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We study sandpile models as closed systems, with the conserved energy densityz playing the role of an
external parameter. The critical energy densityzc marks a nonequilibrium phase transition between active and
absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient
properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to
identify the universality classes of such models, in hopes of assessing the validity of two recently proposed
approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a
mapping to driven interface dynamics in random media.
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I. INTRODUCTION

Sandpile models@1# are one of the simplest examples
avalanche dynamics, a phenomenon of growing experime
and theoretical interest. In these models, grains of ‘‘energ
~sand! are injected into the system, while open boundar
@1# allow the system to reach a stationary state, in wh
energy inflow~a kind of external drive! and outflow~dissi-
pation! balance. In the limit of infinitely small external driv
ing, the system displays a highly fluctuating, scale-invari
avalanchelike response: the hallmark of criticality.

Ten years after the introduction of the first sandpile a
tomaton by Bak, Tang, and Wiesenfeld~BTW! @1#, our un-
derstanding of its critical behavior remains frustratingly lim
ited, although several variants of the original model ha
been studied intensively@2–5#. Despite some remarkable ex
act results@6,7#, and various renormalization group analys
@8–10#, the tempting possibility of assigning these mod
their proper universality classes remains unfulfilled. Theo
ical and numerical difficulties have likewise hampered a p
cise estimation of critical exponents. Only recently was
upper critical dimensiondc54 established under some a
sumptions for the avalanche structure@11#.

Originally, sandpile models were proposed as the pa
digm of self-organized criticality~SOC! @1#, i.e., evolution to
a critical state without tuning of parameters. For this reas
sandpile models were considered for a long time to inhab
different world than that of standard critical phenomen
Later, several authors pointed out that, in fact, the SOC s
can be ascribed to the presence of two infinitely separa
time scales@12–15#. The two time scales correspond to th
external energy input or driving, and the microscopic evo
tion ~‘‘avalanches’’!. This time-scale separation~also called
slow driving! effectively tunes the system to its critical poin
What is the relation between critical states due to infin
time-scale separation and regular critical points? This qu
tion stimulated many theoretical studies aimed at elucida
the links among sandpile automata and models exhibi
nonequilibrium phase transitions, such as systems with
PRE 621063-651X/2000/62~4!/4564~19!/$15.00
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sorbing states@16,17#, interfaces in disordered media@18–
21#, the voter model@4#, and branching processes@23#.

In order to make connections with other nonequilibriu
phenomena more firm, and to establish universality clas
precise critical exponent values are needed. Unfortunat
critical exponents governing the deviation from criticali
cannot be measured in slowly driven sandpiles, which
posed by definition at their critical point@22#. Thus corre-
spondences between sandpiles and other nonequilib
phase transitions can be only partial and inconclusive.
order to overcome this conceptual difficulty, a different a
proach to sandpiles has been recently pursued@16,17,24,25#.
It consists in analyzing sandpiles withfixed energy@26#, that
is, in considering the same microscopic rules that defi
sandpile dynamics, but without driving and boundary dis
pation. In this way the system is closed, and thus the t
energy is a conserved quantity, fixed by the initial conditio
and can be identified as a~temperaturelike! control param-
eter. The system turns out to be critical only for a particu
value of the energy density~equal to that of the stationary
slowly driven sandpile!, and it is thus possible to study de
viations from criticality. This approach to sandpiles sugge
further analogies with systems with absorbing states@27# and
interfaces in disordered media@28,29#.

The stationary state of standard sandpile models
reached through the balance between the input and loss
cesses, identified by the energy addition and dissipation r
h and e, respectively. Critical behavior is observed in th
slow driving regime, in which the parametersh and e are
tuned to their critical values (h→0 and e→0, with h/e
→0) @15,16#. In this regime, the system jumps among a
sorbing configurations~in which activity is null! via ava-
lanchelike rearrangements. Evidently, in the absence of
ternal driving, any sandpile model can fall into an absorb
configuration. The connection to absorbing state phase t
sitions is made more clear by definingclosed, fixed-energy
sandpiles in whichh[0 and e[0, and periodic boundary
conditions are imposed. Since the dynamics admits nei
input nor loss, the total energyE is conserved, and the en
4564 ©2000 The American Physical Society
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ergy densityz5E/Ld is a tuning parameter. In this case,
the energy densityz is large enough, the system reaches
stationary state with sustained activity, i.e., it is in theactive
phase@16,27#. Conversely, for small energy values, the sy
tem relaxes with probability 1 into a frozen configuratio
i.e., it is in theabsorbingphase. Separating these two r
gimes is a critical point (z5zc) with marginal propagation
of activity.

Once it is appreciated that fixed-energy sandpiles exh
a continuous transition to an absorbing state, the existenc
a critical stationary state in the corresponding driven diss
tive sandpile is easily understood. That is because energ
added only in the absence of activity (z,zc), while dissipa-
tion occurs only in the presence of activity (z.zc). Thus
dz/dt is positive forz,zc , and vice versa, leavingzc as the
only possible stationary value of the energy density@30#.
~The condition that dissipation and hence activity be abs
in the subcritical phase makes the absorbing nature of
phase an essential ingredient of SOC.! Since SOC means
tuning a system to its critical point by means of an infinite
slow drive, it is natural to try to understand the critical b
havior first in the simpler context of a fixed-energy mod
But while many examples of absorbing-state phase tra
tions have been studied in detail in recent years, we will
that characterizing sandpile criticality, even in the fixe
energy formulation, is a nontrivial project.

In this paper we define and studyfixed-energy sandpile
~FES’s! with various microscopic dynamics. In particula
we analyze the BTW sandpile@1#, the stochastic Manna
model @2,31#, and a model with random mixing of a~real-
valued! energy: the shuffling model@32# ~full definitions are
given in Sec. II!. We show that all of these models exhibit a
absorbing-state phase transition at a critical valuezc of the
energy density. What distinguishes the sandpile from ot
models with absorbing states is that the control parametz
represents the global value of a conserved field. This ph
transition is also the basis of the critical behavior of driv
self-organized sandpiles.

Using the insights provided by the connection with a
sorbing states, we discuss in detail the attempt to constru
field theory for sandpiles@17#. The latter is a generalizatio
of Reggeon field theory~RFT! @33#, the minimal continuum
theory describing absorbing-state phase transitions@34#. We
also discuss an alternative approach that considers sand
from the perspective of linear interface models~LIM’s ! in
disordered media@18–20#. Since continuum description
have proved to be of fundamental importance in understa
ing universality and critical behavior, we analyze in det
open questions and possible improvements of these the
ical approaches.

For all the models mentioned, we report results of sim
lations close to the critical point, and discuss them in ter
of universality classes. Numerical results indicate three
tinct critical behaviors, depending upon the microscopic
namics of models. In particular, the BTW model defines
critical behaviorper se, related to the deterministic nature o
the dynamics. We find striking evidence of nonergodicity
the BTW FES’s: an anomalous transient to the station
state, and lack of self-averaging. Stochastic automata, s
as the Manna model, have a critical behavior that is rat
close to the one of linear interface depinning models. Fina
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the shuffling model shows a critical behavior that could
compatible with the RFT universality class. However, t
nonlocal dynamics of this model merits a detailed exami
tion. It is also important to note that all models show a v
lation of certain scaling relations usually associated w
absorbing-state phase transitions. This seems to point ou
particular role of the conserved field in these systems.
nally, we discuss the numerical results in the perspective
the theoretical frameworks mentioned above.

The outline of this paper is as follows: after defining t
models in Sec. II, we discuss the generalized RFT the
~Sec. III! and LIM approach~Sec. IV! to FES models. We
analyze from a critical perspective the approximations a
hypotheses involved in these approaches. In particular,
discuss the nature of the different noise terms; this turns
to be essential to the identification of universality classes
Sec. V we present the results of extensive simulations in
dimensions, and analyze them in the perspective
absorbing-state transitions@16,17#, and the LIM mapping,
which focuses on the roughness of a suitably defined in
face @18–20#. We find differences between BTW, Mann
and fully stochastic FES exponents that persist upon enl
ing the system size. Section VI is concerned with the orig
of these differences, and possible improvements in the th
retical descriptions, to capture the true critical behavior
FES models. A brief summary is provided in Sec. VII.

II. FIXED-ENERGY SANDPILES

In this paper we consider three different sandpile mod
All are defined on ad-dimensional hypercubic lattice (d
52 in this study!; the configuration is specified by giving th
energy zi at each site. The energy may take integer or r
values, depending on the model, but is non-negative in
cases. The specific models are defined as follows.

BTW model@1#: Each active site, i.e., with an~integer!
energy greater than or equal to theactivity threshold zth (zi
>zth52d), topples at a unit rate, i.e.,zi→zi2zth , and zj
→zj11 at each of the 2d nearest neighbors ofi. The top-
pling rate is introduced in order to define a Markov proce
with finite transition rates between configurations that dif
at a small number of sites. The next site to topple is selec
at random from the set of active sites; this is the only s
chastic element in the dynamics.~The initial configuration is,
in general, random as well.! The BTW dynamics, withpar-
allel updating~all active sites topple at each update!, is com-
pletely deterministic, and it has been possible to obtain m
exact results for the driven sandpile in this case, due to
Abelian property@6#. This property implies that the order i
which active sites are updated is irrelevant in the genera
of the final ~inactive! configuration. Accordingly, it is rea-
sonable to expect that sequential or parallel updating d
not affect the qualitative behavior. The BTW model is t
prototypical sandpile model, and has been the subject of
tensive numerical studies@35–37#. Despite the huge numeri
cal effort devoted to the analysis of its critical behavior, t
model presents scaling anomalies which have preclude
definitive characterization. The scattered numerical value
the avalanche critical exponents were recently interprete
terms of multiscaling properties@38#.

