
Olympiads in Informatics, 2019, Vol. 13, 99–121
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.07

99

Constructionist Attempts at Supporting
the Learning of Computer Programming:
A Survey

Michael LODI1, Dario MALCHIODI2, Mattia MONGA2,
Anna MORPURGO2, Bernadette SPIELER3
1Alma Mater Studiorum – Università di Bologna & INRIA Focus, Italy
2Università degli Studi di Milano, Italy
3Graz University of Technology, Austria
e-mail: michael.lodi@unibo.it, {malchiodi, monga, morpurgo}@di.unimi.it,
bernadette.spieler@ist.tugraz.at

Abstract. Although programming is often seen as a key element of constructionist approaches, the
research on learning to program through a constructionist strategy is somewhat limited, mostly fo-
cusing on how to bring the abstract and formal nature of programming languages into “concrete”,
possibly tangible objects, graspable even by children with limited abstraction power. We survey
the literature in programming education and analyse some programming languages designed to
help novices from a constructionist perspective.

Keywords: programming, programming languages for learning, notional machine, construction-
ism.

Introduction.

While programming is often seen as a key element of constructionist1 approaches
(starting from LOGO (Feuerzeig et al., 1970), a programming language designed to
enable learning abstract concepts of disciplines like math, geometry, physics, and po-
tentially all others, by manipulating computational objects (Papert, 1980)), the re-
search on learning to program through a constructionist strategy is somewhat limited,
mostly focusing on how to bring the abstract and formal nature of programming lan-
guages into “concrete” or even tangible objects, accessible also to children with lim-

1 Constructionism originated from Seymour Papert, drawing on Jean Piaget’s constructivist view that
knowledge needs to be (re)constructed rather than transmitted (Piaget, 1973), and adding that this is par-
ticularly effective when involves the construction of a (concrete or abstract) artifact, meaningful for the
learner (Papert, 1980).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/222579929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. Lodi et al.100

ited abstraction power (Resnick et al., 2009; Kay et al., 1997; Horn and Jacob 2007;
Dann et al., 2008; Hauswirth, Adamoli, and Azadmanesh, 2017). Notwithstanding
this, programming is in some sense intrinsically constructionist, as it always involves
the production of an artifact that can be shown and shared. Of course, this does not
mean that programming automatically leads to constructivist/constructionist pedago-
gies: in facts, we see very different approaches, from open project-based learning to
much more traditional education through lectures and closed exercises. Specific lan-
guages and environments play an important role too: for example, visual programming
languages make it easier (by removing the request to face unnatural textual syntactic
rules) to realize small but meaningful projects, keeping students motivated, and sup-
port a constructionist approach where students are encouraged to develop and share
their projects – video games, animated stories, or simulations of simple real-world
phenomena. Constructionist ideas are also floating around mainstream programming
practice and they are even codified in some software engineering approaches: agile
methods like eXtreme Programming (Beck and Andres, 2004), for example, suggest
several techniques that can be easily connected to the constructionist word of advice
about discussing, sharing, and productively collaborating to successfully build knowl-
edge together (Resnick, 1996); moreover the incremental and iterative process of cre-
ative thinking and learning (Resnick, 2007) fits well with the agile preference to “re-
sponding to change over following a plan” (Beck et al., 2001). It actually originated
by observing how the traditional kindergarten approach to learning is ideally suited
to learn to think creatively, and it is now called “creative learning spiral” (Fig. 1).
According to this model, when one learns by creating something (e.g., a computer
program) she imagines what she wants to do, creates a project based on this idea, plays
with her creation, shares her idea and her creation with others, reflects on the experi-
ence and feedback received from others, and all this leads her to imagine new ideas,
new functionalities, new improvements for her project, or new projects. The process
is iterated many times. This spiral describes an iterative process, highly overlapping
with the iterative software development cycle.

Fig. 1. Creative learning spiral (source: (Resnick, 2017)).

Constructionist attempts at supporting the learning of computer programming: ... 101

What does it mean to learn programming?

The basic premise behind programming – i.e., producing a precise description of how to
carry out a task or to solve a problem – is that an interpreter, different from the producer
of the description, can understand it and effectively carry out the task as described. There
are thus two distinct but tightly tied aspects in programming:

the program itself (the text or other streams of symbols or actions that build up the i.
digital coding of an algorithm);
the actions that take place when the program is run by the interpreter.ii.

This distinction is explicit in most of the professional programming environments,
but it is conceptually present even in those environments designed for very small chil-
dren, where the program is somewhat implicit. The Bee-Bot2, for example, is a bee-
shaped robot that can be programmed by pushing the buttons on its back: the program,
while recorded and then executed by the machine, is not explicit nor visible in its static
form by the children, but it exists, and the programmer needs to master the relationship
between the actions she records into the bee and the actions the bee will perform when
the program will be executed. In this paper, however, we focus on programs in which the
source code is explicit, as it is common in programming activities proposed to secondary
school pupils.

Thus, one needs to know the interpreter in order to program, in particular:
the set of basic actions it is able to perform; ●
the language it is able to understand, with rules on how to compose basic actions; ●
the relation between ● syntax and semantics, that is what actions it will perform giv-
en a description, and, conversely, how to describe a given sequence of actions so
that it will perform them.

The first aspect, that is the program source code, is explicit, visible. The second one
instead, that is the actions that take place when the program is run, is somewhat implicit,
hidden in the execution time world, and not so immediate to grasp for novices. More-
over, this aspect is sometimes underestimated by both teachers and learners: teachers, as
experts, give it for granted; learners tend to construct personal intuitive, not necessarily
coherent, ideas of what will happen.

This dichotomy of programming – its static visible code and its implicit dynam-
ics – emerges as a critical issue when learning to program, as shown by studies from
different perspectives. In the following we cite a few (Sorva, 2013).

Phenomenography studies show how novice programmers tend to perceive pro- ●
gramming as no more than the production of code, missing to relating instructions
in the program to what happens when the program is executed.
Studies on programming misconceptions point out how most of programming mis- ●
conceptions have to do with aspects that are not readily visible in the code but are
related to the execution time, both in term of what will happen and of what will not
unless explicitly specified in the code.

2 https://www.bee-bot.us/

M. Lodi et al.102

Threshold concept theory identifies program dynamics as a candidate threshold ●
concept in programming as it has many of the features that characterize threshold
concepts; among others: it is a troublesome barrier to student understanding, it
transforms how the student perceives the subject, it marks a boundary between
programmers and end users.

To help novice programmers take into account also the dynamic side of program-
ming, the concept of notional machine (Du Boulay, 1986; Sorva, 2013) has been pro-
posed. A notional machine is a characterisation of the computer in its role as executor of
programs in a particular language (or set of languages, or even a subset of a language)
for didactic purposes. It thus gives a convenient description of the association syntax-
semantics.

