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Inhibition of SIRT1 deacetylase and p53 activation uncouples
the anti-inflammatory and chemopreventive actions of
NSAIDs
Giulia Dell’Omo1, Daniela Crescenti1, Cristina Vantaggiato1, Chiara Parravicini2, Aurora Paola Borroni1, Nicoletta Rizzi2,
Mariangela Garofalo1, Andrea Pinto3, Camilla Recordati4, Eugenio Scanziani4, Fabio Domenico Bassi5, Giancarlo Pruneri1,6, Paola Conti3,
Ivano Eberini2, Adriana Maggi2 and Paolo Ciana 1

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many
tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to
cyclooxygenase (COX) inhibition prevent this clinical application.
METHODS: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical
assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs.
RESULTS: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-
inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-
induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour
suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except
for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53
is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and
increased survival.
CONCLUSION: Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the
p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs.

British Journal of Cancer (2019) 120:537–546; https://doi.org/10.1038/s41416-018-0372-7

INTRODUCTION
Cancer incidence is projected to increase worldwide particularly in
view of the ever-increasing population lifespan;1 novel strategies
for prevention are therefore needed to decrease the personal,
social and economic burden of this disease. NSAIDs are among the
most promising chemopreventive agents for different cancer
types and could give an important contribution to the control of
neoplasia development especially in high-risk groups;2 a number
of in vivo preclinical data demonstrated the cancer-protective
activity of these drugs3–7 and clinical studies assessed the
protective effects of chronic or transient intraoperative treat-
ments8–12 However, the use of NSAIDs in the treatment of a
relatively healthy, at risk population is limited by the potentially
serious adverse gastrointestinal and cardiovascular events. At
present time, the lack of a full understanding of the mechanism of
their anti-cancer effects has blocked the development of NSAIDs
to be used safely in chemoprevention. Several mechanisms of
action have been proposed to explain the anti-tumour properties
of this structurally heterogeneous group of similarly acting

compounds: the inhibition of COX enzymes, especially COX-2,
the classical target of the anti-inflammatory actions of these drugs,
was indicated as a major player to mediate their anti-cancer
effects;13 in addition, several off-target actions were also
proposed, including modulation of cancer-related pathways (e.g.,
WNT/β-catenin or cGMP/PDE), the activity of transcription factors
(e.g., p53, PPARλ, PPARδ, SP1, NFkB, RXR) and enzymes (AMPK,
carbonic anhydrase, Ca++ ATPase, MMPs) involved in carcino-
genesis.14 The existence of COX-independent mechanisms
responsible for the anti-tumour effect of these classes of drugs
has been strongly supported by the discovery that NSAIDs
enantiomers, derivatives or metabolites, which are not able to
inhibit COX and don’t display anti-inflammatory properties, still
retains anti-tumour activity in vitro and in vivo.14 In particular, the
best-characterised molecule of this type is exisulind, a metabolite
of sulindac, which was shown in clinical trials to induce adenoma
regression in familial and sporadic adenomatous polyposis,15,16

and to inhibit the formation of multiple tumour types in several
preclinical studies.17 Yet the picture emerging from these studies

www.nature.com/bjc

Received: 7 February 2018 Revised: 28 November 2018 Accepted: 14 December 2018
Published online: 11 February 2019

1Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy; 2Department of Pharmacological and Biomolecular Sciences and Center of Excellence on
Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy; 3Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; 4Mouse & Animal Pathology
Lab, Fondazione Filarete, 20139 Milan, Italy; 5Division of Breast Surgery, European Institute of Oncology Milan, 20141 Milan, Italy and 6Pathology and Laboratory Medicine,
Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
Correspondence: Paolo Ciana (paolo.ciana@unimi.it)

© The Author(s) 2019 Published by Springer Nature on behalf of Cancer Research UK

http://orcid.org/0000-0001-5771-5638
http://orcid.org/0000-0001-5771-5638
http://orcid.org/0000-0001-5771-5638
http://orcid.org/0000-0001-5771-5638
http://orcid.org/0000-0001-5771-5638
mailto:paolo.ciana@unimi.it


is still elusive and does not provide a molecular target alternative
to COX as clearly accountable for the anti-neoplastic activity of
NSAIDs. We here propose SIRT1 deacetylase as a novel common
and direct target of NSAIDs and exisulind, which may provide a
molecular explanation of the multiplicity of the COX-independent
effects ascribed to NSAIDs and their metabolites/enantiomers/
derivatives.

MATERIALS AND METHODS
Reagents, antibodies and kits
Unless otherwise specified reagents were from Sigma-Aldrich.
Antibodies used for immunoblot assay were acetylated p53 (K382)
(#2570S, Cell Signaling), total p53 (Ab-7, Abcam) and SIRT1
antibody (05-1243, Merck Millipore). SIRT1 activity was measured
in vitro according to the manufacturer’s protocol using a
fluorimetric activity assay kit (ab156065, Abcam).