Manna sandpile@2,31#: In this casezth52 regardless of
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the number of dimensions; the energy is again integer
ued. The two particles liberated when the sitei topples move
independentlyto randomly chosen nearest neighborsj and j 8
~that is, j 5 j 8 with probability 1/2d) @39#. This model has a
stochastic dynamics, which still enjoys a ‘‘stochastic’’ Ab
lian property, as shown recently by Dhar@31#. The Manna
model has also been the subject of many numerical stud
Together with the BTW model, it has been at the center
the long debate over universality classes for~driven! sand-
piles @40–42#, that we will discuss in later sections. Th
Manna model, fortunately, has a regular scaling behav
The most recent analyses provide a coherent picture o
critical properties and exponent values@41–44#.

Shuffling model@32#: This model has non-negative rea
valued energies. When a sitei topples, the energyZ5zi

1( jNNizj at that site and its nearest neighbors is redist
uted randomly amongst these five sites. That is, we gene
random numbersh1 , . . . ,h5, uniform on @0,1#, and letzj

→zj85h jZ/(h11•••1h5) ( j 51, . . . ,5).Sites with energy
zj8>zth52 topple with probability 1. In addition, the neare
neighbors of the toppling site that have energyzj8,zth also
become active with probabilityzj8/zth . This model contains
stochasticity in each ingredient of the dynamics, and for t
reason can be considered a fully stochastic model. I
clearly non-Abelian: the final configuration depends dram
cally upon the order in which sites are updated. The para
updating version studied in this work exhibits an interest
nonlocal dynamical effect. At each update, the ene
around a site is shuffled among nearest-neighbor sites.
nearest-neighbor~or next-nearest-neighbor! pair of sites are
both active, the energy at a certain site or sites will
shuffled twice within a single time step. For larger agg
gates of active sites, the reshuffling may involve the sa
site several times. In particular, energy can be transpo
over large distances by consecutive shuffling events al
the front of active sites. This nonlocality will create a mixin
effect in the energy transport that one expects to influe
the critical behavior.

In the present paper, we study the Manna and shuffl
models with the parallel updating customarily used in sa
pile automata. The BTW model is implemented using ra
dom sequential dynamics, with each active site having a
pling rate of unity. The next site to topple is chosen
random from a list of active sites, which must naturally
updated following each toppling event. The time increm
associated with each such event isDt51/NA , whereNA is
the number of active sites. This is the mean waiting time
the next event, if we were to choose sites blindly, instead
using a list.~In this way,NA sites topple per unit time, just a
in a simultaneously updated version of the model.! Since the
BTW model is Abelian, the choice of updating~parallel ver-
sus sequential! should be irrelevant to the asymptotic critic
properties. This has been tested in independent simulat
using parallel dynamics@45#.

In a FES, the energy densityz is fixed in the initial con-
dition. The latter is generated by distributingzLd particles
randomly among theLd sites, yielding an initial~product!
distribution that is spatially homogeneous and uncorrela
Once the particles have been placed, the dynamics be
The condition to have at least one active site in the ini
l-
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configuration is trivially satisfied on large lattices, for thez
values of interest, i.e., close to the critical value.~For largeL,
the initial height at a given site is essentially a Poisson r
dom variable, and the probability of having no active sites
exponentially decreasing with the lattice size.! It is worth
remarking that while the initial conditions are statistica
homogeneous, the energy density is not perfectly smo
For 1! l !L, the energy density on a set ofl d sites is essen-
tially a Gaussian random variable with meanz and variance
; l 2d. The initial value of the critical-site densityrc ~sites
that become active upon receiving energy!, moreover, is gen-
erally far from its stationary value, complicating relaxatio
to the steady state.

If after some time the system falls into a configurati
with no active sites, the dynamics is permanently frozen, i
the system has reached an absorbing configuration. We
see that as we varyz, fixed-energy sandpiles show a pha
transition separating an absorbing phase~in which the sys-
tem always encounters an absorbing configuration!, from an
active phase possessing sustained activity@46#. This is a con-
tinuous phase transition, at which the system shows a crit
behavior. The order parameter is the stationary average
sity of active sitesra , which equals zero forz,zc , and
follows a power lawra;(z2zc)

b, for z.zc . The correla-
tion lengthj and relaxation timet both diverge asz→zc ;
their critical behavior is characterized by the exponentsn'

and n i , defined viaj;uz2zcu2n' and t;uz2zcu2n i, re-
spectively. The dynamical critical exponent is defined viat
;jz, which impliesz5n i /n' . The exponentsb, n' , andn i
define the stationary critical behavior at the absorbing-s
phase transition@27#. In the vicinity of the critical point,
wherej is very large, the actual characteristic length of t
system is the lattice sizeL. We shall see that the applicatio
of finite-size scaling allows us to locate the critical point
well as estimate critical exponents.

III. SANDPILES AS SYSTEMS
WITH ABSORBING STATES

In this section we discuss a recently proposed phen
enological field theory of sandpile automata@17#. Our main
goal is to clarify the connection between fixed-energy sa
piles and RFT, which is the minimal field theory describin
absorbing-state phase transitions@33,34# @whose prototypical
examples are directed percolation~DP! @47# and contact pro-
cesses@48##.

In Ref. @17# we proposed a Langevin description for san
pile automata by considering the mean-field description
sandpiles reported in Refs.@15,16#, and introducing spatia
dependence and fluctuations. This allows a derivation tha
based on the microscopic dynamics of sandpile automata
involves several approximations.

Here we show how to write down a general Langev
description of sandpile automata by using very general s
metry considerations@49#. This results in a complete descrip
tion, but one that is not easy to deal with, unless the pro
approximations are introduced. After the introduction
some specific assumptions regarding noise terms, we rec
the results of Ref.@17#. On the other hand, the present mo
general treatment indicates possible modifications that m



o

in
h
ty
ne
he
-

s

g

-
sl

a

-

f

y,
on
un

n
e

t

ve

w.
per
se

to
e
r is

the
erm
no

ully
he
ent

ell
nge
of
de-

n

s
the

e

t

t
for

u-

m,

PRE 62 4567ABSORBING-STATE PHASE TRANSITIONS IN FIXED- . . .
be needed for a complete characterization of sandpile m
els.

In sandpiles, the order parameter isra , the density of
active sites~i.e., whose heightz>zc) @15,16,26#; if at a given
time ra(x)50 for all x, the system has reached an absorb
configuration. The only dynamics in the model is due t
field ra(x), which is coupled to the local energy densi
z(x,t), which enhances or depresses the generation of
active sites@50#. We therefore consider the dynamics of t
local order-parameter fieldra(x,t) in a coarse-grained de
scription, bearing in mind that the energy densityz(x,t) is a
conservedfield. Note that bothra(x,t) and z(x,t) are non-
negative. The most general dynamical equation that impo
local conservation of energy is

]z~x,t !

]t
5“

2~ f z@$ra%,$z%#!1“•@gz~$ra%,$z%!hW ~x,t !#,

~1!

wheref z andgz are functionals ofra andz. Conservation is
enforced by the“2 term and the standard form of conservin
noise, as for example in Cahn-Hilliard-type equations@51#

(hW is a d-component vectorial noise!. The dynamical equa
tion for the density of active sites can be written analogou
as

]ra~x,t !

]t
5 f a~$ra%,$z%!1ga~$ra%,$z%!h~x,t !, ~2!

wheref a andga are functionals ofra andz, andh(x,t) is an
uncorrelated Gaussian noise. We note thath is a noncon-
servednoise: the active-site density is not a conserved qu
tity. The functionalsf a and f z , and variancesga

2 and gz
2

appearing on the right-hand sides of Eqs.~1! and ~2! are
analytic functions~polynomials! of the local densities and~in
principle! their spatial derivatives.

The right-hand sides of Eqs.~1! and~2! must vanish when
ra50 ~if they did not, the statera50 would not be absorb
ing!. This implies that none of the functionalsf a , ga

2 , f z ,
andgz

2 contain terms independent ofra ; they are functions
of ra(x,t) and the productz(x,t)ra(x,t) @27#. In this way
activity is sustained only ifra(x,t).0. It is convenient at
this point to introduce a reference valuez0 of z ~for instance
the global average energy!, and expand the term}zra about
z0. IntroducingDz(x,t)[z(x,t)2z0, we can express all the
functionals as functions ofDz(x,t)ra(x,t), where all terms
of the formz0@ra(x,t)#n are absorbed into the coefficient o
@ra(x,t)#n, z0 being constant.

In order to write the various functionals more explicitl
we have to consider the symmetry of the lattice in questi
For isotropic models the system is inversion symmetric
der x→2x, so that odd powers of gradients, such as“ra ,
are forbidden. This leaves us with functionals such as

f a~$ra%,$z%!5Da“
2ra~x,t !2rra~x,t !1mra~x,t !Dz~x,t !

2bra
2~x,t !1•••, ~3!

where Da , r , m, and b are constants whose connectio
with the microscopic dynamics will be clarified below. Th
functionalsf z , ga , andgz have similar forms. If we do no
d-

g
e

w

es

y

n-

.
-

want to deal with an infinite set of power and derivati
terms inra(x,t) and Dz(x,t), we have to identify the rel-
evant terms from the renormalization group point of vie
This can be done via power counting analysis at the up
critical dimension. This implies a knowledge of the noi
term, i.e., we have to decide the terms to retain inga andgz .
The most relevant term is the linear one, corresponding
ga;gz;ra

1/2(x,t) @33,27#. In RFT, the rationale for the nois
variance being proportional to the local order paramete
that the numbers of elementary~birth and death! events in a
given space-time cell are Poissonian random variables, so
variance is equal to the expected value. That the noise t
for sandpile models has the same form as in RFT is by
means guaranteed. For instance, the BTW model is f
deterministic, and the nontrivial assumption that at t
coarse-grained level it is described by a time-depend
noise should be tested. Further, the fact that the fieldz(x,t)
is conserved could affect the noise form. In fact, it is w
known that additional symmetries on the fields can cha
the noise form@52#. In the absence of an exact derivation
the noise terms, we proceed by showing the Langevin
scription resulting from the choice of a RFT-like noise.