The following learning outcomes should therefore be considered when teaching to
program:

the development by students of a perception of programming that does not reduce ●
to the production of code, but includes relating instructions to what will happen
when the program is executed, and eventually comes to include producing applica-
tions for use and seeing it as a way to solve problems;
the development of a mental model of a notional machine that allows them to make ●
the association (static) syntax – (dynamic) semantics and to trace program execu-
tion correctly and coherently.

In particular, this latter outcome goal will include the development of some impor-
tant skills.

Given a program (typically one’s own) and an observed behaviour: ●
identify when debugging is needed because the behaviour is somewhat not the ○
one intended;
identify where a bug has occurred; ○
be able to correct the code. ○

Given a program and its specification, be able to test it. ●
Understand that there can be multiple correct ways to program a solution. ●

If these are crucial points in learning to write executable descriptions, however, pro-
gramming is indeed a multifaceted competence, and the knowledge to construct and the
skills to develop span over several dimensions, besides predicting concrete semantics of
abstract descriptions. A skilled programmer needs to:

understand general properties of automatic interpreters able to manipulate digital 1.
information;
think about problems in a way suitable to automatic elaboration;2.
devise, analyze, compare solutions;3.
adapt solutions to emerging hurdles and needs;4.
integrate into teamwork and be able to elicit, organize, and share the abstract 5.
knowledge related to a software project.

Here we mainly focus on skill 1 and the support provided by programming languages
and environments. Moreover we highlight the opportunity provided by agile methodolo-
gies to develop skill 5.

Constructionist attempts at supporting the learning of computer programming: ... 103

Unplugged Activities

Offline or unplugged programming activities have often been used to explain important
concepts or vocabulary to students without actually using a PC, laptop, or smartphone,
e.g., x/y coordinates, the need for precise instructions for computers/robots, or variables
and lists. Examples are to program a classmate like a robot, give paint instructions, pack
a rucksack, or send “broadcast messages” to colleagues.

Unplugged activities in small groups have become popular over the years to intro-
duce basic computer science concepts in non-vocational contexts, as they offer a number
of interesting features.

A constructivist environment. ●
Indeed by manipulating real objects or dramatising processes, pupils can ○
observe what happens, formulate hypotheses, validate them through experi-
ments, i.e. develop a scientific approach to the construction of their knowl-
edge.
By working in a group, pupils are encouraged to participate, share ideas, ver- ○
balize and uphold their deductions.

Inexpensive set up: ● they usually require very basic and inexpensive materials,
so they can be easily proposed in different contexts.
No technological hurdles: ● they allow students (and teachers) to have meaning-
ful experiences related to important CS concepts (like algorithms) without hav-
ing to wait until they get some technology and programming fluency (Bell and
Lodi, to appear).

It is important to note that evidence shows unplugged activities should not replace
programming activities, but can be helpful to make them more effective (Bell and Vah-
renhold, 2018).

The following two examples, taken from CS Unplugged3 and ALaDDIn4, illustrate
typical unplugged approaches to introduce children to programming.

In CS Unplugged “Rescue Mission”, pupils are given by the teacher a very simple
language with only three commands: 1 step forward, 90 degrees left, 90 degrees right.
The task is to compose a sequence of instructions to move a robot from one given cell
on a grid to a given other cell. Pupils are divided into groups of three where each one
has a role: either programmer, bot, or tester. This division of roles is done to emphasize
the fact that programs cannot be adjusted on the fly; they must be first planned, then
implemented, then tested and debugged until they work correctly.

ALaDDIn “Algomotricity and Mazes” is an activity designed according to a strategy
called algomotricity (Lonati et al., 2011; Bellettini et al., 2012, 2013, 2014), where pu-
pils are exposed to an informatic concept/process by playful activities which involve a
mix of tangible and abstract object manipulations; they can investigate it firsthand, make
hypotheses that can then be tested in a guided context during the activity, and eventually

3 https://csunplugged.org/
4 http://aladdin.di.unimi.it/

M. Lodi et al.104

construct viable mental models. Algomotricity starts “unplugged” (Bell, Rosamond, and
Casey, 2012) but ends with a computer-based phase to close the loop with pupils’ previ-
ous acquaintance with applications (Taub, Armoni, and Ben-Ari, 2012).

“Algomotricity and Mazes” focuses on primitives and control structures. The task is
that of verbally guiding a “robot” (a blindfolded person) through a simple path. Working
in groups, pupils are requested to propose a very limited set of primitives to be written
each on a sticky note, and to compose them into a program to be executed by the “robot”.
Also, they have the possibility of exploiting basic control structures (if, repeat-until,
repeat-n-times). The conductor may decide to swap some programs and “robots”, in or-
der to emphasize the ambiguity of some instructions or the dependency of programs on
special features of the “robot” (e.g., step/foot size). In the last phase, students are given
computers and a slightly modified version of Scratch. They are requested to write pro-
grams that guide a sprite through mazes of increasing complexity where shape patterns
foster the use of loops.

Notional Machines

An important intuition for approaching programming from a constructionist perspective
is that programs are a join point between our mind and the computer, the interpreter of
the formal description of what we have in mind. Thus, programs appeal to our curiosity
and ingenuity and are wonderful artifacts to share and discuss with other active minds.
Such a sharing, however, assumes that the interpreter is a shared knowledge among
peers. When a group of people programs the same ‘machine’, a shared semantics is in

Fig. 2. The first and last phase of the “Algomotricity and Mazes” activity, respectively.

Constructionist attempts at supporting the learning of computer programming: ... 105

fact given, but unfortunately people, especially novices, do not necessarily write their
programs for the formal interpreter they use, rather for the notional machine (Sorva,
2013; Berry and Kölling, 2014) they actually have in their minds.

A notional machine is an abstract computer responsible for executing programs of a
particular kind (Sorva, 2013) and its grasping refers to all the general properties of the
machine that one is learning to control (Du Boulay, 1986). The purpose of a notional
machine is to explain, to give intuitive meaning to the code a programmer writes. It
normally encompasses an idealized version of the interpreter and other aspects of the
development and run-time environment; moreover, it should bring also a complemen-
tary intuition of what the notional machine cannot do, at least without specific directions
of the programmer.

To introduce a notional machine to the students is often the initial role of the in-
structors. Ideally this should be somewhat incremental in complexity, but not all pro-
gramming languages are suitable for incremental models: in fact, most of the success
for introductory courses of visual languages or Lisp dialects is that they allow shallow
presentations of syntax, thus letting the learners focus on the more relevant parts of their
notional machines.

