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CSF β-amyloid predicts prognosis in patients with multiple sclerosis 

ABSTRACT 

Background: The importance of predicting disease progression in multiple sclerosis (MS) has increasingly 

been recognised, hence reliable biomarkers are needed.   

Objectives: To investigate the prognostic role of cerebrospinal fluid (CSF) Amyloid beta1-42 (A) levels by 

the determination of a cut-off value to classify patients in slow and fast progressors. To evaluate possible 

association with white (WM) and grey matter (GM) damage at early disease stages.  

Methods: Sixty patients were recruited and followed-up for three to five years. Patients underwent clinical 

assessment, CSF analysis to determine Aβ levels, and brain MRI (at baseline and after 1 year). T1-

weighted volumes were calculated. T2-weighted scans were used to quantify WM lesion loads.  

Results: Lower CSF Aβ levels were observed in patients with a worse follow-up EDSS (r=−0.65, p<0.001). 

The multiple regression analysis confirmed CSF Aβ concentration as a predictor of patients’ EDSS 

increase (r=−0.59, p<0.0001). Generating a receiver operator characteristic curve, a cut-off value of 813 

pg/ml was determined as the threshold able to identify patients with worse prognosis (95%CI 0.690-0.933, 

p=0.0001). No differences in CSF tau and NfL levels were observed (p>0.05). 

Conclusions: Low CSF Aβ levels may represent a predictive biomarker of disease progression in MS.  
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INTRODUCTION 

Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous 

system (CNS). Although traditionally regarded as a white matter (WM) demyelinating disease, axonal 

loss is critically involved in MS pathophysiology since early clinical stages1,2. The mechanisms underlying 

axonal damage, however, are not entirely clear and no reliable prognostic biomarker of disease 

progression are currently available.  

Magnetic resonance imaging (MRI) is an invaluable tool for the diagnostic work-up of MS 

patients3,4. However, no strong correlation has been found between conventional MRI measures and  

clinical outcomes of progression5,4.  

When taking into account the hypothesis of neurodegeneration as a major contributor to MS 

disability, β-amyloid1-42 (Aβ) has recently become an interesting candidate for its putative role in this 

process. Amyloid-Precursor Protein (APP) has been detected in MS plaques with a higher APP 

immunoreactivity in actively demyelinating than in chronic lesions, thus indicating a modification of 

APP metabolism across disease stages6. Moreover, APP was found upregulated in both acute and chronic 

MS lesions and has been regarded as a sensitive marker of axonal damage7,8. Reduced CSF Aβ levels have 

already been reported in MS patients9,10,11,12 although the interpretation of these findings remains 

controversial13. In addition, a previous study on the mouse model of MS suggested a possible protective 

role of increased serum Aβ levels14. On the other hand, a recent study in a relatively small group of MS 

patients revealed that lower baseline levels of CSF Aβ are predictive of a more severe disease progression 

over a 3-year follow-up12.   

In this scenario, aims of the current study were: 1) to confirm the prognostic role of CSF Aβ levels 

in a larger cohort of MS patients with a longer clinical follow-up; 2) to compare the prognostic role of CSF 

Aβ levels with a validated predictive index of disease progression, namely the Bayesian Risk Estimate for 

MS at Onset (BREMSO)15; 3) to determine a cut-off level of CSF Aβ with the ability of correctly classifying 

MS patients in slow and fast progressors; 4) to assess whether patients with lower CSF Aβ levels show 

any peculiar radiological features at baseline and at follow-up. 
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MATERIALS AND METHODS 

Subjects 

Seventy patients with a new diagnosis of relapsing-remitting MS (RRMS) according to the 2010 

revised McDonald criteria3 have been recruited from January 2013 to January 2015. A fraction of the 

population (n=48) has already been included in a previous study12. All patients underwent clinical 

assessment, brain MRI and lumbar puncture (LP). LP was always performed in an acute phase of disease, 

i.e. clinical relapse or the presence of new and/or gadolinium enhancement lesions at MRI, and before 

starting any treatment, including corticosteroids. From this cohort, 60 patients have been clinically 

followed-up for 3 or 5 years (n=60 and n=35 respectively), while 10 patients were lost to follow-up. The 

main demographic and clinical characteristics of all subjects are summarized in Table 1 and 2.  

