

Jet grooming through reinforcement learning

Stefano Carrazza
TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Milan,

Via Celoria 16, 20133 Milano, Italy

Frédéric A. Dreyer
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory,

Parks Road, Oxford OX1 3PU, United Kingdom

(Received 29 March 2019; published 15 July 2019)

We introduce a novel implementation of a reinforcement learning (RL) algorithm which is designed to
find an optimal jet grooming strategy, a critical tool for collider experiments. The RL agent is trained with a
reward function constructed to optimize the resulting jet properties, using both signal and background
samples in a simultaneous multilevel training. We show that the grooming algorithm derived from the deep
RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in improved
mass resolution for boosted objects. Given a suitable reward function, the agent learns how to train a policy
which optimally removes soft wide-angle radiation, allowing for a modular grooming technique that
can be applied in a wide range of contexts. These results are accessible through the corresponding
GROOMRL framework.

DOI: 10.1103/PhysRevD.100.014014

I. INTRODUCTION

Jets are one of the most common objects appearing in
proton-proton colliders such as the Large Hadron Collider
(LHC) at CERN. They are defined as collimated bunches of
high-energy particles, which emerge from the interactions
of quarks and gluons, the fundamental constituents of the
proton [1,2]. In modern analyses, final-state particle
momenta are mapped to jet momenta using a sequential
recombination algorithm with a single free parameter, the
jet radius R, which defines up to which angle particles can
get recombined into a given jet [3–5].
An example of an LHC collision resulting in two jets is

shown in Fig. 1, where the towers correspond to energy
deposits in the calorimeter. The right-hand side gives a
schematic visualization of two different representations of
jets, either as an image where the pixel intensity encodes
the energy flow in that phase-space region [6] or as a tree
defined by the recombination sequence of the jet algorithm.
Due to the very high energies of its collisions, the LHC

is routinely producing heavy particles, such as top quarks
and vector bosons, with transverse momenta far greater
than their rest mass. When these objects are sufficiently

energetic (or boosted), they can often generate very
collimated decays, which are then reconstructed as a single
fat jet. These fat jets originating from boosted objects can
be distinguished from standard quark and gluon jets by
studying differences in their radiation patterns. Since the
advent of the LHC program, the physics of the substructure
of jets has matured into a remarkably active field of
research that has become notably conducive to applications
of recent machine learning techniques [7–27].
A particularly useful set of tools for experimental

analyses are jet grooming algorithms [28–33], defined as
a postprocessing treatment of jets to remove soft wide-
angle radiation which is not associated with the underlying
hard substructure. Grooming techniques play a crucial role
in Standard Model measurements [34,35] and in improving
the boson- and top-tagging efficiencies at the LHC.
In this article we introduce a novel framework, which

we call GROOMRL, to train a grooming algorithm using
reinforcement learning (RL) [36,37]. To this end, we
decompose the problem of jet grooming into successive
steps for which a reward function can be designed taking
into account the physical features that characterize such a
system. We then use a modified implementation of a Deep
Q-Network (DQN) agent [36,38] and train a dense neural
network (NN) to optimally remove radiation unassociated
from the core of the jet. The trained model can then be
applied on other datasets, showing improved resolution
compared to state-of-the-art techniques as well as a strong
resilience to nonperturbative effects.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 014014 (2019)

2470-0010=2019=100(1)=014014(10) 014014-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/222579686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.014014&domain=pdf&date_stamp=2019-07-15
https://doi.org/10.1103/PhysRevD.100.014014
https://doi.org/10.1103/PhysRevD.100.014014
https://doi.org/10.1103/PhysRevD.100.014014
https://doi.org/10.1103/PhysRevD.100.014014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

II. JET REPRESENTATION

Let us start by introducing the representation we use
for jets. We take the particle constituents of a jet, as defined
by any modern algorithm, and recombine them using a
Cambridge/Aachen (CA) sequential clustering algorithm
[4,39]. The CA algorithm does a pairwise recombination,
adding together the momenta of the two particles with the
closest distance as defined by the measure

Δ2
ij ¼ ðyi − yjÞ2 þ ðϕi − ϕjÞ2; ð1Þ

where yi is the rapidity, a measure of relativistic velocity
along the beam axis, and ϕi is the azimuthal angle of
particle i around the same axis. This clustering sequence is
then used to recast the jet as a full binary tree, where each of
the nodes contains information about the kinematic proper-
ties of the two parent particles. For each node i of the tree
we define an object T ðiÞ containing the current observable
state st, as well as a pointer to the two children nodes and
one to the parent node. The children nodes a and b are
ordered in transverse momentum such that pt;a > pt;b, and
we label a the “harder” child and b the “softer” one. The set
of possible states is defined by a five-dimensional box, such
that the state of the node is a tuple

st ¼ fz;Δab;ψ ; m; ktg; ð2Þ

where z ¼ pt;b=ðpt;a þ pt;bÞ is the momentum fraction of
the softer child b, ψ ¼ tan−1ðyb−yaϕa−ϕb

Þ is the azimuthal angle
around the i axis, m is the mass, and kt ¼ pt;bΔab is the
transverse momentum of b relative to a.