An explicit reference to the notional machine can foster meta-cognition and, during
teamwork, it can help in identifying misconceptions. But how can the notional machine
be made explicit? Tracing of the computational process and visualization of the execu-
tion are effective candidate tools. They allow instructors to make as clear as possible:
(i) what novice programmers should expect the notional machine will do and (ii) what
it actually does.

Abstract Programming Patterns

A small number of abstract programming patterns can be applied to a potentially infinite
spectrum of specific conditions. This is often a challenge for novices, given that most
of the times the discipline is taught (i) introducing one or more primitive tools (e.g.,
variables), and (ii) showing some examples highlighting how these tools can be used to
solve specific problems. This might lead to the rise of misconceptions of pupils w.r.t. the
above-mentioned tools.

The concept of role of variables (Sajaniemi, 2002; Proulx, 2000) has been proposed
in order to guide novice programmers from the operational knowledge of a variable as
the holder of a mutable value to the ability to identify abstract use cases following a
small number of roles (such as those in Fig. 3). Such ability is of great help when tack-
ling the solution of a specific problem, for instance, that of computing the maximal value
within a sequence. Indeed, this is a great opportunity for letting pupils realize that this
problem is a special case of the more general quest for optimal value. The latter can be
found using a most-wanted holder to be compared with each element of the sequence
and containing the highest value seen so far. This method easily fits the search of the
maximal as well as the minimal value, and it also efficiently handles less obvious cases
such as that of finding the distinct vowels occurring in a sentence.

M. Lodi et al.106

These roles can also be gradually introduced following the hierarchy of Fig. 3, start-
ing from the concept of literal (e.g., an integer value or a string) and building knowledge
about one role on the top of already understood roles.

For selection and iteration as well there are several standard use patterns that occur
over and over again. Selection patterns (Bergin, 1999) and loop patterns (Astrachan and
Wallingford, 1998) have been introduced with the same goal. For instance, to illustrate
the idea, the loop and a half pattern is an efficient processing strategy for a sequence of
elements whose end can be detected only after at least one element has been read. It uses
an infinite loop whose body accesses the next sequence element. If there are no more
elements, the loop is escaped through a controlled jump, otherwise some special actions
are possibly executed before continuing the iteration. The code snippet shown in Fig. 4
shows one of the canonical incarnations of this pattern: the possibly repeated check of a
value given as input, detecting and ignoring invalid entries.

Selection and loop patterns fit well within a constructionist-based learning path: they
might be naturally discovered when critically analyzing software implementations. For
instance, the previous loop could be the end point of a reasoning scheme started from the
detection of a duplicated line of code in a quick-and-dirty initial implementation.

Fig. 3. Roles of variables, organized in a constructionist-like hierarchy where the pre-
decessor of an arrow is a prerequisite for learning the corresponding successor (source:
(Sajaniemi, 2002)).

while True:

 value = input(‘insert a positive, odd value’)
 if value > 0 and value % 2 == 1:

 break

 print(‘the value is not valid’)

Fig. 4. A typical loop and a half pattern applied to the
repeated validation of external inputs to a procedure.

Constructionist attempts at supporting the learning of computer programming: ... 107

In general, abstract programming patterns are provided in a short number, in order
to cover them within a standard introductory computer programming course; moreover,
the related concepts are easily grasped by experienced computer science teachers (Ben-
Ari and Sajaniemi, 2004), thus they can be embedded in already existing curricula with
low effort.

Misconceptions

Sorva defines misconceptions as “understandings that are deficient or inadequate for
many practical programming contexts” (Sorva, 2013).

Some authors (Ben-Ari, 2001) believe that computer science has an exceptional posi-
tion in constructivist’s view of knowledge constructed by individuals or groups rather
than a copy of an ontological reality: in fact, the computer forms an “accessible ontologi-
cal reality” and programming features many concepts that are precisely defined and im-
plemented within technical systems [...] sometimes a novice programmer “doesn’t get” a
concept or “gets it wrong” in a way that is not a harmless (or desirable) alternative in-
terpretation. Incorrect and incomplete understandings of programming concepts result
in unproductive programming behavior and dysfunctional programs (Sorva, 2013).

According to Clancy, there are two macro-causes of misconceptions: over- or under-
generalizing and a confused computational model. High-level languages provide an ab-
straction on control and data, making programming simpler and more powerful, but, by
contrast, hiding details of the executor to the user, who can consequently find mysterious
some constructs and behaviors (Clancy, 2004).

Much literature about misconceptions in CSEd can be found: we list some of the most
important causes of misconceptions, experienced especially by novices, divided into dif-
ferent areas, found mainly in (Clancy, 2004; Sirkiä, 2012; Sorva, 2013) and in the works
they reference. For a complete review see for example (Qian and Lehman, 2017).

English
Keywords of a language do not have the same meaning in English and programming.
For example, the word while in English indicates a constantly active test, while the
construct while can test the condition again only at the beginning of the next itera-
tion. Some students believe that the loop ends at the precise moment the condition is
falsified. Similarly, some of them think of the if construct as a test continuously ac-
tive and awaiting the occurrence of a condition, others believed that the then branch
is executed as soon as the condition becomes true.

Syntax
Although one may think the syntax is one of the biggest sources of misconceptions,
studies show that it is a problem only in the very early stages. In particular, some
students were able to write syntactically valid programs, which, however, were not
useful for solving the given problem, or were semantically incorrect.

M. Lodi et al.108

Mathematical notation
Reported by many authors, classical is the confusion that generates the assignment
with the = symbol (for example, seen as an equation or as a swap of values between
variables) or the increment (a = a + 1) thought of as an impossible equation.

Examples of over-generalization
Some authors found a series of non-existent constraints (e.g., methods in different
classes that must have different names, arguments that can only be numbers, “dot”
operator usable just in methods) dictated by the fact that the students had not seen any
counterexample for such situations.

Similarities
The analogy “a variable is like a box” can foster the idea that – like a box – it can con-
tain more elements at the same time. The analogy “programming with the computer
is like conversing with it” can bring to attribute intentionality to the computer and
therefore to think that it:

has a hidden intelligence that understands the intentions of the programmer ○
and helps her achieve her goal (the so-called “superbug”);
has a general vision, knowing also what will happen in lines of code that it is ○
not currently running.

Some aspects of programming are particular carriers of misconceptions.

Sequence
Many misconceptions are due to lack of understanding of the program flow: all lines
active at the same time, “magic” parallelism, the unimportance of the order of instruc-
tions, difficulty in understanding the branches.

Passing parameters
Students present difficulties in this area, for example by confusing the types of pass-
ing (by value, by reference, ...), making mistakes with the return value or with the
parameters’ scope.

