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Abstract—Deep learning is a promising approach for extracting
accurate information from raw sensor data from Internet of
Things (IoT) devices deployed in complex environments. Because
of its multilayer structure, deep learning is also appropriate for
the edge computing environment. Therefore, in this article, we
first introduce deep learning for IoTs into the edge computing
environment. Since existing edge nodes have limited processing
capability, we also design a novel offloading strategy to optimize
the performance of IoT deep learning applications with edge com-
puting. In the performance evaluation, we test the performance
of executing multiple deep learning tasks in an edge computing
environment with our strategy. The evaluation results show that
our method outperforms other optimization solutions on deep
learning for IoT.

Index Terms—Deep Learning; Edge Computing; IoT

I. INTRODUCTION

IN recent years, deep learning becomes an important
methodology in many informatics fields such as vision

recognition, natural language processing, and bioinformatics
[1] [2]. Deep learning is also a strong analytic tool for huge
volumes of data. In Internet of Things (IoT), it is still an
open problem to reliably mine real-world IoT data from a
noisy and complex environment which confuses conventional
machine learning techniques. Deep learning is considered as
the most promising approach to solving this problem [3].
Deep learning has been introduced into many tasks related
IoT and mobile applications, with encouraging early results.
For example, deep learning can precisely predict the home
electricity power consumption with the data collected by smart
meters, which can improve the electricity supply of the smart
grid [4]. Because of its high efficiency on studying complex
data, deep learning will play a very important role in the future
IoT services.

Edge computing is another important technology for IoT
services [5] [6] [7]. Due to the data transferring with lim-
ited network performance, the centralized cloud computing
structure becomes inefficient for processing and analyzing
huge amounts of data collected from IoT devices [8] [9]. As
edge computing offloads computing tasks from the centralized
cloud to the edge near to IoT devices, transferred data are
enormously reduced by the preprocessing procedures. The
edge computing can perform well when the intermediate data
size is smaller than the input data size.

A typical deep learning model usually has many layers in
the learning network. The intermediate data size can be quickly
scaled down by each network layer until enough features are
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found. Therefore, the deep learning model is very appropriate
for the edge computing environment since it is possible to
offload parts of learning layers in the edge and then transfer
the reduced intermediate data to the centralized cloud server.

Another advantage of deep learning in edge computing
is the privacy preserving in intermediate data transferring.
Intermediate data generated in traditional big data systems,
such as MapReduce or Spark, contains the user privacy since
the preprocessing remains data semantics. The intermediate
data in deep learning usually has different semantics compared
to the source data. For example, it is very hard to understand
the original information with the features extracted by convo-
lutional neural network (CNN) filter in the intermediate CNN
layer.

Thus, in this article, we introduce deep learning for IoT
into the edge computing environment to improve the learning
performance as well as to reduce the network traffic. We
formulate an elastic model which is compatible with different
deep learning models. Thus, because of the different interme-
diate data size and preprocessing overhead of different deep
learning models, we state a scheduling problem to maximize
the number of deep learning tasks with limited network
bandwidth and service capability of edge nodes. We also try to
guarantee the quality-of-service (QoS) of each deep learning
services for IoT in the scheduling. We design an offline and
an online scheduling algorithms to solve the problem. We take
extensive simulations with multiple deep learning tasks and a
given edge computing settings. The experimental results show
our solution outperform other optimization methods on deep
learning for IoT.

The main contributions of this paper are summarized as
follows.
• We first introduce deep learning for IoT into the edge

computing environment. To the best of our knowledge,
this is an innovative work focusing on deep learning for
IoT with edge computing.

• We formulate an elastic model for varying deep learning
models for IoT in edge computing. We also design an
efficient online algorithm to optimize the service capacity
of the edge computing model.

• Finally, we test the deep learning model for IoT with
extensive experiments in a given edge computing envi-
ronment. We also compare our edge computing method
with traditional solutions.

The remainder of this paper can be outlined as follows.
Section II introduces the deep learning technology for IoT
and edge computing. Section III discusses the deep learning
services for IoT in the edge computing environment. Section
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IV describes the problem and solutions of scheduling IoT
deep learning tasks in edge computing. Section V presents the
performance evaluation results of the deep learning for IoT
through extensive experiments, followed by the conclusions
given in Section VI.