Forty-four out of 70 patients agreed to undergo an extra MRI scan for research purposes at 

baseline and at 1-year follow-up (details of the MRI acquisition protocol are reported below). 

For each recruited patient, the Expanded Disability Status Scale (EDSS) score was assessed at 

baseline and at remission during each follow-up visit at six month intervals. An EDSS cut-off score at 3-

year follow-up equal to 3.0 was used to classify MS patients into two different groups of disease severity, 

as previously described12.  

For all patients, the BREMSO score was also calculated. The higher the BREMSO score, the higher 

the risk of future disability15.  

The current study was approved by the Institutional Review Board of the Fondazione Cà Granda, IRCCS 

Ospedale Maggiore Policlinico (Milan, Italy). All MS patients and control subjects gave their written 

informed consent for this research before entering the study. 

 

CSF collection  

CSF samples were collected by LP in the L3/L4 or L4/L5 interspace for all patients at diagnosis. 

Following LP, CSF samples were centrifuged in 8000 rpm for 10 minutes. The supernatants were 

aliquoted in polypropylene tubes and stored at –80 °C until use. CSF cell counts, glucose, and proteins 

were determined. Albumin was measured by rate nephelometry. Oligoclonal bands (OCB) were 
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evaluated by isoelectrofocusing. CSF Aβ1-42  and total tau were measured by using two commercially 

available sandwich enzyme-linked immunosorbent assay (ELISA) kits (Fujirebio, Ghent, Belgium). Then, 

all statistical analyses were performed between baseline Aβ levels and clinical and radiological outcomes 

measured at diagnosis and at follow-up evaluations. CSF neurofilament light chain (NfL) levels were 

measured using the Uman Diagnostics NF-light ELISA kit (Umeå, Sweden) as described by the 

manufacturer. It uses two highly specific, non-competing monoclonal antibodies (mAB47:3 and mAB2:1) 

to quantify soluble NfL. 

 

MRI acquisition 

Forty-four patients underwent a MRI examination for research purposes (at baseline and at 1 year 

follow-up) using an Achieva 3T scanner (Philips, The Netherlands). The acquisition protocol included: 1) 

a T1-weighted scan (TR 9.90 ms; TE 4.61 ms; Flip angle 8°; slices thickness 1 mm; gap 0); 2) Fluid 

attenuated inversion recovery (FLAIR) images (TR 11000 ms; TE 125 ms; Flip angle 90°; slices thickness 1 

mm; gap 0); 3) a T2-weighted scan (TR 2492 ms; TE 78 ms; Flip angle 90°; slices thickness 4 mm; gap 0).  

 

WM damage 

To quantify the macroscopic WM LL, the lesions of all patients (n=44) were first identified on 

FLAIR scans by consensus of three trained and independent observers (MC; AP; MS). Lesions were then 

outlined using a semi-automated local thresholding contouring software (Jim 7.0, Xinapse System, 

Leicester, UK, http://www.xinapse.com/). For each dataset, the WM LL was calculated and used for 

correlation analyses. The same procedure was applied to 1-year follow up scans.  

 

Brain volumetrics 

All 3D T1-weighted scans (n=44) were first visually inspected to exclude the presence of macroscopic 

artefacts. Data of 23 scans were processed using an optimized voxel-based morphometry (VBM) protocol in 

Statistical Parametric Mapping 12 (SPM12; Wellcome Department of Imaging Neuroscience; 

www.fil.ion.ucl.ac.uk/spm/). Segmentation and normalization produced a GM probability map16 in Montreal 
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Neurological Institute (MNI) coordinates. To compensate for compression or expansion during warping of 

images to match the template, GM maps were modulated by multiplying the intensity of each voxel by the 

local value derived from the deformation field17. All data were smoothed using a 8-mm full width half 

maximum (FWHM) Gaussian kernel.  

