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2-alkenyliden-indolin-3-ones were synthesised in high yields via a cascade reaction between 4H‑furo[3,2‑b]indoles and propargyl esters. The cascade sequence 

involves initial formation of a gold-carbene specie via cationic gold(I) catalysed 1,2-acyloxy migration of properly substituted propargyl esters followed by gold-

carbene to furoindole addition and successive furan ring-opening affording the final products. The obtained compounds contain an extended -system linked 

at the C2 of the indolin-3-ones, they are characterised by intense colouration (from yellow to purple) and were characterised by UV mesearurements.

Introduction 
Homogeneous gold catalysis has established for long time as a powerful tool in synthetic organic chemistry.1 Inter alia, the richness 

of developed chemistry is related to the ability of gold species to activate -systems under extremely mild conditions with tuneable 

selectivity allowing for the construction of highly substituted and fascinating complex structures.2 In particular, homogeneous gold-

catalysed cascade processes have been widely employed for the effective synthesis of complex heterocycles and natural products.3 

In connection with our recent studies on the gold catalysed reactions of indoles,4 we recently published our results on the gold-

catalysed cascade rearrangement of 2-methyl-4H-furo[3,2-b]indoles to indolin-3-one derivatives in the presence of gold-activated 

allenamides I (Scheme 1a).5 The reaction occurred through a cascade sequence involving addition of a gold-activated allene to the 

C2 furan moiety of the starting furoindole followed by a ring-opening/ring-closing event affording 2-spirocyclopentane-1,2-

dihydro-3H-indolin-3-ones. In a related perspective, Echavarren and co-workers reported the reactions of furans with gold(I)-

carbenes II generated in situ from propargyl esters, 1,6-enynes and 7-substituted-1,3,5-heptatrienes (Scheme 1b).6 The reactions 

occur through a mechanism initiated by the electrophilic addition of gold(I)-carbenes to furans followed by furan ring opening. 

These results led us to explore the chance to involve the C2-C3 bond of C2 unsubstituted furoindoles in a gold(I) catalysed cascade 

reaction with gold(I)-carbene complexes II generated in situ from suitable propargyl esters via gold-catalysed 1,2-acyloxy 

migration (Scheme 1c). The obtained results demonstrated that the reaction proceeds via gold-carbene addition to furoindole 

followed by furan ring-opening reaction giving rise to 2-alkenyliden-indolin-3-ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1 Previous and proposed work. 
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Propargyl esters are useful substrates for cascade reactions given their ability to generate, via gold-catalysed 1,2-or 1,3-acyloxy 

migration, gold-coordinated allenes I and gold-carbenes II able to participate in cascade processes (Scheme 2).7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 Propargyl esters, general reactivity patterns. 

Moreover, these structurally varied intermediates demonstrated to be in equilibrium with each other and, as a general rule, 1,3-

migration is favoured for internal alkynes whereas 1,2-migration prevails for terminal alkynes and EWD-substituted alkynes. 

Herein, we disclose the full details of our investigations. 

 

Results and discussion 
We reported in detail the synthesis of the 4H-furo[3,2-b]indoles employed in this work in a recently published paper.5 As a proof of concept, 

we tested the reactivity of furoindole 1a with propargyl esters 2a-c bearing different substituents at the -position (Scheme 3) and able to 

furnish, in the presence of gold(I) catalysts, the corresponding carbene-oxiallylcation species.8 In addition, the reaction outcome could be 

complicated with propargyl ester 2a by the formation of the Rautenstrauch rearrangement product (Scheme 3a).7,9 We performed the 

planned model reactions in toluene at -20 °C, in the presence of two equivalents of 2a-c and of 5 mol% of preformed cationic JohnPhosAuSbF6 

catalyst. With propargyl ester 2a the reaction resulted in the isolation in excellent yield of a separable 1:1 mixture of Z/E isomeric 2-(hepta-

2,4,6-trien-1-ylidene)-3-oxoindolines 3a and 3’a beside a small amount of tetracyclic compounds 4a. Analytical (MS) and spectral data (1D 

and 2D NMR) confirmed the structures of all isolated compounds. Inter alia, the geometries around the double bonds of the heptatrienyl 

moieties were determined by 2D NOESY NMR spectroscopy and by 3J Z/E coupling constant analysis. Analysis of 2D COSY, TOCSY, HSQC and 

NOESY spectra determined the regiochemistry of compound 4a. With propargyl ester 2b the reaction afforded in moderate yield 2-((E)-5-

methyl-hexa-2,4-dien-1-ylidene)-3-oxoindoline 3b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3 Preliminary results. 