II. RELATED WORK

In this section, we first introduce related technologies on
deep learning for IoT and then discuss edge computing and
deep learning.

A. Deep Learning for IoT

Deep learning is becoming an emerging technology for
IoT applications and systems. The most important benefit of
deep learning over machine learning is the better performance
with large data scale since many IoT applications generate
a large amount of data for processing. Another benefit is
that deep learning can extract new features automatically
for different problems. In processing multimedia information,
the performance of traditional machine learning depends on
the accuracy of the features identified and exacted. Since it
can precisely learn high-level features such as human faces
in images and language words in voices, deep learning can
improve the efficiency of processing multimedia information.
Meanwhile, deep learning takes much less time to inference
information than traditional machine learning methods.

Therefore, the development of IoT devices and technologies
brings preconditions for complex deep leaning tasks. Because
of limited energy and computing capability, an important issue
is executing deep learning applications in IoT devices. General
commercial hardware and software are short of supporting
high-parallel computing in deep learning tasks. Lane et al.
[10] proposed new acceleration engines, such as DeepEar and
DeepX, to support different deep learning applications in latest
mobile system-on-chips (SoC). From the experimental results,
mobile IoT devices with high-spec SoCs can support part of
learning process.

Introducing deep learning into more IoT applications is
another important research issue [11]. The efficiency of deep
learning for IoT have been evaluated by many important
IoT applications. For example, some works focus on the
applications in wearable IoT devices deployed in dynamic
and complex environments which often confuse the traditional
machine learning methods. Bhattacharya et al. [12] proposed
a new deep learning model for wearable IoT devices, which
improves the accuracy of audio recognition tasks.

Most existing deep learning applications (e.g., speech recog-
nition) still need cloud-assisted. Alsheikh et al. [13] proposed
a framework to combine deep learning algorithms and Apache
Spark for IoT data analytics. The inference phase is executed
on mobile devices while the Apache Spark is deployed in
cloud servers for supporting data training. These two layers
design is very similar to the edge computing, which shows
that it is possible to offload processing tasks from the cloud.

B. Deep Learning and Edge Computing
Edge computing is proposed to move the computing ability

from the centralized cloud servers to edge nodes near the user-
end. Edge computing brings two major improvements to the
existing cloud computing. The first one is that edge nodes
can preprocess large amounts of data before transferring them
to the central servers in the cloud. The other one is, the
cloud resources are optimized by enabling edge nodes with
computing ability [14]. Due to the potentiality brought by the
edge computing, the aforementioned problems of the cloud
infrastructure can be well addressed.

Liu et al. [15] proposed the first work that introduces deep
learning into the edge computing environment. They proposed
a deep-learning-based food recognition application by employ-
ing edge-computing-based service infrastructure. Their work
shows the edge computing can improve the performance of
deep learning applications by reducing the response time and
lower the energy consumption. However, this work considered
mobile phones as edge nodes, which is not appropriate for
IoT services since most IoT devices only are equipped with
low-spec chips. Since we focus on the general IoT devices
without enough energy supplement and high-spec chips, the
edge servers are deployed in IoT gateways which have enough
service capacity for executing deep learning algorithms.

III. DEEP LEARNING FOR IOT IN EDGE COMPUTING

In this section, we first introduce the scenario of deep learn-
ing for IoT and then present the edge computing framework
of deep learning for IoT.

Usually, IoT devices generate large amounts of data and
transfer data to the cloud for further processing. These data
include multimedia information, such as video, images and
sounds, or structured data, such temperature, vibration and
luminous flux information. There are many matured tech-
nologies for processing structured data and then automatical-
ly controlling IoT devices. Traditional multimedia process-
ing technologies which need complex computations are not
very appropriate for IoT services. Since the deep learning
technology improves the efficiency of processing multimedia
information, more and more works begin to introduce deep
learning into multimedia IoT services.

Video sensing is an important IoT application, which inte-
grates image processing and computer vision in IoT networks.
It is still a challenge to recognize objects from low-quality
video data recorded by IoT devices. Since deep learning shows
very promising accuracy in video recognition, we consider it
as a typical IoT application with deep learning. Thus, as shown
in Fig. 1, we use a video recognition IoT application as the
example to introduce deep learning for IoT.