Cell culture and treatments
MDA-MB-231 were purchased from the American Type Culture
Collection (ATCC) and grown in RPMI 1640 medium (Life Technol-
ogy) supplemented with 10% FBS (Sigma-Aldrich) and streptomycin-
penicillin (50,000 IU plus 50mg/l). Cells were treated with NSAIDs,
exisulind, nicotinamide and DMSO as vehicle; compounds were
appropriately diluted before treatment with cell culture medium
from a stock of 27mM dissolved in DMSO (Sigma Aldrich).

Protein extracts and western blot
Protein extracts were obtained by suspending pellet of cells in
lysis buffer (10 mM Tris-HCl, pH 7.4, 150mM NaCl, 15% glycerol,
1% Triton-X-100, 1 mM sodium orthovanadate, 10 μg/ml leupep-
tin, 10 μg/ml aprotinin, 1 mM NaF, protease inhibitor cocktail and
1mM PMSF), disrupting cell membranes by freezing and thawing
and collecting supernatant after 30 min minifuge centrifugation at
the maximal speed. 30 µg of protein extracts were separated in a
PAGE and immunoblot assays were carried out using specific
antibodies recognizing acetylated p53 (K382 residue) or total p53;
immunoreactive bands were visualised with chemiluminescence
by using ECLTM Western Blotting Analysis System according to the
manufacturer’s instructions (Amersham).

P53 deacetylation assay
The SIRT1 deacetylase activity was tested on the K382 residue of
native p53 present in the protein extract of MDA-MB-231 cells pre-
treated with 20 μM etoposide. Briefly, rhSIRT1 (final dilution 1:60
ab156065 #6), 200 μM NAD and 300 μM inhibitors (NSAIDs or
exilusind) were added to 15 μg protein extract of MDA-MB-231,
incubated for 30 min at room temperature and stopped with the
addition of Laemmli’s sample buffer. The entire reaction was
loaded on a SDS-PAGE for immunoblot analysis; immunodetection
was carried out using specific antibodies recognizing acetylated
p53 (K382 residue) or total p53.

Real-Time PCR
Real-Time PCR experiments were done as previously described.18

Templates were amplified using GoTaq® qPCR Master Mix (Promega)
in a thermocycler (ABI Prism 7,000, Applied Biosystems). The
following primers were used for each mouse gene: 36b4 forward
5′-ggcgacctggaagtccaact-3′, reverse 5′-ccatcagcaccacagccttc-3′; p21
forward 5′-gcctgaagactgtgatgg-3′, reverse 5′-gccctcagcaagagtaag-3′.
Data were analysed using the ABI Prism 7,000 SDS Software and the
2−ΔΔCt method. The levels of mRNA transcripts were normalised on
the constitutively expressed gene 36b4.

Stable transfection
MDA-MB-231 cell clones that stably express a siRNA targeting
human SIRT119 was generated by co-transfecting 1 µg pBABE
SIRT1 siRNA (kindly provided by Prof. D.A. Sinclair) or 1 µg pBABE

empty vector as a control, together with 1 µg renilla luciferase
pRL-TK (E2241 Promega) and 0.1 µg pSV2Neo carrying the
neomycin resistance for clone selection. Cells were transfected
with Lipofectamine 2000 (Thermo Fisher) according to the
manufacturer’s protocol. 48 h after transfection different dilution
(from 1 × 106 to 1 × 105/petri) of cells were seeded in petri dishes.
After 3 weeks in selection medium containing 600 µg/ml G418,
single clones were picked and tested for Renilla luciferase
expression with an enzymatic assay on protein extract carried
out according to manufacturer’s protocol (Renilla-Glo Luciferase
Assay System, Promega). Clones with higher levels of luciferase
expression were further expanded and tested for SIRT1 expression
by western blot analysis. Two clones displaying the lowest SIRT1
expression and two control clones (transfected with the empty
vectors) were chosen for testing the effects of NSAIDs.

Molecular modelling procedures
All the computational procedures were carried out by the
Schrödinger Small-Molecule Drug Discovery Suite 2016-02. The
crystallographic structure of the catalytic domain of human SIRT1
bound to NAD and to an EX-527 was downloaded from the RCSB
PDB (code: 4I5I). The Schrödinger Protein Preparation Wizard was
used for locating and fixing structural defects in SIRT1 structure and
preparing it for use with Schrödinger Glide for molecular docking.
Tested ligands were built by the Schrödinger Maestro Build Toolbar
and prepared for docking by the Schrödinger Ligand Preparation.
The molecular docking procedure was carried out by the
Schrödinger Glide Docking in standard precision (SP) mode in order
to evaluate the ability of the tested ligand to bind the SIRT1 catalytic
domain. Only for ketoprofen and nicotinamide the docking
procedure was carried out in extra precision (XP) mode in order to
better sample the binding site and obtain more accurate poses.
Molecular docking was run both on the holo-SIRT1 (w/ NAD) and on
the apo-SIRT1 (w/o NAD). The top-scoring solution between the two
poses (one obtained on the apo- and the other one on the holo-
SIRT1) for each ligand was submitted to Schrödinger Prime MM-
GBSA, which integrates molecular mechanics energies combined
with the generalised Born and surface area continuum solvation20 in
order to calculate ligand binding and ligand strain energies for a set
of ligands and a single receptor.