Assuming RFT-like noise terms, the activity equatio
takes the form

]ra~x,t !

]t
5Da“

2ra~x,t !2rra~x,t !2bra
2~x,t !

1mra~x,t !Dz~x,t !1ha~x,t !, ~4!

whereha5ra
1/2h. Here we have retained only relevant term

with respect to the noise considered. In mean-field theory
critical point corresponds tor 5r c50; we expect fluctua-
tions to renormalizer c to a nonzero value. In any case, th
value ofr depends onz0, i.e., the energy densityz0 plays the
role of a ~temperaturelike! control parameter.

The evolution ofDz(x,t) is governed only by the mos
relevant term in the functionalf z , that is, the one linear in
ra . The equation may be integrated formally to yield

Dz~x,t !5Dz~x,0!1E
0

t

dt8@Dz“
2ra~x,t8!

1“•„Ara~x,t8!hW …#. ~5!

Substituting this into Eq.~4! and disregarding irrelevan
higher order terms, the proposed Langevin equation
fixed-energy sandpiles becomes@17#:

]ra~x,t !

]t
5Da“

2ra~x,t !2r ~x!ra~x,t !2bra
2~x,t !

1wra~x,t !E
0

t

dt8“2ra~x,t8!1Arah~x,t !.

~6!

h is a Gaussian white noise whose only nonvanishing cum
lants arê h(x,t)h(x8,t8)&5Dd(xÀx8)d(t2t8); c,b, andw
are fixed parameters; and the coefficient of the linear ter

r ~x!5r 2mDz~x,0!, ~7!
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inherits its spatial dependence from the initial energy dis
bution Dz(x,0). Observe thatb has to be positive to ensur
stability; w.0 follows from the diffusion coefficientDz

.0. This equation recovers the result obtained in Ref.@17#;
we refer the reader interested in a more phenomenolog
approach to that paper.

We find, by standard power-counting analysis, that
upper critical dimension of this theory isdc54 @53#. Above
dc , a qualitatively correct mean-field description is obtain
by dropping the noise and gradient terms and replac
z(x,0) by the spatially uniformz5z0, yielding

] tra~ t !52 r̄ra~ t !2b̄ra
2~ t !. ~8!

The critical pointz5zc corresponds tor̄ 50. Abovezc , we
have an active stationary state withra;(z2zc)

b with b
51; for z,zc , the system falls into an absorbing config
ration in whichra50. Other mean-field critical exponen
can be calculated as well.

The present Langevin equation resembles RFT, excep
the spatial dependence ofr and the non-Markovian term
Both stem from the interaction between activity with t
energy background. Let us present some comments on t
two terms.

The effective growth rate@i.e., the net coefficient ofra in
Eq. ~6!# is

2r e f f~x!52r 1mDz~x,0!1wE
0

t

dt8“2ra~x,t8!. ~9!

In the absence of the memory term, and for generic ini
conditions,Dz(x,0)Þconst, Eq.~6! is the field theory of
directed percolation withquenched disorder. Disorder is
known to be a relevant perturbation in DP belowdc54 @54–
58#. On the other hand, the memory and spatially depend
linear termstogetherrepresent coupling to the energy de
sity, which is not quenched in, but relaxes via the diffusi
of activity @see Eq.~7!#. Thus the effect of a spatially depen
dent r, in the present context, is not that of quenched dis
der. In fact, we expect the physical effects of quenched
order, and the present coupling to a conserved energy de
~frozen temporarily, that is, only in the absence of activit!,
to be quite different@59#. A intuitive argument to this effec
runs as follows. In the active stationary state, close to
critical point, activity is typically restricted to localized re
gions at any moment, and a given pointx will experience
bursts of activity interspersed amongst dormant intervals.
activity alternately enters and vanishes from the neighb
hood ofx, the positive and negative contributions to the L
placian memory term in Eq.~6! will largely cancel, and so
this term will be dominated by the most recent changes in
state of the region. Thus the initial spatial variation inr (x,0)
will effectively be forgotten in the stationary state.

Suppose thatr e f f(x,t) did represent quenched disorde
i.e., that a pointx at which Dz(x,0) has a local maximum
would continue to have a higher than average creation
for all t.0. The active site density would then have a loc
maximum at x, so that “

2ra,0 at x. But since
](2r e f f)/]t5w“

2ra , the effective creation rate atx would
i-
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decrease untilra no longer took a maximum there, contra
to hypothesis. We conclude, therefore, that Eq.~9! does not
represent quenched disorder.

It is interesting to compare the effective growth rate in o
theory with that found in anon-Markovianversion of the
contact process employing so-called ‘‘run-time statistic
~RTS! @58,60#. In the basic contact process~CP! the creation
rate ~i.e., for activity to spread from an active site to a
inactive nearest neighbor! is l, independent of position o
time. In RTS the creation rate at sitei is l i(t)5(a
1ci)/(ni1a11), wherea is a parameter, andci represents
the number of creation events out ofni total events at sitei,
up to timet. Evidently, sites which by chance have enjoy
a larger fraction of creation events in the past are likely
continue to do so, mimicking a quenched random creat
rate. The RTS appears to reproduce the stationary prope
of the CP with quenched disorder. On the other hand, a
sion of RTS in whichl( i ) was a decreasing function ofci
would not mimic quenched disorder, since sites which
chance had enjoyed a larger than average fraction of crea
events in the past would tend to have fewer such event
the near future. In our field theory, the effective creation r
contains a non-Markovian contribution of the latter typ
since regions with larger than averagera tend to have
“

2ra,0, and vice versa. Thus the non-Markovian term p
vides a stabilizing, negative feedback in the creation ra
@Note however, that*r (x,t)dx is constant, since*“2radx
50.# While the non-Markovian term effectively erases t
initial distribution r (x,0), we do expect the spatial depe
dence ofr to play an important role when we consider av
lanches, i.e., the spread of activity from a localized seed,
nonuniform energy density.

As we have just discussed, the non-Markovian term
ables the theory to forget the quenched, stochastic repro
tion rater (x,0). Naively, its associated coefficientw has the
same dimensionality asb andD, which are the two margina
parameters of the RFT at its upper critical dimension,dc
54. Belowdc we expect the critical fixed point to be reno
malized tor 5r * , defining a renormalizedzc and nontrivial
critical exponents. If the non-Markovian term is irrelevan
the field theory would be governed at criticality by the RF
fixed point. Ind52 the RFT critical behavior is characte
ized byb.0.58, n'.0.73, andz.1.77 @27#. We shall see
in the following sections that numerical results are not co
patible with this picture in the BTW and Manna cases. T
calls for a full renormalication group~RG! analysis of Eq.
~6!. Unfortunately, this is a very dificult task because
primitive divergencies appearing in the perturbative a
proaches. A discussion of the RG treatment of the pres
field theory will be reported elsewhere@53#.

Possible modifications and generalizations of Eq.~6!, and
their implications for critical behavior, will be discussed
later sections. Finally, a microscopic derivation of the fie
theory would ensure that the conservation symmetry
been properly taken into account in the present phenome
logical approach.

IV. SANDPILES AS INTERFACES IN RANDOM MEDIA

A connection between sandpiles and interfaces moving
disordered media can be obtained by defining a varia
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H( i ,t) that counts the number of topplings~instances of ac-
tivity ! at sitei up to timet. This variable defines a growin
surface in a (d11)-dimensional space. The interface is sa
to be in the pinned phase if its disorder-average velo
^] tH( i ,t)& is null; a finite velocity marks the moving phas
It is then easy to recognize that the pinned phase in inter
models is completely analogous to an absorbing state, w
the moving phase corresponds to an active state@61#. To
make this correspondence more precise, let us note th
nonzero interface velocity is only possible if active sites
present in the system; equivalently we can note t
] tH( i ,t)5ra( i ,t), so in either representation the dynam
cally active phase is restricted to the regime with nonvan
ing ra(x,t). In this way it is evident that pinned~unpinned!
and absorbing~active! states are just two ways of looking a
the same physical situation. The connection between dr
sandpiles and interfaces was first proposed by Narayan
Middleton @18# and Paczuski and Boettcher@19#, and re-
cently generalized by Lauritsen and Alava@20,21# who pro-
vided a direct mapping between the BTW model and a lin
interface with quenched disorder. In the following we ada
their approach to fixed-energy sandpiles.

Let Hi(t) be the number of topplings at sitei up to timet,
andzi(t) the energy ati at time t. The latter is evidently the
difference between the inflow and the outflow of energy
site i in the past. The outflow is given by 2dHi(t), since in
each toppling 2d particles are expelled from the site. The
are two contributions to the inflow, the first being the ener
zi(0) present at timet50. The second comes from toppling
of the nearest-neighbor sites, and can be expresse
(NNH j (t). Summing the above contributions, we obtain

zi~ t !5zi~0!1 (
jNNi

H j~ t !22dHi~ t ! ~10!

5zi~0!1“D
2 Hi~ t !, ~11!

where“D
2 stands for the discretized Laplacian.

