
Radio Access Network Virtualization for the
Social Internet of Things

著者 LI He, DONG Mianxiong, OTA Kaoru
journal or
publication title

IEEE Cloud Computing

volume 2
number 6
page range 42-50
year 2015-11
URL http://hdl.handle.net/10258/00009927

doi: info:doi/10.1109/MCC.2015.114

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Muroran-IT Academic Resource Archive

https://core.ac.uk/display/222585358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Radio Access Network Virtualization for Social
Internet of Things with Cloud Computing

He Li, Member, IEEE, Mianxiong Dong, Member, IEEE, Kaoru Ota, Member, IEEE,

Abstract—In Social Internet of Things (SIoT), devices
are often divide to groups with different relationship in
social networks. The radio access network (RAN) which
is often used for connecting IoT devices to the IoT
cloud service is short of supporting the SIoT groups.
Thus, to distinguish SIoT groups in the RAN, network
virtualization with SDN structure is a preferable with its
scalability and usability. However, it is hard to support
enough groups due to the rule space limitation of existing
SDN enabled devices. In this paper, we first introduce
the SDN based RAN virtualization framework then state
the problem of maximizing the number of SIoT groups
with limited SDN rule space. We also propose an efficient
algorithm to solve this problem. The extensive simulation
shows that our solution provides more SIoT groups than
the original SDN-based RAN virtualization.

Index Terms—Software Defined Networks, Radio Access
Networks, Internet of Things, Social Networks, Network
Virtualization

I. INTRODUCTION

The Internet of Things (IoT) is a novel network
concept that is rapidly gaining ground in the sce-
nario of modern wireless telecommunications [1].
Through unique addressing schemes and standard
communication protocols, are able to interact with
each others and cooperate with acquaintances in
their social relations. Thus, with convergence of IoT
and social networks, the Social IoT (SIoT) paradigm
will improve the quality of everyday life with inter-
connected intelligent objects. In SIoT, the network
is usually divided to distinct groups to control the
degree of interaction among things that are friends.
Further, the scalability of network groups is guaran-
teed similarly with the human social networks [2].
Cloud computing is a potential solution to support
scalable groups in SIoT, in which the computing
capability can be divided and distinguished with the
varying social networks [3].

He Li, Mianxiong Dong and Kaoru Ota are with Muroran Insitute
of Technology, Japan.

However, the network resources still need more
flexible and scalable methodologies to support
group networks in SIoT. Usually, in a general IoT
structure, the devices are first connected to the sink
nodes or other aggregators then connected to the
radio access network (RAN). As the network flows
from massive devices are transferred in the same
RAN, existing RAN structure is short of dividing
network resources for distinguished SIoT groups.
Network virtualization is a potential solution that
provides independent vRAN for each SIoT group
who is connecting the same network [4]. Some
forward-looking work proposes some solutions that
implement network virtualization in RANs. How-
ever, in existing RAN virtualization, base station
virtualization and core network virtualization are
separated to two parts. It is hard to manage two
virtualized parts cooperatively since the different
features between two devices.

SDN-enabled mobile or wireless networks be-
come a possible solution to combine the manage-
ment of base stations and access networks with
the decouple control plane and data plane [5]. In
SDN-enabled network, all devices are managed by a
centralized controller and network operators can put
strategies of network virtualization to the controller
instead of different devices. Meanwhile, with the
flexible control semantics, SDN can provide a fine
grained network control for each user in the same
network. In this paper, we propose a framework to
provide virtual RAN (vRAN) over a single physical
SDN-enabled RAN infrastructure.

However, since limitation of existing SDN tech-
nology, it is hard to build a RAN virtualiza-
tion straightforwardly. Since SDN adopt forwarding
rules as the basic control unit to manage network
traffic, the number of rules is increased dramatically
after network virtualization [6]. If the rule space is
not enough, for processing new packet, network de-
vices have to communicate to the controller, which
dues to much longer latency than direct processing

2

[7]. Even though the issue brings little influence
to the overall performance, the additional latency
will harm the quality of service (QoS) especially
for some latency sensitive applications (e.g., Voice
over IP, cloud gaming, etc.).

As a result, in the RAN virtualization framework,
we state the problem that how to assign limited
rule space to maximize the number of SIoT group
vRANs as well to satisfy the latency requirement.
We also propose an efficient allocation algorithm to
solve the problem. For verification of our solution,
we evaluate our algorithm by simulation and the
result shows our allocation performs better than the
other SDN enabled virtualization.