Animal experimentation
For the in vivo use, NSAIDs, exisulind and nicotinamide were
dissolved in DMSO (270mM stock solution); after appropriate
dilution in water, they were given per os if not otherwise specified
15mg/Kg/day and 3.75–7.5-15mg/Kg/day exisulind. DMBA was
dissolved in acetone (12mM solution). 25 female repTOPmitoIRE
reporter mice (2–4 month-old)21 were divided in five groups and
treated with NSAIDs, exisulind, nicotinamide or vehicle (DMSO) for
8 days. At day 5, mice were subjected to a single s.c. intra-glandular
injection of 12mM DMBA solution (left mammary gland) or acetone
(vehicle, in the right mammary gland); at day 8, mice were sacrificed,
the mammary glands explanted for ex vivo imaging and fixed for
immunohistochemistry analysis or frozen for total RNA extraction.

Ethical approval animal experimentation
All animal experimentation was carried out in accordance with the
Guide for the Care and Use of Laboratory Animals in accordance
with the European Guidelines for Animal Care and Use of
Experimental Animals, approved by the Italian Ministry of the
Research and University (MIUR) and controlled by the panel of
experts of the Department of Pharmacological and Biomolecular
Sciences (University of Milan, 20133 Milan, Italy). For the
experiments before 2014 the MIUR authorisation was DM 295/
2012-A dated 20.12.2012 n. 10/2012, afterward experiments were
done under MIUR authorisation n. 611/2015 PR. All animal
experimentation was carried out in the full observation of the
Directive 2010/63/UE.
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Bioluminescence in vivo and ex vivo imaging
The procedure has been previously described.22 Briefly, anesthe-
tised animals were i.p. injected with 65 mg/Kg D-Luciferin (beetle
luciferin potassium salt, Promega) before each in vivo imaging
session. After 15 min luciferin distribution, photon emission was
measured over 5 min-exposure time using a CCD camera (Night
Owl Imaging Unit, Berthold Technologies, Germany). After the last
in vivo imaging acquisition, animals were sacrificed, the mammary
glands were excised and placed in a light-tight chamber for the
ex vivo measurement. Pseudocolor images representative of
photon emissions were generated by a Night Owl LB981 image
processor and transferred via video cable to a PCI frame grabber
using WinLight32 software (Berthold Technologies); grayscale and
pseudocolor images were finally merged using WinLight version
32 software (colour code from low to high photon emission: blue,
green, red, yellow, and white). Light emission was expressed as
integration of photon counts per time and per area unit (p/s/cm2/
sr). Normalisation was performed using an external source of
photons enabling to measure the instrumental efficiency of
photon counting (Glowell Luxbiotech, Edinburgh, UK).

Ethics approvals human material
All human tumour specimens were obtained in accordance with
the Ethic Committee of the European Institute of Oncology, Milan,
Italy and the main tumour features are listed in the Table S2.

Statistical analysis
Data analyses were performed using GraphPad 5 Instat software®
(GraphPad Prism Inc. San Diego, CA, USA), we have applied
Student’s t-test, one-way ANOVA and two-way ANOVA analysis for
determining statistical significance.

RESULTS
NSAIDs and exisulind, but not ketoprofen, increase p53 acetylation
at K382 residue
Several data demonstrated the anti-proliferative effect of NSAIDs
in different tumour cell lines.23,24 In a previous study, Alfonso and
collaborators25 showed that aspirin treatment promotes p53
acetylation at residue K382, increases expression of p21, a p53
target gene, and apoptosis in the MDA-MB-231 cell line. This led
us to ask whether other NSAIDs with anti-proliferative activity in
cultured cell lines shared the ability to increase p53 acetylation.
The content of p53 isoforms (total and acetylated at the K382
residue) was therefore measured in MDA-MB-231 treated with 90
μM of nimesulide, diclofenac, and exisulind; for different lengths
of time. Ketoprofen was also included in the study as a negative
control since this drug has a poor anti-proliferative activity.26 All
compounds, but ketoprofen, significantly increased p53 acetyla-
tion in a short time after exposure to the drug (3–6 h) (Fig. 1a) and
such an effect was concentration-dependent (Fig. 1b); similar
effect was observed for other NSAIDs suggesting a common
mechanism of p53 acetylation for the tested molecules of this
class of drugs (Figure S1A). Interestingly, p53 acetylation occurred
mainly in the nucleus (Figure S1B) indicating that the NSAID-
dependent mechanism selectively modifies the nuclear functions
of the anti-oncogene.