Since sites withzi(t).zc52d21 topple at unit rate, the
dynamics of the height follows

dHi~ t !

dt
5Q@zi~0!1“D

2 Hi~ t !2zc#, ~12!

wheredHi(t)/dt is a shorthand notation for therate at which
the integer-valued variableHi(t) jumps to Hi(t)11, and
Q(x)51 for x.0, and is zero otherwise. Sincezi(t) takes
integer values, the smallest argument of theQ function
yielding a nonzero toppling rate is unity. If we replaceQ(x)
by x, and assume this change to be irrelevant for criti
properties@62#, then the BTW FES is mapped onto a di
cretized Edward Wilkinson~EW! equation @28,63# with
quenched disorder, represented by the fluctuations in
zi(0) term. A noise term of this kind, which varies from si
to site, but is time independent, is referred to ascolumnar
noisein the field of interface dynamics@64,65#.

To understand the phenomenology of Eq.~12!, let us de-
fine the average initial energy asf 5^zi(0)&. There are three
different possibilities.

~1! If f is small then, with probability 1 the system
eventually pinned by disorder.
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~2! If f is large enough, the system has a finite veloc
and keeps moving indefinitely.

~3! Separating these two regimes is a critical point ma
ing the depinning transition.

Thus the phase transition in the BTW FES is analogou
a depinning transition. If the caveat noted above regard
the replacementQ(x)→x turns out to be unimportant, the
the transition should show the same scaling properties
depinning in the Edward-Wilkinson equation with column
noise.

How are these results changed for the Manna model?
the outflow at sitei we now have 2Hi(t), since only two
particles are transferred in each toppling event. The to
input is the sum of the initial energy,zi(0), and astochastic
contribution I i(t) associated with topplings at the neare
neighbors ofi,

I i~ t !5 (
jNNi

(
t51

H j (t)

h i , j~t!, ~13!

where theh i , j (t) are a set of independent~for i fixed!, iden-
tically distributed random variables that specify the numb
of particles~0, 1, or 2! received by sitei at thetth toppling
of site j. Thus

h i , j~t!5H 0 with probability ~121/2d!2

1 with probability ~121/2d!/d

2 with probability ~1/2d!2.

~14!

Of course, the variables associated with different accep
sitesi are highly correlated, since( ih i , j (t)52. h i , j (t) has
mean 1/d and variance (121/2d)/d. It is convenient to in-
troduce j i , j (t)[h i , j (t)21/d, which has zero mean, th
same variance ash i , j (t), and obeys( ij i , j (t)50. We may
now write the analog of Eq.~11! for the Manna model:

zi~ t !5zi~0!1
1

d
“D

2 Hi~ t !1 (
jNNi

(
t51

H j (t)

j i , j~t!. ~15!

To obtain a simple EW-like equation for the height in th
Manna model, we must~1! ignore the correlations betwee
noise terms associated with different sites, and~2! imagine
that the noise is updated when sitei itself, rather than one of
its neighbors, topples; we will denote the noise term
j i(H). Under these assumptions we may write

dHi~ t !

dt
5H 1 if zi~0!1

1

d
“D

2 Hi~ t !1j i~H !>2

0 otherwise.

~16!

We have obtained an EW-like equation withquenchedas
well as columnar disorder, the so-called linear interfa
model. This last equation was studied extensively both th
retically and numerically@28,29,63#. If the previously dis-
cussed approximations are irrelevant, the Manna mo
should belong to the LIM universality class@28,29#. The fact
that the correlations between the noise terms are short ra
argues in favor of this conclusion@21#. We have seen tha
two issues remain unresolved.
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~i! Whether the approximations involved in the Man
change the critical behavior from the LIM universality clas

~ii ! Whether the various models are in the same univ
sality class, since even if the approximations in~i! are irrel-
evant, the Manna equation involves quenched as well as
lumnar noise, while only the latter appears in the BT
equation.

In order to answer the above questions analytically
more rigorous study of the noise terms appearing in the
terface equations is needed. This is analogous to the La
vin description of Sec. III. We caution, however, that th
analogy does not imply that it is easy, or even possible
translate equations or results from one language to the o
For example, to the best of our knowledge, no one has
ceeded in writing down an interfacelike equation equival
to RFT @66#.

From a numerical point of view it is possible to measu
various exponents characterizing the behavior of moving
terfaces. Many of these exponents can be related to th
measured in the context of absorbing-state phase transit
It appears clear from the previous discussion that the driv
force in the interface picture is equivalent to the energy d
sity z. This is the control parameter, and the exponentsz and
n' are the same in both pictures. Moreover, the order par
eter exponentb is equivalent to the interface velocity expo
nent usually measured in interface depinning models. M
interestingly, associated with the interface picture are n
exponents, related to the interface roughness, defined a

W2~L,t !5
1

Ld K (i
„Hi~ t !2H~ t !…2L , ~17!

whereH(t)5 l 2d( iHi(t) and the^ & brackets represent a
average over different realizations. In general one exp
W2 to exhibit anL-independent, power-law growth regim
prior to saturating, that is@63#

W2~ t,L !;H t2bW, t!t3

L2a, t@t3 ,
~18!

where the crossover timet3;Lz. The limiting behaviors de-
scribed above follow from the dynamic scaling property

W2~ t,L !5L2aW~ t/Lz!, ~19!

where the scaling functionW(x);x2bW for small x, and at-
tains a constant value forx→`. The dynamic exponent thu
satisfies the scaling relationz5a/bW ~first proposed by
Family and Viseck@67#!. We expect a data collapse for di
ferent system sizes in a plot ofL22aW2(t,L) versust/Lz.
The roughness exponents are related via scaling relation
the other critical exponents. One may show, for examp
thatbW512u, whereu5b/n i. To see this, note that in th
power-law growth regime, for which the correlation leng
j(t)!L, growth events in different regions are uncorrelat
Assuming the scaling property of the single-site height pr
ability, P@Hi(t)#5 f @Hi(t)/H(t)#, we have W2(t)
5var@Hi(t)#}@H(t)#2. SinceH(t) is simply the integrated
activity, H(t)5*0

t dt8ra(t8)}t12u, yielding bW512u.
At this point it is well to raise a caution regarding th

naive application of scaling laws, such as those mentione
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the preceding paragraph. Recent numerical studies hav
vealed that many growth models may exhibitanomalous
roughening, i.e., the local width~calculated on ‘‘windows’’
of sizel !L) scales with an exponent,a loc , other thana. In
these cases, simple scalinga la Family and Viscek does no
hold. Technically this corresponds to the situationW( l ,t)
'tbWFA( l /t1/z), with an anomalous scaling function give
by

FA~u!;H ua loc if u!1

const if u@1;
~20!

it is only for a loc5a that usual self-affine scaling@67# is
recovered. This phenomenon was recently elucidated by´-
pez~see Ref.@68#, and references therein!. In general it origi-
nates from an additional correlation length, shorter than
system size, that enters as a relevant parameter in sc
equations, destroying self-affinity. In practical terms, it
important to observe that in the presence of anomal
roughening, if due attention is not paid~i.e., if scaling rela-
tions are naively assumed to hold!, one can measure differen
correlation-time exponents depending on the type of exp
ment one performs. Let us finally point out that the line
interface model, at least ind51, exhibits anomalous rough
ening @69#, and therefore some of the scaling anomalies
observe could be ascribed to effects of this nature. This is
issue that certainly deserves further study.

V. SIMULATION RESULTS

In this section we present numerical simulations of F
models. All three FES models studied here exhibit a criti
point; for large enough values ofz the active site density~in
the infinite-size limit! has a nonzero stationary value. In o
der to study the critical point and the scaling behavior of
active state in simulations of finite systems, we must stu
the quasistationary state that describes the statistical pro
ties of surviving trials. The finite system sizeL, in fact, in-
troduces a correlation length so that even above the crit
point some initial configurations lead to an absorbing sta
In practice, we compute average properties over a se
Nsamp independent trials, each using a different initial co
figuration (Nsamp ranges from 103 to 105 depending on the
lattice size!. Quasistationary properties are calculated fro
averages restricted to surviving trials. The active-site den
exhibits the usual finite-size rounding in the neighborhood
the transition point; only in the limitL→` does the transi-
tion become sharp. For this reason, finite-size scaling
fundamental tool in the location of the critical point as we
as the calculation of critical exponents@70#.

A. Manna FES model

We performed simulations of the Manna fixed-ener
sandpile in the version in which the two particles liberat
when a site topples move independently to randomly cho
nearest neighbors. We studied lattices ranging fromL532 to
1024 sites on a side, using homogeneous, random initial c
figurations as described in Sec. II.

After a transient whose duration depends on the sys
size L and on D[z2zc , the surviving sample average
reach a steady value. In Fig. 1 we show how the density
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active sites approaches a mean stationary valuer̄a(D,L). At
a continuous transition to an absorbing state, the order
rameter (ra in this instance! is expected to follow the finite-
size scaling form

r̄a~D,L !5L2b/n'R~L1/n'D!, ~21!

whereR is a scaling function withR(x);xb for large x,
since for large enoughL@j;D2n' we must haver ā;Db.
To locatezc , we study the stationary active-site density a
function of system size. WhenD50 we have thatr ā(0,L)
;L2b/n'; for D.0, by contrast,r ā approaches a stationar
value, while forD,0 it falls off asL2d. Only at the critical
point do we obtain a nontrivial power law, which allows u
to locate the critical valuezc . In Fig. 2 we observe a power
law scaling forz50.71695, but clearly not for 0.7170 o
0.7169, allowing us to conclude thatzc50.71695(5). ~Fig-
ures in parentheses denote statistical uncertainties.! The as-
sociated exponent ratio isb/n'50.78(2).

Next we consider the scaling behavior of the active-s
density away from the critical point. The finite-size scali

FIG. 1. Manna FES: active-site density in surviving trials
time at the critical point,z50.71695. From up to bottom, system
sizesL5192, 256, 384, 512, and 800.

