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THE HILBERT CURVE OF A 4-DIMENSIONAL SCROLL

WITH A DIVISORIAL FIBER

ANTONIO LANTERI AND ANDREA LUIGI TIRONI

Abstract. In dimension n = 2m − 2 ≥ 4 adjunction theoretic scrolls over a smooth m-
fold may not be classical scrolls, due to the existence of divisorial fibers. A 4-dimensional
scroll (X,L) over P3 of this type is considered, and the equation of its Hilbert curve Γ is
determined in two ways, one of which relies on the fact that (X,L) is at the same time a
classical scroll over a threefold Y 6= P3. It turns out that Γ does not perceive divisorial
fibers. The equation we obtain also shows that a question raised in [4] has negative answer
in general for non-classical scrolls over a 3-fold. More precisely, the answer for (X,L) is
negative or positive according to whether (X,L) is regarded as an adjunction theoretic scroll
or as a classical scroll; in other words, it is the answer to this question to distinguish between
the existence of jumping fibers or not.

Introduction

For a polarized manifold (X ,L) of dimension n, two notions of scroll over a variety Y of
smaller dimension m are possible: (X ,L) is a classical scroll if X = P(E) for an ample vector
bundle E on Y , L being the tautological line bundle, while (X ,L) is an adjunction theoretic

scroll over Y if there exists a surjective morphism ϕ : X → Y such that KX +(n−m+1)L =
ϕ∗A for some ample line bundle A on Y (see [2, p. 81]). Essentially, classical scrolls are also
adjunction theoretic scrolls, by taking as ϕ the bundle projection p : X → Y , except when
KY + det E fails to be ample, and all these exceptions are well known in low dimension (see,
[1], [8, §3] and [9, §4.2]). Conversely, it is known that for m ≤ 4 an adjunction theoretic
scroll is a classical scroll if n ≥ 2m−1, when L is very ample (see [2, Proposition 14.1.3] and
[8, Theorem 2.2]). This is no longer true for n = 2m− 2 ≥ 4, since in this case ϕ can admit
divisorial fibers. A class of examples illustrating this phenomenon is due to Beltrametti and
Sommese [1, (4.2)].
In this paper, a 4-dimensional scroll (X,L) over P3 – the simplest example of this type – is

considered and the equation of its Hilbert curve is determined. This is done in two different
ways: the former is via the explicit Riemann–Roch formula for 4-folds exploiting that (X,L)
itself is also a classical scroll over another threefold Y , related to P3 (Section 2); the latter
relies on a recursive procedure introduced in [7, Section 4], working for scrolls of both types
(Section 3). It turns out that the Hilbert curve does not detect divisorial fibers. Moreover,
the equation we obtain indicates that a question raised in [4] has negative answer in general
for non-classical scrolls. More precisely, it turns out that for our (X,L) the answer is negative
or positive according to whether we look at it either as an adjunction theoretic scroll over P3,
or as a classical scroll over Y ; in other words, it is the answer to this question to distinguish
between the existence of jumping fibers or not.
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1. Preliminaries

Varieties considered in this paper are defined over the field C of complex numbers. We use
the standard notation and terminology from algebraic geometry. A manifold is any smooth
projective variety. Tensor products of line bundles are denoted additively. The pullback of a
vector bundle E on a manifold X by an embedding Z → X is simply denoted by EZ , while
KX will stand for the canonical bundle of X . A polarized manifold is a pair (X ,L) consisting
of a manifold X and an ample line bundle L on X .

For the notion and the general properties of the Hilbert curve associated to a polarized
manifold we refer to [4], see also [6]. Here we just recall some basic facts. Let (X ,L) be a
polarized manifold of dimension n ≥ 2 and regard N(X ) := Num(X )⊗ZC as a complex affine
space. If rk〈KX ,L〉 = 2, we can consider the plane A2 = C〈KX ,L〉 ⊂ N(X ), generated by
the classes of KX and L. For any line bundle D on X the Riemann–Roch theorem provides
an expression for the Euler–Poincaré characteristic χ(D) in terms of D and the Chern classes
of X . Let p denote the complexified polynomial of χ(D), when we set D = xKX + yL, with
x, y complex numbers, namely p(x, y) = χ(xKX + yL). The Hilbert curve of (X ,L) is the
complex affine plane curve Γ = Γ(X ,L) ⊂ A2 of degree n defined by p(x, y) = 0 [4, Section 2].
Notice that the Hilbert curve can be defined also when the numerical classes of KX and L are
linearly dependent, but in this case, the (x, y)-plane is only formal, Γ(X ,L) losing the meaning
of a plane section of the Hilbert variety of X (see [4, Section 2]). For example, the Hilbert
curve of

(

Pn,OPn(r)
)

has the following equation (see, e. g., [4, p. 465] and [7, Theorem 2.7]):

(1) p(x, y) =
(−1)n

n!

n
∏

i=1

(

(n+ 1)x− ry − i
)

.

