
1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

1

Adaptive Alert Management for Balancing
Optimal Performance among Distributed CSOCs

using Reinforcement Learning
Ankit Shah, Rajesh Ganesan, Sushil Jajodia, Fellow, IEEE, Pierangela Samarati, Fellow, IEEE,

and Hasan Cam, Senior Member, IEEE

Abstract—Large organizations typically have Cybersecurity Operations Centers (CSOCs) distributed at multiple locations that are
independently managed, and they have their own cybersecurity analyst workforce. Under normal operating conditions, the CSOC
locations are ideally staffed such that the alerts generated from the sensors in a work-shift are thoroughly investigated by the
scheduled analysts in a timely manner. Unfortunately, when adverse events such as increase in alert arrival rates or alert investigation
rates occur, alerts have to wait for a longer duration for analyst investigation, which poses a direct risk to organizations. Hence, our
research objective is to mitigate the impact of the adverse events by dynamically and autonomously re-allocating alerts to other
location(s) such that the performances of all the CSOC locations remain balanced. This is achieved through the development of a novel
centralized adaptive decision support system whose task is to re-allocate alerts from the affected locations to other locations. This
re-allocation decision is non-trivial because the following must be determined: (1) timing of a re-allocation decision, (2) number of alerts
to be re-allocated, and (3) selection of the locations to which the alerts must be distributed. The centralized decision-maker (henceforth
referred to as agent) continuously monitors and controls the level of operational effectiveness-LOE (a quantified performance metric) of
all the locations. The agent’s decision-making framework is based on the principles of stochastic dynamic programming and is solved
using reinforcement learning (RL). In the experiments, the RL approach is compared with both rule-based and load balancing
strategies. By simulating real-world scenarios, learning the best decisions for the agent, and applying the decisions on sample
realizations of the CSOC’s daily operation, the results show that the RL agent outperforms both approaches by generating (near-)
optimal decisions that maintain a balanced LOE among the CSOC locations. Furthermore, the scalability experiments highlight the
practicality of adapting the method to a large number of CSOC locations.

Index Terms—Distributed cybersecurity operations center (CSOC), centralized alert management, level of operational effectiveness,
reinforcement learning, and adaptive resource allocation.

F

1 INTRODUCTION

IN this era of digitization, where the critical data of an
organization are transmitted and stored electronically,

monitoring and protecting computer networks have become
more critical than ever. Organizations rely on cybersecu-
rity operations center (CSOC), a unique amalgamation of
people, processes, and technology, to protect against the
ever-increasing cybersecurity threats. Strategically placed
sensors monitor the traffic flow in the network, and sensor
data are analyzed by automatic processing units such as
intrusion detection systems (IDSs) and secure information
and event management (SIEM) tools for malicious threats.
Alerts are generated when suspicious activities are detected,
which in turn require cybersecurity analysts to analyze them
thoroughly. Analysts, working in shifts, help in detecting,
analyzing, and reporting significant alerts and thereby help

A. Shah, R. Ganesan and S. Jajodia are with the Center for Secure Information
Systems, George Mason University, Fairfax, VA 20030 USA e-mail: {ashah20,
rganesan, jajodia}@gmu.edu.
P. Samarati is with the Computer Science Department, Università degli Studi
di Milano, 26013 Crema-Italy. email: pierangela.samarati@unimi.it.
H. Cam is with the U.S. Army Research Laboratory, Adelphi, MD 20783 USA
e-mail: hasan.cam.civ@mail.mil.
Shah, Ganesan, and Jajodia were partially supported by the Army Research
Office under grants W911NF-13-1-0421 and W911NF-15-1-0576 and by the
Office of Naval Research under grant N00014-15-1-2007.
Manuscript received xxxx 1xx, 2018; revised xxxx xx, 2018.

in preventing or limiting the impact of cybersecurity inci-
dents. The alert analysis process is shown in Figure 1.

Large organizations typically have CSOCs distributed at
multiple locations. Each CSOC location is independently
managed by hiring and scheduling analyst resources such
that the alert workload generated by the monitored sensors
is investigated in a timely manner and the quality of analysis
is maintained by having an ideal mix of analyst expertise
levels (skills) in a shift [1]. The performance of a CSOC
is dependent on the timely identification of significant alerts,
which is the focus of this paper. In Shah et al. [2], the authors
propose a novel metric to quantify the performance of a
CSOC. The performance, defined as the level of operational
effectiveness (LOE), of a CSOC is measured by calculating
the average total time taken for alert investigation per hour
(avgTTA/hr). The avgTTA/hr metric is the average of the
sum of waiting time in the queue and the investigation time
of all the alerts investigated in that hour. Under normal
operating conditions, a baseline avgTTA/hr value is estab-
lished that is acceptable to the CSOC along with a threshold
value for avgTTA/hr. The LOE is continuously monitored
using a color-coded representation as shown in Figure 2,
where different tolerance bands (colored-zones) are created
based on the baseline and threshold values of avgTTA/hr. In
this work, the LOE metric (avgTTA/hr) and the color-coded

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/222580594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

2

monitoring framework are used to measure the performance
of the individual CSOC locations.

There are organizational and adversarial events that af-
fect the performance of a CSOC. Examples of adverse events
and their impact on a CSOC include: (1) increase in intensity
and duration of surges in alert generation due to an attack
or restoration of a broken communication link between the
sensor/IDS and CSOC, and (2) increase in alert investigation
time due to new vulnerability discoveries or analyst absen-
teeism. As a result, the avgTTA/hr increases and the LOE of
a CSOC decreases. Under the influence of an adverse event,
a CSOC can marginally improve the LOE by increasing the
alert investigation rate by canceling/delaying the non-alert
analysis related tasks of the available analysts and by calling
in managers/supervisors to assist with the alert analysis
work. However, to further increase the throughput of the
alert analysis process for timely identification of significant
alerts, a CSOC has to re-allocate alerts to other CSOC loca-
tion(s) or rely on external analyst resources. In Shah et al. [3],
the authors propose a dynamic decision-making framework
by allocating an on-call analyst workforce to control the
LOE of a CSOC. An on-call resource allocation policy is
provided in [3] with limited number of additional resources
available in a given time-period. The study focused on a
single CSOC location and did not take into account multiple
CSOC locations with varying performance requirements. It
is to be noted that summoning an on-call analyst workforce
is expensive. Hence, when faced with an adverse event, it is
beneficial for a CSOC to re-allocate alert workload among
the other locations for analysis. Due to the uncertainties
arising from adverse conditions, alert generation rates, and
threat indicators of the alerts that impact the alert analysis
process at the CSOC locations, decision-making to reallocate
is non-trivial. For example, re-allocating alert workload
from the impacted location to another location whose LOE
is ideal at current time, t, can be impacted by an adverse
event between time t and t + 1. As a result, the LOE at the
latter location will decrease significantly with the additional
alert workload. The desideratum of large organizations and
the research objective of the paper are to have uniformly
balanced individual performances (LOE) among the CSOC
locations in every shift of operation. Hence, the following
must be determined for the centralized sequential decision-
making under uncertainty: (1) timing of the re-allocation
decision, (2) number of alerts to be re-allocated, and (3)
selection of the location(s) to which the alerts must be
distributed such that LOE of all the CSOC locations remain
uniformly balanced.

In this paper, an intelligent decision-making tool is
developed using a learning-based optimization framework
to determine when, how much, and whom to re-allocate
the alert workload to, such that the LOE of all the CSOC
locations remain uniformly balanced in the face of adverse
events. The proposed framework is based on the principles
of stochastic dynamic programming and is solved using
reinforcement learning (RL) [4], [5]. The RL-based optimiza-
tion model continuously monitors the avgTTA/hr metric
(backlog of alerts) of all the locations while making re-
allocation decisions to balance LOE among the locations.
Several real-world scenarios are simulated to learn the long-
run values of the states of the system. The goal is to

move from one good state to another after learning the
long-run values of the system states under a real-world
realization of uncertainty (adverse events). Through simu-
lated experiments, the RL-based approach is subjected to
several sample realizations of CSOC operations, and the
results are compared with both rule-based and load balanc-
ing approaches (explained in Section 4) that were devised
through conversations with several CSOC managers. The
results show that the RL-based approach outperforms both
rule-based and load balancing approaches in 1) maintaining
and uniformly balancing the individual performances (LOE)
between the CSOC locations by selecting (near-) optimal
alert workload to re-allocate among the locations, and 2)
determining the (near-) optimal timings to implement the
decisions. In particular, the results show that the RL-based
approach learns to make timely adjustments to the LOE of
the CSOC locations by allocating resources that keep the
system in good states (where individual LOE are uniformly
balanced among the locations) in the long run. As a result,
re-allocation decisions are made more often but in smaller
proportions (smaller number of resources allocated) com-
pared to the reactive approaches (rule-based and load bal-
ancing), which wait for the LOE to significantly deteriorate
before making a sub-optimal re-allocation decision.

The contributions of the paper are as follows.

1) The primary contribution is a novel adaptive alert
management framework that amalgamates perfor-
mance metrics, analyst investigation rate, and alert
generation rates from sensors of all the CSOC loca-
tions within an optimizing simulator for adaptive
alert management.

2) A sequential decision-making tool using this frame-
work is presented, which centrally manages the per-
formances (by uniformly balancing the LOE) of all
the CSOC locations of an organization by selecting
the right size of alert workload and re-allocates
it among various locations under the influence of
adverse events.

