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Introduction

Conceptualism and contextualism in the recent historiograp
of Newton’sPrincipia

Abstract

Recently thePrincipia has been the object of renewed interest among mathematicians and physicist
technical interpretative work has remained somewhat detached from the busy and fruitful Newtonian i
run by historians of science. In this paper will advocate an approach to the study of the mathematical me
Newton’sPrincipia in which both conceptual and contextual aspects are taken into consideration.
 2003 Elsevier Inc. All rights reserved.

Sommario

In questi ultimi anni iPrincipia sono stati oggetto di un rinnovato interesse da parte di matematici e fisici. Q
lavoro di interpretazione tecnica è rimasto alquanto isolato rispetto all’attiva e produttiva industria new
dominata dagli storici della scienza. In questo articolo difenderò un approccio allo studio dei metodi mat
deiPrincipia di Newton nel quale vengono presi in considerazione tanto gli aspetti concettuali quanto quel
al contesto.
 2003 Elsevier Inc. All rights reserved.
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1. An historiographic problem

1.1. Recent debates on Newton’sPrincipia

Since its publication in 1687 Newton’sPrincipia has given rise to much debate. In particu
during the first decades of the 18th century the mathematical methods employed by Newto
criticized or defended by the small number of mathematicians who could read themagnum opuswith
sufficient competence [Guicciardini, 1999]. Under its classic façade thePrincipia hides a panoply o
mathematical methods: series, infinitesimals, quadratures, geometric limit procedures, classical
of conic sections and higher curves, projective geometry, interpolation techniques, and much
How should the science of motion be mathematized? During Newton’s lifetime this question w
unanswered. It was only in the 1730s, mainly thanks to the work of Euler, that the mathem
0315-0860/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0315-0860(03)00051-X

https://core.ac.uk/display/222578726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/hm


408 Introduction / Historia Mathematica 30 (2003) 407–431

rential
1992].
e post-
l

t, even a

icists.
or the
tory of
induced

nd
olarship

teside.
ynman

1995;
, James
edham,
hnical

derably
retative
ience
ademic

several
ments?
ewton
between

by the
e
standing

mewhat
rarely
those of
ewhat

scholars.
e author.

d inverse
community became convinced, at first on the Continent, that the calculus, most notably diffe
equations and the calculus of variations, was the appropriate language for “dynamics” [Blay,
Nowadays, a student accustomed with “Newtonian mechanics” will find the language used in th
Eulerian era somewhat familiar. In contrast, the language of thePrincipia, burdened by geometrica
diagrams, the theory of proportions, almost devoid of symbolical expressions, leaves our studen
tenacious one, perplexed.

Recently thePrincipia has been the object of renewed interest among mathematicians and phys1

A reappraisal of the fertility of geometrical methods in dynamics, the plethora of celebrations f
tercentenary of the publication of Newton’s masterpiece, and the conviction that technical his
science can be used for didactic purposes [Densmore, 1995] are some of the factors that have
some working scientists to open and comment on thePrincipia. The results have been often profou
and have added new insight to the researches of such founding fathers of modern Newtonian sch
as I. Bernard Cohen, Rupert Hall, John Herivel, Alexandre Koyré, Richard Westfall, and Tom Whi
Scientists of the calibre of Vladimir I. Arnol’d, Subrahnanyan Chandrasekhar, and Richard Fe
have scrutinized some of Newton’s demonstrations in depth [Arnol’d, 1990; Chandrasekhar,
Feynman, 1996]. Some mathematicians and physicists, such as Michel Blay, Bruce Brackenridge
Cushing, François De Gandt, Dana Densmore, Herman Erlichson, Michael Nauenberg, Tristan Ne
Bruce Pourciau, George E. Smith, Robert Weinstock, and Curtis A. Wilson have turned to tec
history, revealing details of several propositions, lemmas, and corollaries of thePrincipia.2 This is indeed
a good moment for Newtonian scholarship, since working scientists have been able to consi
improve our understanding of Newton’s mathematical methods. Thanks to this serious interp
work, Newton’sPrincipia is understood today much better than 20 years ago. Historians of sc
should be grateful for these contributions and avoid ignoring or rejecting them on the basis of ac
disciplinary preconceptions.