SIRT1 enzymatic activity is inhibited by several NSAIDs and
exisulind, but not by ketoprofen
The activity of exisulind and the fast dynamics of p53 acetylation
observed led us to hypothesise a COX-independent mechanism
modulating the activity of enzymes able to deacetylate or
acetylate the K382 residue; thus, we tested the effects of NSAIDs
on the two enzymes known to add (P300) or remove (SIRT1) the
acetyl residue at the K382 site of p53. The study was done
in vitro by using recombinant human P300 (rhP300) acetylase
and the recombinant human SIRT1 deacetylase (rhSIRT1).27,28

The assay for measuring P300 activity was based on the ability of
the enzyme to transfer the radioactive 3H-acetyl from 3H-acetil-
CoA to a substrate histonic peptide (for the P300 assay), whereas
for SIRT1, we measured the fluorescence produced by a two-
step reaction initiated by the acetyl removal from a

5

Nimesulide Diclofenac

DiclofenacNimesulide

Exisulind Ketoprofen

Exisulind Ketoprofen

**
****

*

*

*
*

**

**

*** ***

****

****
**

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

4
3
2
1
0 0

2

4

6

8

5
1.5

1.0

0.0

0.5

1.5

2.0

1.0

0.0

0.5

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

p5
3 

ac
./p

53
 to

t
no

rm
al

is
ed

 O
D

4
3
2
1
0

5 100

20
15
10
5
0

15

10

5

0

4
3
2
1
0

0 1 3 6 24

Ac-p53 (K382)

Time (h)

p53 tot

βACT
0 1 3 6 24

Ac-p53 (K382)

Time (h)

p53 tot

βACT

0 1 3 6 24

Ac-p53 (K382)

Time (h)

p53 tot

βACT

0

0 10 30 90 270 0 10 30 90 270

0 10 30 90 2700 10 30 90 270

1 3 6 24

Ac-p53 (K382)

Time (h)

[μm]

[μm] [μm]

[μm]

p53 tot

βACT

Ac-p53 (K382)

p53 tot

βACT

Ac-p53 (K382)

p53 tot

βACT

Ac-p53 (K382)

p53 tot

βACT

Ac-p53 (K382)

p53 tot

βACT

a

b

Fig. 1 Treatment with nimesulide, diclofenac and exisulind, but not
ketoprofen increase p53 acetylation at K382 residue. Data from
more NSAIDs are shown in Fig. S1A. Immunoblot analysis was
carried out using anti-acetyl (K382) p53 and anti-total p53
antibodies and protein extracts obtained from MDA-MB-231 cells
in time course experiments (a) or after 3 h treatment with increasing
concentrations (b) of the indicated NSAIDs. For the time course
experiments, cells were treated with 90 μM for each compound.
Data are represented as mean ± SEM. Bars in the graphs represents
densitometry quantifications of the autoradiographic signals (acety-
lated p53 vs total p53); β-actin is reported as loading control. *P <
0.05 **P < 0.01 ***P < 0.001 ****P < 0.0001 versus the baseline level;
P-values were calculated by one-way ANOVA followed by Bonferro-
ni’s test
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fluorescence-substrate peptide containing an acetylated lysine
followed by the cleavage of the substrate and the release of a
highly fluorescent residue. While no effect on rhP300 activity
was observed (Figure S2A), all NSAIDs tested and exisulind, but
not ketoprofen inhibited the rhSIRT1 activity in a concentration-
dependent manner (Fig. 2a and Figure S2B); for most of the
compounds, the inhibition was in the same order of potency of
the physiological inhibitor nicotinamide, suggesting the like-
lihood of a similar effect in vivo (Fig. 2a, Figure S2B and C,
Table S1); in agreement with this conclusion, the nicotinamide
treatment of MDA-MB-231 cells increased the p53 acetylation at
similar concentrations of NSAIDs (Figure S1A). Due to the
limitation of the SIRT-1 fluorescence-based assay,29,30 we further
tested the inhibitory action of nimesulide on rhSIRT1 using a
bioluminescent assay31: the results obtained were superimpo-
sable (Figure S2C). The inhibitory action of NSAIDs and exisulind
was also observed using the endogenous SIRT1, as demon-
strated by performing the fluorescent assay with the MDA-MB-
231 protein extracts (Fig. 2b). Moreover, as an additional
demonstration of the direct effect of SIRT1 on the K382 residue
of p53, we investigated the deacetylation potential of rhSIRT1
on the acetylated p53 present in MDA-MB-231 cells. The
presence of rhSIRT1 alone decreased by 64% the content of
acetylated p53, but the activity of the enzyme was significantly
inhibited by adding 300 µM nicotinamide (Fig. 3a); with this
assay the same concentration of nimesulide and exisulind, but

not ketoprofen were also able to inhibit the enzyme (Fig. 3a),
thus supporting the notion that these effects were directly
mediated by SIRT1. To further strengthen this conclusion, we
knocked down SIRT1 in MDA-MB-231 cells by generating stably
transfected clones with an expression vector encoding for a
siRNA directed against SIRT1 mRNA.19 The effective knock down
of SIRT1 expression was demonstrated by western blot analysis,
whereas, we also detected a constitutive increment of the p53
basal acetylation at the K382 residue. After treatments with
NSAIDs and exisulind (Fig. 3b), the basal acetylation remained
unchanged firmly demonstrating the direct role of SIRT1 in
mediating the K382 acetylation induced by these compounds in
breast cancer cells.
Next, we asked whether the SIRT1 inhibitory action of the