3) Also, more profound insights into the decisions
made by the RL-based optimization strategy are
provided by comparing scenarios with rule-based
and load balancing approaches.

4) Finally, the scalability experiments highlight the
practicality of adapting the method to a large num-
ber of CSOC locations.

The paper is organized as follows. Section 2 presents the
related literature. Section 3 presents the adaptive alert
management model; the stochastic dynamic programming
formulation and algorithm are described here. Section 4
presents the experimental set-up, and a description of the
rule-based and load balancing strategies used for com-
parison with the developed RL model. Section 5 presents
analysis of the experiment results and discusses the compu-
tational complexity of the problem. Section 6 presents the
conclusion and directions for future research.

2 RELATED LITERATURE

A CSOC protects an organization from cybersecurity threats
using a combination of technological elements and skilled

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

3

Fig. 1. Alert Analysis Process

Fig. 2. Color-coded Level of Operational Effectiveness Status [2]

personnel. A CSOC provides many services to an orga-
nization, which are broadly categorized into reactive ser-
vices, proactive services, and security quality management
services [6]. In a study conducted by Killcrece et al. [7]
at Carnegie Mellon University, alert management related
services were among the major services offered by the
surveyed security centers. In the alert management service
provided by a CSOC, raw data (network traffic data or host-
based log data) is collected and monitored by strategically
placed sensors in an organization’s network. The data is
then filtered through an IDS such as SNORT or a SIEM
tool (ArcSight [8]). Using pattern matching [9], [10] and/or
anomaly based techniques [11], suspicious activities (alerts)
are identified from the raw data. Many of the suspicious ac-
tivities generated by the automated detectors are innocuous.
Automating the detection of malicious threats [12], [13] and
reduction of innocuous suspicious activities [14], [15] are
active areas of research in the field of intrusion detection.

The suspicious activities, identified as alerts, by the
automated detectors are further analyzed by the cyberse-
curity analysts, who are also known as Tier 1 analysts [16],
first responders, or real-time analysts [17]. Identification of
innocuous and significant alerts is a relatively fast decision
made by the analysts [16], [17]. Analysts are the most critical
components of a CSOC, as their decisions have a direct
influence on the operational efficiency [18]. Recent work
in cybersecurity literature has focused on the various roles
performed by the analysts in creating security situational
awareness at the CSOCs (through a cognitive task analysis
study [17]), on understanding the burnout of the analysts
(through an anthropological study [18]), and in increasing
the efficiency of analysts [19].

Previous work has also addressed various measures
of performance and effectiveness of CSOCs. In the pio-
neering work by Ganesan et al. [1], the authors present
a methodology for obtaining an optimal schedule for an-
alysts with respect to minimizing the number of unana-
lyzed alerts (performance metric) that remain at the end
of each shift. Furthermore, scheduling of on-call analysts
under uncertainty with respect to the above performance

metric of unanalyzed alerts is studied using reinforcement
learning in Ganesan et al. [20] and a two-stage stochastic
model in Altner et al. [21]. In an anthropological study
conducted by Sundaramurthy et al. [18], the average time
taken to analyze a significant alert by analysts is one of
the operational performance metrics used by the surveyed
security centers. In Newcomb et al. [22], the authors present
an alert prioritization framework for high value assets in
an organization by minimizing the waiting time for the
investigation of alerts related to such assets. The quality
metric of how accurately the malicious threats are detected
is measured by the recall and precision values [23]. The
quality of alert analysis process (with low false positive
and false negative rates) is maintained by scheduling an
ideal expertise mix of analysts (for example junior, inter-
mediate, and senior) per shift [1], [20], [21]. Timeliness is
an important security metric [23], which in the context of a
CSOC measures the ability to timely identify the significant
alerts and take further actions. In Shah et al. [2], the authors
quantify the effectiveness of a CSOC by measuring the
average time spent by the alerts (sum of the waiting time
in the queue and investigation time by the analysts) in the
CSOC system per hour (avgTTA/hr). In this work, the above
metric, avgTTA/hr, is used to measure the effectiveness of
the various CSOC locations.

To attain a balanced operational effectiveness across
all locations for the entire time horizon requires decision-
making to re-allocate alert workload at each epoch. This
sequential decision-making also must consider the future
uncertainties in the form of adverse events that may occur
at the CSOC locations. Due to the stochastic nature of the
events, this decision-making is non-trivial. In discussions
with several CSOCs, we found that the current methods
used by the CSOC operators for alert and resource man-
agement are myopic, which do not take future uncertainties
into consideration, and are often rule-based. The current
rule-based techniques employed by the CSOCs are used
for comparison in the work by Shah et al. [3], which was
in collaboration with the Army Research Laboratory. Intro-
duced by Bellman [24], stochastic dynamic programming
is widely used for modeling and solving problems of se-
quential decision-making under uncertainty. Problems are
formulated as Markov decision processes [25]. Reinforce-
ment Learning (RL) [4] is one of the ways to solve them.
RL models are used in diverse applications in literature
to make (near-)optimal decisions. To utilize idle resources
during under-utilization and to avoid high response times
during over-utilization of resources in computing cloud
environments, Yazir et al. [26] propose a dynamic resource
allocation model using distributed multiple criteria decision
analysis. Duggan et al. [27] propose a RL-based decision
support system that schedules virtual machine migrations at

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

4

optimal times in the wake of network saturation at data cen-
ters. In [28], the authors propose a multi-agent RL method
for job scheduling (load balancing) in Grid computing.

Farahnakian et al. [29] propose a RL-based dynamic
consolidation method to minimize the number of active
hosts in cloud data centers to reduce energy consumption.
Shaw et al. [30] propose an advanced RL consolidation agent
to optimize the distribution of virtual machines (VM) in a
data center to improve energy consumption. In this study,
the authors evaluate the performance of their approach
against a rule-based heuristic that selects from a decreasing
order of the most energy efficient hosts for VM allocation.
The above two studies use Q-learning to learn the optimal
policies of actions, in which the RL algorithms objective is to
find (near-) optimal values of expected rewards of the state-
action pairs. In contrast, the study presented in this paper
employs a stochastic dynamic programming framework to
approximate the value of being in a particular state. It is to
be noted that the convergence of the RL algorithm will be
slower (requiring many iterations) in the former method.

Dynamic load balancing has been a topic of inter-
est for researchers since many decades in various do-
mains [31], [32]. There are many methods used for load
balancing in a dynamic environment in literature such as
genetic algorithm [33], ant colony optimization [34], active
clustering [35], and weighted least connection (WLC) and
exponential smooth forecast based on WLC (ESWLC) [36].
All of the above mentioned heuristic methods are essentially
static (not sequential) decision-making within their applica-
tions, and are reactive (do not consider future uncertainties)
to the observed state of the system at the time of decision
making. Also, some of the above methods are specific to a
particular domain. They appear to be dynamic because the
reactive decisions can be taken as often as needed, and the
decisions are independent of each other. For example, WLC
and ESWLC are used for dynamic load balancing for cloud
computing. While WLC does not taken into consideration
the resource capacity at each node, ESWLC predicts which
node is to be selected based on an exponential smoothing.

Dynamic algorithms need to monitor various attributes
of a system such as current load (demand), future (esti-
mated) load, identification of the nodes to which the load
need to be transferred to, and throughput of each node.
One of the major issues of a complex centralized system
is the overload of information. In such systems, capturing
the relevant information in a compact manner and decision-
making for load balancing is non-trivial.

The work presented in this paper differs from the above
as per the following:

1) A sequential decision-making model under uncer-
tainty has not been studied in literature for opti-
mally balancing the individual CSOC performances
by re-allocating the alert workload among the CSOC
locations.

2) The paper differs from traditional load or line bal-
ancing approaches because of the cyber security
context, which has uncertainties arising from ad-
verse conditions, alert generation rates, and threat
indicators of the alerts that impact the alert analy-
sis process at the CSOC locations. Thus, decision-

making to reallocate for balancing LOE is different
from load or line balancing that typically has deter-
ministic quantities to allocate.

3) This work presents a novel way of observing and
capturing the state of the system by aggregating in-
formation from all of the nodes (locations) to reduce
the information overload faced by a centralized
agent.

4) A first of its kind RL-based approach using stochas-
tic dynamic programming is presented in this paper
that finds (near-) optimal long-term rewards for
all possible states in contrast to all possible state-
action pairs found in recent studies [29], [30],
which also used RL approach for load balancing,
and thereby achieves a faster convergence during
learning due to lower dimensional information re-
quirement (states versus state-action pairs).

The framework for the adaptive model for alert manage-
ment at the CSOC locations is presented next.

3 ADAPTIVE ALERT MANAGEMENT MODEL
FRAMEWORK

In this section, we present the framework for adaptive alert
management model.