Input
Input statements are particularly problematic. Students do not understand where the
input data come from, how they are stored and made available to the program. Some
of them believe that a program remembers all the values associated with a variable
(its “history”).

Memory allocation
There are considerable difficulties in understanding the memory model of languages
where allocation happens implicitly.

Constructionist attempts at supporting the learning of computer programming: ... 109

Programming Languages for Learning to Program

From a constructionist viewpoint of learning, programming languages have a major
role: they are a key means for sharing artifacts and expressing one’s theories of the
world. The crucial part is that artifacts can be executed independently from the creator:
someone’s (coded) mental process can become part of the experience of others, and
thus criticized, improved, or adapted to a new project. In fact, the origin of the notion
itself of constructionism goes back to Papert’s experiments with a programming envi-
ronment (LOGO) designed exactly to let pupils tinker with math and geometry (Papert,
1980). Does this strategy work even when the learning objective is the programming
activity itself? Can a generic programming language be used to give a concrete reifica-
tion of the computational thinking of a novice programmer? Or do we need something
specifically designed for this activity? Alan Kay says that programming languages
can be categorized in two classes: “agglutination of features” or “crystallization of
style” (Kay, 1993). What is more important for learning effectively in a constructivist
way? Features or style?

In the last decade, a number of block-based programming tools have been intro-
duced to help students have an easier time when first practicing programming. These
tools, often based on web-based technologies, as well as an increase in the number of
smartphones and tablets, opened up new ways for innovative coding concepts (Kahn,
2017). In general, they focus on younger learners, support novices in their first pro-
gramming steps, can be used in informal learning situations, and provide a visual lan-
guage which allows students to recognize blocks instead of recalling syntax (Tumlin,
2017). Many popular efforts for spreading computer science in schools, like (Goode,
Chapman, and Margolis, 2012) or the teaching material from Code.org,5 rely on the use
of such environments. In addition, such tools have been adopted into many computing
classes all over the world (Meerbaum-Salant, Armoni, and Ben-Ari, 2010).

LOGO

LOGO was designed (since 1967) for (constructionist) educational purposes by Wal-
ly Feurzeig, Seymour Papert, Cynthia Solomon, Daniel Bobrow, and Richard Grant
(Papert, 1980). Its syntax was heavily influenced by Lisp (at the time the standard
language for Artificial Intelligence research) and it was initially designed to aid stu-
dents in learning secondary school mathematics. The most successful LOGO version
featured a graphical (at least in principle) environment: instructions are directed to
a “turtle” who moves around the screen, possibly leaving a colored trace. The turtle
should help learners (especially the younger ones) with a sort of self-identification:
its movements have a clear correspondence with their movements in the real world.
The patterns drawn by the turtle can be the way the learners build their understanding

5 https://hourofcode.com

M. Lodi et al.110

of 2D geometry, discovering in the process even deep mathematical truths as the fact
that a circle can be approximated by a high number of straight segments (Abelson and
DiSessa, 1986) (see Fig. 5).

Interestingly enough, LOGO was originally conceived to empower learners of math-
ematics/geometry, not programming. Programming is just a means of expression, but one
with great epistemic potential. According to Papert: “in teaching the computer how to
think, children embark on an exploration about how they themselves think. The experi-
ence can be heady: Thinking about thinking turns every child into an epistemologist, an
experience not even shared by most adults” (Papert, 1980). Also, by expressing something
in a way the LOGO turtle can “understand” can be fruitful for real-world activities, too.
Juggling, for example, can be analyzed with LOGO: the identification of proper sub-activ-
ities (i.e., sub-routines like TOP-RIGHT to recognize when one juggling ball is at the top
of its trajectory going to the right, or TOSS-LEFT to throw the ball with the left hand) may
shorten significantly the time for acquiring juggling skills (from days to hours, according
to (Papert, 1980)). And here ‘proper’ should be understood as appropriate to the task, but
also as “fitting properly with the programming language idiomatic way of describing com-
putational processes”. LOGO had many independent implementations and its approach is
still very popular, even Python has a turtle package in its standard library.

Smalltalk

Smalltalk (Goldberg and Kay, 1976) also has its roots in constructionist learning. Back
in the early seventies, at the Learning Research Group within the Xerox Parc Research
Center, people were envisioning a world of personal computing devices which should
have “programmability”. Smalltalk, whose lineage traces clearly to LOGO and Lisp,
was designed with a general audience in mind, since everyone should be comfortable
with programming and computing devices should become ubiquitous in learning envi-
ronments “along the lines of Montessori and Bruner” (Kay, 1993). Thus, Smalltalk was
not directed specifically to children and it has conquered a wide professional audience.
In Smalltalk everything is an ‘object’ able to react to ‘messages’. It follows a highly
consistent object-oriented approach and code can be factored out by inheritance and
dynamic binding. Smalltalk introduces also the idea that everything in the system is pro-
grammable: such a dynamic environment encourages a trial-and-error approach. A spe-

TO CIRCLE

 REPEAT FOREVER

 [

 FORWARD 1

 RIGHT 1

]

Fig. 5. A procedure to draw a circle in LOGO.

Constructionist attempts at supporting the learning of computer programming: ... 111

cific Smalltalk system for children was designed later as an evolution of Squeak Small-
talk: E-toys (Kay et al., 1997) provided a world of “sprites”, funny characters that can be
moved (concurrently) around the screen by programming them in Smalltalk. E-toys then
evolved in Scratch, where the programming part was replaced by visual blocks.

BASIC, Pascal

It seems legitimate to mention BASIC (Beginner’s All-purpose Symbolic Instruction
Code (Kurtz, 1978)) in a paper on constructionism and programming: for years BA-
SIC has been the elective language for personal projects and even before widespread
Internet connectivity, several communities shared BASIC programs in Bulletin Board
Systems and magazines. Its popularity among self-taught programmers, however, was
due mainly to its availability on personal and home computing devices. Moreover, the
language was typically implemented using an interpreter, thus naturally fostering the
trial-and-error and incremental learning styles typical of a constructionist setting. A gen-
eration grown with BASIC still thinks it is a wonderful approach to get children hooked
on programming (see for example (Brin, 2016)). However, many believe BASIC is not
able to foster good abstractions and fear that BASIC programmers will bring bad habits
to all their future computational activities.

In 1970 Niklaus Wirth published Pascal (Wirth, 1993), a small, efficient language
intended to encourage sound programming practices using structured programming and
data structuring. For about 25 years, Pascal (and its successors like TurboPascal or Mod-
ula-2) was the most popular choice for undergraduate courses and a whole generation of
computer scientist learned to program through its discipline popularized by Wirth in his
book “Algorithms + Data Structures = Programs”. Only Java had similar success in un-
dergraduate courses. However, while Java popularity was (and is) influenced by trends
in the software industry, Pascal was appealing mainly for its intrinsic discipline, which
matched the academic sentiment of the time.