NSAIDs and exisulind was due to a direct interaction with the
deacetylase, and what the molecular basis of this inhibition was.
To this aim, we have carried out an accurate molecular docking
procedure both on its holo and its apo structure32 obtained by
removing in silico the NAD cofactor and the EX-527 inhibitor. The
docking data showed that all the tested compounds were able to
bind the inhibitor pocket of SIRT1 (Fig. 3c and Figure S3). The
mechanism of action proposed for EX-527 was linked to its ability
to induce an extended NAD conformation thus blocking the
access to the channel of the acetylated lysine substrate.33 Some of
the NSAIDs (e.g., ibuprofen, diclofenac) were able to bind at the
same position of EX-527,32,33 and for them, we hypothesised a
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Fig. 2 Nimesulide, diclofenac and exisulind, but not ketoprofen, inhibit rhSIRT1 activity in vitro. Data from more NSAIDs are shown in Fig. S2B.
a rhSIRT1 activity was measured in vitro with a fluorescence-based assay in the presence of 200 μM β-nicotinamide adenosine dinucleotide
(NAD) and of increasing concentrations (11, 33, 100, 300, 900, 2700 μM) of nicotinamide and of the indicated NSAIDs; treatment with 10 μM
EX-527, a selective inhibitor of rhSIRT1, was used as positive control of the reactions. Data are represented as mean ± SEM. *P < 0.05 **P < 0.01
***P < 0.001 versus the value of the NAD treated sample; P-values were calculated by two-way ANOVA followed by Bonferroni’s test. b The
sirtuin activity was tested in MDA-MB-231 protein extracts treated with increasing concentrations (300, 900, 2,700 μM) nimesulide, ketoprofen
and exisulind. Data are represented as mean ± SEM. *P < 0.05 **P < 0.01 ***P < 0.001 versus the value of the NAD treated sample; P-values were
calculated by two-way ANOVA followed by Bonferroni’s test from endogenous SIRT activity
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similar NAD-dependent inhibitory mechanism. Differently, com-
pounds containing condensed heteroaromatic rings, such as
indomethacin and its derivatives, generated steric hindrance also
with the extended NAD conformation, suggesting they can bind
SIRT1 only through a direct competition with NAD. This differential
behaviour could be argued also from a comparative analysis of the
docking scores of all the tested compounds obtained with and
without NAD (Table 1). These scores are suitable for classification
purposes and useful for deciphering the molecular mechanism of
the investigated ligands, but they are not directly related to ligand
affinity. Compounds preferentially binding the apo protein,
partially overlapping the NAD binding site, can be classified as
competitive ligands with respect to NAD; whereas compounds
with the most favourable docking scores on the holo protein, and
occupying the EX-527 binding site, can be classified as mixed
inhibitors, able to both induce a NAD distortion misconformation
and its displacement (Fig. 3c and Figure S3). Our proposed
classification was further confirmed by performing the same
docking analysis and energy evaluations on a more recent X-ray
apo-SIRT1 structure crystallised in the presence of an active-site
directed inhibitor that occupies the peptide and NAD+-binding
sites.34,35 As expected by a mixed inhibitory effect, the calculated
affinity (Table 1) did not correlate with the enzymatic inhibition
(Fig. 3c and Figure S2). In the extreme case of ketoprofen, which
did not show any inhibitory activity in reference assays, we carried
out a more in depth molecular docking search (Glide XP). From
this further analysis, we identified the peculiar rigidity of
ketoprofen structure induced by an extended mesomery as the
main reason for its lacking inhibitory activity. In fact, ketoprofen
has a very low affinity for the EX-527 binding site, since it engages
A262 and F297 in steric clashes (Figure S3B), producing the lowest
binding free energy/affinity (MM-GBSA) among all the tested
compounds for SIRT1 (Table 1). Thus, the docking data confirmed
the ability of NSAIDs to directly interact with the NAD cleft of
SIRT1 and to inhibit the deacetylase activity through competitive
or non-competitive mechanisms depending on their binding
fashions.