An exciting feature of the research field explored in the above mentioned studies is that
interesting and fruitful questions have emerged. Did Newton reach his solutions by cogent argu
Are there in thePrincipia existence and uniqueness demonstrations of such solutions? Did N
possess a method which he applied in order to reach these solutions? What is the relation
this method and the differential and integral calculus? These questions have been debated
mathematicians and the physicists who recently commented on thePrincipia.3 The results of this debat
are difficult to summarize. In brief, one can safely say that this debate has deepened our under
of Newton’s mathematization of motion.

On the other hand, it cannot be denied that this technical interpretative work has remained so
detached from the busy and fruitful Newtonian industry run by historians of science. Very
connections are drawn between the researches of historians of Newton’s mathematics and
historians of, say, Newton’s religion or alchemy. Historians of Newton’s mathematics work som
in isolation from historians of other areas of Newton’s thought.

1 Two recent fine collections of essays are Dalitz and Nauenberg [2000] and Buchwald and Cohen [2001].
2 The reader can turn to the References for some bibliographic information on the works of the above-mentioned

It should be noted that this list is not meant to be exhaustive and omissions do not imply a negative judgement of th
Indeed, the bibliography on Newton’sPrincipia is vast.

3 For instance, Weinstock [2000] gives an account of the debate concerning Newton’s treatment of the so-calle
problem of central forces, a debate which was initiated by Weinstock himself in Weinstock [1982].
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1.2. Conceptualist and contextualist history

It is safe to say that no proof given at least up to 1800 in any area of mathematics, except possibly in the theory of numbers, wou
regarded as satisfactory by the standards of 1900. The standards of 1900 are not acceptable today. [Kline, 1974, 69]

In most sciences one generation tears down what another has built, and what one has established another undoes. In math
alone each generation builds a new storey to the old structure. [Hankel, 1871/1889, 25, quoted in: Dauben, 1984, 81]

These quotations express two conflicting conceptions on the relationships between mathe
proofs and context. One might call the former acontextualistand the latter aconceptualistconception.

According to Kline the acceptability of proofs changes from one context (temporal and pe
geographical) to another. A proof which would be acceptable, say, in 1650 France, would be reje
1850 Germany. Hankel, instead, expresses a widely shared value amongst mathematicians: mat
proofs are for eternity, cultural changes do not interfere with what is achieved by mathematicians

Historians of philosophy have often considered the contrast and balance between two app
one focussed on textual analysis, the other on the context. Albert William Levi in hisPhilosophy as
Social Expression[Levi, 1974] defends what he calls a “contextualist” approach. Levi’s views h
been adopted by James Force in his study of William Whiston, Newton’s successor as the L
Chair [Force, 1985]. Force observes: “According to one school of theorist, the philosophically imp
aspect of a text is the text itself, which, it is maintained, is logically independent of, and intellec
autonomous from, any historical context. All that is relevant to the understanding of any philoso
text is timelessly in the text itself” [Force, 1985, 1]. Levi often refers to this school as sem
“atomism.” Contrasting to this assumption of a permanence of meaning that is outside of time,
ahistorically in “atoms” of text, is an opposing theoretical school according to which terms and argu
in the history of philosophy must be interpreted within the special framework of concepts and distin
specific to the thinker’s cultural context [Force, 1985, 1]. The philosophical question raised by the
two quotations is perhaps the fundamental one for a philosophy of mathematics. A satisfactory
should incorporate both positions into a coherent image of mathematical development, an ima
should avoid both extreme relativism and apriorism.

Historians of mathematics are not required to build up a philosophy of mathematics. Ho
philosophical views on the nature of mathematics orient historical research along different lines.
that favors context-independence can lead—even though not necessarily—to cumulative, linear
On the other hand, interest for context-relativity more easily leads to a history where ramific
diachronic changes, and perhaps even revolutionary changes are possible [Gillies, 1992].