Due to Serre duality, Γ is invariant under the involution D 7→ KX − D acting on N(X ).
Sometimes, to make this symmetry more evident, it is convenient to represent Γ in terms
of the affine coordinates (u = x − 1

2
, v = y) rather than (x, y). So, rewriting our divisor

as D = 1
2
KX + ∆, where ∆ = uKX + vL, Γ can be represented with respect to these

coordinates by p(1
2
+u, v) = 0. We refer to this equation as the canonical equation of Γ. It is

immediate to check that any nontrivial homogeneous part in the corresponding polynomial
in u, v has degree with the same parity as n; for instance, on a smooth 4-fold X , for any
divisor D = 1

2
KX +∆ the Riemann–Roch formula gives

(2) χ(D) =
1

24
∆4 +

1

48

(

2c2(X )−K2
X

)

·∆2 +
1

384

(

K2
X − 4c2(X )

)

·K2
X + χ(OX )

(e. g. see [3, p. 292]). We thus see that for a polarized 4-fold, the polynomial p contains only
homogeneous parts of degree 4 and 2 in u, v plus the constant term: so, if the latter is zero,
then Γ has a singular point at the origin.
The most significant property of the Hilbert curve of (X ,L) is its sensitivity with respect to

fibrations that suitable adjoint linear systems to L may induce on X [4, Theorem 6.1]. This
makes scrolls (of any type) very interesting from the point of view of their Hilbert curves. In
fact if (X ,L) is a scroll over Y , with dimY = m, then Γ(X ,L) consists of n−m parallel lines
plus a curve C, of degree m, and we can consider the following question (see [4, Problem
6.6]).

Question 1.1. Can C itself be regarded as the Hilbert curve of Y, polarized by some ample

Q-line bundle ?



THE HILBERT CURVE OF A 4-DIMENSIONAL SCROLL 3

For instance, for scrolls over a smooth curve the answer is positive [6, Remark 4.1]. This
note is mainly concerned with the answer to Question 1.1 for the 4-scroll (X,L) described
below (see also [2, p. 330], [1]). Set X = PY (F) and let p : X → Y be the projection, where
Y is P3 blown-up at a point w, F = H⊕2, and H = σ∗OP3(3)− e, σ : Y → P3 standing for
the blowing-up and e ∼= P2 for the exceptional divisor. We denote by L the tautological line
bundle of F on X . Clearly, (X,L) is a classical scroll over Y via p, while it is an adjunction
theoretic scroll over P3 via the map π := σ ◦ p : X → P3, since

(3) KX + 2L = p∗(KY + 2H) = π∗

(

KP3 + 2OP3(3)

)

= π∗OP3(2).

However, it is not a classical scroll over P3, since the fiber π−1(w) = Pe(Fe) is a divisor inside
X , being isomorphic to e× P1. The following diagram summarizes the above situation

X = PY (F)

p

��

π

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

Y
σ

// P3 .

Before addressing Question 1.1 for (X,L), we need the equation of Γ(X,L).

Proposition 1.2. Let (X,L) be the pair described above. The canonical equation of Γ(X,L)

in coordinates (u, v), is

(4) p(X,L)

(

1

2
+ u, v

)

=
1

3
(2u− v)(u− v)(28u2 − 38uv + 13v2 − 1) = 0.

Section 2 and Section 3 contain two different proofs of this statement.

2. First approach

Here, to get the canonical equation of the Hilbert curve Γ(X,L) we implement (2) with
X = X and ∆ = uKX + vL.

First of all we recall the Chern–Wu relation:

L2 − L · p∗c1(F) + p∗c2(F) = 0.

Since F = H⊕2, it gives L2 = L · p∗(2H)− p∗(H2). Moreover, for any divisor D on Y , we get

L · p∗D3 = D3,

L2 · p∗D2 = 2H ·D2,

L3 · p∗D = 3H2 ·D,

and L4 = 4H3. Let h = σ∗OP3(1); thenH = 3h−e, hence H3 = 26, since h3 =
(

OP3(1)
)3

= 1,

e3 =
(

Oe(e)
)2

= 1, and h · e = 0. Therefore

(5) L4 = 104.