A. Grooming algorithm

A grooming algorithm acting on a jet tree can be defined
by a simple recursive procedure which follows each of the
branches and uses a policy πgðstÞ to decide based on the
values of the current tuple st whether to remove the softer
of the two branches. This is shown in Algorithm 1, where
the minus sign is understood to mean the update of
the kinematics of a node after removal of a soft branch.

The grooming policy πgðstÞ returns an action at ∈ f0; 1g,
with at ¼ 1 corresponding to the removal of a branch and
at ¼ 0 leaving the node unchanged. The state st is used to
evaluate the current action valuesQ�ðs; aÞ for each possible
action, which in turn are used to determine the best action at
this step through a greedy policy.
An example of the action of a grooming algorithm on a

tree is shown in Fig. 2, where the groomed branches are
indicated in red. The tree nodes whose kinematics have
been modified by the removal of a branch are indicated
with a prime.
It is easy to translate modern grooming algorithms in this

language. For example, recursive soft drop (RSD) [33]
corresponds to a policy

πRSDðstÞ ¼
(
0 if z > zcut

�
Δab
R0

�
β
;

1 else;
ð3Þ

where zcut, β and R0 are the parameters of the algorithm and
1 corresponds as before to the action of removing the tree
branch with smaller transverse momentum.

FIG. 2. Example of grooming on the binary tree representation
of a jet with the resulting tree after applying Algorithm 1 shown
on the right. Groomed branches are indicated in red, and the
corresponding nodes have been removed on the right-hand side.

Algorithm 1. Grooming.

Input: policy πg, binary tree node T ðiÞ
at ¼ πgðT ðiÞ → stÞ
if at ¼ 1 then

T ðjÞ ¼ T ðiÞ
while T ðjÞ ¼ ðT ðjÞ → parentÞ do
T ðjÞ → st ¼ ðT ðjÞ → stÞ − ðT ðiÞ → b → stÞ

end while
T ðiÞ ¼ ðT ðiÞ → aÞ
Groomingðπg; T ðiÞÞ

else
Groomingðπg; T ðiÞ → aÞ
Groomingðπg; T ðiÞ → bÞ

end if

FIG. 1. Jets emerging from a proton-proton collision at the
LHC and their representation as images in rapidity-azimuth (y;ϕ)
space or as clustering trees.

STEFANO CARRAZZA and FRÉDÉRIC A. DREYER PHYS. REV. D 100, 014014 (2019)

014014-2

III. SETTING UP A GROOMING ENVIRONMENT

In order to find an optimal grooming policy πg, we
introduce an environment and a reward function, formulat-
ing the problem in a way that can be solved using a RL
algorithm.
We initialize a list of all trees used for the training, from

which a tree is randomly selected at the beginning of each
episode. We then start by adding the root of the current tree
to an empty priority queue, which orders the nodes it
contains according to their Δab value.1

Each step consists in removing the first node from the
priority queue and taking an action on which of its branches
to keep based on the state st of that node. Once a decision
has been taken on the removal of the softer branch, and the
parent nodes have been updated accordingly, the remaining
children of the node are added to the priority queue. The
reward function is then evaluated using the current state
of the tree. The episode terminates once the priority queue
is empty.
The framework described here deviates from usual RL

implementations in that the range of possible states for any
episode are fixed at the start. The transition probability
between states Pðstþ1jst; atÞ therefore does not necessarily
depend very strongly on the action, although a grooming
action can result in the removal of some of the future states
and will therefore still have an effect on the distribution.
For our implementation, we have relied on the GYM

v0.12.1 [40] and KERAS-RL v0.4.2 [41] libraries for the
reinforcement learning component, while the neural net-
work is set up using KERAS v2.2.4 [42] with TENSORFLOW
v1.13.1 [43] as the back end.