The contribution of this paper can be summarized
as follows.
• First, we We first introduce an SDN based

RAN structure to provide network connection
between the SIoT groups and cloud services.
Based on that structure, we propose a RAN
virtualization framework to provide vRAN to
isolate each SIoT groups.

• We then state the problem to maximum SIoT
groups with limited rule space in the SDN
devices as well to guarantee the latency re-
quirement from the SIoT groups. To solve this
problem, we design a efficient algorithm to
allocate the rule space to the SIoT groups.

• We take the performance evaluation of the al-
location algorithm with extensive simulations,
and discuss the allocated number of SIoT
groups in different settings. We also compare
our algorithm with some other allocation meth-
ods and the results show our strategy performs
better than others.

The rest of this paper is summarized as follows.
Section II reviews the related work. Our framework
design are introduced in Section III. Section IV
presents the problem formulation. Section V gives
the simulation results. Finally, Section VI concludes
this paper and give the future work.

II. RELATED WORK

In this section, we introduce some previous and
background work about the RAN virtualization for
SIoT with cloud computing. First, we discuss the
previous works about SIoT. Then, we brief the
network virtualization in RANs, including the base
station virtualization and core network virtualiza-
tion.

A. Social Internet of Things

The idea that connecting IoT and social net-
works together has begun to appear to the literature.
Guinard et al. [8] proposed the convergence of IoT
and social networks. In their work, an individual
can share the services offered by her/his smart
objects with either her/his friends or their things. In
that work, the reference social network is a social
network of humans and it is utilized by things as an
infrastructure for service advertisement, discovery,
and access. That contribution violates the IoT vision
in which the objects should interact spontaneously
to offer value-added services to humans.

Kranz et al. [9] investigate the implications of
integration between the IoT and the social networks
and describe a few exemplary applications. Jian et
al. [10] analyze the social attributes which reflect the
social relations of nodes. There a sort of quantifica-
tion of the social relationships among mobile nodes
is also performed by means of parameters such as
an interaction factor and a distance factor. Besides,
the authors study the behavior of mobile nodes by
applying the typical theory of the social networks.

Atzori et al. [3] identify appropriate policies for
the establishment and the management of social
relationships between objects in such a way the
resulting social network is navigable. Further, the
describe a possible architecture for the IoT that
includes the functionalities required to integrate
things into a social network.

B. RAN Virtualization

Since IoT usually use RAN to connect things
to cloud services, RAN virtualization is potential
method to dynamically provide isolated network for
each SIoT groups.

Base station virtualization solutions exist com-
mercially today for traditional mobile network op-
erators (MNOs) to cut operating costs. For example,
the virtual base transceiver station (vBTS) [11]
is one such virtualized base station solution that
enables sharing radio components at the hardware
level and running multiple base station protocol
stacks in software.

Meanwhile, some work [12] proposes to virtu-
alize the Long Term Evolution (LTE) network by
implementing a hypervisor in the eNodeB. Each
entity runs its LTE stack in a virtual machine. The

3

SIoT Group

Physical RAN

Base Station
Switch

Switch

Switch

Base Station

SIoT Group

IoT Cloud

vRAN for SIoT Group

Base Station
Switch

Switch

Switch

Base Station

vRAN for SIoT Group

Base Station
Switch

Switch

Switch

Base Station

Fig. 1. Typical mode of vRANs for SIoT. Two vRANs are built for
different SIoT groups

hypervisor allocates spectrum to the different enti-
ties in accordance with a specified guarantee. An en-
tity can request either a fixed or dynamic guarantee
based on its current load up to a maximum amount
of resources. European FP7 project Flexible Ar-
chitecture for Virtualizable Future Wireless Internet
Access (FLAVIA) [13] is defining and prototyping
a new base station architecture with the objective
of enabling a higher level of programmability. This
enhanced base station programmability functionality
is being explored in the context of wireless access
virtualization, and project participants contribute to
the 3GPP RSE Study Item efforts.