The structure was assigned as reported above for compounds 3a and 3’a. It is worth to underline that at the end of the reaction, after the usual work-up, the 
1H NMR analysis of the crude revealed the presence of two Z/E isomers. However, after the chromatographic purification step, a total conversion towards the 

3b was observed. Finally, with propargyl ester 2c the reaction resulted in the isolation in poor yield of 2-((2E,4Z)-5-phenyl-penta-2,4-dien-1-ylidene)-3-

oxoindoline 3c. Besides 3c, starting unreacted furoindole 1a and some decomposition compounds were detected. With these results in hand, we decided to 

explore in detail the reactivity of -stiryl substituted propargyl esters by evaluating the influence on the reaction outcome of different gold(I) ligands, 

counterions, solvents and stoichiometry, table 1. As a model reaction, we choose the reaction between 1a and 2a (Scheme 3 and Table 1, entry1). 

Table 1 Optimization of reaction conditionsa 

Entry Au(I)b Solvent 2a 
Temp. 

(°C) 

Time 

(h) 
3a (%)c 3’a (%)c 4a (%)c 

1 A Toluene  2 -20 1 45 47 6 

2d B Toluene  2 -20 43 15 6 6% 

3 C Toluene  2 -20 1 36 12 28% 

4d D Toluene  2 -20 1 25 / 21% 

5 E Toluene  2 -20 1 40 41 7% 

6 A TFE  2 -20 1 38 43 / 

7 A DCM  2 -20 1 47 46 4 

8 A Toluene  1.2 -20 1 58 36 6% 

9 A Toluene  1.2 -35 10 / / / 

10 A Toluene 1.2 rt 1 14 6 / 
a All reactions were carried out using 1a (0.2 mmol) and 2a (0.24-0.4 mmol, manual dropwise 
addition) in the stated solvent (0.05 M). b 5 mol%, preformed catalysts. c Isolated yield. d Some 
decomposition products were observed beside starting 1a. 

 

 

 

The use of a less electrophilic catalyst2a such as cationic gold(I) carbene complex B gave poorer results and starting 1a was recovered after 

prolonged reaction time beside small amounts of the desired compounds and some decomposition products, table 1, entry 2. The use of 

more electrophilic cationic gold(I) phosphite C or triphenylphosphine D complexes resulted in better yields but poorer selectivity with respect 

to the model reaction, table 1, entries 3 and 4. Then we returned to JohnPhos ligand changing the counterion from SbF6 to NTf2 with practical 

no effect on the reaction outcome, table 1, entry 5. The same was observed when trifluoroethanol or dichloromethane were used as solvents, 

table 1, entries 6 and 7. However, toluene is less expensive than TFE and dissolves the reaction products better than DCM, so toluene was 

chosen as the best reaction medium. Moreover, reduction of the equivalents of 2a to 1.2 did not affect the reaction outcome, table 1 entry 

8. In the last two trials, we checked the influence of the temperature on the reaction outcome, table 1, entries 9 and 10. Whereas no reaction 

occurred lowering the temperature to -35 °C, at 20 °C the reaction resulted in the isolation of 3a and 3’a in poor yields beside a series of tarry 

and unidentified compounds. It is worth to note that the analysis of the crude reaction mixture did not allow revealing the presence of the 

Rautenstrauch rearrangement product (see Scheme 3).9 In our opinion, this means that, starting from gold activated propargyl ester 2a, the 

1,2-migration and the subsequent carbene addition to furoindole 1a are faster than the Rautenstrauch rearrangement process even at room 

temperature. As a proof of concept, the reaction was repeated in the absence of 1a and resulted in the isolation of the [4+3] cycloadduct 

between the Rautenstrauch rearrangement product and propargyl ester 2a9b (see Supporting Information). At this stage of our work, 

screening for the search of the best reaction conditions for the synthesis of 4a were not subjected to in deep investigations. The results of 

this screening allowed for the establishment of the conditions reported in table 1 entry 8 as the best reaction conditions for the synthesis of 

3a and 3’a.  

Then, we explored the possibility to obtain the 3-oxo-2-(hepta-2,4,6-trien-1-ylidene)indolines 3/3’ as single isomers. This was done by 

quenching the reaction with 15 mol% of triphenylphosphine and then treating the solution with a catalytic amount of iodine. The conversion 

of a mixture of 3a/3’a isomers to 3a isomer was successful completed (> 98%) in 4 hours (Scheme 4).  

 

 

Scheme 4 Isomerization of a 3a/3’a mixture to pure 3a. 

Starting from these results, we then explored the scope of the reaction performing all experiments as reported in the footnote of table 1 

under the reaction conditions shown in table 1, entry 8. At the end, the reaction mixtures were quenched with triphenylphosphine and then 

treated with iodine. Compounds 3a-n were isolated and characterized after chromatographic purification (Scheme 5).  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5 Reaction scope. 