FIG. 2. Stationary active-site density vs system size in
Manna FES. Sizes range fromL548 to 800.
a-

a

e

form of Eq. ~21! implies that a plot ofr[Lb/n'r ā versusx
[L1/n'D will show a data collapse for systems of differe
sizes. In practice, we determine the horizontal and vert
shifts ~i.e., in a log-log plot ofra versusD) required for a
data collapse. In Fig. 3, the best data collapse forL>48 is
obtained withb/n'50.78(2) and 1/n'51.22(2). These val-
ues correspond to an exponentb50.64(2). This is recovered
also by a direct fitting of the scaling functionR(x) for large
x ~see Fig. 3!. A good estimate ofb can be also obtained b
looking at the scaling of the stationary density with resp
to D for the largest possible sizesL. In this case ifD.0 and
L@j we have the scaling behaviorr ā;Db. In Fig. 4, we
show the active site density as a function ofD for L51024.
The resulting power-law behavior yieldsb50.64(1), where
the error is dominated by the uncertainty in the critical po
zc .

To determine the dynamical exponentz5n i /n' we study
the probabilityP(t) that a trial has survived up to timet. The
latter appears to decay, for long times, asP(t);exp(2t/tP).
At the critical point, the characteristic decay timetP is a
power-law function of the only characteristic length in th

e

FIG. 3. Scaling plot of the stationary densityr[Lb/n'r ā vs x
5L1/n'D for various system sizes in the Manna FES. The slope
the straight line is 0.64.

FIG. 4. Stationary active-site density as a function ofD5z
2zc for the Manna FES model withzc50.71695.
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system: the system sizeL. Thus we havetP(L);Lz for D
50. An estimate oftP(L) can be obtained by direct fitting
of the exponential tail ofP(t), or by the time required for the
survival probability to decay to one half. In Fig. 5 we repo
the behavior oft(L) close to the critical point. Power-law
behavior is recovered at the critical point, yieldingz
51.57(4). ~The error bar is again dominated by the unc
tainty in the critical valuezc .) As a further consistency
check we considered the densityra,all(t,L), that is, the
active-site density averaged over all trials, including tho
that have reached the absorbing statera50. Assuming that
the time dependence involves a single characteristic time
scales asLz, we write, at the critical pointD50,

ra,all~ t,L !5t2ug~ tL2z!, ~22!

whereg(x) is a constant forx!1 and decays faster than an
power law for x@1. A data collapse can be obtained b
plotting rall5ra,all(t,L)tu versusx5tL2z. The best data
collapse is obtained withu50.42(1) andz51.56(3); it is
shown in Fig. 6. This result confirms that the dynamic
exponent is in the rangez.1.5521.6. An exponentu
50.42(1) is also found in the decay of the active-site den
ra(t) averaged only over the surviving trials~see Fig. 1!. In
simple absorbing-state transitions, the latter exponent is c
sistent with the usual scaling relationu5b/n i , obtained by
assuming, forD50, the simple scaling behaviorra(t)
5Lb/n'y(tLz), with y(x)5const for x→`. In the Manna
FES model, this simple scaling behavior is not observed,
the relaxation of the order parameter shows qualitatively
ferent scaling regimes. In particular,ra(t) exhibits a sharp
drop ~which seems to grow steeper with increasingL) just
before entering the final approach tor ā ~see Fig. 1!. Accord-
ingly, the exponentu violates the usual scaling relation, an
it is impossible to obtain a good data collapse with sim
scaling forms. This is probably due to the introduction of
additional characteristic length that defines the relaxation
the quasistationary state~we are presently studying the po
sible relation between this effect and anomalous rough
ing!. Moreover, it is not clear if the choice of initial cond

FIG. 5. Size dependence oftP close to the critical point of the
Manna FES. The inset shows the power-law decay~on a linear-log
scale! of the survival probability vs time atzc50.71695 for sizes
L5192, 256, 384, 512, and 800, from left to right.
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tions plays a role in this peculiar behavior. A more detail
study of the relaxation to the stationary state is required
order to understand the origin of these scaling anomal
which appear in all the sandpile models analyzed in t
paper, as well as in the one-dimensional Manna FES@71#.

The interface mapping described in Sec. IV prompted
to study the dynamics of the mean widthW(t,L) @see Eq.
~17!#. We studied the evolution of the width atzc , in sys-
tems of sizeL5128–800. Unfortunately, we were not ab
to reach the complete saturation regime of the roughn
which would afford an independent estimate of the expon
a. This is due to the exponential decay of the survival pro
ability at very large times. As shown in Fig. 7, we obtain
good collapse using the valuesa50.80(3) andz51.57(2).
Following Eq.~18!, the short-time behavior ofW(t,L) gives
an exponentbW50.51(1). This exponent, however, shows
systematic increase with the system sizeL. In particular, for
large sizes (L>512) it seems that a simple power-law r
gime is not adequate to represent the temporal behavio

FIG. 6. Scaling plot of the scaled active-site densityrall

5ra,all(t)t
u, in the Manna FES, averaged over all trials vsx

5tL2z with u50.42(1) andz51.56(3). The system size ranges
from L5128 to 800.

FIG. 7. Data collapse analysis atzc50.71695 for the interface
width W(t,L) of H( i ,T), defined as the total number of toppling
time t for each sitei, in the Manna FES. The exponents used a
a50.81(2) andz51.58(3).
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the interface width. Note also that the scaling relationu
1bW51, satisfied to within uncertainty for the other mode
considered, is violated in the Manna case:u1bW50.93(2).
It appears that some of the anomalies affecting the temp
scaling of surviving trials could be influencing the estima
of the roughness exponents. Also in this case, further stud
for example of the local roughness, are needed for a di
comparison with other interface growth models.

In summary, numerical results show clear evidence of
critical behavior usually observed in absorbing phase tra
tions. Critical exponents and a discussion about universa
classes will be provided in Sec. III B. Finally, we note th
the Manna sandpile does not exhibit the strong nonergo
effects reported below for the BTW model.

B. BTW FES model

In Refs. @16,17# preliminary results on the two
dimensional BTW model were reported; however the re
tively small sizes considered did not allow definitive conc
sions. Here we present a more detailed study, includ
considerably larger lattices. To study stationary propert
we performed, for each system sizeL520,40, . . . ,1280 and
energy densityz, Nsamp independent trials~ranging from
53104 for L520 to 1600 forL51280), each extending u
to a maximum timetmax. The latter, which ranged from 80
for L520 to 33105 for L51280, was sufficient to probe th
stationary state.

The simulations reported in Ref.@16#, which extended to
systems of linear dimensionL5160, permitted us to con
clude thatzc52.1250(5)@72#. We first discuss the results o
simulations performed atzc . Figure 8 shows the relaxatio
of active- and critical-site densities atzc ; note the nonmono-
tonic approach to the limiting values. The inset shows t
there is a deterministic, linear relation between the two d
sities during the relaxation process: forz5zc , a least-
squares fit yieldsrc5rc,cr2Cra , where C51.368 and
rc,cr50.4459 is the critical site density atzc in the limit L
→` ~for which ra naturally falls to zero!. We note that this

FIG. 8. Relaxation of the active-site densityra ~lower graph!
and the critical-site densityrc ~upper graph! in the BTW FES at the
critical point (z52.125,L51280). Inset: scatter plot ofrc vs ra ;
3, z5zc , L51280; 1, z5zc , L5640; diamonds,z52.13, L
5320.
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relation is independent of system sizeL and of sample-to-
sample variations~for the sameL); all that changes is the
portion of the line filled in by the data. For off-critical value
of the energy density, the active- and critical-site densit
follow a different linear trend@73#.

In Fig. 9 we plot r ā(zc ,L) and the excess critical-sit
density ur c̄(zc ,L)2zc,cru ~overbars denote mean stationa
values!, versusL on log scales, anticipating that these dec
as;L2b/n'. The apparent power-law behavior for smallL is
followed, for largerL, by an approach to a larger exponen
For L>320 we obtain estimates ofb/n'50.78(3) and
0.77~2! from the active- and critical-site densities, respe
tively, but it is clear that the slope of this plot has not sta
lized even forL51280.

Next we consider the relaxation time atzc . There are two
independent quantities whose relaxation is readily mo
tored: the survival probabilityP(t) and the active-site den
sity ra(t). ~Given the strict linear relationship betweenra
andrc , we cannot treat the latter as an independent dyna
cal variable; not surprisingly, the two yield essentially t
same relaxation times.! We studied four different relaxation
times; the first two are associated with the survival proba
ity P(t). This quantity decays slowly at first, then enters
regime of roughly exponential decay, after which it attain
nearly constant valuePP . @While P(t) appears to decay ver
slowly after attainingPP , the relaxation times we study her
are for the approach toPP .# We definetP as the relaxation
time associated with the exponential-decay regime; ano
relaxation timet P̄ is defined as the time at whichP(t)
equals (11PP)/2, midway to its quasistationary value. A
we have seen,ra(t) exhibits a nonmonotonic approach to i
stationary value, and does not exhibit a clear exponen
regime. Taking advantage of the nonmonotonicity, we defi
tm as the time at whichra takes its minimum value. Finally
we noted thatrestricting the sample to trials that survive u
to tmax results in a monotonic, exponential approach tor ā
~see Fig. 10!. A fit to the linear portion of a semilog plot o
the excess densityra(t)2r ā yieldsta . Relaxation times in a
critical system are expected to diverge with system size
t(zc ,L);Ln uu /n'. The data for all four relaxation times, plo

FIG. 9. Stationary active-site density~open squares! and excess
critical-site density~filled squares! vs system size in the BTW FES
at zc .
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ted in Fig. 11, are consistent with a power law, but due
fluctuations, linear fits to the data~for L>160) yield expo-
nent ratios ranging fromn i /n'51.59 to 1.74. Since the fou
data sets do seem to follow a common trend, and since t
is no reason to expect different relaxation times to be g
erned by different exponents, we definet̄(L) as the geomet-
ric mean of all four relaxation times. The behavior oft̄(L) is
quite regular; linear fits to the data forL>80, 160, and 320
yield n uu /n'51.671, 1.668, and 1.657, respectively, leadi
to an estimate of 1.665~20! for this ratio.