In parallel, for the core network virtualization,
the emerging software-defined networking (SDN)
paradigm is a key enabler to simplify the net-
work provisioning, management, reconfiguration,
and control of such virtualized and shared SIoT
group networks. Wireless SDN requires the iden-
tification of abstractions for wireless primitives and
functions, which compromise between flexibility
and ability of the abstractions to permit developing
innovative wireless functions and mechanisms. An
overview of ongoing SDN standardization efforts
can be found in [14].

III. FRAMEWORK DESIGN

In this section, we first introduce a potential mode
of radio network virtualization that provide virtual
access networks for different SIoT groups. Then,
we show main procedures in the RAN virtualization
framework with the SDN enabled RAN.

Physical RAN devices

Controller

Service for RAN virtualization

Forwarding rules in physical RAN

Forwarding rules in virtualized
RAN

Rule and address mapping

Virtualized controller

vRAN Devices

Network applications

New flow

Notification in physical RAN

Notification in virtualized RAN

Packet and notification mapping

Fig. 2. Main procedures for processing network flows from vRAN
to physical RAN

With network virtualization technology, the net-
work infrastructure provider can build multiple
vRANs based on a single RAN. With that mode,
SIoT groups only need to require enough resources
in their vRAN from the infrastructure provider, as
well as the IoT cloud service, then provide data
communication services to the IoT devices. As
shown in Fig. 1, two SIoT groups connect to the IoT
cloud through the same physical RAN. To isolate
the connection of two groups, two vRANs are built
on the physical RAN. In each vRAN, the operators
have their vRAN devices and topology to connect
their IoT devices to the cloud.

As discussed in Section II, we use SDN to support
RAN virtualization. Further, for each vRAN, we
also provide the SDN enabled interface for operators
executing the network applications. Thus, we add
the virtualization framework in the controller of
the SDN enabled RAN. The structure of the RAN
virtualization framework is shown in Fig. 2. In
that structure, we add a service application in the
controller to provide virtualized controller service
for each vRAN. Virtualized RAN operators can
deploy applications for their specified forwarding
strategies in their virtual controllers.

Even though we can add a service in the con-
troller to support controller virtualization, physical
RAN devices cannot support virtualization. Devices
have the capacity to distinguish which vRAN the
coming packets belong to. Therefore, in the service
for RAN virtualization, we add two main processes
to transfer the physical flow control to the virtual
flow control.

The first processing transfers the notifications and

4

Packet p from physical RAN
Destination IP User dataSource IP

8.8.8.8 10.0.0.2

Packet p from virtual RAN
Destination IP User dataSource IP

8.8.8.8 192.168.0.1

Packet Mapping
network ID Virtual IP Physical IP

0001 192.168.0.210.0.0.2

Rule for forwarding Packet p in virtual RAN
... ActionIP src

... Port 1192.168.0.1

Device Mapping
network ID Virtual port Physical port

0001 Port 1 Port 3

Packet Mapping
Virtual Virtual IP Physical IP

0001 192.168.0.2 10.0.0.2

Rule for forwarding Packet p in physical RAN
... ActionIP src

... Port 1192.168.0.1

Application
in virtual

RAN

Fig. 3. Example of transferring packets and rules in RAN virtual-
ization framework

packets from physical devices to virtual controllers.
In the SDN methodologies, when the existing for-
warding rules cannot support the coming packet dur-
ing switch processes a new network flow, the switch
will send a notification contained the new packet to
the controller. The controller will generate a set of
rules for processing the packet and place the rules
to the switch memory. In the virtual RAN structure,
before the virtual controller receives the notification,
we use a notification and packet mapping to transfer
the notification to virtualized one from the virtual
device. With the correctly transferred notification,
the network application of the vRAN generates the
rules for processing the packet.

The second processing transfers the rules gener-
ated by the virtualized controller to the forwarding
rules for processing the packets in the physical
network. Since the virtualized controller has no
information about the physical RAN, the generated
rules cannot be used for processing packets in the
physical RAN. Therefore, we use rule and address
mapping to transfer the rules to the ones worked in
the physical RAN. After transferring, the controller
for the physical RAN places the rules to the switch
waiting for processing.