Scheme, Racket

Scheme (Abelson et al., 1998) is a language originally aimed at bringing structured
programming in the lands of Lisp (mainly by adding lexical scoping). The language has
nowadays a wide and energetic community of users. Its importance in education, how-
ever, is chiefly related to a book, “Structure and Interpretation of Computer Programs”
(SICP) (Abelson, Sussman, and Sussman, 1996), which had a tremendous impact on the
practice of programming education. The book derived from a semester course taught
at MIT. It has the peculiarity to present programming as a way of organizing thinking
and problem solving. Every detail of the Scheme notional machine is worked out in the
book: at the end, the reader should be able to understand the mechanics of a Scheme
interpreter and to program one by herself (in Scheme). The book, which enjoyed wide-
spread adoption, was originally directed to MIT undergraduates and it is certainly not

M. Lodi et al.112

suitable either for children or even adults without a scientific background: examples are
often taken from college-level mathematics and physics.

A spin-off of SICP explicitly directed to learning is Racket. Born as ‘PLT Scheme’,
one of its strength is the programming environment DrScheme (Findler et al., 2002)
(now DrRacket): it supports educational scaffolding, it suggests proper documentation,
and it can use different flavours of the language, starting from a very basic one (Be-
ginning Student Language, it includes only notation for function definitions, function
applications, and conditional expressions) to multi-paradigm dialects. The DrRacket ap-
proach is supported by an online book “How to design programs” (HTDP) 6 and it has
been adapted to other mainstream languages, like Java (Allen, Cartwright, and Stoler,
2002) and Python. The availability of different languages directed to the progression of
learning should help in overcoming what the DrRacket proponents identify as “the cru-
cial problem” in the interaction between the learner and the programming environment:
beginners make mistakes before they know much of the language, but development tools
yet diagnose these errors as if the programmer already knew the whole notional machine.
Moreover, DrRacket has a minimal interface aimed at not confusing novices, with just
two simple interactive panes: a definitions area, and an interactions area, which allows
a programmer to ask for the evaluation of expressions that may refer to the definitions.
Similarly to what happens in visual languages, Racket allows for direct manipulation of
sprites, see an example in Fig. 6.

The authors of HTDP claim that “program design – but not programming – deserves
the same role in a liberal arts education as mathematics and language skills.” They aim
at systematically designed programs thanks to systematic thought, planning, and under-
standing from the very beginning, at every stage, and for every step. To this end, the
HTDP approach is to present “design recipes”, supported by predefined scaffolding that
should be iteratively refined to match the problem at hand. This is indeed very close to
the idea of micropatterns discussed above.

6 Current version: http://www.htdp.org/2018-01-06/Book/index.html

Fig. 6. Racket code for “landing a rocket”.

Constructionist attempts at supporting the learning of computer programming: ... 113

Scratch, Snap!, Alice, and others

EToys worlds with pre-defined – although programmable – objects, evolved in a ge-
neric environment in which everything can be defined in terms of ‘statement’ blocks.
Scratch (Resnick et al., 2009), originally written in Smalltalk, is the most popular and
successful visual block-based programming environment. Launched in 2007 by the MIT
Media Lab, the Scratch site has grown to more than 25 million registered members with
over 29 million Scratch projects shared programs.

Unlike traditional programming languages, here graphical programming blocks
are used that automatically snap together like Lego bricks when they make syntactical
sense (Ford, 2009). In visual programming languages, a block represents a command or
action and they are arranged in scripts. The composition of individual scripts equals the
construction of an algorithm. The building blocks offer the possibility, e.g., to animate
different objects on a stage, thus defining their behavior.

The Scratch environment has some distinctive characteristics, according to its au-
thors (Maloney et al., 2010). Among the ones the authors highlight, some are particu-
larly relevant in the constructionist approach:

Liveness
The code is constantly running and can be changed on the fly, immediately seeing the
runtime effects of the change; this encourages users to tinker with the code.

No error messages
When you play with Lego bricks, they stack together or they don’t – the same happens
in Scratch; program always run: syntax errors are prevented from the block shapes
and connections, and also runtime errors are avoided by doing something “reason-
able” (e.g., in the case of an out-of-range value); this is particularly important not to
frustrate kids and to keep them iterating and developing: “A program that runs, even if
it is not correct, feels closer to working than a program that does not run (or compile)
at all” (Maloney et al., 2010).

Other characteristics are useful to help novices avoiding misconceptions that often
arise when starting to learn to program.

Execution made visible
A glowing yellow border surrounds running scripts (in some versions each block is
highlighted when it is executed); this is very helpful in program reading and debug-
ging, and helps students form a correct mental model of the notional machine underly-
ing the program execution.

Making data concrete
You can see in a variable box, automatically shown, its current value: again, this is
helpful for making the underlying machine model visible.

M. Lodi et al.114

Finally, other characteristics introduce important software engineering and develop-
ment concepts.

Open source
Each shared project has a “see inside” button that brings you to the project source; you
can read and edit the blocks to see what happens.

Remixing
If you edit someone else’s project, you create a remix: you are the author, but the
system automatically gives credits to the original author (at any depth, keeping track
of multiple remixes in a tree) and suggests you to explicitly declare what changes you
made.

The main limitation of Scratch programs is that they do not scale well from the
abstraction point of view: only since version 2 you can “make a new block” that is, a
procedure with optional parameters. These blocks have no possibility to return a value
(like a number or a boolean) and so can’t be nested inside other blocks, forcing you to
modify global variables if needed.

Snap!7 (originally BYOB, Build Your Own Blocks) is an extended reimplementation
of Scratch with functions and continuations. These added capabilities make it suitable
for a serious introduction to computer science for high school or college students: in fact,
Snap! is used as the basis for an Advanced Placement CS course at Berkeley8.

The Scratch approach was also ported to mainstream programming languages: in
Alice (Dann, Cooper, and Pausch, 2008) visual blocks are in fact Java instructions. Alice
worlds are 3D: this choice makes it very attractive and appealing to pupils (Rodger et al.,
2009), who can program amazing 3D animations. It also adds many complexities, since
moving objects in a 3D space is not trivial.

Recently, these environments evolved towards web or phone/tablet versions, in order
to be available in the contexts more popular within young people. For example, Pocket

7 https://snap.berkeley.edu/
8 https://bjc.berkeley.edu/

Fig. 7. Students design a program to be run with Pocket Code.

Constructionist attempts at supporting the learning of computer programming: ... 115

Code9 allows the creation of games, stories, animations, and many types of other apps
directly on phones or tablets, thereby teaching fundamental programming skills (Slany,
2014). In some cases block and textual programming languages are interchangeable.
In many cases these environments can connect to physical devices and sensors, with the
goal of increasing the constructionist appeal of block programming, and opening to the
world of “tinkering” with electronics.