There are several wireless video cameras monitoring the
environment and recognizing objects. The wireless cameras
collect 720p video data with a bitrate of 3000kbps. Then, the
cameras transfer the collected data to the IoT gateway through
general WiFi connections. IoT gateways forward all collected
data to the cloud service through Internet communications
after coding and compressing the raw video data. The cloud
service recognizes the objects in the collected video data with
a deep learning network.
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Fig. 1. Deep learning for video recognition with IoT devices

A deep learning network usually has multiple layers. The
input data will be processed in these layers. Each layer
processes the intermediate features generated by the previous
layer and then generates new features. Finally, the extracted
features generated by the last deep learning network layer will
be processed by a classifier and recognized as the output. In
deep learning networks, we consider the layers near to input
data are lower layers otherwise are higher layers.

In the example, we use the AlexNet to identify the object in
the collected video data. The AlexNet has eight layers in which
first five layers are convolutional layers, and the following
three layers are fully connected layers. We first train the deep
learning network with an open dataset from Kaggle, which is
comprised of 25,000 dog and cat images. The deep learning
application wants to detect the correct animal in the corrected
video data. We use a transfer learning technique to build the
classifier which outputs the text ”cat” or ”dog” after processing
all extracted features.

Deep learning improves the efficiency of multimedia pro-
cessing for IoT services since features are extracted by multi-
ple layers instead of traditional complex preprocessing. How-
ever, the communication performance will be the bottleneck
with improved processing efficiency. The collected multimedia
data size is much larger than traditional structured data size
while it is hard to improve the performance of the network
for transferring collected data from IoT devices to the cloud
service. In the example, each camera needs a bandwidth of
3Mbps for upgrading video data while the IoT gateway needs
9Mbps.

Edge computing is a possible solution for the problem in
transferring collected data from IoT devices to the cloud. In
the IoT network, there are two layers, the edge layer, and
the cloud layer, for connecting IoT devices and the cloud
service. The edge layer usually consists IoT devices, IoT
gateway and network access points in local area networks.

The cloud layer includes the Internet connections and cloud
servers. Edge computing means the processing is performed in
the edge layer instead of the cloud layer. In the edge computing
environment, since only the intermediate data or results need
to be transferred from the devices to the cloud service, the
pressure on the network is relieved with fewer transferring
data.

Edge computing is very suitable for the tasks in which
the size of intermediate data is smaller than the input data.
Therefore, edge computing is efficient for deep learning tasks,
since the size of extracted features is scaled down by the
filters in deep learning network layers. In the example, the
intermediate data size generated by the first layer is 134x89x1
bytes per each frame and 2300kb per second if we want to
recognize each frame. If we only want to process keyframes
in the video data, the size of the generated intermediate data
is only 95 kb per second.

As shown in Fig. 2, we present an edge computing structure
for IoT deep learning tasks. The structure consists two layers
as well as a typical edge computing structure. In the edge layer,
edge servers are deployed in IoT gateways for processing
collected data. We first training the deep learning networks
in the cloud server. After the training phase, we divide the
learning networks into two parts. One part includes the lower
layers near to input data while another part includes the higher
layers near to output data.

We deploy the part with lower layers into edge servers
and the part with higher layers into the cloud for offloading
processing. Thus, the collected data are inputted into the
first layer in the edge servers. The edge servers load the
intermediate data from the lower layers and then transferred
data to the cloud server as the input data for the higher layers.
In the example, if we deploy the first layer in the IoT gateway,
the intermediate data with the size of 134x89x1 bytes per each
frame will be sent to the second layer in the cloud server for
further processing.

A problem is how to divide each deep learning network.
Usually, the size of the intermediate data generated by the
higher layers is smaller than the one generated by the lower
layers. Deploying more layers into edge servers can reduce
more network traffic. However, the server capacity of edge
servers is limited compared to cloud servers. It is impossible
to process infinite tasks in edge servers. Every layer in a deep
learning network will bring additional computational overhead
to the server. We can only deploy a part of the deep learning
network into edge servers. Meanwhile, as different deep learn-
ing networks and tasks have different size of intermediate data
and computational overhead, an efficient scheduling is needed
to optimize deep learning for IoT in the edge computing
structure. We design an efficient scheduling strategy for this
problem and discuss it in the next section.