For better understanding the network virtualiza-
tion framework, we use a simple example to de-
scribe some details of the transferring. We choose
an IP based RAN with support of existing Openflow
protocol. After a new packet come to the physical
switch, the switch sends the packet to the con-
troller for the physical RAN. When the controller
receives the packet, vRAN service first finds which
IP address and vRAN ID of the source IP address
and destination IP address mapped. As shown in

Fig. 3, the service finds the source IP address
10.0.0.2 belongs to 0001 vRAN and the mapped
virtual IP address is 192.168.0.2. Therefore, the
service replaces the source IP address and sends
the packet with the transferred notification to the
virtual controller of 0001 vRAN. After that, the
application in the controller generates the related
forwarding rule for the packet. The service receives
the rule then transfers the rule for the forwarding
in the physical network. The action of the rule for
vRAN is forwarding packet to port 1. Since the port
number of the virtual device and the physical one
is different, the service finds port 3 in the physical
RAN is mapped to port 1 in the device mapping.
Meanwhile, the service also finds the related IP
address in the rule through the packet mapping.
After replacing the match fields, the controller will
transfer the packet and place the rule to the switch
for further packets if the rule space allocated to the
vRAN is enough.

Meanwhile, we also implement a prototype of this
framework design in the mininet environment with
OpenvSwitch (OVS) [15]. Since the Open Network
Foundation only provides a prototype of RAN with
openflow, we use the OVS device to simulate the
base station device in the prototype. We use the
OVS as main SDN devices in the network and
several POX applications as the virtual controller.
Between the POX applications and the OVS, we
add a procedure to receive all messages from both
POXs and OVS. In that procedure, an address table
is used for mapping the virtual IP addresses to the
physical IP addresses. With that address table, the
IP address is changed in that procedure to support
network virtualization. Further, for the base station
devices, we add a wireless link object with mobility
to simulate the wireless connection.

This prototype is far from realistic deployment.
The RAN protocols in the real-world are too com-
plex to be implemented in the SDN environment.
Most of the network protocols need to be rede-
veloped into the SDN applications. However, both
academies and companies continue developing the
SDN/OpenFlow enable RAN products and try to
implement the RAN protocols by SDN applications.
Therefore, after the network applications for RAN
protocols are developed, it is possible to implement
our design in the future SDN enabled RAN.

5

IV. PROBLEM STATEMENT AND ALGORITHM

In our network virtualization, multiple vRANs are
built for different SIoT groups. Each groups wants
its network has enough performance. However, as
existing SDN devices are designed for the single
network, the rule space is not enough for sharing
between too many vRANs. When the rule space
is short for placing rules, some packets need to
be forwarded by the controller. Usually the latency
between devices and the controller is much longer
the latency in the device hardware. This latency
will influent the user IoT seriously when a number
of packets are processed by the controller. Mean-
while, the user IoT requirement of different groups
is usually different. The groups which focus on
some delay sensitive applications (e.g., IP commu-
nication, desktop interaction, game streaming, etc.)
will require shorter latency than the normal ones.
Therefore, we have to state the problem then find the
optimized allocation method to allocate the limited
rule space for each vRAN. In this section, we first
state the problem that how to allocate limited rule
space to vRANs with different requirement. Then,
we describe the allocation algorithm to solve the
problem.

We define a set V to denote the networks. In
V , we use vi to denote each vRAN. In vRAN vi,
we use Fi to denote the set of existing flows and
fij to denote the each flow. We define a function
fij(t) to indicate in time t whether a packet exists
in flow fij . Meanwhile, we assume each flow has
almost one packet per one time slot. Therefore, for
each flow, the total traffic to time t can be described
as
∑t

τ=0 fij(τ). In the physical RAN, we use S to
denote the set of switches and sk to denote each
switch.

Further, the paths of flows are different with the
forwarding strategy. In most network topologies,
the forwarding path of each flow has only part
of switches. Therefore, to describe the relationship
between flows and switches, we use a 0−1 function
Xijk(t) to indicate whether a flow fij is forwarded
in a switch Sijk as follows.

Xijk(t) =

{
1, fij is fowarded in sk
0, fij is not fowarded in sk

(1)

In SDN enable networks, for forwarding each
flow, the switch needs to know the corresponding
rules. The switches can get the rules from the local

rule space and the controller. Obviously, the latency
of accessing the local rule space is much shorter
than communication with the controller. However,
since vRAN framework uses TCAM to store for-
warding rules, the rule space is not enough for store
all rules in switches. We use a value ri to denote
the number of rule entries assigned to vRAN vi.
We simplify the rule size for each flow is one entry
and use another 0 − 1 function Yijk(t) to indicate
whether the rule for flow fij is placed in a switch
sk in time t as follows.