Philip Kitcher has done a great deal in order to defend the fruitfulness of contextualism in the his
study of mathematics. According to Kitcher, a conceptualist approach fails to explain the role of
metamathematical views in shaping standards of proof, the scope of mathematics, the order o
matical disciplines, the relative value of particular types of inquiry [Kitcher, 1983, 188–192]. We
briefly present below possible influences of metamathematical beliefs on Newton’s mathematic
tice. Kitcher’s theses might be reinforced by what Brian Rotman says about the nature of proofs: “
ing principle is always present—acknowledged or not—and attempts to read proofs in the absence
underlying narratives are unlikely to result in the experience of felt necessity, persuasion, and con
that proofs are intended to produce, and without which they fail tobeproofs” [Rotman, 2000, 8]. It ca
reasonably be contended that a shared view on the nature and role of proofs stands behind math
practice and that changes in such metamathematical views are intertwined with large-scale ch
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other components specific to the mathematician’s culture [Kitcher, 1983, 191]. This is what ma
contextualist approach fruitful to many historians: it reveals the relationships with culture, socie
technology, and affords a better understanding of the mathematician’s motivations. Indeed, on
strongest reasons in favor of a contextualist approach in the history of mathematics is that it wid
research scope opening relationships with general history of science, history of religion, history
history of technology, and so forth.

On the other hand, and not without reason, it has been often observed that, notwithstand
relationships between mathematics and the context in which mathematics develops, mathem
ultimately driven by inner, conceptual, motivations. As Brendan Larvor puts it:

Mathematical development may be distorted by ideological interference, stymied by academic rivalries or halted by the fall of emp
Nevertheless, [. . .] the direction of mathematical development and the response of mathematics to external stimuli are both b
explained by factors proper to mathematics itself. [2001, 215]

The great problem with such statements is to define the boundary which separates what be
“mathematics itself” and what is outside it. The definition of such a boundary is far from being triv

Yehuda Elkana has developed an interesting two-layered view of scientific knowledge, which c
in articulating the question of the boundary referred above [1981]. Elkana’s views were subse
applied to mathematics by Leo Corry. It is worth quoting Corry at length:

Any scientific theory raises two sorts of questions: (1) substantive questions of the discipline, and (2) questions about the disci
quadiscipline, or meta-questions. One can accordingly distinguish two layers related to any scientific field: the “body” of knowled
(answers the first kind of questions) and “images” of knowledge (answers the second kind of questions). The body of knowle
includes theories, “facts”, methods and open problems. The images of knowledge play the role of “selectors” for the body
knowledge, by answering meta-questions such as: which of the open problems of the discipline most urgently demands atten
How should one decide between competing theories? What is to be considered a relevant experiment? What procedures, indiv
or institutions have authority to adjudicate disagreements within the discipline? etc. It is clear that answers to this kind of question
dictated not only by the substantive content of the body of knowledge alone, but also by additional, external factors. [. . .] Science as
a system of knowledge is composed of two layers, body and images of science, which organically interact and do not have sep
existence. The separation mentioned here is an analytical one, which the historian of science may identify in hindsight. [1993, 1

Following Kitcher’s insistence on the role of metamathematical assumptions and Corry’s reco
of an organic interaction between the body and the images of mathematics, I would like to ad
an approach to the study of the mathematical methods of Newton’sPrincipia in which both conceptua
and contextual aspects are taken into consideration. This is especially important in the case of
a thinker who did not draw a clear-cut distinction between natural philosophy, theology, mathem
and alchemy. This is not to deny that the different sectors of Newton’s intellectual activity posse
relative autonomy. But it would be narrow minded to interpret this autonomy as absolute indepen
I believe, and I hope to tentatively argue here, that an approach which favors the study of mea
resonances between these sectors (mathematics included) is going to be a fruitful one.4

I can see two research areas which promise interesting results for a contextualist reading
mathematical methods employed by Newton in thePrincipia. First, one might inquire whether the my
of the ancients’ wisdom and the polemic against the “men of recent times” endorsed by Newton
studies on chronology, religion, and alchemy was instrumental in shaping (a) the mathematical la