We firstly performed the reaction between 1a and 2a obtaining 3a as single isomer with excellent yield. Then, we investigated the influence of the protecting 

group at the nitrogen position on the yield. In particular, we observed that a bulkier electron-withdrawing group such as N-Boc led to the formation of the 

corresponding product 3d in lower yield. In addition, the substitution of the starting furoindole with an electron-donating N-methyl group was poorly tolerated 

and the yield in the formation of 3e significantly decreased down to 40%. Next, we observed that the substitution pattern of the starting propargyl ester 2a, 

d-h had a strong impact on the reaction outcome. The introduction on the styryl ring of an electron-donating methoxy group, in fact, gave excellent results 

both with standard furoindole 1a and 7-fluorine-substituted furoindole 1e (respectively 3f 89% and 3n 98%). On the contrary, the presence an electron-

withdrawing group negatively influenced the formation of compounds 3g and 3l, which were isolated in lower 55% and 67% yields, respectively. As shown 

previously (Scheme 3) disubstituted propargyl ester reacted less efficiently and the corresponding product 3h was obtained in poorer 36% yield. The 

modification of the OR3 group in the ester led to remarkable results. Moving from pivalate to less hindered acetate compound 3i was isolated in 56% yield, 

while the use of a more electron-withdrawing thienyl derivative afforded 3j in high 98% yield. Finally, we focused our attention on the modification of the 

indole core of 1a-g and we noticed that the introduction of substituents having different electronic properties at the C7 was well tolerated. In particular, 

methoxy-substituted indoles provided 3k and 3l with a slightly diminished but still good 75% and 67% yields, respectively. Instead, fluorine-substituted 

products 3m and 3n were synthetized with excellent 84% and 98% yields starting from the corresponding fluorinated indole 1e. In most of cases, the 

corresponding tetracyclic compounds 4 were detected in traces in the crude reaction mixtures via 1H NMR. Moreover, for the highly conjugated compounds 

3 a preliminary set of photophysical properties were collected. In particular, we choose compounds 3a/3’a (isolated during the preliminary reactivity tests) 

and 3d/3’d (isolated performing the standard reaction avoiding the iodine mediated isomerization step). We measured the UV/Vis spectra for these 

compounds, in three different solvents with increasing polarity: toluene, THF and DMSO. From the absorbance values we obtained the molar extinction 

coefficient using the linear regression method (See supporting information for details). The spectra show two peaks at about 350 and 470 nm (Figure 1).  

 

 



 

 

 

 

 

a)                                                                                         b) 

Figure 1 a) Extinction coefficient of both 3a (bold lines) and 3’a (dotted lines) and b) extinction coefficient of both 3d (bold lines) and 3’d 
(dotted lines) measured in solvents of different polarity (DMSO in blue, THF in red and toluene in yellow) 

For both isomers of compounds 3a and 3d, absorption wavelengths are essentially the same. The main difference between the Z/E spectra 

is the value of absorbance (and therefore extinction coefficient). As shown in table 2, molar extinction coefficient values for both Z 

compounds are greater than those for E isomers, the only exception being the more red shifted peak of 3d in THF. The solvatochromism is 

rather small for all derivatives. More than the absorption wavelength, different solvents cause an extinction variation. In particular, the larger 

extinction coefficient variations are observed in derivative 3’a, when switching from DMSO to THF. 

Table 2 Extinction coefficient for 3a/3’a and 3d/3’d measured in solvents of different polarity 

 DMSO THF Toluene 

Compound 𝜺 (L mol-1 cm-1) 𝜺 (L mol-1 cm-1) 𝜺 (L mol-1 cm-1) 

3’a 

𝜺 353 

17873 

𝜺 474 

32504 

𝜺 348 

24985 

𝜺 468 

40446 

𝜺 349 

23324 

𝜺 472 

39580 

3a 

𝜺 354 

22988 

𝜺 474 

38170 

𝜺 348 

26630 

𝜺 466 

40636 

𝜺 350 

27593 

𝜺 470 

45751 

3’d 

𝜺 355 

18604 

𝜺 479 

33831 

𝜺 349 

22986 

𝜺 466 

36935 

𝜺 350 

20826 

𝜺 474 

35413 

3d 

𝜺 354 

24052 

𝜺 476 

37628 

𝜺 349 

24209 

𝜺 465 

35417 

𝜺 351 

24945 

𝜺 471 

39690 

 

The photoisomerization reaction was followed by UV irradiating pure 3’d and 3’a solution in DMSO (2x10-5 M) with a 200 W lamp until 

complete conversion to the Z isomer was observed. The photoisomerization was carried out in a rotaflo-equipped cuvette in order to avoid 

solvent evaporation during the conversion and thus keep a constant concentration of the species in solution. Measurements have been taken 

every 20 minutes to monitor the isomerization from E to Z and, as expected, an increasing of the extinction coefficient is observed. In both 

cases, the equilibrium is reached in nearly 2h, as determined by plotting the intensity of peak at 354 nm vs time (Figure 2). Upon prolonged 

times (6h), slight decomposition of the products is observed (see Supporting Information). 