3.1 Problem Definition

The research objective is to build a centralized dynamic deci-
sion making system that will adaptively and autonomously
make the reallocation of alerts decision (when, how much,
and to whom) in order to uniformly balance the individ-
ual performances (LOE) between the CSOC locations. The
avgTTA/hr value, measured in terms of the number of alerts
that are backlogged at a CSOC location, must be minimized
and balanced among the CSOC locations. Define Xi,t as the
number of alerts that are backlogged at CSOC location i at
time t. The objective is to make decisions such that

Min

n∑
i=1

Xi,t, ∀t, (1)

and

Min
n−1∑
i=1

n−1∑
k=i

(|Xi,t −Xk+1,t|) ∀t (2)

among n locations for each hour t in a day of opera-
tion, and over any given work cycle. The index k + 1
in the above equation represents another CSOC location.
Typically, a CSOC follows 14-day shift schedule for the
analysts [1], [21]. Equation (1) ensures that the total backlog
is minimized across all locations, and Equation (2) ensures
that the absolute difference between the backlogs between
any two locations is minimized (uniformly balanced backlog
among all locations). The two equations are combined into
a single contribution function as explained later. Figure 3
shows the model framework, which consists of (1) a simula-
tion model and (2) an optimization model. Alert analysis
processes at various CSOC locations are simulated and,
using a reinforcement learning-based optimization model,

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

5

re-allocation decisions for the alert workload are made to
meet the research objective stated above. The details of the
simulation and optimization models are explained next.

3.2 Simulation Model
Multiple CSOC locations are simulated. Each CSOC lo-
cation has enough number of analysts per work-shift for
an expected alert workload generated from the monitored
sensors such that an acceptable avgTTA/hr value (LOE
metric) is maintained. The queueing system is modeled
as M/D/c/FCFS, which combines the service rates of all
analysts into a single server and calculates the average alert
arrival rate per hour for the CSOC location by combining
the alert arrival rates of all the sensors [2]. Based on pre-
determined threshold values for avgTTA/hr, different color-
coded tolerance bands (Figure 2 [2]) are created and the LOE
status is continuously monitored. It is to be noted that the
figure is plotted on a scale starting with only the investi-
gation time for alerts with no waiting time in the queue
(for situation with no backlog of alerts). Alert investigation
for the identification of innocuous and significant alerts is a
relatively fast decision-making process. Hence, there are no
alerts at the end of each hour, whose analysis has started
but not completed. As a result, an alert is considered to be
either analyzed or it remains backlogged in the queue at
the end of each hour. It should be understood that once a
significant alert is identified it could take several hours to
find a mitigation strategy by another CSOC team, however,
that process is beyond the scope of this paper.

Obtaining a real data set for a research study is a major
obstacle for researchers in the field of cybersecurity due to
confidentiality reasons. There are very few studies in re-
cent cybersecurity literature where real-world data is used.
Authors in [37] and [38] studied cyber-incident data from
the US Department of Energy while authors in [39] studied
a data set published by Privacy Rights Clearinghouse for
large cyber breaches. A Poisson distribution was found to
be the best fit for describing the cyber-incident arrivals
in these data sets. In the experiments presented in this
paper, adverse events are generated using a Poisson arrival
process. The alert analysis process at each CSOC location is
simulated using the inputs and uncertainty in the form of
adverse events as shown in Figure 3. The algorithm for the
alert analysis process is given in [2]. Performance metrics
(avgTTA/hr) from all CSOC locations are obtained as the
outputs of the CSOC system. The backlog of alerts pertain-
ing to the avgTTA/hr value from each of the CSOC locations
is then provided to the optimization model given below.
It is to be noted that for a real-world implementation, the
simulation model can be replaced by the actual alert analysis
processes at the CSOC locations and the avgTTA/hr values
would be provided to the RL agent/optimization model.

3.3 Optimization Model
The optimization model obtains the number of alerts that
are backlogged at each of the CSOC locations from the sim-
ulation model. The objective of this model is to provide alert
workload re-allocation decisions to the simulation model
as shown in Figure 3. In real-world, these decisions are
provided to the CSOC managers for their approval. The

backlog numbers from the respective CSOC locations are
provided to the RL agent. The decision-making framework
provided by the RL agent is based on the principles of
stochastic dynamic programming, whose formulation for
adaptive alert management is presented next.

3.3.1 Stochastic Dynamic Programming Formulation
Figure 4 shows the various elements used in the stochastic
dynamic programming formulation, which are explained as
follows.

State variable, also known as the state of knowledge,
contains all the information that is needed to make a deci-
sion (shown as squares in Figure 4). It is a n-dimensional
vector, Bt = (X1,t, . . . , Xn,t), where Xi,t is the number of
alerts that are backlogged at CSOC location i at time t.

Decision variable represents how the process is
controlled. It is represented as a vector, gt =
(y1,2,t, . . . , yn,n−1,t), where yi,l,t represents the alert work-
load re-allocated from location i to location l for investiga-
tion between time t and t+1. gt is the action taken at time t
in state Bt that moves the system to the post-decision state
Bgt . The sequence of decisions are shown in solid lines in
Figure 4.

Uncertainty, represented by Wt+1 and shown in a
dashed line in Figure 4, is the exogenous information that
is presented at each time index. It is represented by vector
(Z1,t, . . . , Zn,t), where Zi,t is the number of alerts that are
generated in addition to the baseline average number due
to the adverse events at location i between time t− 1 and t.
Adverse events, in the context of the problem in this work,
are presented in Section 4. These random events impact the
number of alerts that are backlogged at the CSOC locations.

State transition function determines how the system
moves from one state (Bt) to another (Bt+1) under deci-
sion gt in the face of uncertainty Wt+1. This is expressed
as Bt+1 = hW (Bt, gt,Wt+1). Next, the concept of post-
decision state (PDS) variable [5] is explained, which breaks
the transition function into two parts.

Post-decision state (PDS) variable represents the state
of the system after a decision is made and is represented
by Bgt . It is to be noted that the PDS variable represents the
state of the system before the exogenous information, Wt+1

arrives. Hence, the state transition function is broken into
two parts as shown in Figure 4. The state transition function
that moves the system from state Bt to state Bgt is purely
due to the effect of decision gt, while the state transition
function that moves the system from state Bgt to state Bt+1

is due the effect of the uncertainty, Wt+1.
Contribution function, C(Bt, gt), is the measurement of

the well-being of the system. In this work, the contribution
function represents a reward that is maximized by the
stochastic dynamic programming algorithm at time t and
is dependent on the state of the system Bt. It is to be noted
that the algorithm does not have the exogenous informa-
tion Wt+1 available at the time of making the decision gt.
The most desirable state of the system is to have minimal
backlog of alerts and minimal variance between the backlog
numbers across all the locations at time t+ 1. Hence, under
an adverse event when the state of the system shows a high
backlog of alerts at a CSOC location, the alert workload is re-
allocated to other locations such that the backlog numbers

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

6

Fig. 3. Adaptive Alert Management Model Framework

Fig. 4. Elements of the Adaptive Alert Management Formulation

are uniformly balanced among all the CSOC locations. The
re-allocation decision is dependent on the current backlog
numbers at the other locations. For instance, re-allocating
alerts to a location that has a significant backlog of alerts
at time t will result in a further increase in the backlog of
alerts at the respective location at time t+1. The contribution
function, C(Bt, gt), where decision gt is taken in state Bt, is
calculated as follows. If the backlog Xi,t is zero for a CSOC
location i then the linearly normalized value represented
by fi,t (on a 0-1 scale) of the backlog at Xi,t = 0, is
fi,t = 1. A threshold value of backlog of alerts is calculated
using the threshold value of avgTTA/hr, and value fi,t for
Xi,t ≥ backlog threshold is fi,t = 0. In order to balance the
LOE of the CSOC locations measured in terms of the backlog
of alerts in the system state, an absolute difference among
the normalized backlog numbers for all pairs of locations is
taken into account in the contribution function. This helps
in preventing situations of high variability among the LOE
of the different CSOC locations. The contribution function is
defined as follows:

C(Bt, gt) =

n∑
i=1

fi,t −
n−1∑
i=1

n−1∑
k=i

(|fi,t − fk+1,t|). (3)

It is to be noted that each CSOC location chooses it’s own
threshold value of avgTTA/hr based on the criticality of
it’s operations before normalizing the score, thereby, taking
into consideration the importance of their respective perfor-
mances.

Objective function in a stochastic dynamic program-
ming algorithm provides the (near-) optimal policy which
maximizes the well-being of the system. The objective is to
maximize the rewards (Equation 3) over the time horizon
of the problem. The goal is to move from one good state
to another by learning the long-run total discounted values
of the states V j(B) as the iteration index j → ∞. This is
achieved by making a decision under uncertainty to move
to high valued future states at each time index t. In this
work, several iterations of 14-day work cycles are simulated
and using the iterative Bellman’s optimality equation shown
below (Equation 5 [24]), the maximized cumulative sum of
discounted contributions (rewards) for the values of the
system states are obtained during the learning phase of
the algorithm (explained in the next section). The equations
used in the algorithm are as follows:

V j(Bgt−1) = (1− αj)V j(Bgt−1) + αjηj (4)

ηj = max
gt∈Gt

{C(Bt, gt) + βV j(Bgt)}, (5)

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

7

Algorithm 1: Dynamic Optimization Learning
Phase

Input: Number of iterations for learning J = 336, 000, % of iterations
for exploration phase m, discount parameter β = 0.9, initial
learning parameter α0 = 0.8, and time at the end of horizon T .