A. Finding optimal hyperparameters

The optimal choice of hyperparameters, both for the
model architecture and for the grooming parameters, is
determined using the distributed asynchronous hyperpara-
meter optimization library HYPEROPT [44].
The performance of an agent is evaluated by defining a

loss function, which is evaluated on a distinct validation set
consisting of 50 000 signal and background jets. For each
sample, we evaluate the jet mass after grooming of each jet
and derive the corresponding distribution. To calculate
the loss function L, we start by determining a window
ðwmin; wmaxÞ containing a fraction f ¼ 0.6 of the final jet
masses of the groomed signal distribution, defining wmed as
the median value on that interval. The loss function is then
defined as

L ¼ 1

5
jwmax − wminj þ jmtarget − wmedj þ 20fbkg; ð4Þ

where fbkg is the fraction of the groomed background
sample contained in the same interval and mtarget is a
reference value for the signal.
We scan hyperparameters using 1000 iterations and

select the ones for which the loss L evaluated on the
validation set is minimal. In practice we will do three
different scans: to determine the best parameters of the
reward function, to find an optimal grooming environment,
and to determine the architecture of the DQN agent. The
scan is performed by requiring HYPEROPT to use a uniform
search space for continuous parameters, a log-uniform
search space for the learning rate and a binary choice
for all integer or boolean parameters. The optimization used
in all the results presented in this work rely on the tree-
structured Parzen estimator algorithm.

B. Defining a reward function

One of the key ingredients for the optimization of the
grooming policy is the reward function used at each step
during the training. We consider a reward with two compo-
nents: a first piece evaluated on the full tree and another that
considers only the kinematics of the current node.
The first component of the reward compares the mass of

the current jet to a set target mass, typically the mass of the
underlying boosted object. We implement this mass reward
using a Cauchy distribution, which has two free parameters,
the target mass mtarget and a width Γ, so that

RMðmÞ ¼ Γ2

πðjm −mtargetj2 þ Γ2Þ : ð5Þ

Separately, we calculate a reward on the current node which
gives a positive reward for the removal of wide-angle
soft radiation, as well as for leaving intact hard-collinear
emissions. This provides a baseline behavior for the
groomer. We label this reward component “soft drop”
due to its similarity with the soft-drop condition [32]
and implement it through exponential distributions

RSDðat;Δ; zÞ ¼ atminð1; e−α1 lnð1=ΔÞþβ1 lnðz1=zÞÞ
þ ð1− atÞmaxð0;1− e−α2 lnð1=ΔÞþβ2 lnðz2=zÞÞ;

ð6Þ

where at ¼ 0, 1 is the action taken by the policy and αi, βi,
and zi are free parameters. The two terms determining RSD
are shown in the lower panel of Fig. 3, using parameter
values determined through asynchronous hyperparameter
optimization, shown in the upper row of the figure.
The total reward function is then given by

Rðm; at;Δ; zÞ ¼ RMðmÞ þ 1

NSD
RSDðat;Δ; zÞ: ð7Þ

1This is not strictly necessary for a fully recursive algorithm
but allows for easier extensions to fixed depth algorithms such as
the modified mass drop tagger [31] and soft drop [32].

JET GROOMING THROUGH REINFORCEMENT LEARNING PHYS. REV. D 100, 014014 (2019)

014014-3

Here NSD is a normalization factor determining the weight
given to the second component of the reward.

C. RL implementation and multilevel training

For the applications in this article, we have imple-
mented a DQN agent that contains a groomer module,
which is defined by the underlying NN model and the
test policy used by the agent. The groomer can be
extracted after the model has been trained, using a
greedy policy to select the best action based on the Q
values predicted by the NN. This allows for straightfor-
ward application of the resulting grooming strategy on
new samples.
The training sample consists of 500 000 signal and

background jets simulated using PYTHIA 8.223 [45]. We
will construct two separate models by considering two
signal samples, one with boosted W jets and one with
boosted top jets, while the background always consists of
QCD jets. We use the WW and tt̄ processes, with hadroni-
cally decayingW and top, to create the signal samples, and
the dijet process for the background. Jets are clustered
using the anti-kt algorithm [5,46] with radius R ¼ 1.0 and
are required to pass a selection cut, with transverse
momentum pt > 500 GeV and rapidity jyj < 2.5. The
grooming environment is initialized by reading in the
training data and creating an event array containing
the corresponding jet trees.
To train the RL agent, we use a multilevel approach

taking into account both signal and background samples.

At the beginning of each episode, we select either a signal
jet or a background jet, with probability 1 − pbkg. For signal
jets, the reward function uses a reference mass set to the
W-boson mass, mtarget ¼ mW , or to the top mass,
mtarget ¼ mt, depending on the choice of sample. In the
case of the background the mass reward function in Eq. (7)
is changed to

Rbkg
M ðmÞ ¼ m

Γbkg
exp

�
−

m
Γbkg

�
: ð8Þ

The width parameters Γ and Γbkg are also set to different
values for signal and background reward functions and are
determined through a hyperparameter scan.
We found that while this multilevel training only margin-

ally improves the performance, it noticeably reduces the
variability of the model.