 



 

 

 

 

 

 

 

 

Figure 2 Extinction coefficient vs time at 354 nm for 3a (blue) and 3d (orange) measured in DMSO at a concentration of 2x10-5 M 

Finally, some simple transformations were realised using compounds 3a and 3d as substrates and two indoles (1f and 1g), different from 

standard furoindoles, were submitted to the standard reaction conditions (scheme 6). 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6 Synthetic elaboration of compounds 3 and reactivity of indoles. 

We realised the deprotection of both the N-CO2Et and N-Boc protected compounds 3a and 3d under basic and acidic conditions, 

respectively. The corresponding 2-alkylydene-3-oxoindole 3o was isolated in moderate to good yields. Then, we reduced under 

catalytic conditions the same compounds 3a and 3d. Hydrogenation of the entire trienylidene moiety was observed and 

compounds 5a and 5b were isolated as 1:1 mixture of diastereoisomers. Finally, the reactions of 2-vinyl and 2-methyl indoles 1f 

and 1g with 2a under standard reaction conditions resulted in the isolation of the cyclopropanation adduct (6) at the exocyclic 

double bond of 1f and of the simple hydroarylation product (7) with 1g. The geometry around the cyclopropane moiety and diene 

system of 6 were tentatively assigned via 1D and 2D NMR spectroscopy (See supporting information). 

Moreover, a mechanism could be easily underlined looking at the literature on both the reactivity of gold carbene complexes10 and on the electrophiles driven 

furan ring opening reactions (Scheme 7).6,11 Activation of the terminal propargyl ester by means of cationic gold(I) catalyst triggers the reversible12 1,2-acyloxy 

migration leading to derivative I. This intermediate can be described as a gold-carbene or as an oxiallyl cation. Therefore, I reacts as a pure electrophilic carbene 

with the C2-C3 furan carbons of 1a to give the corresponding cyclopropanated species II or, looking at intermediate I as an oxiallyl cationic specie, intermediate 

II could arise from the electrophilic attack to the C2 carbon atom of furoindole 1a. Finally, both arrangements of intermediate II evolve via furan ring-opening 

reaction giving rise to the final products 3a/3’a and restoring the gold(I) catalyst. Probably, the E/Z geometry around position 4 at the trienylidene moiyety of 

3a/3’a is a consequence of the dual nature of intermediate I which possesses a fixed geometry merely in the carbenic form with a geometry dictated by the 

mechanism of 1,2-migration. 



 

 

 

 

 

 

 

 

 

 

 

Scheme 7 Proposed reaction mechanism. 

Conclusions 

An efficient and high yielding methodology for the synthesis of polyconjugated 2-alkylidene-3-oxoindoles was developed. The 

reaction takes advantage from the ability of cationic gold(I) catalysts to selectively promote the formation of gold-carbenes from 

propargyl esters under extremely mild reaction conditions. Moreover, apart from the well-known migration step, the gold catalyst 

is involved also in the electrophilic addition/ring opening sequence with furoindoles demonstrating once again the usefulness of 

these catalysts in promoting complex cascade reactions. The obtained results represent a clear improvement and expansion of the 

synthetic concept reported in our previous researches5 on the electrophiles-driven ring-opening reactions of furoindoles for the 

synthesis of 3-oxo-indole derivatives. The synthesised compounds represent a new class of 2-alkylyden-3-oxoindoles. Thus, 

whereas literature references are available for simple 2-methyleneindolin-3-one13 (indigo derivatives) and 2-allylideneindolin-3-

one,14 to the best of our knowledge literature references for trienylidene derivatives are outdated and scarce.15 

Experimental 

General procedure for the synthesis of 3a-n 

To a N2-flushed solution of 4H-furo[3,2-b]indole 1 (1 equiv.) and [Au(JohnPhos)SbF6] (5 mol%) in anhydrous toluene, a solution of 

propargylic ester 2 (1.2 or 2 equiv.) in toluene (0.5 M) was added dropwise at -20° C. The reaction mixture was stirred for the 

stated time at -20° C and then quenched with PPh3 (15 mol%). Then the reaction mixture was warmed to room temperature and 

further stirred for 4 h in the presence of one crystal of I2. The solvent was removed under reduced pressure and the crude residue 

was purified by flash column chromatography to yield the desired product 3. 
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