Output: Long-run state values V (B), ∀B
1 Initialize V (B) = 0, ∀B
2 Initialize state B1 = (0, . . . , 0) /* no backlog across all locations */
3 M = m ∗ J /* number of iterations in the exploration phase */
4 for j = 1, 2, . . . , J do
5 V j(B) = V j−1(B), ∀B
6 Decay the learning parameter, αj = αj−1

1+e , where
7 for t = 1, 2, . . . , T do
8 if (j ≤M) /* Exploration Phase */, then
9 Pick an arbitrary action gt

10 Compute C(Bt, gt) using Equation 3
11 ηj = C(Bt, gt) + βV j(Bgt)
12 else if (j > M) /* Exploitation Phase */, then
13 ηj = maxgt∈Gt{C(Bt, gt) + βV j(Bgt)} /*

C(Bt, gt) is computed using Equation 3 */
14 end
15 end
16 V j(Bg

t−1
) = (1− αj)V j(Bg

t−1
) + αjηj /* PDS value */

17 Generate Wt+1 /* uncertainty through simulation or
real-world */

18 Bt+1 = hW (Bt, gt,Wt+1) /* state transition function */
19 end

20 MSEj =

∑j

a=1
(V a(B

g
t−1

)−ηa)2

j /* MSE */
21 end
22 return V (B), ∀B

Algorithm 2: Dynamic Optimization Learned
Phase

Input: Value of the states V (B)∀B from the dynamic optimization
learning phase (Algorithm 1), state B from
simulation/real-world at any given time.

Output: Action g, given state B
1 η = maxg∈G{C(B, g) + βV (Bg)} /* C(B, g) is computed using

Equation 3 */
2 Record action g
3 return g for given state B

where ηj is a sample realization of the value of the
system state,Gt is the set of all feasible actions, β is the fixed
discount factor that gives a weight to the future rewards
and allows the state values to converge in the long run,
and αj is the learning parameter that is decayed gradually
over several iterations [40]. The values of the discount and
learning parameter, and the decay scheme are explained in
Algorithm 1. The alpha-decay parameters are chosen such
that αj is never reduced to value 0, which will result in
apparent convergence of Equation (4). The value of the PDS
variable Bgt−1 is updated after reaching state Bgt (Equa-
tion 4 [5]).

3.3.2 Stochastic Dynamic Programming Algorithm
The steps of the stochastic dynamic programming algorithm
for making dynamic alert workload re-allocation decisions
across the CSOC locations are given in Algorithm 1 and
Algorithm 2. The adaptive alert management algorithm is
executed in three phases, namely, exploration, exploitation
(learning), and implementation (learned), which are ex-
plained below.

During exploration (Algorithm 1), various system states
are visited in order to improve the estimates of the values
of being in those respective states. This is achieved by either
randomly selecting the next state after updating the value
of the current state or by making a random (non-optimal)

decision that moves the system to the next state. While ex-
ploring, Equation 4 (Algorithm 1) is executed to update the
value of the current system state. Equation 5 (Algorithm 1)
for determining the next system state is executed by replac-
ing the max operator with a random decision on the number
of alerts to re-allocate and the location(s) where the alerts
are re-allocated for investigation between time t and t + 1.
It is to be noted that the additional analyst time that is kept
for non-alert analysis related activities and the manager’s
time at the affected location are utilized prior to receiving
help from resources at other locations. The algorithm is
initiated with all V 0(B) = 0 ∀B at j = 0 and the values
of the states are populated as they are visited. The values
of V j(Bgt) in Equation 5 and V j(Bgt−1) in Equation 4 (Al-
gorithm 1) are obtained from the previously stored values if
the state was visited earlier, otherwise the value is 0. During
exploration, there are various methods for determining how
to collect information at various iterations of the algorithm
such as pure exploration, ε-greedy exploration, and interval
estimation [5]. Pure exploration consists of taking random
actions from a state that will take millions of iterations
for state values to converge. Likewise, interval estimation
method will require an action to be taken many times from
a state in order to estimate the value of the state with great
accuracy. In this work, ε-greedy exploration, is used for a
set number of iterations, which is based on the size of the
state-space. Usually 10-20% of the iterations are used for
exploration. The value of εj is decayed from 0.9 to 0 within
the number of iterations allocated for exploration using the
same scheme as in [40] that is used for αj decay. Random
actions are chosen with a probability pj < εj , and greedy
actions with Equation 5, otherwise. The value of probability
pj is a uniformly distributed random number that is gen-
erated for every iteration j of the exploration phase using
U [0, 1]. Once exploration is stopped, the algorithm moves
into an exploitation phase, which is the greedy phase. The
advantage of ε-greedy exploration is that it ensures a smooth
transition to the exploitation phase as εj is decayed, and
provides the flexibility to set the number of iterations for
exploration, unlike the other methods that require a very
large number of iterations.

During exploitation (Algorithm 1), the algorithm is exe-
cuted with Equation 5 to take optimal decisions (greedy) at
time t, based on the available estimates of the value of the
states visited during exploration. Using ηj from Equation 5,
the value of the previous post decision state is updated at
time t as per Equation 4. The algorithm is executed over a
large number of iterations to capture evolving patterns in
uncertainty. Finally, the algorithm reaches a stage where it
is capable of making optimal (or close to optimal) decisions
that move the system from one good state to another in
terms of uniformly balancing the individual CSOC per-
formances (LOE) between the locations by minimizing the
variance in the normalized backlog numbers across all the
CSOC locations. Learning is stopped when convergence of
the value of the states is achieved. This is measured by the
mean-squared error (MSE) of the stochastic gradient [5] at
the j iteration, which is given as follows.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

8

MSEj =

∑j
a=1(V

a(Bgt−1)− ηa)2

j
j 6= 0 (6)

where the variables are as defined earlier. After learning the
values of the system states (V (B),∀B) at the end of the
exploitation phase (Algorithm 1), an optimal decision g is
chosen for a state B obtained from simulation/real-world
at any given time using Equation 5 in the implementation
(learned) phase (Algorithm 2).

4 EXPERIMENTAL SET-UP

The following section presents the experimental set-up that
is used in this work. A baseline case is established for each
of the CSOC locations with a pre-determined (acceptable)
avgTTA/hr. The level of operational effectiveness (LOE) for
each of the CSOC locations is deemed to be ideal at their
respective avgTTA/hr values. Three locations (n = 3) are
considered for the experiments presented in this work and
are represented by L1, L2, and L3 respectively. Table 1 shows
the inputs for the baseline case for the three locations.

Inputs used in the experiments were obtained from
the literature and numerous conversations with the CSOC
operators. For example, one of the co-authors in this paper
is from the Army Research Lab (ARL) and has a liaison with
ARL’s CSOC. The inputs for one of the locations, L1, are
used from Shah et al. [3], while the inputs for the other
two locations are chosen such that the alert arrival rate,
service rate, baseline avgTTA/hr, and threshold avgTTA/hr
values vary from one another. The number of sensor clusters
used for alert generation at L1, L2, and L3 locations are 10,
15, and 15, respectively. Each cluster has, on average, 10
sensors. Sensors are typically clustered based on types, and
are formed such that the expected number of alerts gener-
ated (from historical data) are uniformly balanced among
them. This research uses an exponential distribution with
time between alert arrivals of 18.8 seconds/sensor cluster
(Poisson arrival rate) as in [3]. It is to be noted that the
analysts are staffed in each shift such that the alert service
rate (µ) is slightly higher than the alert arrival rate (λ), i.e.
ρ = (λ/µ) < 1. A larger difference between λ and µ would
mean that the analysts are idling, which is not customary at
a CSOC. Hence, there are 10 analysts (with 80% of their
time spent on alert investigation and the remaining 20%
on training, report writing, and updating alert signatures)
working on 10 sensor clusters at location L1 such that
ρ < 1. Similarly, there are 15 analysts working on 15 sensor
clusters at locations L2 and L3 with their respective ρ values
< 1. The baseline avgTTA/hr value of 1 and a threshold
avgTTA/hr value of 4 are chosen for location L1. Different
values are chosen for the acceptable LOE (avgTTA/hr) at
locations L2 and L3, which indicates the criticality or im-
portance of the operations of one CSOC location compared
to another. The baseline avgTTA/hr value of 0.5 (1) and a
threshold avgTTA/hr value of 2 (3) are chosen for location
L2 (L3). The above values for setting up the baseline cases
were obtained through discussions with various CSOCs and
through literature survey [3]. Based on the above inputs,
the alert analysis process is simulated to reach steady state
conditions using the algorithm in [2]. The average alert

queue lengths based on the baseline avgTTA/hr values for
locations L1, L2, and L3 are established at 1175 alerts, 1440
alerts, and 3000 alerts respectively. Similarly, the average
alert queue lengths based on the threshold avgTTA/hr
values for locations L1, L2, and L3 are established at 4350
alerts, 5760 alerts, and 8470 alerts, respectively. The above
values are determined so that deviations from the baseline
numbers, as the time progresses, can be displayed using the
color-coded representation of the LOE status (Figure 2 [2])
and corrective actions are initiated by the CSOC locations.
Next, a normalized value for the backlog of alerts for each
CSOC location is determined. For location L1, a backlog
> 3175 (threshold - baseline = 4350-1175) alerts is given a
value fi=L1,t = 0 and a backlog < 1175 alerts is a given
a value fi=L1,t = 1 at time index t. Similarly, values for
fi=L2,t = 0 and fi=L3,t = 0 are determined at backlog
> 4320 alerts and >5470 alerts respectively. fi,t for both
locations are given a value of 1 at or below their respec-
tive baseline alert backlog numbers. The values between
threshold and baseline backlog of alerts for each of the
CSOC locations are then linearly normalized. During the
experiments performed, a CSOC location under an adverse
event first utilizes the remaining 20% of effort available in
the shift for the available analysts along with the manager’s
time to assist with the alert investigation. For example, this
could include cancelling a training session for an analyst or
postponing report writing. The above is considered to be an
internal action taken by the respective CSOC location before
the centralized agent would re-allocate the alert workload to
the other locations, and any such additional effort used by
a location is reflected as a reduction in the number of alerts
in the backlog for that location.