Yijk(t) =

{
1, rule for fij is placed in sk
0, rule for fij is not placed in sk

(2)
Since the number of rule entries in each switch is

limited, we use a value C to denote the rule space
for store rules. Therefore, the number of rules is no
more the rule space as follows.

V∑
i=1

|Fi|∑
j=1

Xijk(t)Yijk(t) ≤ C (3)

If a switch can not find a corresponding rule for
the incoming packet, it needs a latency L to pro-
cessing the packet in the controller. The processing
latency in time t in vRAN vi can be formulated as
follows.

li(t) =

|Fi|∑
j=1

L

|S|∑
k=1

Xijk(t)fij(t)(1− Yijk(t))) (4)

In the vRAN framework, the rule space in each
switch is shared by vRANs of SIoT groups. For
management of rule space sharing, in the vRAN
framework, we assignment the rule space to each
vRAN according the latency requirement. Thus, as
we assign the rule space to each vRAN vi, for switch
sk, the rule space used is also satisfied as follows.

|Fi|∑
j=1

Xijk(t)Yijk(t) ≤ ri (5)

To satisfy the requirement of latency, we set a
latency Qi for each vRAN vi and the average latency
per each packet brought by the limited rule space
should be small than the required latency as follows.∑t

τ=1 li(τ)∑t
τ=1

∑|Fi|
j=1 fij(τ)

≤ Qi (6)

6

And we use αik to denote the average ratio that
rule of a flow in vRAN vi is not placed in the switch
sk as follows.

αik =
t∑

τ=1

∑|Fi|
j=1 fij(τ)Xijk(τ)(1− Yijk(τ))∑|Fi|

j=1 fij(τ)
(7)

Usually, since the physical RAN providers want
more SIoT groups in its network for better scala-
bility, the problem is how to maximize the number
of vRAN with the guarantee of latency. Therefore,
we formulate the rule space assignment problem as
follows.

max: |V |

wt: L
|S|∑
k=1

αik ≤ Qi

|V |∑
i=1

ri ≤ C

|Fi|∑
j=1

Xijk(τ)Yijk(τ) ≤ ri,∀1 ≤ τ ≤ t

(8)

The problem of rule space assignment in RAN
virtualization (RARV): given a physical RAN and
a set of vRAN, the RARV problem attempts to
assign rule space to the maximum number of vRAN
such that the average latency for forwarding a packet
in each vRAN is satisfied the IoT requirement.

To solve the problem, since most vRANs use the
same devices, we define a requirement first greedy
allocation algorithm shown in Algorithm IV. In line
1, we first assign rule space to the vRAN with a
small number of required rule space entries. First,
allocation sorts all networks with their required rule
space then traverse all networks from the one who
requires less rule space to the one who requires
more. In the traversing from line 2 to 22, the
allocation sorts all switches of the traffic forwarded
in each switch in line 3. After sorting, the procedure
in the traversal places the rules one by one to the
rule space of the switch which has enough space
from line 5 to 17. When the average latency is
more than the latency requirement, the procedure
is ended and the allocation will start the procedure
again for the next switch in line 10. When the
procedure cannot place any of rules for the current
vRAN, the allocation will remove all rules of the
network and begin the procedure for the next in line

14. If the procedure finished the placement success,
the allocation increase the number of the satisfied
vRAN by one in line 20. After all networks are
processed, the final number of the satisfied vRAN
is the optimized result of the rule space allocation
problem.

Algorithm 1 Rule space allocation for vRAN
1: Sort all vi in V that for V =
{v1, v2, ..., v|V |},r1 < r2 < ... < v|V |;

2: for vi in V do
3: Sort all sj in S that for S = {s1, s2, ..., s|S|},
fi1 > fi2 > ... > fi|S|;

4: while t̄′i > ti do
5: for sj in S do
6: if thenfij > 0 and the capacity of
sj is no more than R

7: Put a rule for vi in switch sj;
8: r′i ← r′i + 1;
9: if t̄′i > ti then

10: Break;
11: end if
12: end if
13: if t̄′i has no changed then
14: remove all rules of vi
15: Break;
16: end if
17: end for
18: end while
19: if t̄′i ≤ ti then
20: N ← N + 1
21: end if
22: end for

V. PERFORMANCE EVALUATION

In the section, we use some simulation based
programs to test the performance of our allocation
algorithm. We first introduce the simulation setting
then analyze the results of the performance evalua-
tion.