We derived for each scan the WM (WMF) and GM fractions (GMF), which were calculated, 

respectively, as the ratio of total WM and GM volume to the total intracranial volume (TIV). We first used 

unpaired t-tests to assess between group differences of WMF and GMF at baseline, and paired t-tests to 

assess within group differences between baseline and 1 year follow-up scans. In particular, we divided 

the patients into two groups, based on their GMF Δ (Δ=1 year follow-up GMF minus baseline GMF), 

which could be either stable or reduced. Additionally, due to the increasing interest in GM loss in 

MS18,19,20, whenever any global difference in GMF at baseline was found, we run a voxel-wise analysis to 

clarify the regional patterns of anatomical distribution. For this purpose, flexible factorial models were 

created in SPM, in which age, gender and WM LL were always entered as covariates of no interest. We 

tested for between (cross sectional) and within (longitudinal) group differences of regional GM volumes 

by using unpaired and paired (one sample and two time points: baseline and after 1 year) T-contrasts 

respectively. We accepted as significant differences surviving the family wise error (FWE) correction at 

cluster level (p<0.5).  

 

Statistical analysis 

All statistical analyses were performed using SPSS 21.0 for Windows (SPSS Inc., Chicago, IL, 

USA), Graph Pad PRISM 6.0, MedCalc and SPM12, including correction for age and gender. 

CSF Aβ concentrations obtained at baseline were compared in MS patients divided in two 

different subgroups: those with a follow-up EDSS score <3 (n=43) and those with a follow-up EDSS score 

≥3 (n=17). Due to the non-normal distribution of data, all between-group comparisons were tested by 

non-parametric inferential statistical analyses (Kruskal-Wallis test and Mann-Whitney U test). For all 

analyses, the statistical threshold was set up at p<0.05. 
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Spearman correlation coefficient between WM LL and EDSS scores at follow-up and between 

GMF and CSF Aβ levels at baseline and at follow-up was assessed.  

To calculate the best CSF Aβ value, able to predict disease progression, a receiver operator 

characteristic (ROC) curve was generated. The cut-off value of Aβ has been measured with MedCalc that 

provides the Youden’s index to determine the point of the ROC curve for which (sensitivity + specificity) 

is maximal. 

Hierarchical multiple regressions analysis between EDSS score at follow-up as dependent 

variable and CSF Aβ levels as explanatory variable was performed using SPSS. The regression model was 

adjusted in order to control for the potential effect of age, gender, EDSS score at baseline, disease 

duration, WM LL, and GMF. For linear and multiple regressions analyses and for correlation analyses the 

statistical threshold was set to p<0.05. 

 

RESULTS 

Clinical variables and CSF biomarkers 

When dividing the patient cohort according to individual disease severity over 3 to 5-year follow-

up, those patients with a follow-up EDSS score ≥3 had lower CSF Aβ levels than those with a follow-up 

EDSS score <3 (650.8±204.8 pg/ml vs 941.9±280.2 pg/ml; p<0.0001; Figure 1). Interestingly, the 

retrospective comparison of their baseline EDSS scores did not reveal any significant difference (p>0.05). 

CSF Aβ levels correlated with the EDSS score at 3-year follow-up (n=60; r=−0.59,  <0.0001; Figure 

2a), and such correlation became even stronger when considering the available EDSS scores at 5-year 

follow-up (n=35; r=−0.65, p<0.0001; Figure 2b). No correlation between CSF Aβ levels and EDSS score at 

baseline was observed (p>0.05). 

The multiple regression analysis (adjusted for the potential effect of age, gender and disease 

duration) to predict patients’ BREMSO score showed CSF Aβ concentration as the best predictor (r=−0.60, 

p<0.0001; β=-0.56; Figure 2c). 

The multiple regression analysis to predict patients’ increase in the EDSS score at follow-up 

confirmed CSF Aβ concentration as best predictor (r=−0.59, p<0.0001, β=-0.52).  
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We calculated the best CSF Aβ value able to predict disease progression with a ROC curve 

analysis and it turned out to be 813 pg/ml. The area under the curve (AUC) was 0.811 (95% CI 0,690-0,933, 

p=0.0001; Figure 3).  