Uncertainty occurs with a wide range of variability in
the number of stochastic events, which is modeled using
a Poisson distribution with a mean of seven events across
the three locations in a 14-day (336 hours) period. Table
2 presents a sample of adverse events that are simulated
at random during the experiments, which are obtained
from [3]. The events impact the alert generation rates, and
the alert investigation (service) rates. Some of the events
include (1) an increase in both intensity and duration of
surges in alert generation due to an attack or the restoration
of a broken communication link between the sensor/IDS
and the CSOC, and (2) an increase in alert investigation time
due to the discovery of a new alert pattern.

In this research, the RL approach, which is based on the
principles of stochastic dynamic programming is compared
with rule-based and load balancing approaches. The three
approaches are described below.

4.1 Reinforcement Learning (RL) Approach

The RL model is run in three stages - exploration, exploita-
tion (learning), and implementation on sample realizations
(learned). The stochastic dynamic programming algorithm
learns over a large number of iterations (1,000 iterations of
14-day work cycles) during the exploration and exploitation
phases (Step 1 in Algorithm 1). Figures 5(a) and 5(b) indicate
the rate of α decay (learning parameter in Equation 4)
and the mean-squared error (MSE) of the stochastic gradi-
ent respectively. The algorithm is tested on several types

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

9

TABLE 1
Inputs for baseline case

L1 L2 L3
Number of clusters of sensors 10 15 15
Average time between alert generation (s) Expo(18.8) Expo(18.8) Expo(18.8)
Number of analysts 10 15 15
% effort of analysts towards alert analysis 80% 80% 80%
Average time taken to investigate an alert T (s) 15 15 15
Baseline avgTTA/hr (hr) 1 0.5 1
Threshold avgTTA/hr (hr) 4 2 3

of uncertain disruptive events during the implementation
phase (Algorithm 2) using 50 simulation runs of the 14-
day work cycles to obtain 95% confidence intervals for the
LOE performance metrics for the various locations. Also, for
the same disruptive events in a 14-day period, a rule-based
approach and two types of load balancing approaches for
decision-making is implemented as explained below. In each
instance of the simulation run, the alert analysis process is
simulated using the algorithm in [2] over a 14-day period.
Alert workload re-allocation decisions and their impact on
the LOE of all the CSOC locations are recorded using the RL,
rule-based, and two types of load balancing approaches.

4.2 Rule-based Approach

The authors in [41] show a comparison between the rule-
based and classic machine learning systems. Rule-based
systems are hand-designed programs where the system
is dependent on a set of rules while in the case of the
latter, the system learns from historical data. Despite the
growing interest in cybersecurity research, real data sets are
challenging to obtain due to the sensitive nature of the data.
Hence, through conversations with several CSOC managers
we obtained the real-world rules, which CSOCs typically
follow to improve their performances in the presence of
adverse events. The conditions for the rule-based approach
are explained as follows.

1) If the LOE of a CSOC crosses into the yellow zone
(Figure 2), re-allocate alert workload to other CSOC
locations that are in the green zones in order to bring
the LOE back into the green zone at the affected
location.

2) If the LOE of a CSOC crosses into the orange zone
(Figure 2), re-allocate alert workload to other CSOC
locations that are either in the green or yellow zones
in order to bring the LOE back at least into the
yellow zone at the affected location.

3) If the LOE of a CSOC crosses into the red zone
(Figure 2), re-allocate alert workload to other CSOC
locations that are not in the red zones in order to
bring the LOE back at least into the orange zone at
the affected location.

4.3 Load Balancing Approach

In this approach, the CSOC locations are continuously mon-
itored and alert workload re-allocation decisions are made
between the locations with the worst LOE and the best

LOE. The timing of the reallocation decision is an important
factor to consider. For example, small differences in queue
length or LOE among the locations should not trigger a re-
allocation of alerts. Besides, too many re-allocation decisions
are not practical to implement. Hence, two practically imple-
mentable load balancing approaches are studied below.

In Type 1 load balancing approach, as soon as either the
alert arrival rate (λ) or the alert service rate (µ) is affected
(i.e., the value of (ρ) goes over 1), the alert workload queue
length is balanced between the locations with the best and
worst LOE at the time of observation. This situation can
occur at any time during continuous monitoring. Accord-
ingly, a certain number of alerts are re-allocated from the
location with the worst LOE to the one with the best LOE. It
is to be noted that in this method, the baseline avgTTA and
threshold avgTTA values are not taken into consideration
at either of the locations and the re-allocation decision is
purely based only on the number of alerts that remain in the
queue (backlog number) at both the locations at the time of
observation and decision making. When a decision is made,
the alert queue lengths are equalized at both locations. The
Type 1 load balancing approach is therefore regarded as a
simple load balancing approach.

In Type 2 load balancing approach, which is similar but
more intelligent than the Type 1 approach, alert workload
from a CSOC location with the worst LOE is allocated
to a CSOC location with the best LOE, however, the re-
allocations are made such that the individual LOE values
are balanced among the two locations. The LOE of all the
CSOC locations are continuously monitored and at the top
of each hour, a decision to re-allocate alerts is made for the
CSOC with the worst LOE to the one with the best LOE. The
number of alerts to re-allocate, unlike Type 1 approach, may
not necessarily result in an equalized queue length at both
locations, and is determined such that both locations have
an uniformly balanced LOE. Another important difference
between Type 1 and Type 2 load balancing approaches is
that in Type 2 load balancing approach the threshold and
baseline avgTTA values are taken into consideration at both
locations before making a decision on the number of alerts
to be reallocated. It is to be noted that both approaches make
a static reactive decision at the time of observation and do
not take future uncertainties into consideration.

Figure 6 shows the temporal patterns of a sample re-
alization used in one of the experiments presented in this
work. The sample realization consists of seven random
adverse events that were generated in the 14-day period.
Figure 6 shows the time, location, and average number of

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

10

TABLE 2
Adverse events for experiments

Event 1 (E1) 30% increase in alert generation for 8 hours
Event 2 (E2) 40% increase in alert generation for 8 hours
Event 3 (E3) New vulnerability that increases alert investigation time by 5 times for 12 hours
Event 4 (E4) 30% increase in alert generation for 12 hours
Event 5 (E5) Communication breakdown between sensors/IDS and CSOC for 12 hours

Fig. 5. (a) Learning parameter decay, and (b) Mean-squared error of the stochastic gradient

Fig. 6. Temporal Patterns in Adverse Events

additional alerts generated for each event. For example, the
first event occurs in L3 (location 3) and the event type is
E1 (see Table 2). All three approaches - RL, rule-based, and
the two types of load balancing, are tested using the above
sample realization of uncertain adverse events. The results
are analyzed and comparisons are presented in the next
section.

5 ANALYSIS OF RESULTS

The following section presents the results from the experi-
ment conducted with the sample realization (Figure 6) de-
scribed in the previous section. Figure 7 shows the LOE of all
the 3 locations without re-allocation of alerts as a basecase
to compare the three approaches mentioned above. It is to
be noted that whenever an adverse event occurs, a CSOC
will first utilize the additional 20% effort in the form of
additional analyst time by canceling/delaying the non-alert
analysis related tasks and by calling in a manager to assist
with the alert analysis task. After completely depleting its
own resources, the affected location follows the decisions

by the centralized agent, which re-allocates the remaining
alert workload to the other locations. Figure 8 (a-c), Figure 9
(a-c), Figure 10 (a-c), and Figure 11 (a-c) show the resources
that were utilized at the respective locations to investigate
the additional alert workload distributed to them by either
of the remaining locations in the rule-based, Type 1 load
balancing, Type 2 load balancing, and RL approach, respec-
tively. Figure 8 (d-f), Figure 10 (d-f), and Figure 11 (d-f) show
the avgTTA/hr plot against the background of the color-
coded LOE representation for each of the locations in the
rule-based, Type 1 load balancing, Type 2 load balancing,
and RL approach, respectively.

In the rule-based approach, the avgTTA/hr of all the
three locations (L1, L2, and L3) climb up to the top of the
green zone (as shown in Figure 8 (d-f)) with the arrival of
the first four events. Later, the avgTTA/hr of L1 crosses into
the yellow zone when faced with the fifth event and as a
result the alert workload is re-allocated to L2 to bring the
avgTTA/hr of L1 back into the green zone, as shown by
the spike in resources allocated by L2 in Figure 8 (b). Next,
avgTTA/hr of L2 crosses into the yellow zone. L1 and L3 al-
locate their resources to investigate the alert workload from
L2, as shown in Figure 8 (a) and Figure 8 (c), respectively,
in order to bring the avgTTA/hr of L2 back into the green
zone. As a result, avgTTA/hr of L3 crosses into the yellow
zone and is assisted by re-allocating the alert workload to
L1 in order to bring it back into the green zone. However,
this pushes the avgTTA/hr of L1 into the yellow zone and
correspondingly resources from L2 are utilized. Later, L2
finds its avgTTA/hr in the red zone while trying to assist
L3 and by allocating its resources, L1 crosses into the red
zone, which initiates the alert workload re-allocation to L3.
Hence, it can be observed that there is a tug-of-war among
locations for resources based on the set of rules using this
approach. Finally, with the seventh adverse event (faced by
L1), the avgTTA/hr of L1 crosses into the red zone, and by
allocating L2 and L3 resources to assist L1, both L2 and L3

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

11

Fig. 7. Basecase (without re-allocation of alerts): (a-c) avgTTA (LOE) of
3 locations

find their respective avgTTA/hr climb up to the red zone
towards the end of the 14-day period.