4 The complex relationship between the various areas of Newton’s legacy is discussed in Iliffe [1998].
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3, 182–
in which thePrincipia is written and (b) the ways adopted by Newton in communicating adva
and hidden layers of the mathematical structure of thePrincipia only to faithful acolytes. Second, on
might focus on Newton’s ideas on the relationships between mathematics and nature. I will m
below that these philosophical ideas led Newton to affirm that geometry was subsumed under me
In this context I will deal with the connection which Newton established between the generat
magnitude exerted by God and Nature and the voluntary mechanical constructions of the geomete
written elsewhere on the first theme [Guicciardini, 1999, 2003]. I will briefly recapitulate my thes
Section 2.1.

2. Newton’s philosophy of mathematics

2.1. Classicism and publication practice

Both in his researches on religion and in natural philosophy Newton was accustomed to draw
divide between what could be published without restrictions and what had to be communicated in
controlled way. For instance, while he printed his “Theory about Light and Colors” in thePhilosophical
Transactions, he preferred to deposit the “Hypothesis Explaining the Properties of Light” as a manu
in the archives of the Royal Society [Newton, 1978, 47–59, 177–235]. He prepared some of his
on chronology and biblical exegesis for the press but communicated his more heretical ideas o
carefully selected group [Mandelbrote, 1993]. He corresponded on alchemy with a few adepts, bu
give open publicity to his alchemical experiments [Golinski, 1988, 147–167]. There are many di
motivations behind these choices. Newton’s conviction that hypothetical results should be prese
a provisional form was a driving force behind the publication of his optical, and most probab
alchemical researches. In the case of theology there were much more pressing political constrain
favored prudence.

Also in the case of mathematics Newton followed a publication policy which presents certain an
with the dualism between public and private encountered in other areas such as theology, alche
optics. One often reads that Newton after the discovery of the calculus did not publish it. This relu
to publish has often puzzled historians of mathematics. Historians cannot avoid a feeling of dis
when they realise that most of Newton’s mathematical discoveries in the late 1660s and early 167
printed decades later, basically after the inception of the priority dispute with Leibniz in 1699.
discoveries, especially those concerning infinite series and the calculus, were so innovative th
18th-century European mathematics would have been different had Newton been prompter in
some of his early manuscripts on the method of series and fluxions for publication. Just to t
example, which easily comes to mind, the priority dispute with Leibniz would have been so av
[Gjersten, 1986, 511–514].

Several explanations of Newton’s secretive attitude have been given. Some historians refer to
of book printing after the Great Fire [Newton, 1967–1981, III, 5–6]. Some describe Newton as a
sometimes even neurotic character, who isolated himself in an ivory tower.5 Some describe the afterma
of the dispute on optics as a cause for Newton’s reluctance to publish his calculus [Westfall, 1980

5 A valuable description of Newton’s aversity to publication can be found in Christianson [1984, 137–139, 141–14
183].
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Some think that in the 1670s Newton’s interest shifted from mathematics to other subjects (pr
alchemy, theology, and history): he would have simply lost the motivation to rework his mathem
manuscripts for the press [Mamiani, 1998]. There is a grain of truth in each one of these explana

Newton had, however, alternative means to printing to let the outside world know that he was
mathematician and to acquaint the cognoscenti with the content of his mathematical manuscript
period preceding the printing of thePrincipia most of Newton’s mathematical discoveries were rende
available to the mathematical community through rather oblique ways. Newton engineered a c
publication strategy. He allowed some of his mathematical discoveries to be divulged through
and manuscript circulation. Manuscripts were shown to a selected group of experts in the field (
John Collins, John Craig, Edmond Halley, David Gregory, and Fatio de Duillier) who visited New
Cambridge, they were deposited at the Royal Society in London or as Lucasian Lectures in the Un
Library at Cambridge, and they were even copied (sometimes in mutilated form) [Guicciardini, 20