All in all, visual programming languages seem to provide an easier start and a more
engaging experience for learners. The ease of use, simplicity, and desirability of new
visual programming environments enables young people to imagine complex goals. A
study which compared three classes that used either block-based (Scratch), text-based
(Java), or hybrid blocks/text (Snap!/JavaScript) programming languages showed that
students generally found block-based programming to be easier than the text-based en-
vironments (Weintrop and Wilensky, 2015). Some researchers, however, argue that stu-
dents are not fully convinced that a visual language can help them learn other program-
ming languages (Lewis et al., 2014).

Common Features

The above short survey of programming languages for education shows they have some
recurrent traits that link them to the themes discussed in the section “What does it mean
to learn programming.”

Personification
The interpreter becomes a “persona”, computation is then carried out through anthro-
pomorphic (or, better, zoomorphic, since animals are very common) actions. This
seems to contradict a famous piece of advice coming from no less than E. W. Dijk-
stra (Dijkstra, 1985). Speaking of anthropomorphism in computer science, he noted:
“The trouble with the metaphor is, firstly, that it invites you to identify yourself with
the computational processes going on in system components and, secondly, that we
see ourselves as existing in time. Consequently, the use of the metaphor forces one to
what we call ‘operational reasoning’, that is reasoning in terms of the computational
processes that could take place. From a methodological point of view, this is a well-
identified and well-documented mistake: it induces a combinatorial explosion of the
number of cases to consider and designs thus conceived are as a result full of bugs.”
The reasoning in terms of the computational processes, however, is what is probably
needed for a novice in order to familiarize with the notional machine.

Visualization and tracking
Computational processes that evolve in time are described by static texts: the mapping
between the two is not trivial and it requires an understanding of the notional machine.
Educational programming environments often try to make the mapping more explicit

9 https://catrobat.org

M. Lodi et al.116

with some visualization of the ongoing process: the trace left by the LOGO turtle, or
some other exposition of the changing state of the interpreter.

Appeal
Engagement of learners is crucial: to this end, it is important to give learners powerful
libraries and building blocks. It is not clear, however, how to properly balance amaz-
ing effects in order to avoid they become a major distraction: sometimes children may
spend their (limited) time in changing the colors of the sprites, instead of trying to
solve problems.

Learning to Program in Teams

Constructivist approaches often emphasize the importance of social context in which the
learning happens (see e.g. (Vygotsky, 1978)).

Working in developers teams requires new skills, especially because software prod-
ucts (even the ones in the reach of novices) are often tangled with many dependencies
and division of labour is hard: it inevitably requires appropriate communication and
coordination. Therefore, it is important that novice programmers learn to program in an
“organized” way, discovering that as a group they are able to solve more challenging and
open-ended problems, maybe with interdisciplinary contributions.

To this end, agile methodologies fit well with constructivist pedagogies involving learn-
ing in teams, and they are increasingly exploited in educational settings (see for example
(Kastl, Kiesmüller, and Romeike, 2016; Missiroli, Russo, and Ciancarini, 2016)).

Agile teams are typically small groups of 4–8 co-workers. ●
Agile values (Beck ● et al., 2001) (individuals and interactions over processes and
tools; customer collaboration over contract negotiation; responding to change over
following a plan; working software over comprehensive documentation) relate
well with constructivist philosophies.
Agile teams are self-organizing, emphasize the need for reflecting regularly on how ●
to become more effective, and tune and adjust their behavior accordingly.
Agile techniques like pair programming, test driven development, iterative software ●
development, continuous integration are very attractive for a learning context.

The iterative nature of agile methods is well exemplified by test-driven development,
or TDD (Beck, 2003). This technique reverses the order between code implementation
and correctness test. Namely, the specification of the programming task at hand is actu-
ally provided with a test the defines correct behavior. The development cycle is then
based on the iteration of the following procedure:

write a test known to fail according to the current stage of the implementation;i.
perform the smallest code update which satisfies all tests, including the one intro-ii.
duced in the previous point;
optionally refactor the produced code.iii.

Constructionist attempts at supporting the learning of computer programming: ... 117

TDD makes testing the engine driving the overall development process: one of the
hardest-to-find contributions for facilitators in an active programming learning context
is suggesting a good next test. This has the role of letting pupils aware that their belief
at a broad level (“the program works”) is false, thus an analogous belief at a smaller
scale (for instance, “this function always returns the correct result”) should be false, too.
This amounts to the destruction of knowledge necessary to build new knowledge (aka
a working program) in a constructivist setting. Moreover, refactoring corresponds to
the constructivist re-organization of knowledge following the discovery of more viable
solutions: most of the developing activities consist in realizing that a system which was
thought to correctly work is actually not able to cope with a new test case. This applies
of course also to the simplest tasks faced by students engaged in learning the basics of
computer programming.

Once pupils are convinced that their implementation is flawed, the localization of
the code lines to be reconsidered is the other pillar of an active learning setting. Again,
a paramount contribution for a successful learning process should be provided by a fa-
cilitator suggesting suitable debugging techniques (e.g., proposing critical input values,
suggesting points in the execution flow to be verified, or giving advice about variables
to be tracked during the next run).

Conclusions

The literature on learning to program through a constructionist strategy has often fo-
cused on how to bring the abstract and formal nature of programming languages into
the manipulation of more concrete (or even tangible) “objects” (Kay et al., 1997; Horn
and Jacob, 2007; Dann, Cooper, and Pausch, 2008; Resnick et al., 2009; Hauswirth,
Adamoli, and Azadmanesh, 2017). Many proposals aim at overcoming the (initial)
hurdles which textual rules of syntax may pose to children. Also, several environments
have been designed in order to increase the appeal of programming by connecting this
activity to real-world devices or providing fancy libraries. Instead, more work is prob-
ably needed to make educators and learners more aware of the so-called notional ma-
chine behind the programming language. Programming environments could be more
explicit about the complex relationship between the code one writes and the actions
that take place when the program is executed. Moreover, micro-patterns should be
exploited in order to enhance problem solving skills of novice programmers, such that
they become able to think about the solution of problems in the typical way that make
the former suitable to automatic elaboration. Agile methodologies, now also common
in professional settings, seem to fit well with constructionist learning. Besides the
stress on teamworking, particularly useful seems the agile emphasis on having run-
ning artifacts through all the development cycle and the common practice of driving
development with explicit or even executable “definitions of done”.

M. Lodi et al.118

References

Abelson, H., DiSessa, A.A. (1986). Turtle Geometry: The Computer as a Medium for Exploring Mathematics.
Artificial Intelligence Series. AAAI Press.