For the Type 1 load balancing approach, Figure 9 (d-f)
shows the dynamic behavior of avgTTA metric for all the
three (L1, L2, and L3) CSOC locations for the 14-day period.
The arrival rate or the service rate of alerts is impacted
when a CSOC location is faced with an adverse event. As a
result, when the traffic intensity is higher than 1 (ρ = λ/µ1),
alert workload re-allocation decisions are made in which the
alert workload is equally distributed between the locations
with the best and worst LOE. This method only looks at
the backlog length (i.e., the number of alerts in the queue)
at both (best and worst) CSOC locations and re-allocates
alert workload from one location to another such that the
backlog length is equal at both locations at the time of
decision-making. It is to be noted that this method is myopic
and does not take into account future adverse events that
may occur at any of the CSOC locations. For instance, with
the onset of event E1 at location L3, a part of the alert
workload was re-allocated to location L1. However, soon
after receiving the additional workload from location L3, L1
also faces an adverse event (E1). As a result, avgTTA/hr
crosses into the yellow zone at location L1 (Figure 9 (d)).

It can also be observed from Figure 9 (a-c) that a large

number of alerts are re-allocated among the locations every
time a re-allocation decision is made. This is due to the
fact that decision-making does not take into consideration
the avgTTA baseline and threshold values at the CSOC
locations; instead it only looks at the alert backlog at the
CSOC locations. As a result, the CSOC locations have a
higher number of alerts in the queue, which increases the
avgTTA/hr value for all the locations. It is also observed
that under this approach, the LOE at all the CSOC locations
crosses into the red zone in the 14-day period (Figure 9 (d-
f)).

The performance of Type 2 load balancing approach,
which allocates alerts for investigation from a CSOC loca-
tion with the worst LOE to the one with the best LOE by
taking into consideration the values for baseline avgTTA
and the threshold avgTTA at both locations such that the
LOE for both locations are balanced, is shown in Figure 10.
Since the LOE at L2 was the best among the 3 locations at the
onset of the first event (E1) at location L3, additional alerts
are first allocated from L3 to L2 for investigation. When
event E5 occurs, which generates a large number of alerts
at location L2, additional alerts are allocated from L2 to L1
for investigation. It is to be noted that since this method
is static (and hence, myopic), it does not consider future
uncertainties. As a result, it allocates a larger number of
alerts from locations experiencing an adverse event to the
locations with better LOE, compared to the RL approach
(explained next). For example, when events 4 and 5 occur
(see Figure 6) at location L1 at a time when the backlog of
alerts was already high due to the additional alerts allocated
from location L2 in the prior event, the LOE deteriorates at
location L1 and crosses into the orange zone. With a larger
difference among the LOE of locations L1 and L3 and with
the final event (E4) occurring at location L1, a large numbers
of alerts are allocated from L1 to location L3, which in turn
pushes the avgTTA, into the red zone (see Figure 10 (d-f)).

In summary, it is observed from both types of load bal-
ancing approaches that (1) since these methods are myopic,
i.e. they do not take future uncertainties into consideration,
larger numbers of alerts are allocated from locations which
have the worst LOE to the ones with the best LOE in order
to uniformly balance the alert workload or the LOE among
them (see Figure 9 (a-c) and Figure 10 (a-c)), and (2) the
avgTTA/hr crosses into the red zones at all of the locations
using Type 1 load balancing approach, and at locations L1
and L3 using the Type 2 load balancing approach. Although
Type 2 load balancing is overall better than Type 1 approach,
it was still not better than the RL approach given below.

In the RL approach shown in Figure 11 (d-f), the
avgTTA/hr of all the three locations follow a similar trend
and is uniformly balanced throughout the 14-day period. In
particular, LOE is maintained at similar levels in the green
zone for all the three locations within the same time-period
(from the start of the 14-day period until the occurrence
of the fifth event). Similar observations are made for the
LOE in the yellow and orange zones. In order to maintain
the operational effectiveness of all the locations at similar
(near-equal) levels, the number of times alert workload
re-allocation decisions are made among the locations (as
shown in Figure 11 (a-c)) using the RL approach is higher
when compared with the rule-based approach. However, it

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

12

Fig. 8. Rule-based approach: (a-c) additional alerts investigated, (d-f) avgTTA (LOE)

Fig. 9. Type 1 Load Balancing approach: (a-c) additional alerts investigated, (d-f) avgTTA (LOE)

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

13

Fig. 10. Type 2 Load Balancing approach: (a-c) additional alerts investigated, (d-f) avgTTA (LOE)

is to be noted that for most of the re-allocation decisions, the
number of alerts that are re-allocated in the RL-approach
is smaller when compared with the rule-based approach.
The reason for the above is that through RL, the system
has learned to make corrections that would keep the CSOC
in good states (where individual avgTTA/hr (LOE) are
balanced among the locations) in the long run. In summary,
the RL-based re-allocation decisions are made more often
and in smaller proportions compared to a reactive rule-
based approach that waits for the LOE to deteriorate before
making a re-allocation decision. Figure 12 (a-d) shows a
comparison of the amount (%) of time that the entire CSOC
system (all locations) spent in a centralized mode when
resources were allocated by either of the CSOC locations to
investigate additional alerts from the other location(s), and
in a distributed mode under all the four approaches for the
14-day period.

In this experiment, with adverse events generating a
greater number of alerts than the total capacity to analyze
them over a 14-day period, the avgTTA/hr of each location
is shown to approach the threshold (red zone) towards the
end of the 14-day period (see Figure 11 (d-f)). However, the
sudden degradation of the LOE as witnessed in the rule-
based approach is avoided using the RL approach, for exam-
ple, when the avgTTA/hr for L1 and L3 deteriorated from
the green zone to the orange zone within a day. Several other
experiments (with sample realizations) were conducted for
a 14-day period and the observations from the results were
similar. In summary, the RL approach outperformed both
rule-based approach and static load balancing approaches,

by maintaining a lower value for avgTTA/hr, and by uni-
formly balancing the individual avgTTA/hr performances
(LOE) between the CSOC locations by taking (near-) optimal
decisions on the timing, number of alerts to re-allocate, and
the selection of the locations to which the alerts are re-
allocated.

Figure 13 shows the % of time avgTTA/hr spent in each
color-coded zone for all the 3 locations under the baseline
case and the above approaches. The results clearly indicate
that in the RL approach shown in Figure 13 (m-o), the %
of time the CSOC spent in a certain color-coded LOE zone
is balanced among the 3 locations. Figure 13 (b) for L2
is in the green zone for the basecase, however, additional
alerts from L1 and L3 were allocated to it. Hence, the % of
green zone is reduced in Figure 13 (e) and Figure 13 (h).
Comparing Figure 13 (d-f), Figure 13 (g-i), and Figure 13
(j-l) indicates that both rule-based approach and static load
balancing approach fail to minimize the total backlog and
balance the backlog across the locations, whereas the RL-
approach is both dynamic and adaptive in achieving the
objective of the research.

5.1 Scalability Analysis
The number of system states defines the computational
complexity of the dynamic programming algorithm. The
system state vector used in the experiments is 3-dimensional
which represents the LOE status (measured in terms of the
backlog of alerts) of the three locations. The computational
complexity is O(ν3), where ν is the maximum number of
discretizations for the backlog of alerts. For the backlog

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

14

Fig. 11. RL approach: (a-c) additional alerts investigated, (d-f) avgTTA (LOE)

Fig. 12. Comparison of time spent in centralized and distributed modes in a 14-day period: (a) Rule-based approach, (b) Type 1 load balancing
approach, (c) Type 2 load balancing approach, and (d) RL approach

Fig. 13. % of time LOE in the respective zones over a 14-day period: (a-c) Basecase, (d-f) Rule-based approach, (g-i) Type 1 load balancing
approach, (j-l) Type 1 load balancing approach, and (m-o) RL approach

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

15

parameter Xi,t for location 1, an upper bound at 5000
was chosen with a step size of 50 representing 100 values.
Similarly, for the backlog parameter yt (Zt) for location 2
(location 3), an upper bound at 6000 (9000) was chosen with
step size of 50 representing 120 (180) values. As a result, the
state space consisted of more than two million states (100 X
120 X 180). As the number of CSOC locations increase, the
dimension of the system state vector will increase. Hence,
a new representation of the system state must be used to
avoid the curse of dimensionality for the state space [5].
In what follows, we present i) a modified state variable,
ii) results from the experiment with the three locations
conducted using the new state variable, and iii) a scalability
study with nine locations.

In order to avoid the state space explosion, which may
occur for organizations with more than 4 or 5 locations, a
new system state representation is modeled and tested. The
normalized backlog numbers from all the CSOC locations
are aggregated and a mean value is calculated at the top
of each hour. Next, the maximum deviation from this mean
value by each normalized backlog number is calculated for
all the locations. This information is then presented as the
state of knowledge to the RL agent to learn the (near-)
optimal actions that not only minimizes the mean of the
normalized backlog numbers but also the variance among
them. The normalized backlog values between [0,1] are
used because each location has different alert arrival rates
and threshold for LOE (1 indicates backlog at or below
the baseline number, and 0 indicates that backlog is at the
threshold value or higher).