Newton adopted a publication strategy for his mathematical discoveries that can be best
as “scribal publication.” As Harold Love has shown, in Restoration England the practice of s
publication was flourishing. Love has described the practice of publishing texts in handwritten
within a culture which had developed sophisticated means of generating, transmitting, and even
such copies. Love has masterfully studied the ways in which manuscripts of political, literar
musical content circulated in Restoration England. The invention of printing did not of course obl
the practice of manuscript circulation. However, after the invention of printing, scribal publication
pursued with specific purpose. As Love remarks:

There is a significant difference between the kinds of community formed by the exchange of manuscripts and those formed ar
identification with a text. The most important is that the printed text, being available as an article of commerce, had no easy
of excluding readers. Interesting in the choice of scribal publication [. . .] was the idea that the power to be gained from the text
was dependent upon possession of it being denied to others. [. . .] Print publication implied the opposite view of a community being
formed by the public sharing of knowledge. [1993, 183–184]

There is evidence that Newton tried to keep control over the dissemination of his mathem
manuscripts within a selected group of mathematicians [Guicciardini, 2003]. The reasons which i
Newton to follow a scribal publication of his fluxional method are complex. Here we can briefly
that he found it convenient to avoid print publication of a method that appeared to him not well-fo
from a logical point of view and distant from the rigor attained by the ancient geometrical synthes

As a matter of fact, from the early 1670s Newton began distancing himself from his early rese
in the “new analysis of the moderns.” In particular he began talking in very critical terms of Car
algebra, a major source of inspiration for his youthful researches. Colorful invectives again
symbolism of modern mathematics and full of appreciation of the Greek mathematical traditi
often to be encountered in Newton’s mathematical manuscripts in the period preceding thePrincipia.
For instance, in the late 1670s, commenting on Descartes’s solution of Pappus’ four-lines locus p
he stated with vehemence:

To be sure, their [the Ancients’] method is more elegant by far than the Cartesian one. For he [Descartes] achieved the result
algebraic calculus which, when transposed into words (following the practice of the Ancients in their writings), would prove to
so tedious and entangled as to provoke nausea, nor might it be understood. But they accomplished it by certain simple propos
judging that nothing written in a different style was worthy to be read, and in consequence concealing the analysis by which
found their constructions. [Newton, 1967–1981, 4, 277]
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In the case of thePrincipia Newton affirmed to have made use of the modern analysis as a heu
tool and to have retranslated a pristine analytical text into geometrical form in order to conform hi
to the style of the ancient geometers. Speaking of himself in the third person he wrote:

By the help of this new Analysis Mr Newton found out most of the Propositions in his Principia Philosophiae. But because
Ancients for making things certain admitted nothing into Geometry before it was demonstrated synthetically, he demonstrated
Propositions synthetically that the systeme of the heavens might be founded upon good Geometry. And this makes it now difficu
unskillful men to see the Analysis by which those Propositions were found out. [1967–1981, VIII, 598, 599]

This and similar reconstructions that Newton framed a posteriori and in the context of the polem
Leibniz must be read with caution: it would be simplistic to accept them as faithful historical acc
They reveal, however, something of Newton’s methodological views. It was obviously importa
Newton to distance himself from the analysis of the moderns in order to stress the contiguity
mathematical methods with the “good geometry” of the ancients. Scribal publication was a me
establish his conviction of the inferiority of the mathematical methods of the moderns and the fa
he viewed himself as a heir of an ancient mathematical tradition.

A study of the circulation of the mathematical manuscripts within Newton’s circle shows th
revealed the fluxional analysis which stays behind some of thePrincipia’s demonstrations only to
selected group of acolytes.6 In doing so he conformed himself to a publication practice and a po
of school formation which he considered consonant to an ancient exemplar. According to New
who was following a myth originated by the publication in 1588 of Pappus’sCollectiones—the ancient
geometers rendered public in a geometric synthetic language what was found beforehand tha
hidden analytical heuristic. The heuristic method was revealed only to the disciples. As a theo
Newton thought himself to be the last of a remnant of interpreters who could decode the sy
language of the Book of Scripture [Snobelen, 2001]. As a natural philosopher he thought him
be a rediscoverer of an ancient wisdom revealed by God to the ancient Hebrews and transm
priest–mathematicians, such as Pythagoras [McGuire and Rattansi, 1966; Casini, 1984]. Als
mathematician, Newton thought himself to be the heir of an ancient tradition in pure geomet
deliberately distanced himself from the moderns—especially from Descartes—who were instead “
the arithmetic of variables [Arithmetica speciosa] with geometry” [Newton, 1967–1981, IV, 42
was only to his disciples, who came to visit him in his rooms in Trinity, that he revealed the h
fluxional analysis. This was the motivation behind a publication practice that has often puzzled his
of mathematics. And this is the reason that certain parts of thePrincipia—especially those concerning th
Moon’s motion—are so difficult to read. The fact is that they are incomplete: in order to understan
one needs to know the fluxional analysis, which is kept hidden in the printed text [Guicciardini, 19