NSAIDs and exisulind activates p53-mediated transcription in vivo
Activation of the p53 pathway through SIRT1 inhibition has been
shown to have powerful anticancer effects36–38 and oral
nicotinamide, the natural SIRT1 inhibitor, was shown to reduce
the rate of non-melanoma skin cancer in a phase III clinical trial.39

Table 1. Molecular docking data and affinity values (binding free
energies)

Apo 4I5I Holo 4I5I

Molecules Docking score
[kcal/mol]

Docking score
[kcal/mol]

MM-GBSA
[kcal/mol]

sulindac sulfide −6.8 – −30.3

NS-398 −5.7 −6.5 −43.8

nimesulide −6.4 −6.0 −46.0

ketoprofena −5.2 −3.3 −24.7
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Fig. 3 The NSAIDs-induced acetylation at the K382 residue is
mediated by SIRT1 inhibition. a Deacetylation assay on native p53
protein. Picture shows a representative immunoblot analysis of
native acetylated and total p53 present in the extracts of MDA-MB-
231 6 h before harvesting, cells were treated with 20 etoposide μM
to obtain sufficient amount of p53 acetylation; the same batch of
protein extract was divided in 15 µg aliquots and treated either with
vehicle (veh) or with 300 µM nicotinamide (nam), nimesulide (nim),
exisulind (exi), ketoprofen (ket) as described in Materials and
Methods paragraph, the extract was then treated with rhSIRT1 or
with saline buffer. β-actin is reported as loading control. Quantifica-
tion of the immunoblot signals are reported in the inserted graph:
acetylated p53 signal was normalised on the corresponding total
p53 signal and referred to the veh/- SIRT1 sample. Bars represent the
average ± SEM normalise values of three independent experiments.
*P < 0.05 **P < 0.01 P-values were calculated by Student’s t-test.
b Immunoblot analysis of p53 acetylation at K382 site in SIRT1
knock-down MDA-MB-231 cells. MDA-MB-231 expressing siRNA
SIRT1 were treated with 270 μM vehicle, nimesulide, ketorolac,
exisulind, ketoprofen, NS398, ibuprofen. β-actin is reported as
loading control. c Best docking poses for selected SIRT-1 inhibitors.
Data from more NSAIDs are shown in Fig. S3A. The enzyme is shown
as ribbon, inhibitors are shown in stick representation. Nicotina-
mide, nimesulide, and exisulind overlap NAD binding site; ketopro-
fen overlaps the EX527-analog binding site only after its relevant
structural deformation
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The increased K382 acetylation of nuclear p53 (Figure S1B),
suggested that the oncosuppressor is selectively induced by
NSAIDs, therefore, we investigated whether these drugs were able
to increase the level of p21 expression, an anti-proliferative gene
directly modulated by the p53 transcriptional activity.40 The
treatment with nimesulide and exisulind of two immortalised cell
lines carrying wild type p53 (human breast epithelial hTERT-HME1
and mouse myoblast C2C12 cells) was able to increase the
expression of the p53 target gene p21, suggesting that the
oncosuppressor is transcriptionally activated by these drugs
(Figure S4A). Based on these findings, we investigated the effect
of the anti-inflammatory drugs in an animal model of the initial
transformation stage, e.g., local treatment of the mammary gland
with the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). As
illustrated in the Figure S4B, mice were treated for 8 days with 15
mg/Kg/day nimesulide, 15 mg/kg/day ketoprofen, 3.75-7.5-15 mg/
Kg/day exisulind, 15mg/Kg/day nicotinamide or vehicle per os. At
day 5 from the beginning of the treatment, the left mammary
gland was injected intra fat pad with DMBA and the right
mammary gland was treated with vehicle (acetone). In the left
mammary gland, p21 mRNA expression was clearly induced in the
mice treated with nimesulide, exisulind and nicotinamide (Fig. 4);
such an increase was not observed in mice treated with
ketoprofen. These experiments confirmed in an in vivo model
that NSAIDs (but not ketoprofen), exisulind and nicotinamide were
able to increase p53 activity; interestingly, the exisulind active
dose (15 mg/Kg) was of the same order of magnitude of the dose
reported to obtain polyp regression in humans.15,16 To verify that
the NSAID-mediated p53 activation was specifically occurring in
the tissue exposed to genotoxic stress and not in others, we
repeated the experiment (Figure S4B) with the p53 reporter
mouse.41 The reporter mouse was generated with a knock-in
strategy described by Tinkum and colleagues42 (Figure S4C)
obtaining a model where the generalised expression of the
luciferase reporter is directly proportional to the p53 state of
transcriptional activation and can be measured in vivo by
bioluminescence-based imaging (BLI).22 In this model, the

bioluminescence in the mammary glands exposed to DMBA was
highest in the mice treated with nimesulide (15/mg/Kg/day per os)
(Figure S4C and D) and no increased bioluminescence was
detectable in body areas other than the DMBA-treated breast. This
experiment suggested that the NSAID-mediated activation of p53
was restricted to the cells proliferating after the genotoxic
stimulus and not to other physiologically proliferating tissues in
the mouse body (i.e. bone marrow in the legs and thorax areas).