State variable is defined as a 2-dimensional vector, Bt =
(Mt, Dt), where

Mt =

∑n
i=1 fi,t
n

(7)

and

Dt = maximum(abs(Mt − f1,t), . . . , abs(Mt − fn,t)) (8)

Algorithm 1 is executed with the new state variable as
explained above and state values are obtained. It is to be
noted that with a 2-dimensional state vector and with 3
decimal places for the mean and the maximum deviation
numbers, the learning algorithm converged faster than the
previous experiment with individual backlog numbers as
state variables. Figure 14 (a) shows the results obtained
from the run of Algorithm 2 using the same random seed as
used in the earlier experiment with the three locations. The
figure shows the normalized avgTTA across all the locations
with the color-coded status. The figure plots the average,
best, and worst avgTTA observed among the three locations.
Figure 14 (b) shows the corresponding values of the above
metrics from the previous experiment conducted with the
original state representation (with the actual backlog num-
bers for all CSOC locations). It is to be noted that the results
obtained with aggregated state (mean of normalized back-
log values from all locations) are statistically insignificant
from the results obtained using individual backlog numbers
as state variables. Thus, the new aggregated representation
of the system state is able to guide the RL agent to make

good decisions. It must be understood that individual back-
log numbers are still maintained for each location, which is
used in calculating the aggregated state-space. The actions,
however, are not aggregated and are taken at the individual
locations because only a small set of feasible actions are
permissible for a given state. The impact of an action on
the backlog is first measured at the individual locations.
Later, aggregated mean of the normalized backlog numbers
from all locations is reported as the system state. Hence,
there is no loss of fidelity due to the aggregated state. Thus,
the method of state aggregation allows for higher number
of locations to be tested without any state-space explosion
issues.

To demonstrate scalability of the new state aggregation
framework with the above new 2-D state vector, nine loca-
tions are simulated. The three threshold backlog numbers
from the experimental set-up in Section 4 are assigned to
the nine CSOC locations (one threshold backlog number
to exactly three locations). Results from one instance of
the adverse events across the nine locations is shown in
Figure 15. It is to be noted that the best observed avgTTA
and the worst observed avgTTA among all the locations
remain very close to the average observed throughout the
time-horizon of 14 days. The RL agent with the new state
variable is able to re-allocate alert workload and balance the
LOE performance among all of the nine distributed CSOCs.
The above improvement has allowed for significant increase
in the practicality aspect of this research by adding multiple
locations of the CSOC whose LOE can be balanced.

6 CONCLUSIONS AND FUTURE WORK

The paper presented a novel RL-based dynamic and adap-
tive decision-making framework for a centralized agent to
autonomously re-allocate workload in order to balance the
LOE performance among several distributed CSOCs of an
organization. Results of the new framework are compared
to baseline (no-reallocation), a rule-based reallocation strat-
egy, and two types of load balancing strategies, and it is
observed that the RL-based approach is superior in making
the non-trivial decisions of when, how much, and whom to
reallocate the alerts in order to minimize the total backlog of
all CSOCs and to uniformly balance the LOE performance
among all the CSOCs. Several uncertain events were sim-
ulated along with several 14-day simulation runs of alert
generation in order to establish the superior performance of
the RL-approach over other approaches. The paper serves
as a paradigm shift in autonomous decision-making using
intelligence for the purpose of uniformly balancing the LOE
performance among all the distributed CSOCs.

As a part of future work, it would be interesting to
combine the RL framework developed in this research for
utilizing the resources available at various CSOC locations
with the RL framework for managing the on-call analyst
resources [3] to maintain an optimal LOE at each CSOC
location. By considering hourly batches of alerts, which are
collected/triaged from the sensors, a RL model could be
tested as a part of the future work to re-distribute the num-
ber of batches that are backlogged at the CSOC locations.
Multiple-period look-ahead tree search is another extension
of the solution strategy presented in this paper. However,

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

16

Fig. 14. Comparison of results with 3 locations using different state representations

Fig. 15. Results from scalability study with 9 Locations

such a tree search would be computationally very expensive
and sparse sampling techniques may have to be employed.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Cliff Wang of the Army
Research Office for the many discussions which served as
the inspiration for this research. The authors would also
like to thank Dr. Sabrina De Capitani di Vimercati for her
comments that improved the clarity of the article.

REFERENCES

[1] R. Ganesan, S. Jajodia, and H. Cam, “Optimal scheduling of
cybersecurity analyst for minimizing risk,” ACM Transactions on
Intelligent Systems and Technology, vol. 8, no. 4, Feb. 2017.

[2] A. Shah, R. Ganesan, S. Jajodia, and H. Cam, “A methodology
to measure and monitor level of operational effectiveness of
a CSOC,” International Journal of Information Security, Springer,
vol. 17, no. 2, pp. 121–134, 2018.

[3] ——, “Dynamic optimization of the level of operational
effectiveness of a CSOC under adverse conditions,” ACM
Transactions on Intelligent Systems and Technology, vol. 9,
no. 5, pp. 51:1–51:20, Apr. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3173457

[4] R. Sutton and A. G. Barto, in Reinforcement Learning. The MIT
Press, Cambridge, MA, 1998.

[5] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[6] M. J. West-Brown, D. Stikvoort, K.-P. Kossakowski, G. Killcrece,
and R. Ruefle, “Handbook for computer security incident response
teams (CSIRTs),” DTIC Document CMU/SEI-2003-HB-002, 2003.

[7] G. Killcrece, K.-P. Kossakowski, R. Ruefle, and M. Zajicek, “State of
the practice of computer security incident response teams (csirts),”
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Rep. CMU/SEI-2003-TR-001, 2003.

[8] S. Bhatt, P. K. Manadhata, and L. Zomlot, “The operational role
of security information and event management systems,” IEEE
Security & Privacy, vol. 12, no. 5, pp. 35–41, 2014.

[9] R. Bejtlich, The tao of network security monitoring:Beyond intrusion
detection. Pearson Education Inc., 2005.

[10] T. Crothers, Implementing intrusion detection systems. Wiley Pub-
lishing Inc., 2002.

[11] A. Rasoulifard, A. G. Bafghi, and M. Kahani, “Incremental hy-
brid intrusion detection using ensemble of weak classifiers,” in
Advances in Computer Science and Engineering. Springer, 2008, pp.
577–584.

[12] S. Northcutt and J. Novak, Network intrusion detection, 3rd Edition.
Thousand Oaks, CA: New Riders Publishing, 2002.

[13] R. Di Pietro and L. V. Mancini, Eds., Intrusion detection systems, ser.
Advances in Information Security. Springer, 2008, vol. 38.

[14] D. Barbará and S. Jajodia, Eds., Application of data mining in
computer security, ser. Advances in Information Security. Springer,
2002, vol. 6.

[15] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Proceedings
of IEEE Symposium on Security and Privacy, May 2010, pp. 305–316.

[16] C. Zimmerman, The strategies of a world-class cybersecurity operations
center. McLean, VA: The MITRE Corporation, 2014.

[17] A. D’Amico and K. Whitley, “The real work of computer network
defense analysts: The analysis roles and processes that transform
network data into security situation awareness,” in Proceedings of
the Workshop on Visualization for Computer Security, 2008, pp. 19–37.

[18] S. C. Sundaramurthy, A. G. Bardas, J. Case, X. Ou, M. Wesch,
J. McHugh, and S. R. Rajagopalan, “A human capital model for
mitigating security analyst burnout,” in Eleventh Symposium on
Usable Privacy and Security (SOUPS 2015). USENIX Association,
2015, pp. 347–359.

[19] S. C. Sundaramurthy, J. McHugh, X. Ou, M. Wesch, A. G. Bardas,
and S. R. Rajagopalan, “Turning contradictions into innovations
or: How we learned to stop whining and improve security opera-
tions,” in Twelfth Symposium on Usable Privacy and Security (SOUPS
2016). USENIX Association, 2016, pp. 237–250.

[20] R. Ganesan, S. Jajodia, A. Shah, and H. Cam, “Dynamic
scheduling of cybersecurity analysts for minimizing risk using
reinforcement learning,” ACM Transactions on Intelligent Systems

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

17

and Technology, vol. 8, no. 1, pp. 1–21, Jul. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2882969

[21] D. S. Altner, A. C. Rojas, and L. D. Servi, “A two-stage stochastic
program for multi-shift, multi-analyst, workforce optimization
with multiple on-call options,” Journal of Scheduling, Dec 2017.
[Online]. Available: https://doi.org/10.1007/s10951-017-0554-9

[22] E. A. Newcomb, R. J. Hammell, and S. Hutchinson, “Effective
prioritization of network intrusion alerts to enhance situational
awareness,” in Intelligence and Security Informatics (ISI), 2016 IEEE
Conference on. IEEE, 2016, pp. 73–78.

[23] G. P. Tadda and J. S. Salerno, Cyber Situational Awareness: Issues
and Research. Springer US, 2010, ch. Overview of Cyber Situation
Awareness.

[24] R. Bellman, Dynamic Programming. Princeton University Press,
Princeton NJ, 1957.

[25] M. L. Puterman, Markov Decision Processes. Wiley Interscience,
New York, 1994.