Another manifestation of scaling is the short-time dec
of the order-parameter density in a critical system, start
from a spatially homogeneous initial configuration@74#. In
Fig. 12 we show the active-site density for short times. T
data exhibit an imperfect collapse, and there is no clea
power-law regime. The roughly linear region forL51280
yields a decay exponentu.0.41.

Next we consider the scaling behavior of the active- a
critical-site densities away from the critical point. We an
lyze these data using the finite-size scaling form of Eq.~21!,
which implies that a plot ofr̃[Lb/n'r ā versusD̃[L1/n'D

FIG. 10. Relaxation of the active-site density in the BTW FE
at zc (L5320). Dashed line: unrestricted sample; solid line: sam
restricted to runs surviving totmax5105. The inset is a semilog plo
of ra(t) for the restricted sample.

FIG. 11. Relaxation times vs system size in the BTW FES atzc .
Open squares:ta ; filled squares:tm ; diamonds:tP ; circles:t P̄ .
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will show a data collapse for systems of different sizes. T
data analysis is as described above for the Manna FES.
best data collapse~see Fig. 13! for L>80 is obtained with
b/n'50.75(2) and 1/n'51.15(2). @This value ofb/n' is
slightly smaller than the value obtained above from the sc
ing of ra at zc ; note, however, that the latter value 0.78~3! is
based on systems withL>320.# From this finite-size scaling
analysis we therefore obtain the valuesn'50.87(2) andb
50.65(2). Once again, though, it is important to check f
size dependence of the exponent estimates. Fitting the li
portion of the ra data in the scaling plot, we obtainb
50.62, 0.63, 0.66, and 0.69 forL580, 160, 320, and 640
respectively.

We can apply a similar analysis to the density of critic
sites, but here we must isolate thesingular partof rc from
an analytic background. The latter appears because, fz
,zc , rc increases smoothly withz. Abovezc , rc decreases
linearly with ra;Db, so we expect the singular partrc,sing
5ADb for D.0, with A,0. The simplest reasonable form

e
FIG. 12. Initial decay of the active-site density in the BTW FE

at zc . Solid line: L5320; dotted line:L5640; dashed line:L
51280.

FIG. 13. Scaled order parameterr̃ vs scaled distance from criti

cality D̃ in the BTW FES. Symbols for the scaled active-site de
sity: 1, L540; n, L580; h, L5160; L, L5320; s, L5640.
The filled symbols represent the scaled excess critical-site den

r̃c for L580, 160, 320, and 640.
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for the nonsingular background isrc,reg5rc,cr1BD, where
rc,cr50.4459 is theL→` critical value as noted above. W
expect the singular part ofrc to follow the same finite-size
scaling form as the active-site density. This implies that

rc* ~D̃,L ![Lb/n'~rc2rc,cr!52CR~D̃ !1BL(b21)/n'D̃.
~23!

Thus the singular contributions cancel inrc* (L)2rc* (L8).
Using the values forn' andb/n' found in the scaling analy
sis of ra , we studyrc* (L)2rc* (L8) for all pairs of system
sizes in the rangeL580, . . .,640, and obtainB50.71(2).
We can then construct a scaling plot of the singular p
r̃c,sing[Lb/n'urc2rc,cr2BDu, which shows a fair data col
lapse~see Fig. 13!, but with much more scatter than forra ,
presumably because of the uncertainties involved in isola
the singular contribution. As in the case of the active-s
density, theb estimates we obtain from therc,sing data in-
crease withL. Here we findb50.65, 0.65, 0.67, and 0.70 fo
L580, 160, 320, and 640, respectively. We conclude t
b*0.7. Studies of larger lattices will be required to refi
this estimate.

We studied the evolution of the interface widthW(t,L) as
defined in Eq~17!, at zc , in systems of sizeL520–640,
with sample sizes ranging from 53104 for L520 to 103 for
L5640. As shown in Fig. 14, we obtain a good collapse
L>40 using the valuesa51.01(1) andz51.63(2). The ex-
ponenta can be found directly from the data for the satu
tion value of W2 shown in Fig. 15. Fitting the short-tim
~power-law! data forW2 yields an estimate for the growt
exponentbW , which increases systematically withL, as
shown in the inset of Fig. 15. Extrapolating to infiniteL we
obtainbW50.62, in agreement with the scaling relationbW
5a/z . Note also that the value ofz describing the interface
growth crossover time is consistent, as one would exp
with that for n i /n' , derived from a study of relaxation
times.

The size dependence of the critical exponents could b
indication of the failure of the simple scaling hypothes
@38#. A further anomalous aspect of the BTW FES isnoner-
godicity: in a particular trial, properties such asra typically

FIG. 14. Scaling plot of the mean-square interface wid
W2(t,L) in the BTW FES.3, L540; s, L580; d, L5160; h,
L5320; filled squares,L5640.
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differ from the mean value computed over a large numbe
trials. This means that time averages are different from
erages over initial configurations, where the latter play
role of ‘‘ensemble averages.’’ It is worth remarking that th
nonergodicity is consistent with the existence of toppli
invariants@6#. In Fig. 16, for example, we show the evolu
tion of ra for five different initial configurations~IC’s! in a
system withL580, at zc . Each IC appears to yield a pa
ticular active-site density; fluctuations about this value
quite restricted, and typically do not embrace the mean o
IC’s. Figure 16 also shows histograms of the stationary m
active-site density~for a given IC!, in samples of 104 IC’s,
for L580 and 160; the distribution has a single, well-defin
maximum, and narrows with increasingL. The data indicate,
however, that the probability distribution forra /r ā ~i.e., the
order parameter normalized to its mean value!, does not be-
come sharp asL→`, as it would, for example, in directed
percolation.

FIG. 15. Main graph: saturation value of the mean-square in
face width W2 vs system sizeL in the BTW FES atzc . Inset:
apparent value of the growth exponentbW plotted vs 1/L.

FIG. 16. Main graph: histograms for the stationary mean acti
site density in a given trial in the BTW FES atzc . Dashed line:
L580; solid line: L5160. The inset shows the evolution of th
active-site density in five different trials (L580); the dashed line
represents the stationary mean value averaged over a large nu
of trials.
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Further evidence of nonergodicity is found in the activ
autocorrelation function, defined as

C~ t ![
^NA~ t01t !NA~ t0!&

^NA~ t0!&2
21, ~24!

where NA(t) is the number of active sites at timet, and
^•••& stands for an average over timest0 in the stationary
statefor a given IC, as well as an average over different IC
The autocorrelation function for the critical BTW FES (L
580, average over 2000 IC’s and 104 time units!, shown in
Fig. 17, exhibits surprisingly little structure. After decayin
rapidly to a minimum value at aroundt534, and increasing
to a weak local maximum neart562, C(t) seems to fluctu-
ate randomly about zero. The relaxation occurs on a t
scale over an order of magnitude smaller than forra or the
survival probability~the relaxation timestm and t P̄ '800
for this system size!.

The reason for this anomalously rapid decay becom
clear when we examine the autocorrelation function in in
vidual trials@C(t) defined as in Eq.~24! but withoutaverag-
ing over IC’s#. Figures 18 and 19 show some typical resu
for L580. ~Here, to obtain good statistics, we have averag
over 53105–106 time units in the stationary state.! The cor-
relation function in a single trial shows shows considera
structure, including damped oscillations~and in some cases

FIG. 17. Autocorrelation function for the number of active sit
in the BTW FES atzc (L580) averaged over 2000 trials.

FIG. 18. Autocorrelation function for the number of active sit
in the BTW FES atzc (L580), in three different trials.
.
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revivals!, which may be superimposed on a more-or-less
ear decay. The period~in the range 35–70 forL580) and
other features vary from one IC to another.@Changing the
seed for the random choice of toppling sites changesC(t)
only slightly, if we maintain the same IC@75#.# Evidently,
C(t) decays rapidly to zero when we average over init
conditions because of dephasing amongst oscillatory sig
with varied frequencies. Interestingly, the interface wid
W(t,L) shows much less dependence on the IC than does
active-site density or its autocorrelation.

In summary, the BTW fixed-energy sandpile shows sig
of the kind of scaling found at simpler absorbing-state ph
transitions, but at the same time exhibits dramatic non
godic effects. We note unusually strong finite-size effec
which prevent us from determining certain critical expone
precisely. Recently, an analysis of the driven BTW mod
revealed that the violation of finite-size scaling may be
lated to multiscaling properties of the model@38#. In this
case a finite-size scaling analysis is just a first approxima
to the scaling properties, and might lead to significant erro
It is possible that the anomalies we observe in the BTW F
also have their origin in multiscaling behavior, as in t
driven case. On the other hand, violation of finite-size sc
ing in driven sandpiles is due to the essential role of the o
boundaries in establishing the stationary state. Fixed-ene
sandpiles are translation-invariant systems, with perio
boundaries, suggesting that finite-size scaling may still
valid in this case. The data presently in hand do not permi
to ascertain definitively whether the anomalies we obse
reflect a simple finite-size effect, or are a signature of mu
scaling.