IV. SCHEDULING PROBLEM AND SOLUTION

In this section, we first state the scheduling problem in
the edge computing structure for IoT deep learning and then
present the solution.

In a given edge computing environment, we use a set E
to denote all edge servers and ei to denote an edge server
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Fig. 2. Edge computing structure for IoT deep learning

in set E. From edge server ei to the cloud server, we use a
value ci to denote the service capacity and bi to denote the
network bandwidth. We also add a threshold value denoted by
V to avoid network congestion since there is some interaction
traffic between edge servers and the cloud servers. Thus, the
maximum available bandwidth between edge server ei and the
cloud server is denoted by bi · V .

Let set T denote all deep learning tasks and tj denote a deep
learning task in set T . The number of task tj’s deep learning
network layers is Nj . We assume the reduced data size is near
to an average value for each task with different input data. The
average ratio of the intermediate data size generated by the kth
layer (k ∈ [1, Nj ]) to the total input data size is denoted by rkj .
For task tj and edge server ei, assigned bandwidth is denoted
by bij . Let dij denote the input data size per time unit of task
tj in edge server ei. Thus, the transferring latency of task tj
in edge server ei can be denoted dij · rkj/bij , if k layers of
task tj are placed in edge server ei. For guaranteeing QoS, the
transferring latency should be smaller than a maximum value
denoted by Qj . For task tj , the computational overhead of a
unit of input data after kth layer is denoted by lkj . Therefore,
for task tj , the computational overhead in edge server ei is
lkj · dij .

The problem of scheduling IoT deep learning network
layers in edge computing: given an edge computing structure,
the scheduling problem attempts to assign maximum tasks
in the edge computing structure by deploying deep learning
layers in IoT edge servers such that the required transferring
latency of each task can be guaranteed, denoted by

max
∑|E|

i=1

∑|T |
j=1 Xij

s.t.,
∑|E|

i=1 bij ≤ bi · V
Xij · dij · rkj/bij ≤ Qj∑|T |

j=1 lkj · dij ·Xij ≤ ci

(1)

where Xij = 1, if task tj is deployed in edge server ei, and
otherwise Xij = 0.

We propose an offline algorithm and an online algorithm
to solve the scheduling problem. The offline scheduling algo-
rithm first finds out kmj that maximizes the value of rkj · lkj ,
and edge server imj that has the largest input data of task tj .
Then, the algorithm sorts all tasks in ascending order of the
largest input data size. The scheduling first deploys task tj
with minimum input data size to edge servers. The algorithm

1 2 3 4 5
Number of layers

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ce
d 

da
ta

 si
ze

 ra
tio

CNN1
CNN2

100

101

102

103

Op
er

at
io

ns
 (x

10
9 )

Fig. 3. Reduced data and operations in deep learning networks

traverses all edge servers to check whether an edge server has
enough service capability and network bandwidth to deploy
task tj . If all edge servers have enough service capacity and
bandwidth, the algorithm deploys the task tj into all edge
servers. If an edge server doesn’t have enough uploading
bandwidth or service capacity, the algorithm changes the value
of k and find out an appropriate k for deploying task tj in all
edge servers. If the edge server has not enough service capacity
or network bandwidth even after varying k, the scheduling
algorithm will not deploy task tj in edge servers.

In the worst case, the complexity of the offline algorithm
is O(|T | · |E|2 · K) where K is the maximum number of
deep learning network layers of each task. Since the number
of tasks is much larger than the number of edge servers and
deep learning network layers, the complexity of the proposed
algorithm is O(|T |), which is good enough for practical
scheduling. We also analyze the efficiency of the algorithm
and find out the approximate ratio is 2

V .
Meanwhile, we design an online scheduling algorithm

which decides the deployment when task tj coming. As the
task scheduling has little information about feature tasks, the
deployment decision is based on the historical tasks. We
use Bmax and Bmin to denote the maximum and minimum
required bandwidth of a task, respectively. Thus, for task tj ,
we first calculate the kmj and imj . Then, we define a value
Φ(cimj ) ← (Bmin · e/Bmax)

cim
j · (Bmax · e), where the

remaining service capacity of edge server eimj is cimj and e is
the mathematical constant. If (bimj −dimj j · rkm

j j/Qj)) · (cimj −
dimj j · lkm

j j) ≤ Φ(cimj ) and other edge servers have enough
bandwidth and service capacity, the scheduling algorithm
deploys task tj into edge servers. The approximate ratio of
the online algorithm is 1

(ln(Bmax/Bmin)+1)·V .