Abelson H., Dybvig R.K., Haynes C.T., Rozas G.J., Adams N.I., Friedman D.P., Kohlbecker, E. et al., (1998).
Revised report on the algorithmic language scheme. Higher-Order and Symbolic Computation, 11(1),
7–105. https://doi.org/10.1023/A:1010051815785

Abelson, H., Sussman, G.J., Sussman, J. (1996). Structure and Interpretation of Computer Programs. Second.
MIT press.

Allen, E., Cartwright, R., Stoler, R. (2002). DrJava: A lightweight pedagogic environment for Java. SIGCSE
Bull., 34(1), 137–41. https://doi.org/10.1145/563517.563395

Astrachan, O., Wallingford, E. (1998). Loop patterns. In: Proceedings of the Fifth Pattern Languages of Pro-
grams Conference.

Beck, K. (2003). Test-Driven Development: By Example. Addison-Wesley Professional.
Beck, K., Andres, C. (2004). Extreme Programming Explained: Embrace Change. Second. Addison-Wesley

Professional.
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowle,r M., Grenning, J. et al. (2001).

Manifesto for Agile Software Development. http://agilemanifesto.org/iso/en/manifesto.html
Bell, T., Rosamond, F., Casey, N. (2012). Computer science unplugged and related projects in math and com-

puter science popularization. In: Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx
(ads.), The Multivariate Algorithmic Revolution and Beyond. Berlin, Heidelberg: Springer-Verlag, 398–456.
http://dl.acm.org/citation.cfm?id=2344236.2344256

Bell, T., Vahrenhold, J. (2018). CS unplugged – how is it used, and does it work?. In: Böckenhauer, H.J., Komm,
D., Unger, W. (Eds), Adventures Between Lower Bounds and Higher Altitudes. Lecture Notes in Computer
Science, vol 11011. Springer, Cham.

Bell, T., Lodi, M. (to appear). Constructing computational thinking without using computers. Constructivist
Foundations.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M. (2012). Exploring the processing
of formatted texts by a kynesthetic approach. In: Proc. of the 7th Wipsce. WiPSCE ’12. New York, NY, USA:
ACM, 143–44. https://doi.org/http://dx.doi.org/10.1145/2481449.2481484

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M. (2013). What you see is what
you have in mind: constructing mental models for formatted text processing. In: Proceedings of ISSEP2013.
Commentarii Informaticae Didacticae 6. Universitätsverlag Potsdam, 139–47.
http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M., Zecca, L. (2014). Extracur-
ricular activities for improving the perception of informatics in secondary schools. In: Yasemin Gülbahar
and Erin c Karata s (eds.), Proceedings of ISSEP2014. Lecture Notes in Computer Science, 8730. Springer,
161–72. https://doi.org/http://dx.doi.org/10.1007/978-3-319-09958-3_15

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and
Science Teaching, 20(1), 45–73.

Ben-Ari, M., Sajaniemi, J. (2004). Roles of variables as seen by Cs educators. ACM Sigcse Bulletin, 36(3),
52–56.

Berg, J., (1999). Patterns for selection. In: Proceedings of the 4th European Conference on Pattern Languages
of Programs (EuroPLoP ‘1999). 305–326.

Berry, M., Kölling, M. (2014). The state of play: A notional machine for learning programming. In: Proceed-
ings of the 2014 Conference on Innovation & Technology in Computer Science Education. ITiCSE ’14. New
York, NY, USA: ACM, 21–26. https://doi.org/10.1145/2591708.2591721

Brin, D. (2016). Why Johnny Can’t Code. https://www.salon.com/2006/09/14/basic_2/
Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In: Sally Fincher and

Marian Petre (eds.), Computer Science Education Research. Routledge, 85–100.
Dann, W.P., Cooper, S., Pausch, R. (2008). Learning to Program with Alice. Prentice Hall Press.
Dijkstra, E.W. (1985). On Anthropomorphism in Science. EWD936.

https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research,
2(1), 57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Constructionist attempts at supporting the learning of computer programming: ... 119

Feurzeig, W., Papert, S., Bloom, M., Grant, R., Solomon, C. (1970). Programming-languages as a conceptual
framework for teaching mathematics. SIGCUE Outlook, 4(2), 13–17.
http://dx.doi.org/10.1145/965754.965757

Findler, R.B., Bruce, R., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., Felleisen, M.
(2002). DrScheme: A programming environment for scheme. Journal of Functional Programming, 12(2),
159–82.

Ford, J.L. (2009). Scratch programming for Teens. In: Computer Science Books.
Goldberg, A., Kay, A. (1976). Smalltalk-72 Instruction Manual. Xerox.
Goode, J., Chapman, G., Margolis, J. (2012). Beyond curriculum: the exploring computer science program.

Magazine ACM Inroads.
Hauswirth, M., Adamoli, A., Azadmanesh, M.R. (2017). The program is the system: introduction to program-

ming without abstraction. In: Proceedings of the 17th Koli Calling International Conference on Computing
Education Research. Koli Calling’17.

Horn, M.S., Jacob, R.J.K. (2007). Designing tangible programming languages for classroom use. In: Proceed-
ings of the 1st International Conference on Tangible and Embedded Interaction. TEI ’07. New York, NY,
USA: ACM, 159–62. https://doi.org/10.1145/1226969.1227003

Kahn, K. (2017). A half-century perspective on Computational Thinking. In: Technologias, Sociedade E Con-
hecimento.

Kastl, P., Kiesmüller, U., Romeike, R. (2016.) Starting out with projects: experiences with agile software devel-
opment in high schools. In: Proceedings of the 11th Workshop in Primary and Secondary Computing Educa-
tion. WiPSCE ’16. New York, NY, USA: ACM, 60–65. https://doi.org/10.1145/2978249.2978257

Kay, A.C. (1993). The early history of smalltalk. SIGPLAN Not, 28(3), 69–95.
https://doi.org/10.1145/155360.155364

Kay, A., Rose, K., Ingalls, D., Kaehle, T., Maloney, J., Wallace, S. (1997). Etoys & SimStories. Walt Disney
Imagineering.

Kurtz, T.E. (1978). BASIC. SIGPLAN Not, 13(8), 103–18. https://doi.org/10.1145/960118.808376
Colleen, L., Esper, E., Bhattacharyya, V., Fa-Kaji, N., Dominguez, N., Schlesinger, A. (2014). Children’s per-

ceptions of what counts as a programming language. In: Journal of Computing Sciences in Colleges.
Lonati, V., Monga, M., Morpurgo, A., Torelli, M. (2011). What’s the fun in Informatics? Working to Capture

children and teachers into the pleasure of computing. In: I. Kala and R.T. Mittermeir (eds.). In: Proceedings
of Issep2011, Lecture Notes in Computer Science, 7013. Springer-Verlag, 213–24. https://doi.org/
http://dx.doi.org/10.1007/978-3-642-24722-4_19

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The Scratch programming language and en-
vironment. Trans. Comput. Educ., 10(4), 16:1–16:15. https://doi.org/10.1145/1868358.1868363

Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. (2010). Learning computer science concepts with scratch. In:
Proceedings of the Sixth International Workshop on Computing Education Research. 69–76.