Moreover, specializing the above intersections for D = h and D = e respectively, we get

(6) L · p∗h3 = 1, L2 · p∗h2 = 6, L3 · p∗h = 27,

L · p∗e3 = 1, L2 · p∗e2 = −2, L3 · p∗e = 3.
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Now look at the Chern classes of X . We have KX = −2L+p∗(KY +2H), by the canonical
bundle formula forX , since F = H⊕2. Moreover, sinceKY = −4h+2e, we getKY +2H = 2h,
hence

KX = −2L+ p∗(KY + 2H) = −2(L− p∗h).

Consequently,
K2

X = 4(L2 − 2L · p∗h+ p∗h2),

K3
X = −8(L3 − 3L2 · p∗h+ 3L · p∗H2 − p∗h3),

and

(7) K4
X = 16(L4 − 4L3 · p∗h+ 6L2 · p∗h2 − 4L · p∗h3) = 16× 28 = 448.

Combining these with (6) we can compute the pluridegrees Ki
X · L4−i for i = 1, 2, 3:

(8) KX · L3 = −154, K2
X · L2 = 224, K3

X · L = −320.

This provides the values of several intersection products in the Riemann–Roch formula, but
many other involve the second Chern class of X . To evaluate it, looking at the P1-bundle
structure p : X → Y , we can use the relative tangent sequence

0 → TX/Y → TX → p∗TY → 0

and the relative Euler sequence

0 → OX → p∗F∨ ⊗ L → TX/Y → 0.

Combining them, we get the following relation between the Chern polynomials

c(TX ; t) = p∗c(TY ; t) c(p
∗F∨ ⊗ L; t),

which gives
c2(X) = p∗c2(Y ) + p∗c1(Y ) · c1(p

∗F∨ ⊗ L) + c2(p
∗F∨ ⊗ L).

Recall that c2(Y ) = σ∗c2(P
3) (e. g., see [5, Lemma at p. 609]), hence c2(Y ) = 6h2. Moreover,

c1(p
∗F∨ ⊗ L) = 2(L − p∗H) and c2(p

∗F∨ ⊗ L) = (L − p∗H)2. So, taking into account the
expressions of H and KY in terms of h and e, we obtain

c2(X) = L2 + 2L · p∗(h− e)− 3p∗(3h2 + e2).

This gives

(9) c2(X) ·K2
X = 4

(

L4 − 2L3 · p∗e− 3L2 · p∗(4h2 + e2) + 20L · p∗h3

)

= 4× 52 = 208.

Moreover,

2c2(X)−K2
X = −2

(

L2 − 2L · p∗(3h− e) + p∗(11h2 + 3e2)

)

.

As a consequence of the above relations we get
(

2c2(X)−K2
X

)

·K2
X = −32,

(

2c2(X)−K2
X

)

·KX ·L = 24,

(

2c2(X)−K2
X

)

·L2 = −16.

Now we have all ingredients; so, letting ∆ = uKX+vL, (2) allows us to express the canonical
equation of the Hilbert curve Γ(X,L). First of all, since χ(OX) = 1, from (7) and (9) we get
the degree zero term, which is

1

384

(

K2
X − 4c2(X)

)

·K2
X + χ(OX) =

1

384
(448− 832) + 1 = 0.
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This means that Γ(X,L) has a singular point of multiplicity ≥ 2 at the origin. Next, since
(

2c2(X)−K2
X

)

·∆2 = −32u2 + 48uv− 16v2 = −16(2u2 − 3uv + v2) = −16(2u− v)(u− v),

in view of the previous computations, the homogeneous part of degree 2 is

1

48

(

2c2(X)−K2
X

)

·∆2 = −
1

3
(2u− v)(u− v).

As to the homogeneous part of degree 4, (7), (8) and (5) show that

∆4 = (uKX + vL)4 = 8 F (u, v),

where

F (u, v) = 56u4 − 160u3v + 168u2v2 − 77uv3 + 13v4;

hence 1
24
∆4 = 1

3
F (u, v). Note that the polynomial F can be rewritten as

F (u, v) = 28u2(2u2 − 3uv + v2)− v G(u, v) = 28u2(2u− v)(u− v)− v G(u, v),

where G(u, v) = 76u3 − 140u2v + 77uv2 − 13v3; moreover, it is easy to see that

G(u, v) = (2u− v)(38u2 − 51uv + 13v2)

= (2u− v)(u− v)(38u− 13v).

Thus

F (u, v) = (2u− v)(u− v)
[

28u2 − v(38u− 13v)
]

.

Therefore, the homogeneous part of degree 4 is

1

24
∆4 =

1

3
(2u− v)(u− v)(28u2 − 38uv + 13v2).

In conclusion, putting all pieces together and collecting all common factors, we get (4).