[26] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni,
S. Ganti, and Y. Coady, “Dynamic resource allocation in computing
clouds using distributed multiple criteria decision analysis,” in
Proceedings of the 2010 IEEE 3rd International Conference on Cloud
Computing, ser. CLOUD ’10, 2010, pp. 91–98.

[27] M. Duggan, J. Duggan, E. Howley, and E. Barrett, “A reinforce-
ment learning approach for the scheduling of live migration from
under utilised hosts,” Memetic Computing, vol. 9, no. 4, pp. 283–
293, Dec 2017.

[28] J. Wu, X. Xu, P. Zhang, and C. Liu, “A novel multi-agent reinforce-
ment learning approach for job scheduling in grid computing,”
Future Generation Computer Systems, vol. 27, no. 5, pp. 430 – 439,
2011.

[29] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforce-
ment learning,” in Parallel, Distributed and Network-Based Processing
(PDP), 2014 22nd Euromicro International Conference on. IEEE, 2014,
pp. 500–507.

[30] R. Shaw, E. Howley, and E. Barrett, “An advanced reinforcement
learning approach for energy-aware virtual machine consolidation
in cloud data centers,” in Internet Technology and Secured Transac-
tions (ICITST), 2017 12th International Conference for. IEEE, 2017,
pp. 61–66.

[31] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” Journal of parallel and distributed computing, vol. 7,
no. 2, pp. 279–301, 1989.

[32] T. C. K. Chou and J. A. Abraham, “Load balancing in distributed
systems,” IEEE Transactions on Software Engineering, no. 4, pp. 401–
412, 1982.

[33] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks
scheduling based on genetic algorithm in cloud computing,” in
Wireless Communications, Networking and Mobile Computing, 2009.
WiCom’09. 5th International Conference on. IEEE, 2009, pp. 1–4.

[34] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, “Cloud
task scheduling based on ant colony optimization,” in Computer
Engineering & Systems (ICCES), 2013 8th International Conference on.
IEEE, 2013, pp. 64–69.

[35] F. Saffre, R. Tateson, J. Halloy, M. Shackleton, and J. L.
Deneubourg, “Aggregation dynamics in overlay networks and
their implications for self-organized distributed applications,” The
Computer Journal, vol. 52, no. 4, pp. 397–412, 2009.

[36] X. Ren, R. Lin, and H. Zou, “A dynamic load balancing strategy
for cloud computing platform based on exponential smoothing
forecast,” in Cloud Computing and Intelligence Systems (CCIS), 2011
IEEE International Conference on. IEEE, 2011, pp. 220–224.

[37] M. Kuypers and E. Paté-Cornell, “Department of energy cyber
security incidents,” Center for International Security and Cooper-
ation, Stanford, 2016.

[38] M. Smith and E. Paté-Cornell, “Cyber risk analysis for a smart
grid: How smart is smart enough? a multi-armed bandit ap-
proach,” in Proceedings of the 2nd Singapore Cyber-Security R&D
Conference (SG-CRC 2017), 2017, pp. 37–56.

[39] B. Edwards, S. Hofmeyr, and S. Forrest, “Hype and heavy tails: A
closer look at data breaches,” Journal of Cybersecurity, vol. 2, no. 1,
pp. 3–14, 2016.

[40] A. Gosavi, Simulation Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning. Norwell, MA: Kluwer
Academic, 2003.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

Ankit Shah received the B.S. degree in com-
puter science from Florida Atlantic University,
Boca Raton, FL, USA, in 2001, the M.S. de-
gree in operations research from George Ma-
son University, Fairfax, VA, USA, in 2016, and
the interdisciplinary Ph.D. degree in information
technology from George Mason University, Fair-
fax, VA, USA, in 2019. He is a Research Scien-
tist at the Lawrence Livermore National Labora-
tory, CA, in the field of Reinforcement Learning.
His research interests include cybersecurity an-

alytics, decision-making under uncertainty, combinatorial optimization,
stochastic dynamic programming, adversarial machine learning, and
deep reinforcement learning.

Rajesh Ganesan received the M.S. degree in
industrial engineering, the M.A. degree in math-
ematics, and the Ph.D. degree in industrial en-
gineering from the University of South Florida,
Tampa, FL, USA, in 2002, 2005, and 2005, re-
spectively. He is currently an Associate Profes-
sor of systems engineering and operations re-
search with George Mason University, Fairfax,
VA, USA, where he is with the Center for Se-
cure Information Systems and the Center for Air
Transportation Systems Research. His research

interests include stochastic optimization (approximate dynamic pro-
gramming), Bigdata analytics, multiscale statistical data analysis using
wavelets, and engineering education. His research applications include
cybersecurity, healthcare, defense, air transportation, and nanomanu-
facturing. Dr. Ganesan is a Senior Member of the Institution of Incorpo-
rated Engineers and a member of the American Society for Engineering
Education and INFORMS professional organization.

Sushil Jajodia (F’13) received the B.S. and M.S.
degrees from Southern Illinois University, Car-
bondale, IL, USA, in 1969 and 1971, respec-
tively, and Ph.D. degree from University of Ore-
gon, Eugene, OR, USA, in 1977, all in mathe-
matics. He is the University Professor, the BDM
International Professor, and the founding Direc-
tor of the Center for Secure Information Sys-
tems, Volgenau School of Engineering, George
Mason University, Fairfax, VA, USA. He is also
the Founding Site Director of the Center for Con-

figuration Analytics and Automation (established under the National
Science Foundation (NSF) Industry/University Cooperative Research
Program), George Mason University. He held permanent positions at
the NSF, Naval Research Laboratory, Washington, and the University of
Missouri, Columbia. He has also been a Visiting Professor with the Uni-
versity of Milan, Italy; the Sapienza University of Rome, Italy; the Isaac
Newton Institute for Mathematical Sciences, Cambridge University, U.K.;
King’s College London, U.K.; Paris Dauphine University, France; and
Imperial College London, U.K. He has authored or coauthored seven
books and more than 450 technical papers in the refereed journals
and conference proceedings and edited 44 books and conference
proceedings. He is also a holder of 21 patents. Prof. Jajodia was a
recipient of the 1996 IFIP TC 11 Kristian Beckman Award, the 2000
Volgenau School of Engineering Outstanding Research Faculty Award,
the 2008 ACM SIGSAC Outstanding Contributions Award, the 2011
IFIP WG 11.3 Outstanding Research Contributions Award, the 2015
ESORICS Outstanding Research Award, and the 2016 IEEE Computer
Society Technical Achievement Award. He was recognized for the most
accepted papers at the 30th anniversary of the IEEE Symposium on
Security and Privacy. His h-index is 100 and Erdos number is 2.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2927977, IEEE
Transactions on Parallel and Distributed Systems

18

Pierangela Samarati (F’12) received her Ph.D.
in Computer Science at Università degli Studi
di Milano in 1988. She is a Professor at the
Computer Science Department of the Università
degli Studi di Milano. Her main research inter-
ests are in data protection, security, and privacy.
She has participated in several projects involv-
ing different aspects of information protection.
On these topics she has published more than
270 papers appeared in journals, conference
proceedings, and books. She is co-author of

the book ”Database Security,” Addison-Wesley, 1995. She has been
Computer Scientist in the Computer Science Laboratory at SRI, CA
(USA). She has been a visiting researcher at the Computer Science
Department of Stanford University, CA (USA), and at the Center for
Secure Information Systems, George Mason University, VA (USA). She
is the chair of the IEEE Systems Council Technical Committee on
Security and Privacy in Complex Information Systems (TCSPCIS), of
the ERCIM Security and Trust Management Working Group (STM), and
of the ACM Workshop on Privacy in the Electronic Society (WPES).
She is the Coordinator of the Working Group on Security of the Italian
Association for Information Processing (AICA), the Italian representative
in the IFIP (International Federation for Information Processing) Techni-
cal Committee 11 (TC-11) on ”Security and Privacy”. She is a member
of the Steering Committee of: European Symposium on Research in
Computer Security (ESORICS), IEEE Conference on Communications
and Network Security (CNS), IEEE Conference on Blockchain, Italian
Conference on CyberSecurity, International Conference on Information
Systems Security (ICISS), and International Conference on Information
and Communications Security (ICICS). She has been named ACM Dis-
tinguished Scientist (2009) and IEEE Fellow (2012). She has received
the ESORICS Outstanding Research award (2018), the IEEE Computer
Society Technical Achievement Award (2016), the IFIP TC11 Kristian
Beckman Award (2008), and the IFIP WG 11.3 Outstanding Research
Contributions Award (2012).

Hasan Cam (SM’01) received the M.S. degree
in computer science from Polytechnic University,
New York, NY, USA, in 1986 and the Ph.D. de-
gree in electrical and computer engineering from
Purdue University, West Lafayette, IN, USA, in
1992. He is a Computer Scientist at the U.S.
Army Research Laboratory, Adelphi, MD, USA.
He currently works on the projects involved with
the development of cybersecurity metrics, mod-
els, and data analytics for assessing and man-
aging cybervulnerability, risk, resilience, agility,

mission assurance, and malware spreading over wired, mobile, and
tactical networks. He serves as the Government Lead for the risk area
in Cyber Collaborative Research Alliance. He has previously worked as
a faculty member in the academia, and a Senior Research Scientist in
the industry. He has served as an editorial member of two journals, a
Guest Editor for two special issues of journals, an organizer of sym-
posiums and workshops, and a Technical Program Committee member
in numerous conferences. His research interests include cybersecurity,
networks, algorithms, and parallel processing.