D. Determining the RL agent

The DQN agent uses an Adam optimizer [47], and the
training is performed with a Boltzmann policy, which
chooses an action according to weighted probabilities,
with the current best action being the likeliest.
Let us now determine the remaining parameters of the

DQN agent. To this end, we perform two independent
scans, for the grooming environment and for the network
architecture.
The grooming environment has several options, which

are shown in Fig. 4. Here the distribution of loss values
for discrete options are displayed using violin plots,
showing both the probability density of the loss values
as well as its quartiles. The first plot is the dimensionality
of the state observed at each step, which can be a subset of
the tuple given in Eq. (2). We can observe that as the
dimension of the input state is increased, the NN is able to
leverage this additional information, leading to a decrease
of the loss function. The scan over the normalization
parameters of the reward functions shows that it is
preferable to use a small width Γ for the signal, with a
large value Γbkg for the background, as well as a small
value for the 1=NSD factor. One can also see that the
multilevel training described in Sec. III C leads to a
distribution of loss values concentrated at smaller values.
We have also allowed for several functional forms of the
signal mass reward function, although for our final model
we will use a Cauchy distribution.
The parameters of the network architecture are shown

in Fig. 5, with the first plot showing the mass window
containing 60% of the signal distribution, with the median
of that interval shown in blue. The scatter plot of the
learning rate used for the Adam optimizer shows that a
value slightly above 10−4 yields the best result. The scan
shows a preference for a dense network with a large number
of units and layers as well as a dropout layer as the

RSD for at = 1 RSD for at = 0

 0 1 2 3 4 5
ln 1/Δ ln 1/Δ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5
-12

-10

-8

-6

-4

-2

 0
ln

 z

-12

-10

-8

-6

-4

-2

 0

ln
 z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
α2 = 0.16, β2 = 0.33, ln z2 = -3.5

α1 = 0.59, β1 = 0.18, ln z1 = -0.92

FIG. 3. Top: Loss as a function of the reward parameters, with
the optimal parameters shown in red. Bottom: Value of the two
terms in the soft-drop reward function given in Eq. (6) as a
function of Δ and z.

STEFANO CARRAZZA and FRÉDÉRIC A. DREYER PHYS. REV. D 100, 014014 (2019)

014014-4

architecture of the NN. Finally, we see that using dueling
networks [48] leads to a small improvement of the model,
while double Q learning [49] does not.

E. Optimal GROOMRL model

The final GROOMRL model is trained using the full
training sample with 500 000 signal or background jets for
1 000 000 epochs. The overall training time requires 4 hr of
training using a single NVIDIA GTX 1080 Ti GPU with
12 GB of memory which includes all the training jet trees
and the DQN parameters.
The parameters of the best GROOMRL model obtained

following the strategy presented in the previous sections is
listed in Table I. Here two values are given for the mtarget

parameter, which are used to train on either a sample
consisting of W bosons or of top quarks. The resulting
models are labeled GROOMRL-W and GROOMRL-Top,
respectively.
In Fig. 6 we show the reward value during the training of

the GROOMRL forW bosons and top quarks, after applying
the locally weighted smoothing algorithm on the original
curve. We observe an improvement of the reward function
during the first 300 000 training epochs, with the reward
becoming relatively stable after that point.

FIG. 5. Distribution of the loss value for different architecture configurations. The best performing model is indicated in red.

FIG. 4. Distribution of the loss value for different grooming parameters. The best performing model is indicated in red.

TABLE I. Final parameters for GROOMRL, with the two values
of mtarget corresponding to the W and top mass.

Parameters Value

mtarget 80.385 or 173.2 GeV

st dimension 5
Reward Cauchy
Γ 2 GeV
ðα1; β1; ln z1Þ ð0.59; 0.18;−0.92Þ
ðα2; β2; ln z2Þ ð0.65; 0.33;−3.53Þ
1=NSD 0.15
Multilevel training Yes

Γbkg 8 GeV
1=Nbkg 1.8 or 1.0
pbkg 0.48 or 0.2

Learning rate 10−4

Dueling NN Yes
Double DQN No

Policy Boltzmann
Nmax

epochs 500 000
Architecture Dense

Dropout 0.05
Layers 10
Nodes 100

Optimizer Adam

JET GROOMING THROUGH REINFORCEMENT LEARNING PHYS. REV. D 100, 014014 (2019)