SIRT1 inhibition counteracts tissue proliferation produced by
DMBA
Next, we investigated whether the increased p53 activity in the
DMBA treated mammary glands correlated with a decreased cell
proliferation. To this aim, we carried out the DMBA treatment as
before (Figure S4B) in another model of luciferase reporter mouse
enabling to measure by BLI cell proliferation (the repTOPmi-
toIRE).21 As observed in the p53 reporter mouse, the effect of
NSAIDs was selectively detected in the genotoxic treated tissue,
no effect was observed in other physiologically proliferating
tissues i.e., bone marrow (Fig. 5). Ex vivo analysis of the photon
emission in the mammary glands treated with DMBA demon-
strated that cell proliferation was significantly lower in the animals
treated with NSAIDs, exisulind and nicotinamide (Fig. 5 and
Figure S5A); as also previously demonstrated,21 in repTOPmitoIRE
reporter mice, reduction of the bioluminescent signal correlated
with a decreased Ki-67 immunostaining (Figure S5B). This
experiment indicated that treatment with NSAIDs, exisulind and
nicotinamide attenuated tissue proliferation induced by the
exposition to a genotoxic agent, a mitogenic signal which is
known to be responsible of the early clonal expansion of
mutagenised cells. Once more, ketoprofen did not have the same
effects of NSAIDs.

Intraoperative ketorolac treatment induces p53 acetylation at the
K382 site
In a previous epidemiological study, Forget and collaborators
suggested that an intraoperative treatment with the NSAID
ketorolac was associated with a reduced relapse likelihood in
the first 24 months, improved disease-free survival and overall
survival in patients undergoing mastectomy;8 interestingly, these
beneficial effects were particularly relevant for high-body mass
index group of patients.12 Moreover, a recent report demonstrated
the positive effects on survival of the intraoperative ketorolac also
in the treatment in ovarian cancer;9 interventional trials are
underway to test the beneficial effects of this procedure. To
investigate the potential clinical relevance of the mechanism
described in our study, we verified whether this treatment could
induce p53 acetylation at K382 site. Immunoblot analysis showed
a significant increase of K382 acetylation in the tumours obtained
from patients (Table S2) treated with ketorolac as compared to
controls (treated with opiates), indicating that SIRT1 inhibition
could be promoted by a single NSAID treatment during surgery
(Fig. 6b).
Altogether, our data suggest a therapeutic strategy for

chemoprevention based on the direct inhibition of SIRT1
deacetylase by NSAIDs-like molecules; this inhibitory effect is
likely to modulate the activity of specific SIRT1 targets43

responsible for the early tumourigenesis steps promoted by the
exposition to genotoxic agents (Fig. 6a). In particular, our study
links together the NSAIDs chemopreventive activity with the well-
known SIRT1/p53/P21 anti-oncogenic pathway, suggesting a
novel strategy for the design of tumour protective drugs.

DISCUSSION
Our work identifies for the first time SIRT1 as a direct target of
NSAIDs and demonstrates that this interaction underlies the
anti-proliferative effects of these drugs through a COX-
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Fig. 4 NSAIDs exisulind and nicotinamide treatment, but not
ketoprofen increases p53 activity in vivo. Five female mice per
group were treated per os (gavage) with a daily dose of 3.75, 7.5, 15
mg/Kg exisulind (exi), 15 mg/Kg nimesulide (nim), 15mg/Kg
ketoprofen (ket), 15 mg/Kg nicotinamide (NAM) or dimethyl
sulfoxide (DMSO, vehicle). Treatment was carried out for eight days;
at day 5 a single dose of an acetone solution of 12mM DMBA (left
mammary gland) or acetone (right mammary gland) was injected in
the mammary fat pad of the animals (Figure S4B). p21 mRNA
expression was determined by real-time PCR; bars in the graph are
the average ± SEM values quantified with the 2−ΔΔCt method. * P <
0.05; ** P < 0.01 DMBA versus acetone treated breast. P-values were
calculated by Student’s t-test

Inhibition of SIRT1 deacetylase and p53 activation uncouples the. . .
G Dell’Omo et al.

542



independent mechanism. We show that the deacetylase
inhibition triggers an oncosuppressor signal able to prevent
cellular functions important for the initial stage of the neoplastic
transformation. Our findings designate a novel therapeutic
strategy for cancer chemoprevention. Indeed, NSAIDs-like drugs
can be ideal prototype, as they were shown to decrease the risk
of several cancers in epidemiological studies and to prevent
neoplastic transformation when administered to humans.9,12,15

Since most of the toxicities manifested by these drugs in chronic
treatments can be ascribed to COX inhibition, our data by
distinguishing the anti-inflammatory and chemopreventive
actions, as due to the inhibition of two distinct targets, provides
the rationale for the design of safer NSAIDs without COX
inhibitory activity, but retaining the anti-cancer, beneficial
effects obtained with SIRT1 inhibition. The hypothesised
therapeutic strategy is feasible as the IC50s calculated in vitro
for NSAIDs (Table S1) are in the order of magnitude of the
natural SIRT1 inhibitor nicotinamide, currently used in long term
treatments,39 and the active dose in vivo (Fig. 2 and Fig. 4) is
comparable with the dose efficiently used to treat patients
(Fig. 6b).15,16 It is true that the IC50s calculated for NSAIDs,