We split our cohort into two groups based on CSF Aβ levels (Aβlow under 813 pg/ml and Aβhigh 

over 813 pg/ml). 

With respect to CSF tau and NfL levels, no significant between-group differences were observed 

(p>0.05, data not shown). 

 

WM damage  

At baseline MRI, there were no differences in WM-LL between Aβlow and Aβhigh. These data were 

confirmed also at 1-year follow-up MRI.  

The EDSS score at follow-up correlated with WM LL (r=0.31; p=0.04). 

 

Brain volumetrics 

For all subjects, we measured WMF and GMF from both, baseline and 1 year follow-up T1-

weighted volumes. Although a trend of volume reduction was observed, it did not reach the statistical 

significance (p>0.05, data not shown). In contrast, when comparing patients who did reduce their GMF 

against the patients who did not, the former had lower CSF Aβ levels (865.4±206.4 pg/ml vs. 1062.0±141.8 

pg/ml; p=0.04; Figure 4). In other words, the patients with a reduction of their GMF after 1 year were the 

same who had lower CSF Aβ levels. The VBM analysis performed to assess regional GM atrophy 

between baseline and 1-year follow-up MRI scan showed a pattern of relative atrophy mainly involving 

the prefrontal, cingulate, parahippocampal and cerebellar cortex (PFWE corr at cluster level <0.0025). In 

particular, the specific areas we identified were: bilateral cerebellar cortex, bilateral dorsolateral and 

medial prefrontal cortex, left orbitofrontal cortex, bilateral cingulate cortex, and right parahippocampal 

cortex (Figure 5). 

 

DISCUSSION 
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Following our previous findings12, we recruited here a larger cohort of MS patients with a longer 

follow-up, classifying them as Aβlow and Aβhigh based on their CSF Aβ levels. With respect to the clinical 

outcome, Aβlow showed a higher risk of disease progression. Interestingly, patients showing a higher 

EDSS score at 5-year follow-up were not the same who showed a higher EDSS score on their first attack 

(baseline). Also, when dividing the patient cohort into two groups according to their follow-up EDSS 

score (cut-off ≥3), the retrospective comparison of their baseline EDSS scores did not reveal a significant 

difference. In line with this evidence, patients’ EDSS score at baseline was able to predict patients’ 

disability at 3-year, but not at 5-year follow-up. This suggests that the severity of the first MS relapse does 

not reflect the future evolution of the disease, and that other pathophysiological mechanisms are likely 

implicated. Interestingly, CSF Aβ levels came out as a predictor of disease disability12, whose strength 

became increasingly stronger when prolonging the follow-up intervals from 3 to 5-year. Keeping all these 

data together, they indicate that a higher EDSS score at baseline in the absence of reduced CSF Aβ levels 

does not necessarily indicate a worse prognosis. Although our findings need to be replicated on a larger 

cohort of patients, we argue that lower CSF Aβ levels may be associated with or may even induce the 

activation of more aggressive pathogenic mechanisms that are already in place since the early stages of 

disease. With respect to the underlying processes that might combine reduced CSF Aβ levels with a 

worse features, the spectrum of hypotheses appears extremely broad. On one hand, the inflammation 

increases β-site-APP-cleavage-enzyme-1 (BACE1) activity21, which was previously found increased in 

patients with reduced CSF Aβ levels22. BACE1 is also involved in the cleavage of neuregulin-1 (NRG1)23, a 

protein that plays a crucial role in myelin repair. On the other, CSF Aβ reduction could depend on APP 

deposition around injured axons, although there is no evidence of Aβ deposition in MS plaques. Recent 

studies showed that APP-expressing axons are partially myelinated, suggesting that acute axonal damage 

may, at least partially, occur independently from demyelination24. In other words, dysregulation of 

BACE1 and NRG1 might represent the myelin repair processes, while APP expression might be regarded 

as a biomarker of acute axonal injury. However, recent studies have shown that Aβ1−42/Aβ1−40 ratio is not 

altered in MS, in contrast to Aβ1-42 alone25. Therefore, we acknowledge that the  Aβ1−42/Aβ1−40 ratio should 

be considered before attributing too much influence of Aβ1-42 to the mechanism of disease progression.  
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In our cohort of patients, we also identified a cut-off value of CSF Aβ able to discriminate 

between individuals with a higher from those with a lower risk of clinical progression. 