We use mininet as the main method to simulate
the network. Since we implement a prototype in
mininet environment, we use the TreeTopo class
to build the network topology. We choose the data
from Muroran city where our university locates for
the network settings in the simulations. From the
data of Docomo which is biggest MNO in Japan,
the number of base stations in Muroran city is 92
until around 2015. Thus, in our simulations, we use

7

4000 5000 6000 7000 8000 9000 10000 11000
Number of entries in rule space

0

10

20

30

40

50

60

70
N

u
m

b
e
r

o
f

su
p
p
o
rt

te
d
 v

R
A

N

Allocation
FIFO
Random
Average

(a)

400 500 600 700 800 900 1000
Required latency (ms)

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

su
p
p
o
rt

te
d
 v

R
A

N

Allocation
FIFO
Random
Average

(b)

0 1 2 3 4 5 6
Number of required rules per device

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

su
p
p
o
rt

te
d
 v

R
A

N

Allocation
FIFO
Random
Average

(c)

40 50 60 70 80 90 100
Number of virtual base station per vRAN

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

su
p
p
o
rt

te
d
 v

R
A

N
Allocation
FIFO
Random
Average

(d)

Fig. 4. Evaluation results outperform the comparison algorithm with different settings.

90 as the maximum number of base stations and
connect the base station with a randomly generated
tree topology.

For each vRAN, for testing the its effect on the
result, we set the number of virtual base stations
from 50 to 90 and increased 10 per each step. As
the population of Muroran city is 89058 on March
31th, 2015 and we assume each citizen has one
device connected to the IoT service, the maximum
number of devices is set to 90000. Thus, with
the number of base stations varying, the number
of devices is also set from 50000 to 90000 and
increased 10000 per each step. As Muroran city has
51 divisions, we divided the devices in to 50 groups.

Therefore, the number of devices per each vRAN
is from 1000 to 1800 increased with the number
of base stations. From the parameters of existing
SDN products, We set the number of rule space
entries per each switch is from 5000 to 10000 to
test the dependency between the supported number
of vRANs and the hardware capacity. As a device
usually has no more than 5 functions, we define
the average number of flows per each device is
from 1 to 5 to test the influence brought by the
increasing of the number of network flows. For
each flow, the traffic is randomly distributed in the
time domain with different number of packages per
second (PPS). Since we put the controller in the

8

Google compute engine, the communication latency
between the devices and the controller is about 1000
ms. The latency required by IoT of each vRAN is
set from 500 ms to 900 ms and increased by 100
ms per step. The duration time of each round of
evaluations is set to one hour. We use the default
placement strategy and we also move the flows from
one base station to another in the vRAN. We use two
existing algorithm as comparisons to our allocation,
including random allocation , average allocation,
and first-in-first-out (FIFO) which assign the rule
space to the vRAN by default sequence used in [6].
We execute the simulation 20 times and record the
average value in each result.

We first test the influence by the number of rule
space entries in each switches. We fix the average
number of required flows per each device is 1, the
required latency is 900 ms, the number of devices
per each SIoT groups is 1800, and the number of
base stations is 90. As shown in Fig. 4(a), we find
the number of supported vRANs by our allocation
is more than other three methods. The number of
supported networks with our allocation algorithm
is 30 while the number of random and average
allocation is near to 20. With the increasing of
rule space, the physical network can support more
vRANs. When the number of rule space entries
in switches increases to 10000, the number of
supported networks with our allocation become 50
while the number of other three methods is no more
than 30. With more space entries in each switch, the
increment of our allocation is more than other three
methods.

For testing the influence by the IoT requirement,
we change the required latency from 500 ms to 900
ms. Meanwhile, we fix the number of rule space
entries is 10000 in each switch. From the result
shown in Fig. 4(b), we find the IoT requirement can
affect the result obviously. After we decrease the
IoT requirement, the physical network can support
much more vRANs than small required latency.
Especially, when the latency is increased to 900 ms,
the number of supported vRAN is more than two
times of the number of 500 ms. Our solution still
performs much better than other three methods.