C. Shuffling FES model

The shuffling model@32# has a continuously variable con
trol parameter, since each site has a~non-negative! real-
valued energy. Thus we are no longer constrained to vary
energy densityz in increments of 1/L2 as we are in discrete
models~e.g., the Manna and BTW FES’s!, where the single
grain is the smallest energy unit. In the shuffling FES,
sites whose energy exceeds the thresholdzth52 are consid-
ered active. In addition, sites that have received energy f
a toppling nearest neighbor can become active ifzi,zth ,
with a probabilitypi5zi /zth . This enlarges considerably th
choice of possible initial configurations. In particular, aft
we have distributed randomly the total amount of ene

FIG. 19. Autocorrelation function for the number of active sit
in the BTW FES atzc (L580), in a long trial.
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PRE 62 4577ABSORBING-STATE PHASE TRANSITIONS IN FIXED- . . .
among the lattice sites, we extract for each site a rand
number h i and we declare active all sites for whichh i

<zi /zth . ~Obviously, sites withzi>zth are active with prob-
ability 1.! Unlike discrete models, we have the option
generating ‘‘flat’’ initial conditions, in which all sites hav
the same energy. While stationary properties are not affe
by the choice of noisy versus flat initial configurations, w
do note differences in the short-time behavior.

Another peculiar characteristic of the shuffling model
the strong non-Abelian character of its dynamics. We imp
mented the dynamics of the model with parallel updating
in the original definition of Ref.@32#. However, this form of
the dynamics contains some nonlocal effects as describe
Sec. II, and does not ensure that parallel and sequentia
dating generate the same critical behavior. Simulations w
sequential updating are in progress.

Simulations of the shuffling model require many calls
the random number generator, and so are extremely
consuming. Here we present simulations with flat initial co
ditions and sizes ranging fromL532 to 384. By analyzing
the L dependence ofr ā(D,L) we find the critical pointzc
50.20427(5). When z5zc the stationary density has
power-law behavior r ā(0,L);Lb/n' that yields b/n'

50.76(3). This result is confirmed by the scaling plot of Fi
20, which, following Eq.~21! showsr[Lb/n'r̄a versusx
[L1/n'D, with b/n'50.76 and 1/n'51.266. This gives an
exponentb50.60, as confirmed by the straight slope of t
upper branch of the scaling plot. An independent meas
ment of the stationary density versusD for the largest size
used (L5384) gives the estimateb50.60(2), where the er-
ror bar is due mainly to the uncertainty inzc .

We performed a scaling analysis of the temporal beha
by studying the decay of the survival probabilityP(t)
;exp(2t/tP). At the critical point theL dependence of the
characteristic time assumes the power-law behaviortP;Lz,
with z51.71(5) ~see Fig. 21!. However, it is worth noting
that the scaling behavior withL shows a systematic curvatur
from smallest to largest sizes, both below and above

FIG. 20. Scaling plot of the stationary active-site densityr

[Lb/n'r ā vs x5L1/n'D for various system sizes in the shufflin
model. Hereb/n'50.76 and 1/n'51.266. The slope of the straigh
line is 0.60.
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critical point. This could be a signal that the system has
yet reached its asymptotic temporal behavior for the si
considered (L<320). That the relaxation could be affecte
by strong finite-size effects is confirmed by the tempo
scaling ofra(t,L). In Fig. 22 we observe that the active-si
density decay does not follow a definite power law befo
reaching the stationary state. This makes impossible an
curate determination of the exponentu ('0.46), which is
also reflected in the absence of a clear data collapse for
temporal scaling functions.

The roughness analysis is affected by several numer
problems. The short average lifetime of trials at finite s
makes it impossible to reach the width-saturation regim
This effect is even more pronounced than in the Manna c
It is therefore impossible to apply a data-collapse analysis
direct measurement, that would yielda, feasible. The short-
time behavior of the roughness@see Eq.~17!# is governed by

FIG. 21. Size dependence oftP close to the critical point of the
shuffling FES.L, z50.2420; s, z50.2425; *, z50.2427; h,
z50.2430. The inset shows the power-law decay~on a linear-log
scale! of the survival probability vs time atzc50.20427 for sizes
L5128, 192, 256, and 320, from left to right.

FIG. 22. Shuffling FES: active-site density in surviving trials
time at the critical pointz50.20427. From top to bottom, the sys
tem sizesL5128, 192, 256, and 320. The straight line has a slo
u50.45.
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the exponentbW.0.57. Applying the scaling relation show
in Sec. IV, and using the dynamical exponent obtained p
viously, we havea.0.96. However, in this case the shor
time behavior of the roughness appears to have a size de
dence, probably due to the lack of complete convergenc
the asymptotic scaling behavior, and the numerical val
provided here could contain systematic errors that are d
cult to estimate.

In summary, the numerical results for the shuffling FE
model show also the signature of a continuous phase tra
tion from an absorbing phase to an active phase. The sta
ary properties of the model show a well defined scaling
havior at the system sizes considered in the present st
The dynamic scaling properties, by contrast, show anoma
and transient effects that could indicate that the system
not yet attained its asymptotic behavior forL<384.

VI. DISCUSSION AND OPEN QUESTIONS

A. Universality classes and critical exponents

Simulations of sandpile models have mainly been p
formed in the slow driving regime. It is then natural to com
pare the critical exponents measured in the fixed-ene
framework~see Table I! with those observed in driven simu
lations. In driven sandpiles, critical behavior is characteriz
by the scaling of the number of topplingss and the duration
t following the addition of an energy grain@1#, i.e., an ava-
lanche. The probability distributions of these variables
usually described with the finite-size scaling forms

P~s!5s2tsG~s/sc!, ~25!

P~ t !5t2t tH~ t/tc!, ~26!

where sc;LD and tc;Lz are the characteristic avalanch
size and time, respectively. Applying the fundamental res
~due to conservation!, ^s&;L2 @6,15,26#, we can write the
scaling relationsts5222/D and t t511(D22)/z. Re-
cently, these simple scaling forms have been questione
the case of the BTW model@38#. An accurate moment analy
sis seems to show multiscaling, so that scaling relations
tained from the above finite-size scaling forms do not app

While critical exponents governing the deviations fro
criticality in FES’s do not have any counterpart in the driv
case, which is posed by definition at the critical point, t
exponents describing the critical point, includingz and the
fractal dimensionD, can be compared directly. In FES sim
lationsD can be calculated by noting that the scaling of

TABLE I. Critical exponents for the FES models studied he
compared with known values for DP and the LIM model@28#.
Figures in parentheses denote statistical uncertainties.

Model b b/n' z5n i /n' u a bW

BTW .0.7 0.78~3! 1.665~20! 0.41~1! 1.01~1! 0.62~1!

Manna 0.64~1! 0.78~2! 1.57~4! 0.42~1! 0.80~3! 0.51~1!

shuffling 0.60~2! 0.76~3! 1.71~5! .0.46 .0.96 .0.57
DP 0.583~4! 0.80~1! 1.766~2! 0.451~1! 0.97~1! 0.55~1!

LIM 0.64~2! 0.80~4! 1.56~6! 0.51~2! 0.75~2! 0.48~1!
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avalanche due to a point seed scales as the total variatio
the field H( i ,t), which represents the total number of to
plings. Since the roughness scales with exponenta, we
readily obtain thatD5d1a @19,20#.

For the Manna model, our simulations yieldD52.80(3)
and z51.57(4), which should be compared with the mo
recent analyses of driven sandpiles, which yieldD
52.76(2) andz51.56(2) @41–44#. By using scaling rela-
tions we obtaints.1.29 andt t.1.51, again in very good
agreement with the values obtained in the driven case.
the shuffling model we can compare our resultsz51.71 and
D52.96 with the simulations of Maslov and Zhang@32#,
which givez51.73(5) andD52.92(5). In this case we also
see a very good agreement between independent mea
ments.

More subtle is the case of the BTW model. Here differe
simulations of the driven sandpile give rather scattered
sults. A very recent analysis suggesting multiscaling in
~driven! BTW sandpile indicates that neitherD nor z are
clearly defined@38#. In particular, the effective value ofD
increases as one studies higher moments, and saturat
D.3.0. This is indeed the result we recover from our ana
sis @D53.01(1)#. The possibility of multiscaling is sup
ported by the scaling anomalies and the lack of se
averaging we detected in our simulations of the BTW FE

We shall attempt, on the basis of our numerical results
assign the various fixed-energy sandpiles studied to uni
sality classes. This a particularly vexing problem, that h
eluded ten years of theoretical and numerical efforts. S
after the introduction of sandpile models with modified d
namical rules, there were many quests for a precise iden
cation of universality classes. In particular BTW and Man
models, which are prototypes for deterministic and stocha
models, respectively, have been the objects of a longstan
quarrel over their supposed universality classes@2,35,37,40–
43#. The first numerical attempts showed very similar exp
nents for the avalanche distributions@2,35#, but the results
were afflicted by severe finite-size errors due to the limi
sizes attainable using the CPU power available at that ti
These results were later questioned by Ben-Hur and Bih
@40#, who analyzed the scaling of conditional expectati
values of various quantities related to avalanches. These
sults were, however, biased by the unexpected singular
havior of the distributions@41#, and were recently reconsid
ered by applying other numerical methods@42,43,76#. From
the theoretical standpoint it is very surprising that sm
modifications of the microscopic dynamics would lead
different universality class. However, no analytical demo
stration of distinct universality classes in sandpiles has b
presented up to now. On the contrary, many theoretical
guments in favor of a single universality class can be fou
in the literature@8#.