2.2. A mechanically based geometry

But Newton’s preference for geometry had deep philosophical roots which went beyond his
to conform himself to a mathematical language and publication practice consonant with the ve
methods of the ancients.

6 A particularly interesting case is D. Gregory, whose memoranda reveal how the information flowed from Newto
disciples. Some of the memoranda have been published in Hiscock [1937].



414 Introduction / Historia Mathematica 30 (2003) 407–431

work of
r has
esult of
ned the
Ph.D.

ematics
ophy of
nsofar
rties of

sed

r the
981,

ncients,
ogical
really

oski
ogically
he real
human
rience.
rceptual
can be
ntly

express
115].
nt

Leibniz.
od with
bles”
the use

licum”

y
tiones
y or
reas

81,
Recent studies devoted to the history of English mathematics have related the mathematical
Hobbes, Barrow, and Newton to the empiricist tradition of the English scientific revolution. Pycio
underlined how the preference for geometry manifested by many British mathematicians was a r
a quest for an empirically based mathematics [1997]. Sageng in his study of Maclaurin has defi
British fluxional school as dominated by mathematical empiricism [1989]. Sepkoski in his recent
thesis has taken a different view. He has studied a nominalist and constructivist tradition in math
that spans from Gassendi to Berkeley via Barrow and Hobbes. According to Sepkoski, the philos
mathematics endorsed by Newton falls in part in this tradition and can be termed “physicalist” i
as it implies a “belief that mathematical representations should be closely aligned with the prope
physical bodies and their motions” [Sepkoski, 2002, 251].

Indeed Newton began theDe quadratura curvarum, a mature treatise on integration that he compo
in the 1690s and published in 1704 as an appendix to theOpticks, with the following words:

Mathematical quantities I here consider not as consisting of least possible parts, but as described by a continuous motion. [. . .] These
geneses take place in the reality of physical nature and are daily witnessed in the motion of bodies. And in much this manne
ancients, by “drawing” mobile straight lines into the length of stationary ones, taught the genesis of rectangles. [Newton, 1967–1
VIII, 122, 123]

Notice that in these oft-quoted opening lines Newton introduces, beside the reference to the A
another theme that was to become a leitmotiv during the priority controversy with Leibniz: the ontol
content of the method of fluxions. In this context Newton maintained that fluent and fluxions are
exhibitedin rerum natura, while Leibnizian infinitesimals do not exist. This is not to say, as Sepk
convincingly argues, that for Newton the geometrical representations themselves are the ontol
real entities they describe, but rather that their manner of description is closely related to t
world that we perceive [2002, 250 ff]. Mathematical geometrical magnitudes are constructed by
faculties, but they are constructed in a way that is not arbitrarily detached from empirical expe
Newton often insisted on the fact that the magnitudes of the fluxional methods are accessible to pe
experience. The fluxional method employs, according to Newton, only finite magnitudes that
perceived. In theDe quadraturahe wrote: “For fluxions are finite quantities and real, and conseque
ought to have their own symbols; and each time it can conveniently so be done, it is preferable to
them by finite lines visible to the eye rather than by infinitely small ones” [1967–1981, VIII, 113–
The message delivered in theDe quadraturais clear: fluxional geometry is compatible with ancie
geometryand is ontologically grounded.

