. Ota has received best paper awards from
ICA3PP 2014, GPC 2015, IEEE DASC 2015, IEEE VTC 2016-Fall, FCST
2017 and IET Communications 2017. She is an editor of IEEE Transactions
on Vehicular Technology (TVT), IEEE Communications Letters, Peer-to-
Peer Networking and Applications (Springer), Ad Hoc & Sensor Wireless
Networks, International Journal of Embedded Systems (Inderscience) and
Smart Technologies for Emergency Response & Disaster Management (IGI
Global), as well as a guest editor of ACM Transactions on Multimedia Com-
puting, Communications and Applications (leading), IEEE Communications
Magazine, IEEE Network, etc. Also she was a guest editor of IEEE Wireless
Communications (2015), IEICE Transactions on Information and Systems
(2014), and Ad Hoc & Sensor Wireless Networks (Old City Publishing)
(2014). She was a research scientist with A3 Foresight Program (2011-2016)
funded by Japan Society for the Promotion of Sciences (JSPS), NSFC of
China, and NRF of Korea. She is the recipient of IEEE TCSC Early Career
Award 2017.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an Asso-
ciate Professor in the Department of Information and
Electronic Engineering at the Muroran Institute of
Technology, Japan. He was a JSPS Research Fellow
with School of Computer Science and Engineering,
The University of Aizu, Japan and was a visiting
scholar with BBCR group at University of Water-
loo, Canada supported by JSPS Excellent Young
Researcher Overseas Visit Program from April 2010

to August 2011. Dr. Dong was selected as a Foreigner Research Fellow
(a total of 3 recipients all over Japan) by NEC C&C Foundation in 2011.
His research interests include Wireless Networks, Cloud Computing, and
Cyber-physical Systems. He has received best paper awards from IEEE
HPCC 2008, IEEE ICESS 2008, ICA3PP 2014, GPC 2015, IEEE DASC
2015, IEEE VTC 2016-Fall, FCST 2017 and 2017 IET Communications
Premium Award. Dr. Dong serves as an Editor for IEEE Transactions on Green
Communications and Networking (TGCN), IEEE Communications Surveys
and Tutorials, IEEE Network, IEEE Wireless Communications Letters, IEEE
Cloud Computing, IEEE Access, as well as a leading guest editor for ACM
Transactions on Multimedia Computing, Communications and Applications
(TOMM), IEEE Transactions on Emerging Topics in Computing (TETC),
IEEE Transactions on Computational Social Systems (TCSS). He has been
serving as the Vice Chair of IEEE Communications Society Asia/Pacific
Region Meetings and Conference Committee, Leading Symposium Chair of
IEEE ICC 2019, Student Travel Grants Chair of IEEE GLOBECOM 2019,
and Symposium Chair of IEEE GLOBECOM 2016, 2017. He is the recipient
of IEEE TCSC Early Career Award 2016, IEEE SCSTC Outstanding Young
Researcher Award 2017 and The 12th IEEE ComSoc Asia-Pacific Young
Researcher Award 2017.