In Table I we summarize the critical exponents found
each model. The quoted values indicate, beyond nume
uncertainties, that the models discussed here belong to t
distinct universality classes. Striking differences appear
tween the BTW and Manna models. Beyond the numer
values of critical exponents, we observe a lack of se
averaging in the BTW FES. This property is related to
deterministic dynamics, and finds consistent analogies in
waves of toppling description@77#. The lack of self-
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averaging could also be the origin of the multiscaling fe
tures recently observed by De Menechet al. @38# in the
driven BTW sandpile. From this discussion it appears t
the introduction of stochasticity is a relevant modification
the critical behavior. At this point it is worth noting that th
Manna model has been considered for a long time as a
Abelian model. The opposite was pointed out recently
Dhar @31#, by means of rigorous arguments. The conject
that Manna and BTW sandpiles belong to different univ
sality classes because the former is non-Abelian then ha
be abandoned. Stochasticityper se, however, does not defin
a unique universality class, as evidenced by the distinct c
cal properties of the Manna and shuffling FES models. T
origin of the different behavior can be traced to the nonlo
nature of the shuffling model dynamics, as we shall ma
clear later.

In summary, our numerical results are in good agreem
with the most recent measurements of driven sandpiles,
firming that the two cases share the same critical behavio
addition, the FES framework enlarges the set of expone
that can be measured, providing new tools for the charac
ization of critical behavior and universality classes in diffe
ent models.

B. Avalanche and spreading exponents

In order to compare the exponents found in fixed-ene
simulations with the usual avalanche exponentsts and t t ,
we relied on scaling relations. However, avalanches can
be studied in the FES case, in simulations of critic
‘‘spreading.’’ Let us first define what constitute, a spread
experiment in a system with an absorbing-state@27#. In such
experiments, a small perturbation~a single active site, for
instance! is created in an otherwise frozen~absorbing! con-
figuration. In the supercritical regime, the ensuing activ
has a finite probability to survive indefinitely, reaching t
stationary state deep inside the~growing! active region. In
the subcritical regime, activity will decay exponentially.
each spreading sequence, it is customary to measure the
tially integrated activityN(t), averaged over all runs, and th
survival probabilityP(t) after t time steps. At the critical
point separating the supercritical and subcritical regim
these quantities have a singular scaling,N(t);th and P(t)
;t2d, whereh andd are called spreading exponents. If w
can define the substrate over which the activity spre
uniquely, this spread of activity is the same as an avalan
in a sandpile model@78#.

Sandpile models, however, have infinitely many abso
ing configurations. In the infinite-size limit, an infinite num
ber of energy landscapes correspond to the same valuz.
~For real-valued energies, as in the shuffling model, this
finite degeneracy already appears for finite systems.! In this
case spreading properties at a given value of the control
rameterz will depend on the initial configuration in which
the system is prepared. It is even possible to observe non
versality in the spreading exponents, a feature that sand
share with the pair contact process~PCP! @79,80#, and other
systems with infinitely many absorbing configurations@81–
83#.

In order to have well defined spreading exponents~that
can be related to the avalanche exponents of a driven s
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pile!, we have to define uniquely the properties of the ene
landscape for spreading experiments. One possibility is
use the absorbing configurations generated by the fix
energy sandpile itself for initial configurations. Suppose
use such a configuration for a spreading experiment, by
troducing an active site. Repeating this process many tim
we obtain the spreading properties for so-called ‘‘natural
sorbing configurations’’@27#. A second option is to use th
substrate left by each spreading process as the initial co
tion for the subsequent one. After a transient time the sys
will flow to a stationary state with well defined properties,
which each initial configuration is a ‘‘natural configuration.
On the other hand, this second definition of a spreading
periment is identical to slow driving, except that energy
strictly conserved~the active site must be generated by
mechanism that does not change the energy! @24#.

By performing spreading experiments close tozc , it is
possible to obtain directly the avalanche and spreading s
ing behavior, as well as the divergence of characteri
lengths approaching the critical energy. A preliminary stu
in this direction for the BTW model confirms the uniquene
of the critical behavior atzc @24#. Interesting results have
also been obtained for the spreading properties in a F
mean field model@84#. A more complete study of spreadin
exponents in a variety of sandpile models is a promising p
toward the complete characterization of their critical beh
ior.

C. Comparison with theoretical results

In earlier sections we presented two alternative theoret
descriptions for sandpile models. We compare our numer
results with theoretical predictions in order to assess the
lidity of these theoretical frameworks, and the eventual i
provements needed for a complete description of sand
models.

In Sec. III we introduced a Langevin description th
takes into account the absorbing nature of the phase tra
tion in FES models. Unfortunately, a rigorous derivation
the noise terms has not yet been made. The assumptio
RFT-like noise terms leads to the Langevin description
Eq. ~6!. This differs from the standard DP Langevin descr
tion for the presence of a non-Markovian term. Only in t
case that this term is irrelevant the theory belongs to
universality class of RFT. From a physical point of view th
means that the local coupling between the activity fie
ra(x,t) and the energy fieldz(x,t) is irrelevant on large
scales. In other words the activity spreads on an effec
average energy substrate whose only role is to tune
spreading probability. This is indeed the same as a DP p
lem, in which the critical parameter is tuned via the avera
energyz.

Casting a glance at our numerical results, the only mo
that has exponents compatible with the DP universality cl
is the shuffling FES. This is not unexpected; the model w
indeed proposed by Maslov and Zhang@32# as a sandpile
realization of directed percolation. At the basis of this beh
ior is nonlocal energy transport. As we emphasized in S
II, the shuffling model allows the transfer of the same par
of energy several times in the same time step. This in
duces, on average, a strong mixing effect that makes en
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diffusion slower. In this way the spread of activity is effe
tively decoupled from the local fluctuations that the activ
itself generates in the energy field. On the other ha
Maslov and Zhang@32# noted that, ind51, the nonlocal
energy mixing is not capable of destroying correlations a
following a transient, the model exhibits non-DP scalin
While the exponents summarized in Table I are compat
with the DP universality class, we note that the dynam
scaling properties of the shuffling model show systema
biases that could signal a nonasymptotic behavior for so
observables. Therefore, we cannot exclude completely
the model is still in a transient regime, that could finally le
to a different critical behavior, as happens ind51.

The Manna and BTW FES models, by contrast, exh
critical exponents different from those of DP. In these mo
els, the energy redistribution during toppling is strictly loc
and the spread of activity is always correlated with the
ergy fluctuations generated during toppling processes.
then reasonable to expect that a Langevin theory has to
into account fully the non-Markovian term. It may be al
possible to derive the pertinent stochastic equations and
noise correlations applying more rigorous treatments, a
Ref. @85#.

The moving interface picture is also afflicted by our ign
rance of the correlations between the quenched noise te
appearing in the equations~see Sec. IV!. By suitable ap-
proximations it has been shown that the Manna model co
belong to the LIM universality class. Our numerical resu
show that the stationary critical properties are compat
with this universality class. The dynamic properties, ho
ever, show anomalies that are not compatible with LIM
The origin of these anomalies deserves a more accu
analysis, and might be understood if we had a better gras
the noise terms in the interface representation. It is inter
ing, in this context, that the BTW model, for which the ma
ping to the interface representation seems most straigh
ward, defines a universality classper se, incompatible with
linear interface depinning with columnar disorder. This
probably due to the strong nonlinearity introduced by
local velocity constraint implicit in theQ function of Eq.
~12!.

While neither theoretical approach allows an exact ch
acterization of sandpile models, they appear to be conce
ally very relevant, because they provide an answer to
basic questions of why driven sandpile models show SO
The genesis of self-organized criticality in sandpiles is a c
tinuous absorbing-state phase transition. The sandpile ex
iting the latter may be continuous or discrete, determinis
or stochastic. To transform the conventional nonequilibri
phase transition to SOC, we couple the local dynamics of
sandpile to a ‘‘drive’’ ~a source with rateh). The relevant
parameter~s! $z% associated with the phase transition are c
trolled by the drive,in a way that does not make explic
referenceto $z%. Such a transformation involves slow driv
ing (h→0), in which the interaction with the environment
contingent on the presence or absence of activity in the
tem ~linked to $z% via the absorbing-state phase transitio!.
,
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Viewed in this light, ‘‘self-organized criticality’’ refers nei-
ther to spontaneous or parameter-free criticality nor to s
tuning. It becomes, rather, a useful concept for describ
systems that, in isolation, would manifest a phase transi
between active and frozen regimes, and that are in
driven slowly from outside.

A second class of theoretical questions concern the c
cal behavior~exponents, scaling functions, power spect
etc.! of specific models, and whether these can be grou
into universality classes, as for conventional phase tra
tions both in and out of equilibrium. In this respect, the th
oretical approaches presented here show a very promi
path of improvements and modifications that could lead
the solution of many of these questions.

VII. SUMMARY

We studied three fixed-energy sandpile models, whose
cal dynamics are those of the BTW, Manna, and shuffl
sandpiles, studied heretofore under external driving. T
former two models are Abelian, the latter two stochastic. T
results of extensive simulations, which are in good agr
ment ~via scaling laws!, with previous studies of driven
sandpiles, place the three models in distinct universa
classes. Results for the Manna FES are consistent with
universality class of linear interface depinning, while t
shuffling FES appears to follow directed percolation scali
Both these assignments, however, are somewhat provisio
due to dynamic anomalies and apparent strong finite-size
fects. The case of the BTW FES, which appears to defin
new universality class, is further complicated by violatio
of simple scaling and lack of ergodicity. Examining th
field-theoretic and interface-height descriptions of sandp
in light of our simulation results, we find that a more rigo
ous description of noise correlations will be required, f
these approaches to become reliable predictive tools.
results strongly suggest that there are at least three dis
universality classes for sandpiles. Whether others can
identified, and how the various classes can be accommod
in a unified field-theoretic description, are challenging issu
for future study.
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