exisulind and nicotinamide are much lower compared to EX-527
or other powerful SIRT1 inhibitors. However, nicotinamide that
has been investigated in a phase 3 clinical trial for skin-cancer
prevention (our data provide a strong support to evaluate this
preventive treatment for other cancer types) and exisulind itself
have already demonstrated efficacy in clinical trials: these are
direct convincing evidences in favour of the development of
weak SIRT1 inhibitors. The development of NSAIDs-derived
SIRT1 inhibitors may provide a valid alternative in case the
chemopreventive activity of nicotinamide would not be proven
efficacious for tumours other than skin-cancers. Future studies
should clarify for chronic treatment of patients at risk of
cancer, whether a less tight SIRT1 inhibition is indeed
sufficient for cancer prevention with fewer side effects,
compared to high-affinity SIRT1 inhibitors under development
as anti-cancer drugs.
SIRT1 as a therapeutic target in tumourigenesis has been

ground for debates on two conflicting, dichotomic thesis, which
postulated its deacetylase enzymatic activity as pro- or anti-
oncogenic.44 The link of NSAIDs with the SIRT1/p53 pathway was
raised also by other groups reporting the pro-senescence effects
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of aspirin in breast25 and colon cancer cell lines,45 although a
direct effect of aspirin on SIRT1 activity has never been
demonstrated. In keeping with our study, Alfonso and collabora-
tors showed that aspirin induces p53 acetylation and a pro-
apoptotic effect in breast cancer cell line, while the study from
Jung and collaborators proposed SIRT1 as a key mediator for the
pro-senescence activity of aspirin in colon cancer. The latter study
reported a biphasic effect of aspirin on SIRT1 activity with an initial
activation, followed by inhibition of the deacetylase at later time
points. The early increase of SIRT1 activity observed by this group
might be a consequence of the peculiar metabolic effects of
aspirin, which transiently increases the cellular levels of cAMP and
NAD+, the physiological activator of SIRT1.45

Other studies have pointed out the effects of SIRT1 inhibition
and p53 acetylation in colon cancer cell lines with controversial
results even in the same cell lines.45–50 Nevertheless, most of the
reports are in line with an apoptotic or anti-proliferative effect of
SIRT1 inhibition and p53 acetylation also in many breast cancer
cell types.36,51–57 These controversial data might be ascribed
either to off target activities of different SIRT1 inhibitors used in
these studies or to different culture passages of the same cell
line that might have acquired additional genetic properties in
culture, which changed the cellular responses to the modulation
of the SIRT1/p53 signalling. Thus, in our study we have chosen
to demonstrate in cell lines the existence of the novel
mechanism shared by exisulind and those NSAIDs that displayed

in previous studies anti-cancer properties, but not ketoprofen
for which an anti-cancer activity was never reported. To avoid
the variability intrinsic in cell lines, we decided to test the effect
of NSAIDs on tissue proliferation in vivo in a mouse model of
early mammary gland transformation, where we demonstrated
that the inhibition of SIRT1 is perfectly correlating with the
in vivo ability of these compounds to activate p53 and
preventing tissue proliferation during the early transformation
steps. Again, ketoprofen was not able to elicit any in vivo effect
on tissue proliferation. Collectively our in vitro, cell culture and
in vivo data demonstrated that SIRT1 inhibition produces anti-
proliferative effects on DMBA damaged tissues; thus, at least in
the initiation phase of neoplastic transformation, SIRT1 inhibi-
tion and the subsequent activation of the deacetylase target
genes seem to be positive events producing a cell cycle arrest of
mutated clones. In addition to the anti-proliferative effects we
have characterised, it should also be mentioned that
p53 signalling may not be the only pathway involved in the
chemopreventive activity of NSAIDs, since SIRT1 is able to
modulate a variety of key targets involved in the control of
apoptosis, DNA repair, inflammation, energy metabolism,
angiogenesis and cell proliferation, signals that could play a
significant role in the anti-cancer properties of NSAIDs.58,59

Moreover, the increased p21 expression observed upon NSAIDs
treatment might also be promoted by pathways independent
from p53.60 Future studies should address the extent to which
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these other signalling pathways contribute to the anti-cancer
activity.
The ability of ketorolac to increase K382 acetylation in

mastectomy patients directly links SIRT1 inhibition with the
decreased relapse and increased survival associated with the
treatment.8,12 Thus, our results provide the rational basis for a
prospective clinical trial aimed at demonstrating the beneficial
effect of intraoperative ketorolac as well as to assess the effect of
the chronic nicotinamide administration to mastectomy patients.
Both are non-toxic and cheap treatments eliciting SIRT1 inhibition
with the potential of significantly improving the management of
breast cancer patients.
In conclusion, the demonstration of a new target for NSAIDs

responsible of their chemopreventive activity provides a novel
solution for an important medical need. In the last decades, the
system biology has made great progress in the discovery of
prognostic markers characterizing populations at higher risk for
several types of cancer; it is now compulsory to move forward
from prototype molecules to the development of preventive
drugs for the cancer therapeutic area and to provide clinicians
with a correct armamentarium needed for treating subjects at
high risk of cancer outgrowth.
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