014014-5

F. Alternative approaches

In this section, we have introduced a novel implemen-
tation of RL to tackle the problem of tree pruning. A
number of alternative methods could be studied to
approach this problem, most notably Monte Carlo tree
search (MCTS) algorithms [50,51] and binary classifiers.
The heuristic search methods fromMCTS explore the tree
through random sampling, taking random actions to
progress through the tree. Once an end point is reached,
the result is used to weight the nodes and improve future
decisions.
More recently, a NN-based MCTSnet implementation

was proposed [52], which introduces a framework to learn
how to search the tree, integrating simulation-based plan-
ning into a NN.
These techniques might provide an interesting basis to

construct an efficient groomer. However due to the wide
variability of the trees considered in our case study, where
each new episode starts from a unique tree, this would
require a substantial modification of the algorithm.
Alternatively, one could use a contextual bandit solver

[53,54] to train a jet grooming policy. We would expect this
method to yield similar results; however, this method does
not allow for the modification of the future nodes by the
current grooming decision and is not as easily extendable as
our current framework.
Finally, one could attempt to build a jet grooming

algorithm from a binary classifier, which uses an input
state to determine which action to take next. The main
drawback of this method is that one cannot straightfor-
wardly impose as a loss function the mass resolution of the
tree, as this depends on previous states of the current
episode. As such, the problem we consider is particularly
well adapted to a RL approach.
We leave a more thorough study of the application of

these alternative tools to jet grooming for future work.

IV. JET MASS SPECTRUM

Let us now apply the GROOMRL models defined in
Sec. III E to new data samples. We consider three test sets
of 50 000 elements each: one with QCD jets, one with W
initiated jets and one with top jets. The size of the window
containing 60% of the mass spectrum of the W sample, as
well as the corresponding median value, is given in Table II
for each different grooming strategy. As a benchmark, we
compare to the RSD algorithm, using parameters
zcut ¼ 0.05, β ¼ 1 and R0 ¼ 1. One can notice a sizable
reduction of the window size after grooming with the
machine learning based algorithms, while all groomers are
able to reconstruct the peak location to a value very close
to the W mass.
The distribution of the jet mass after grooming for each

of these samples is shown in Figs. 7 and 8. Each curve gives
the differential cross section dσ=dmj normalized by the
total cross section. Figure 7 shows results for the grooming
algorithm trained on a W sample, while the results of the
algorithm trained on top data are given in Fig. 8. As
references, the ungroomed (or plain) jet mass and the jet
mass after RSD grooming are also given, in blue and
orange, respectively. As expected, one can observe that for
the ungroomed case the resolution is very poor, with the
QCD jets having large masses due to wide-angle radiation,
while the W and top mass peaks are heavily distorted. In
contrast, after applying RSD or GROOMRL, the jet mass is
reconstructed much more accurately. One interesting fea-
ture of GROOMRL is that it is able to lower the jet mass for
quark and gluon jets, further reducing the background
contamination in windows close to a heavy particle mass.
For the W case, shown in Figs. 7(b) and 8(b), there is a

sharp peak around the W mass mW , with the GROOMRL
method providing slightly better resolution. It is also
particularly noteworthy that both the GROOMRL-W and
the GROOMRL-Top algorithms have similar performance,
despite the latter one having been trained on a completely
different dataset. This demonstrates that the tools derived
from our framework are robust and can be applied to
datasets beyond their training range with good results.
In top jets, displayed in Figs. 7(c) and 8(c), the enhance-

ments are even more noticeable. Here again, the perfor-
mance of both algorithms is similar, despite the fact that
the training of GROOMRL-W did not involve any top-
related data.

TABLE II. Size of the window containing 60% of the W mass
spectrum and median value on that interval.

wmax − wmin [GeV] wmed [GeV]

Plain 44.65 104.64
GROOMRL-W 10.70 80.09
GROOMRL-Top 13.88 80.46
RSD 16.96 80.46

FIG. 6. Reward evolution during training of the GROOMRL on
W and top data. A locally weighted smoothing is applied to the
original curves.

STEFANO CARRAZZA and FRÉDÉRIC A. DREYER PHYS. REV. D 100, 014014 (2019)

014014-6

Finally, in Fig. 9, we show the primary Lund jet plane
density as defined in [22] after grooming with GROOMRL-
W and GROOMRL-Top, averaged over 50 000 jets. This
gives a useful visualization of radiation patterns within a
jet, providing a physical interpretation of the grooming
behavior. The primary Lund jet plane is defined through the
(ln 1=Δab; ln kt) coordinates of each of the states of the
“primary” declustering sequence, i.e., traversing the jet tree
by successively following the hardest branch T ðiÞ → a. The
upper boundary of the triangle is due to the kinematic limit
of emissions. In contrast, the lower edge corresponds to
radiation that gets removed by the grooming algorithm, so

that only sufficiently energetic or collinear partons remain
in the groomed jet.
An interesting feature of Fig. 9 is that one can observe

that despite producing similar jet mass spectra, the
GROOMRL-W and GROOMRL-Top algorithms differ some-
what, with the former retaining more radiation at wide
angles than the latter.