3. Second approach

In this section, we obtain equation (4) again with another approach using Algorithm 3 in
[7, Appendix]. To do that, it is more convenient to use coordinates (x, y) = (1

2
+ u, v) in the

plane of Γ(X,L). Let S ⊂ P3 be a smooth quadric surface not containing the point w and

consider the smooth threefold V := π−1(S) ∈ |π∗
(

OP3(2)
)

|. Clearly, V ∩ π−1(w) = ∅ and
(V, LV ) is a scroll over S via π|V : V → S, with KV + 2LV = (π|V )

∗OP3(4)S. Note also that

(10) V ∈ |KX + 2L|

in view of (3). According to the above quoted algorithm, consider the following exact se-
quence:

0 → xKX + yL+ (x− 1)V → x(KX + V ) + yL → xKV + yLV → 0,

which by (10) can be rewritten as

(11) 0 → (2x− 1)KX + (2(x− 1) + y)L → 2xKX + (2x+ y)L → xKV + yLV → 0.

The exact sequence (11) gives the following relation between p(X,L) and p(V,LV ):

(12) p(X,L)(2x, 2x+ y) = p(X,L)(2x− 1, 2x+ y − 2) + p(V,LV )(x, y).



6 ANTONIO LANTERI AND ANDREA LUIGI TIRONI

By [4, Theorem 6.1] we know that, in terms of coordinates (a, b), the two polynomials can
be written as

p(X,L)(a, b) = R(X,L)(a, b) · (2a− b− 1) and p(V,LV )(a, b) = R(V,LV )(a, b) · (2a− b− 1),

where R(X,L) and R(V,LV ) are polynomials in (a, b) of degrees 3 and 2, respectively. Thus (12)
becomes

(13) R(X,L)(2x, 2x+ y) = R(X,L)(2x− 1, 2x+ y − 2) +R(V,LV )(x, y).

The goal will be to find the explicit expression of the polynomial

(14) R(X,L)(a, b) := A′a3 +B′a2b+ C ′ab2 + E ′b3 + F ′a2 +G′ab+H ′b2 + J ′a + L′b+M ′,

with rational coefficients, because R(V,LV ) is known by [7, Theorem 4.3]. Actually, adapting
the notation used there (see also [7, Example 4.2]) to our situation, we have

S ∼= P1 × P1, A = OP3(4)S, KS = OP3(−2)S.

Hence χ(OV ) = χ(OS) = 1, KS ·A = −16 and A2 = 32. Moreover, from the exact sequence

0 → L− V = L+ π∗OP3(−2) → L → LV → 0,

we get χ(LV ) = χ(L)− χ(L+ π∗OP3(−2)). Observe that

χ(L) = χ(F) = 2χ(H) = 2h0(Y, σ∗OP3(3)− e) = 38

and

χ(L+ π∗OP3(−2)) = χ(F ⊗ σ∗OP3(−2)) = 2χ(H ⊗ σ∗OP3(−2)) = 2χ(σ∗OP3(1)− e) = 6.

Therefore, χ(LV ) = 38− 6 = 32 and then from [7, Theorem 4.3] we deduce that

(15) R(V,LV )(x, y) = −4x2 + 12xy − 9y2 + 4x− 6y − 1.

Note that Serre duality on X implies that p(X,L)(a, b) = p(X,L)(1−a,−b), which in turn gives

R(X,L)(a, b) = −R(X,L)(1− a,−b).

This leads by using MAPLE to the following relations:

A′ = 2J ′ + 4M ′, B′ = −G′, C ′ = −2H ′, F ′ = −3J ′ − 6M ′.

Using these relations, (15) and (14) with the pairs (2x, 2x+y) and (2x−1, 2x+y−2) instead
of (a, b) to obtain the terms R(X,L)(2x, 2x + y) and R(X,L)(2x − 1, 2x + y − 2), respectively,
from (13) we deduce the following expressions for four further unknown coefficients:

G′ = −12E ′ − 30, H ′ = 3E ′ +
9

2
, J ′ = −4E ′ − 2M ′ −

38

3
, L′ = 2E ′ +M ′ +

9

2
.

Finally, by computing p(X,L) in (0, 0) and (0, 1), we get

1 = p(X,L)(0, 0) = (−1)R(X,L)(0, 0) = −M ′,

38 = χ(L) = p(X,L)(0, 1) = (−2)R(X,L)(0, 1) = −12E ′ − 14.