Interestingly, no correlations were found between WM-LL and Aβ levels at baseline. These data 

gain interest since we previously demonstrated in a paper about CSF biomarkers of neurodegeneration 

and WM damage in patients with Alzheimer's disease (AD)26 that CSF Aβ levels were instead a predictor 

for WM-LL accumulation. The myelin model combines the occurrence of WM metabolic damage with Aβ 

deposition27. It is fascinating how several factors might be involved in this model. To take an example, we 

mention Apolipoprotein E (ApoE), the second most important risk factor for late onset AD after age. In 

the brain, ApoE is the primary transporter of endogenously produced lipids that are essential for myelin 

function28. A reduced capacity to mobilize these essential lipids and recycle them into myelin repair 

processes may link together WM damage and Aβ deposition27. Regarding MS, there are currently 

insufficient data on this topic, which could be a matter of further studies.  

With respect to GMF, taking into consideration the relative small number of MRI scan, our 

findings seem to corroborate the hypothesis that lower CSF Aβ levels associate not only with worse 

clinical features, but also with worse radiological prognostic conditions. In particular, those patients with 

a relative reduction of GMF at follow-up MRI had lower CSF Aβ levels than those who had not. 

Replication in a larger cohort of patients is needed to clarify this point. 

In our study, regional VBM analysis were globally comparable in Aβlow and Aβhigh, but 

interestingly, among patients with a reduction of GMF after one year, a pattern of relative atrophy mainly 

involving the prefrontal, cingulate, parahippocampal and cerebellar cortex was found. It is known that 

GMF decreases progressively during MS course29 and appears to be associated with accumulation of 

physical and cognitive disabilities18,19. This GMF loss occurs in varying degrees, and with a different 

regional distribution among disease phenotypes, but it is already detectable at the earliest disease 

stages20. A widespread pattern of GM atrophy was found in several previous VBM studies. In particular, 

basal ganglia structures, prefrontal cortex, posterior cingulate gyrus and cingulate gyrus were often 

identified as regions of significant GM loss in MS30. Recent studies also reported hippocampal and 

parahippocampal atrophy in MS patients31. Therefore, as concluded in a recent meta-analysis of VBM 
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works30, GM atrophy is documented by neuroimaging studies in MS and appears to correlate with 

clinical disability more closely than WM changes. Whether regional GM atrophy is linked to specific 

pathophysiological processes or it is the result of differences in susceptibility to inflammation, is still 

matter of debate. 

Certain limitations exist for this study. First, as it known, CSF Aβ levels could have a clear 

variability in CSF between repeated analyses also in the same laboratory31. Second, it would be necessary 

to prolong the follow-up time to minimize the risk of confounding factors such as the aggressiveness of 

the acute first clinical attack. Third, this is an exploratory study and a larger cohort of patients is needed 

to confirm the findings. 

In conclusion, this study suggests that CSF Aβ levels may represent a significant feature in MS, as 

they may be a predictive progression biomarker. Moreover, we propose a possible cut-off value of CSF 

Aβ levels to identify patients with a high or low risk of disease progression. As part of a fascinating 

hypothesis, we have speculated that lower CSF Aβ levels may be associated with a decreased ability to 

remyelinate CNS axons, with an early WM and GM damage, and a with a higher probability of clinical 

disease progression. Nevertheless, the exact role played by Aβ remains to be determined. In particular, it 

remains to be clarified whether it plays a causal role or represents the epiphenomenon of a neuroaxonal 

reparative process, or it plays a proper protective role.  
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