A. Robustness to nonperturbative effects

Let us now consider the impact of nonperturbative
effects such as hadronization and underlying event on
groomed jets. A key feature of grooming algorithms such

(a) (b) (c)

FIG. 8. Groomed jet mass spectrum for (a) QCD jets, (b) W jets, and (c) top jets. The GROOMRL-Top curve is obtained from training
on top data.

(a) (b) (c)

FIG. 7. Groomed jet mass spectrum for (a) QCD jets, (b) W jets, (c) top jets. The GROOMRL-W curve is obtained from training on
W data.

JET GROOMING THROUGH REINFORCEMENT LEARNING PHYS. REV. D 100, 014014 (2019)

014014-7

FIG. 9. Primary Lund jet plane density for QCD jets before (a) and after grooming with GROOMRL trained onW (b) or top (c) samples.

(a) (b)

(c) (d)

FIG. 10. Jet mass spectrum for QCD jets at parton level (green) and hadron level (orange) and including an underlying event (blue).
Distributions are shown for ungroomed jets (a), as well as after grooming with GROOMRL trained onW data (b), on top data (c) or with
RSD (d).

STEFANO CARRAZZA and FRÉDÉRIC A. DREYER PHYS. REV. D 100, 014014 (2019)

014014-8

as mass drop tagger and soft drop is that they reduce
the sensitivity of observables to nonperturbative effects,
allowing for precise comparisons between theoretical
predictions and experimental measurements.
To study the robustness of GROOMRL to these contri-

butions, we consider three different QCD jet samples
generated through PYTHIA’s dijet process. The first one,
which we denote as “truth level” and used already in the
previous sections, includes all nonperturbative effects.
A “hadron-level” sample is obtained by removing multiple
parton interactions from the simulation, and finally a
“parton-level” sample is generated by further turning off
the hadronization step in PYTHIA.
The jet mass spectrum for each sample is shown in

Fig. 10, with results for ungroomed jets as well as after
grooming with GROOMRL-W, GROOMRL-Top and RSD.
One can see immediately that the ungroomed jet mass
spectrum is strongly affected by nonperturbative effects,
while groomed jets become much more robust to these
contributions. For masses m > 50 GeV, both GROOMRL
models become very robust, showing a resilience to
hadronization and underlying event similar to that of
RSD. In the low mass range, GROOMRL remains robust
to multiple parton interactions but starts to show some
dependence on hadronization effects.
We note that no parton-level or hadron-level data were

used in the training, such that one would not a priori expect
the derived algorithm to be particularly resilient to these
effects. Although GROOMRL already performs surprisingly
well, one could easily further improve the robustness of the
model by including some of these data with a suitable
modification of the reward function in the training of the
DQN agent.

V. CONCLUSIONS

We have shown a promising application of RL to the
issue of jet grooming. Using a carefully designed reward
function, we have constructed a groomer from a dense NN
trained with a DQN agent.
This grooming algorithm was then applied to a range of

data samples, showing excellent results for the mass
resolution of boosted heavy particles. In particular, while

the training of the NN is performed on samples consisting
of W (or top) jets, the groomer yields noticeable gains in
the top (or W) case as well, on data outside of the
training range.
The improvements in resolution and background reduc-

tion compared to alternative state-of-the-art methods pro-
vide an encouraging demonstration of the relevance of
machine learning for jet grooming. In particular, we
showed that it is possible for a RL agent to extract the
underlying physics of jet grooming and distill this knowl-
edge into an efficient algorithm.
Due to its simplicity, the model we developed also

retains most of the calculability of other existing methods
such as soft drop. Accurate numerical computations of
groomed jet observables are therefore achievable, allowing
for the possibility of direct comparisons with data.
Furthermore, given an appropriate sample, one could also
attempt to train the grooming strategy on real data,
bypassing some of the limitations due to the use of parton
shower programs.
The GROOMRL framework, is generic and can easily

be extended to higher-dimensional inputs, for example
to consider multiple emissions per step or additional
kinematic information. While the method presented in
this article was applied to a specific problem in particle
physics, we expect that with a suitable choice of reward
function, this framework is in principle also applicable to
a range of problems where a tree requires pruning.
The framework and data used in this paper are available

as open-source and published material in [55–57].