We test the influence brought by the number
of users required rules. In the test, the required
latency from the IoT requirement is set to 500 ms.
As shown in Fig. 4(c), we find that our allocation
still performs better than other algorithms. With

our allocation, the number of supported vRANs is
more than two times than FIFO allocation when
the average number of users required rules is 1.
When user required more rules for forwarding their
flows, the number of supported vRANs decreases
quickly. When the average number of users require
rules increases to 5, the number of supported vRAN
with our allocation algorithm is nearly 20 while
the number of other three methods is less than 15.
Even worse, the number of supported networks with
random allocation is less than 10.

Since more virtual base stations mean better
coverage ratio and more users exist in the network,
our last test the effect brought by the number of
virtual base stations. We set the number of required
rules from each user is one. From the result shown
in Fig. 4(d), we find RAN virtualization is hard
to provide large scale vRANs. With the increasing
of base stations, the number of supported vRAN
is significantly decreased. Even with our solution,
the physical network can support no more than
20 vRANs when each vRAN has 90 base sta-
tions. Other three solutions perform similarly and
the number of supported vRANs of the Random
algorithm is less than 5.

VI. CONCLUSION

From our design of the rule processing in the
controller, we consider SDN based structure is
a potential solution for future RAN virtualization
especially for the IP based RAN. To solve the
problem that maximizing the number of support
vRAN with limited SDN rule space, we propose
an algorithm for rule space allocation. We also
develop a prototype in the simulator and evaluate
the performance of our allocation algorithm with
simulations. The simulation results show that our
solution performs better than the default FIFO based
rule allocation used in the previous work. As a
result, we will focus on this problem and give a
better solution including both flow forwarding and
radio bands optimized RAN virtualization.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer Networks, vol. 54, no. 15, pp. 2787 – 2805,
2010.

[2] ——, “From ”smart objects” to ”social objects”: The next evo-
lutionary step of the internet of things,” IEEE Communications
Magazine, vol. 52, no. 1, pp. 97–105, January 2014.

9

[3] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social
internet of things (siot) when social networks meet the internet
of things: Concept, architecture and network characterization,”
Computer Networks, vol. 56, no. 16, pp. 3594 – 3608, 2012.

[4] X. Costa-Perez, J. Swetina, T. Guo, R. Mahindra, and S. Ran-
garajan, “Radio access network virtualization for future mobile
carrier networks,” IEEE Communications Magazine, vol. 51,
no. 7, pp. 27–35, July 2013.

[5] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “Softran: Software
defined radio access network,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM,
2013, pp. 25–30.

[6] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network
virtualization in software-defined networks,” IEEE Internet
Computing, vol. 17, no. 2, pp. 20–27, March 2013.

[7] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” in Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, ser. HotSDN ’12.
New York, NY, USA: ACM, 2012, pp. 7–12.

[8] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social
networks in a composable web of things,” in The 8th IEEE
International Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops 2010), March
2010, pp. 702–707.

[9] M. Kranz, L. Roalter, and F. Michahelles, “Things that twitter:
social networks and the internet of things,” in What can the
Internet of Things do for the Citizen (CIoT) Workshop at
The Eighth International Conference on Pervasive Computing
(Pervasive 2010), 2010, pp. 1–10.

[10] A. Jian, G. Xiaolin, Z. Wendong, and J. JinHua, “Nodes social
relations cognition for mobility-aware in the internet of things,”
in Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber,
Physical and Social Computing, Oct 2011, pp. 687–691.

[11] I. Vanu, “Vanu - home,” http://www.vanu.com/, accessed April
1, 2015.

[12] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “Lte wireless
virtualization and spectrum management,” in Proceedings of
The Third Joint IFIPWireless and Mobile Networking Confer-
ence (WMNC 2010), Oct 2010, pp. 1–6.

[13] G. Bianchi, “Line spacing in latex documents,” http://www.
ict-flavia.eu/, accessed April 1, 2015.

[14] X. Costa-Pérez, A. Festag, H.-J. Kolbe, J. Quittek, S. Schmid,
M. Stiemerling, J. Swetina, and H. van der Veen, “Latest
trends in telecommunication standards,” SIGCOMM Comput.
Commun. Rev., vol. 43, no. 2, pp. 64–71, Apr. 2013.

[15] B. Lantz, B. Heller, and N. McKeown, “A network in
a laptop: Rapid prototyping for software-defined networks,”
in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, ser. Hotnets-IX. New York,
NY, USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