V. PERFORMANCE EVALUATION

In this section, we first describe the experiment settings and
then discuss the performance evaluation result.

In the experiments, we have two environments, one for
collecting data from deep learning tasks, and another for
simulations. For executing deep learning applications, we use
a workstation equipped with an Intel Core i7 7770 CPU and
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NVIDIA Geforce GTX 1080 graphic card. We use Caffe as the
CNN framework and define 10 different CNN networks. We
execute 10 CNN tasks with different CNN networks and record
the number of operations and intermediate data generated in
each CNN layer.

As shown in Fig. 3, we choose two deep learning networks,
CNN1 and CNN2, as the example for illustration of the
reduced data size ratio (blue plots) and computational overhead
(red plots). These two deep learning networks have five layers
and different neuron settings. From the plots, the input data
can be reduced by the deep learning networks, and more
intermediate data are reduced by lower layers. Meanwhile, the
computational overhead is increased quickly with more layers.

We use Python 2.7 and networkx to develop the simulator
and use the reduced ratio of the intermediate data from
executing CNN tasks. In the simulations, we set the number
of deep learning tasks is 1000. The service capability of each
edge server is set to 290Gflops according to NVIDIA Tegra
K1. We set the number of edge servers in the network from 20
to 90. The input data size of each task is set from 100KB to
1MB. The layer number of all CNN networks is set from 5 to
10. The bandwidth of each edge server is uniform distributed
from 10Mbps to 1Gbps. The require latency is set to 0.2s.

We first test the performance of the layer scheduling al-
gorithm. We set the number of edge servers from 20 to 90
and increase the number by 10 in each step. We compare
the performance with the fixed mode that deploys fix number
of deep learning layers in edge servers. We set the number
of deep learning layers in the fixed mode from 1 to 5. As
shown in Fig. 4(a), the scheduling algorithm outperforms the
fixed mode with a different number of layers. Meanwhile, with
more number of edge servers, more deep learning tasks can
be deployed in the network. We find the fixed mode with two
layers deployed in edge servers performs better than other
settings. For most deep learning networks in our simulation,
deploying two layers in the edge servers can leverage the
computational overhead and uploading bandwidth.

Then, we test the performance of the online algorithm. We
also compare the performance of the online algorithm with two

popular online scheduling algorithms, first-in-first-out (FIFO)
and low bandwidth first deployment (LBF) algorithm. We
input a random sequence of 1000 tasks to the edge network,
and these two algorithms deploy tasks into edge servers. The
number of edge servers is set to 50. As shown in Fig. 4(b), the
FIFO algorithm deploys every task until there is not enough
capability and bandwidth. Thus, after deploying 360 tasks, the
FIFO algorithm pops out the first deployed tasks for appending
following tasks. LBF algorithm is similar to FIFO algorithm
when the capacity and bandwidth are enough. When there is no
space for deploying following tasks, LBF algorithm removes
the task with maximum bandwidth requirement. Our online
algorithm will decide whether the following task should be
deployed into edge servers. Thus, when the number of input
tasks is near to 600, online algorithm deploys more tasks than
the FIFO algorithm. When the number of input tasks is near
to 800, online algorithm deploys more tasks than the LBF
algorithm. As a result, our algorithm outperforms FIFO and
LBF algorithms over a long time period.

VI. CONCLUSION AND FUTURE WORK

In this article, we introduce deep learning for IoT into
the edge computing environment to optimize the network
performance and protect user privacy in uploading data. The
edge computing structure reduces the network traffic from IoT
devices to cloud servers since edge nodes upload reduced
intermediate data instead of input data. We also consider
the limited service capability of edge nodes and propose
algorithms to maximize the number of tasks in the edge
computing environment. In the experiments, we choose ten
different CNN models as the deep learning networks and
collect the intermediate data size and computational overhead
from practical deep learning applications. The results of the
performance evaluation show our solutions can increase the
number of tasks deployed in edge servers with guaranteed
QoS requirements. As the future work, we plan to deploy
deep learning applications in a real-world edge computing
environment with our algorithms.
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