ACKNOWLEDGMENTS

We are grateful to Jia-Jie Zhu and Gavin Salam for
comments on the manuscript and to Jesse Thaler for
useful discussions. We also acknowledge the NVIDIA
Corporation for the donation of a Titan Xp GPU used
for this research. F. A. D. is supported by the Science and
Technology Facilities Council (STFC) under Grant No. ST/
P000770/1. S. C. is supported by the European Research
Council under the European Union’s Horizon 2020
research and innovation Program (Grant Agreement
No. 740006).

[1] G. F. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436
(1977).

[2] G. P. Salam, Eur. Phys. J. C 67, 637 (2010).
[3] S. D. Ellis and D. E. Soper, Phys. Rev. D 48, 3160 (1993).
[4] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber,

J. High Energy Phys. 08 (1997) 001.

[5] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy
Phys. 04 (2008) 063.

[6] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, J.
High Energy Phys. 02 (2015) 118.

[7] L. G. Almeida, M. Backovi, M. Cliche, S. J. Lee, and M.
Perelstein, J. High Energy Phys. 07 (2015) 086.

JET GROOMING THROUGH REINFORCEMENT LEARNING PHYS. REV. D 100, 014014 (2019)

014014-9

https://doi.org/10.1103/PhysRevLett.39.1436
https://doi.org/10.1103/PhysRevLett.39.1436
https://doi.org/10.1140/epjc/s10052-010-1314-6
https://doi.org/10.1103/PhysRevD.48.3160
https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP07(2015)086

[8] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A.
Schwartzman, J. High Energy Phys. 07 (2016) 069.

[9] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson,
Phys. Rev. D 93, 094034 (2016).

[10] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban, and D.
Whiteson, Phys. Rev. D 94, 112002 (2016).

[11] G. Kasieczka, T. Plehn, M. Russell, and T. Schell, J. High
Energy Phys. 05 (2017) 006.

[12] G. Louppe, K. Cho, C. Becot, and K. Cranmer, J. High
Energy Phys. 01 (2019) 057.

[13] L. de Oliveira, M. Paganini, and B. Nachman, Comput.
Softw. Big Sci. 1, 4 (2017).

[14] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson,
E. Goul, and A. Sgaard, Phys. Rev. D 96, 074034 (2017).

[15] K. Datta and A. Larkoski, J. High Energy Phys. 06 (2017)
073.

[16] A. J. Larkoski, I. Moult, and B. Nachman, arXiv:1709
.04464.

[17] J. Pearkes, W. Fedorko, A. Lister, and C. Gay, arXiv:1704
.02124.

[18] A. Butter, G. Kasieczka, T. Plehn, and M. Russell, SciPost
Phys. 5, 028 (2018).

[19] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D.
Schwartz, J. High Energy Phys. 12 (2017) 051.

[20] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz, Eur.
Phys. J. C 79, 102 (2019).

[21] E. M. Metodiev and J. Thaler, Phys. Rev. Lett. 120, 241602
(2018).

[22] F. A. Dreyer, G. P. Salam, and G. Soyez, J. High Energy
Phys. 12 (2018) 064.

[23] P. T. Komiske, E. M. Metodiev, and J. Thaler, J. High
Energy Phys. 01 (2019) 121.

[24] J. Arjona Martnez, O. Cerri, M. Pierini, M. Spiropulu, and
J.-R. Vlimant, arXiv:1810.07988.

[25] K. Datta, A. Larkoski, and B. Nachman, arXiv:1902.07180.
[26] A. Butter et al., arXiv:1902.09914.
[27] H. Qu and L. Gouskos, arXiv:1902.08570.
[28] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P.

Salam, Phys. Rev. Lett. 100, 242001 (2008).
[29] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Phys. Rev. D

81, 094023 (2010).
[30] D. Krohn, J. Thaler, and L.-T. Wang, J. High Energy Phys.

02 (2010) 084.
[31] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, J.

High Energy Phys. 09 (2013) 029.
[32] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, J. High

Energy Phys. 05 (2014) 146.
[33] F. A. Dreyer, L. Necib, G. Soyez, and J. Thaler, J. High

Energy Phys. 06 (2018) 093.
[34] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. Lett.

121, 092001 (2018).
[35] A. M. Sirunyan et al. (CMS Collaboration), J. High Energy

Phys. 11 (2018) 113.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. A. Riedmiller, arXiv:1312
.5602.

[37] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton
et al., Nature (London) 550, 354 (2017).