Missiroli, M., Russo, D., Ciancarini, P. (2016). Learning agile software development in high school: An inves-
tigation. In: Proceedings of the 38th International Conference on Software Engineering Companion, ICSE
’16. New York, NY, USA: ACM, 293–302. https://doi.org/10.1145/2889160.2889180

Piaget, J. (1973). To Understand is to Invent: The Future of Education. Penguin Books.
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA: Basic Books,

Inc.
Proulx, V.K. (2000). Programming patterns and design patterns in the introductory computer science course.

ACM Sigcse Bulletin, 32(1), 80–84.
Qian, Y., Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: a

literature review. ACM Trans. Comput. Educ., 18(1), 1:1–1:24. https://doi.org/10.1145/3077618
Resnick, M. (1996). Distributed constructionism. In: Proceedings of the 1996 International Conference on

Learning Sciences, ICLS ’96. Evanston, Illinois: International Society of the Learning Sciences, 280–84.
http://dl.acm.org/citation.cfm?id=1161135.1161173

Resnick. M. (2007). All I Really Need to Know (About Creative Thinking) I Learned (by Studying How Chil-
dren Learn) in Kindergarten. In: Proceedings of the 6th Acm Sigchi Conference on Creativity &Amp; Cogni-
tion, C&C ’07. New York, NY, USA: ACM, 1–6. https://doi.org/10.1145/1254960.1254961

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, and Play.
MIT Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A. et al.
(2009). Scratch: programming for all. Commun. ACM, 52(11), 60–67.
https://doi.org/10.1145/1592761.1592779

M. Lodi et al.120

Rodger, S., Hayes, J., Lezin, G, Qin, H., Nelson, D., Tucker, R., Lopez, M., Cooper, S., Dann, W., Slater, D.
(2009). Engaging middle school teachers and students with alice in a diverse set of subjects. SIGCSE Bull.,
41(1), 271–275. https://doi.org/10.1145/1539024.1508967

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. In: Hu-
man Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002 Symposia on. IEEE,
37–39.

Sirkiä, T. (2012). Recognizing Programming Misconceptions: An Analysis of the Data Collected from the
Uuhistle Program Simulation Tool. Master’s thesis, Department of Computer Science; Engineering, Aalto
University.

Slany, W. (2014). Tinkering with Pocket Code, a Scratch-like programming app for your smartphone. In: Pro-
ceedings of Constructionism 2014.

Sorva, J. (2013). Notional machines and introductory programming education. Trans. Comput. Educ., 13(2),
8:1–8:31. https://doi.org/10.1145/2483710.2483713

Taub, R., Armoni, M., Ben-Ari, M. (2012). CS unplugged and middle-school students’ views, attitudes, and
intentions regarding CS. TOCE, 12(2), 8. https://doi.org/10.1145/2160547.2160551

Tumlin, N. (2017). Teacher configurable coding challenges for block languages. In: Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education.

Vygotsky, L. (1978). Mind in Society. London: Harvard University Press.
Weintrop, D., Uri, W. (2015). To block or not to block, that is the question: students’ perceptions of blocks-

based programming. In: IDC ’15 Proceedings of the 14th International Conference on Interaction Design
and Children.

Wirth, N. (1993). Recollections about the development of Pascal. SIGPLAN Not., 28(3), 333–42.
https://doi.org/10.1145/155360.155378

M. Lodi is a PhD student in Computer Science, Department of Com-
puter Science and Engineering, University of Bologna, Italy. He
also received Bs, Ms and High school teaching licence in CS from
the same University. He works on computer science education, with
a particular focus on teacher training about computational thinking
and epistemological aspects of Computer Science as a discipline. In
particular, he studies “Computer Science Growth Mindset”. He pub-
lished some papers in international conferences on computer sci-
ence education, and a book in Italian for primary school teachers.
He is actively involved in nation-wide initiatives to introduce CS in
Italian K-12 curriculum. https://lodi.ml

Constructionist attempts at supporting the learning of computer programming: ... 121

D. Malchiodi (http://malchiodi.di.unimi.it) is an Associate
Professor at Università degli Studi di Milano (Department of Comput-
er Science), where he teaches “Statistics and data analysis” and “Big
scale analytics”. His research activities are focused on the one hand
on the treatment of uncertainty in machine learning problems, and
on the other one on the development of teaching methodologies for
primary and secondary education. He published around one hundred
papers and he participated in the activities of ten research projects and
research groups, at national and international level. He is co-founder
of the ALaDDIn working group (http://aladdin.unimi.it), in-
volved in several activities focused on the popularization of computer
science, including the training of secondary school teachers and a ra-
dio broadcast on informatics culture.

M. Monga is an Associate Professor at Università degli Studi di Milano
(Department of Computer Science). His research interests are mainly in
the field of software engineering, system security, and computer science
education. Since he believes it is urgent to change the common mis-
conception of informatics as the mere use of information technologies,
he founded together with Carlo Bellettini, Violetta Lonati, Dario Mal-
chiodi, and Anna Morpurgo a group working to spread informatics as
a science among the general public (https://aladdin.unimi.it/).
Moreover, he is the National Bebras Organizer for Italy.

A. Morpurgo is Assistant Professor at the CS Department, Università
degli Studi di Milano, Italy. Her current research interests are mainly
in CS education. She is actively involved in nation-wide initiatives to
introduce CS in the Italian K-12 curriculum and is co-founder of the
ALaDDIn group (http://aladdin.unimi.it), working on the pop-
ularization of informatics as a science in school and among the public.
She is involved in the training of secondary school teachers and is part
of the team organizing the Bebras challenge in Italy.

B. Spieler has a PhD in Engineering Sciences. She is a University
Assistant at Graz University of Technology, Department for Software
Technology. Her work is focused on how to encourage female teen-
agers with playful coding activities with the Pocket Code app or in
“Girls Coding Weeks”. Moreover, her recent work is related to gen-
der, game based/mobile learning and constructionist gaming. Through
the nonprofit university project Catrobat (https://catrobat.org),
Mrs. Spieler promotes computational thinking skills in a fun and en-
gaging way among children, teenagers and teachers on a worldwide
scale. https://bernadette-spieler.com