Hence M ′ = −1 and E ′ = −13
3
. By replacing these values in the previous expressions of the

coefficients, we deduce the final expression of R(X,L) in terms of the coordinates (x, y):

R(X,L)(x, y) =
28

3
x3 − 22x2y + 17xy2 −

13

3
y3 − 14x2 + 22xy −

17

2
y2 +

20

3
x−

31

6
y − 1,

which leads to p(X,L)(
1
2
+ u, v) as in (4), keeping in mind that p(X,L)(x, y) = R(X,L)(x, y) ·

(2x− y − 1) and (x, y) =
(

1
2
+ u, v

)

.
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4. A singular property of Γ(X,L)

Coming back to Question 1.1, we highlight an intriguing property of the Hilbert curve of
our polarized fourfold (X,L). As observed, we can regard (X,L) as an adjunction theoretic
scroll over P3 as well as a classical scroll over Y . Due to (3), since [4, Theorem 6.1] holds for
scrolls of both types, the linear factor (2u− v) in (4) was a priori expected. The question is
whether the residual degree 3 factor

φ(u, v) =
1

3
(28u3 − 66u2v + 51uv2 − 13v3 − u+ v),

defining a plane cubic C, is somehow related to the base threefold P3 (Y , respectively) of
our scroll (X,L) for some polarization. Let us start with P3. By (1) with x = u + 1

2
and

y = v, we see that for any positive integer a the canonical equation of the Hilbert curve of
the polarized threefold

(

P3,OP3(a)
)

is

1

6

3
∏

i=1

(−4u+ av + i− 2) = 0,

and the same occurs for any positive a ∈ Q. It is immediate to check that the polynomial on
the left hand contains nontrivial homogeneous terms of degree 2, contrary to what happens for
φ. Therefore the cubic C of equation φ(u, v) = 0 cannot be the Hilbert curve of

(

P3,OP3(a)
)

.

This shows that in general for an adjunction theoretic scroll, Question 1.1 has a negative
answer.

Next consider Y . Any ample line bundle M on Y can be written as M = ah − re for
suitable integers a and r. For any divisor D′ = 1

2
KY +∆′ on Y , the Riemann–Roch formula

says that

(16) χ(D′) =
1

6
∆′3 +

1

24
(2c2(Y )−K2

Y ) ·∆
′

[3, p. 291]. Hence, letting ∆′ = uKY + vM and computing all required intersections, (16)
leads to the canonical equation of the Hilbert curve of (Y,M), which turns out to be

p(Y,M)

(

1

2
+u, v

)

=
1

6

[

−56u3+12(4a−r)u2v−6(2a2−r2)uv2+(a3−r3)v3+2u−(a−r)v

]

= 0.

This polynomial is proportional to φ(u, v) if and only if the matrix
(

−56 12(4a− r) −6(2a2 − r2) a3 − r3 2 r − a

28 −66 51 −13 −1 1

)

has rank 1. An immediate check shows that this happens if and only if (a, r) = (3, 1), i.e.
for M = H . We thus see that

φ(u, v) = − p(Y,H)

(

1

2
+ u, v

)

.

Therefore, the factor φ defines the Hilbert curve of the base Y of our classical scroll (X,L),
endowed with the average polarization H = 1

2
detF induced by the ample vector bundle F .

Moreover, we see that, in the special situation we are dealing with, Question 1.1 has a
positive answer regarding (X,L) as a classical scroll over Y , while this is not the case when
we look at it as an adjunction theoretic scroll over P3.
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Remark . The conclusion concerning (X,L) as a scroll over P3 can be obtained more geomet-
rically, arguing as follows. The Hilbert curve of

(

P3,OP3(a)
)

consists of three parallel evenly
spaced lines, while, from the real point of view, the cubic C consists of the line u − v = 0
plus an ellipse: actually, a straightforward verification shows that the conic γ of equation
28u2 − 38uv + 13v2 − 1 = 0 is an ellipse whose axes, determined by the eigenvectors of the
matrix

(17) A∞ :=

(

28 −19
−19 13

)

,

are 3u − 2v = 0 and 2u + 3v = 0. From another perspective, removing both linear factors
2u− v and u− v from (4) one could ask whether the conic γ described by the residual degree
2 polynomial is the Hilbert curve of some polarized or Q-polarized surface (S,L). Even in
this case the answer is negative. Otherwise, taking into account that the canonical equation
of the Hilbert curve of (S,L) is

1

2

(

K2
Su

2 + 2KS · Luv + L2v2 +
(

2χ(OS)−
1

4
K2

S

)

)

= 0,

(17) would imply the existence of a nonzero rational number ρ such that

K2
SL

2 − (KS · L)2 = ρ2 detA∞ = 3 ρ2 > 0,

but this contradicts the Hodge index theorem.
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