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski et al., Nature (London)
518, 529 (2015).

[39] M. Wobisch and T. Wengler, in Monte Carlo Generators
for HERA Physics. Proceedings, Workshop, Hamburg,
Germany, 1998-1999 (1998), pp. 270–279, https://arxiv
.org/abs/hep-ph/9907280.

[40] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.
Schulman, J. Tang, and W. Zaremba, arXiv:1606.01540.

[41] M. Plappert, KERAS-RL, https://github.com/keras-rl/keras-rl
(2016).

[42] F. Chollet et al., KERAS, https://keras.io (2015).
[43] M. Abadi et al., TENSORFLOW: Large-Scale Machine

Learning on Heterogeneous Systems (2015), software
available from https://www.tensorflow.org/.

[44] J. Bergstra and D. Yamins, J. Mach. Learn. Res. 13, 281
(2012).

[45] T. Sjstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, Comput. Phys. Commun. 191, 159 (2015).

[46] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72,
1896 (2012).

[47] D. P. Kingma and J. Ba, arXiv:1412.6980.
[48] Z. Wang, N. de Freitas, and M. Lanctot, arXiv:1511.06581.
[49] H. van Hasselt, A. Guez, and D. Silver, arXiv:1509.06461.
[50] R. Coulom, in Proceedings of the 5th International

Conference on Computers and Games (Springer-Verlag,
Berlin, 2007), pp. 72–83.

[51] L. Kocsis and C. Szepesvári, in Machine Learning: ECML
2006 (Springer, New York, 2006), pp. 282–293.

[52] A. Guez, T. Weber, I. Antonoglou, K. Simonyan, O.
Vinyals, D. Wierstra, R. Munos, and D. Silver, in
International Conference on Machine Learning (2018),
pp. 1822–1831.

[53] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire,
SIAM J. Comput. 32, 48 (2002).

[54] A. Agarwal, D. J. Hsu, S. Kale, J. Langford, L. Li, and R. E.
Schapire, arXiv:1402.0555.

[55] S. Carrazza and F. A. Dreyer, JetsGame/data v1.0.0 (2019),
this repository is git-lfs, https://doi.org/10.5281/zenodo
.2602514.

[56] S. Carrazza and F. A. Dreyer, JetsGame/GroomRL v1.0.0
(2019), https://doi.org/10.5281/zenodo.3265836.

[57] S. Carrazza and F. A. Dreyer, JetsGame/libGroomRL v1.0.0
(2019), https://doi.org/10.5281/zenodo.3265836.

STEFANO CARRAZZA and FRÉDÉRIC A. DREYER PHYS. REV. D 100, 014014 (2019)

014014-10

https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1103/PhysRevD.93.094034
https://doi.org/10.1103/PhysRevD.94.112002
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevD.96.074034
https://doi.org/10.1007/JHEP06(2017)073
https://doi.org/10.1007/JHEP06(2017)073
http://arXiv.org/abs/1709.04464
http://arXiv.org/abs/1709.04464
http://arXiv.org/abs/1704.02124
http://arXiv.org/abs/1704.02124
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1007/JHEP12(2017)051
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1007/JHEP12(2018)064
https://doi.org/10.1007/JHEP12(2018)064
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
http://arXiv.org/abs/1810.07988
http://arXiv.org/abs/1902.07180
http://arXiv.org/abs/1902.09914
http://arXiv.org/abs/1902.08570
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1103/PhysRevD.81.094023
https://doi.org/10.1103/PhysRevD.81.094023
https://doi.org/10.1007/JHEP02(2010)084
https://doi.org/10.1007/JHEP02(2010)084
https://doi.org/10.1007/JHEP09(2013)029
https://doi.org/10.1007/JHEP09(2013)029
https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1007/JHEP06(2018)093
https://doi.org/10.1007/JHEP06(2018)093
https://doi.org/10.1103/PhysRevLett.121.092001
https://doi.org/10.1103/PhysRevLett.121.092001
https://doi.org/10.1007/JHEP11(2018)113
https://doi.org/10.1007/JHEP11(2018)113
http://arXiv.org/abs/1312.5602
http://arXiv.org/abs/1312.5602
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/hep-ph/9907280
https://arxiv.org/abs/hep-ph/9907280
http://arXiv.org/abs/1606.01540
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://keras.io
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arXiv.org/abs/1412.6980
http://arXiv.org/abs/1511.06581
http://arXiv.org/abs/1509.06461
https://doi.org/10.1137/S0097539701398375
http://arXiv.org/abs/1402.0555
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836
https://doi.org/10.5281/zenodo.3265836