As I have hinted above, these themes emerged in the heated context of the priority dispute with
In the 1710s, when opposing Leibniz, Newton contrasted the safe referential content of his meth
the lack of meaning of the differential calculus. In Leibniz’s calculus, according to Newton, “indivisi
occur, but the use of such quantities not only is a departure from ancient tradition, but also leads to
of symbols devoid of referential content. In the anonymous “Account to the Commercium episto
Newton wrote:

We have no ideas of infinitely little quantities & therefore Mr Newton introduced fluxions into his method that it might proceed b
finite quantities as much as possible. It is more natural & geometrical because founded on primae quantitatum nascentium ra
wch have a being in Geometry, whilst indivisibles upon which the Differential method is founded have no being either in Geometr
in Nature. [. . .] Nature generates quantities by continual flux or increase, & the ancient Geometers admitted such a generation of a
& solids [. . .]. But the summing up of indivisibles to compose an area or solid was never yet admitted into Geometry. [1967–19
VIII, 597, 598]
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Nature and geometry must then be conceived as deeply intertwined. It is this interrelation b
a mechanically based geometry and natural motion that allows Newton to defend the superi
his method compared to Leibniz’s. His method—he claimed—contrary to the Leibnizian one
continuity with ancient tradition as well as ontological content.

The importance of adopting a mathematical method endowed with referential content was part
relevant for Newton’s science of motion. In the 17th century the idea that the language for n
philosophy had to be geometrical was deeply rooted. Since Galileo’s times the Book of Natu
been thought to be written in “circles and triangles, and other geometrical figures”; it was not con
as written in algebraic symbols. In writing about motion, velocity, and trajectories in terms of geo
Newton was inscribing himself in a school of natural philosophy that reckoned Galilei and Huygen
principal exponents. If we turn our attention to astronomers, an important (perhaps the most imp
category amongst the readers of thePrincipia, we find again that the language of geometry domina
their works. The works of Thomas Streete and Vincent Wing, which Newton might have had as s
have the geometrical representation of trajectories as their object of study.

In the 17th century the language of geometry proved to be extremely useful in the study of kine
In fact, geometry allowed the modeling of the basic kinematic magnitudes. Displacements and ve
could be represented by geometrical continuous quantities, and thus kinematics could be studied
of the theory of proportions. But Newton’s research program was wider: he had to mathematize
not only kinematical magnitudes. One of his aims in Section 2 of Book 1 of thePrincipia was to find
a geometrical representation of central force. He employed the proportionality of force to displac
from inertial motion acquired in an infinitesimal interval of time as well as the relationship betwee
normal component of force and the trajectory’s curvature [Brackenridge and Nauenberg, 2002]. F
thanks to Propositions 1 and 2, Book 1, time was represented by the area swept by the radius7

The possibility of establishing a proportionality between force and displacement, or curvature, a
Newton to geometrize force. The language of geometry is thus what permits the modeling of the
of forces and accelerations, once forces and accelerations are expressed in terms of displacem
curvatures.

Newton’s option for geometrical methods fits well with his critical attitude towards symbolism
the years passed by, he developed a more and more acute hostility towards modern analytics. It
certainly excessive to say that Newton abandoned completely the “new analysis” that he had deve
his anni mirabiles. Mathematical achievements in algebra, published in 1707 asArithmetica universalis,
come from the 1670s. In later years Newton continued to be interested in the algebraic classific
cubic curves, in integration techniques, and in power series. However, we can safely say that a
1670s Newton contrasted geometrical methods with algebraical ones, with the purpose of show
superiority of the former to the latter, a superiority which he often emphasized.

Newton often characterized the symbolical methods of algebra and calculus as merely heuris
devoid of scientific character. During the priority dispute with Leibniz he affirmed that the differentia
integral calculi were just useful in the art of discovery, but of no use in the science of demonstr
He maintained that his geometric method of fluxions, instead, was founded in the ancient pra
exhaustion techniques and was endowed with safe referential content. During the priority disp
wrote with disdain: “Mr Leibniz’s [method] is only for finding it out” [1967–1981, VIII, 598].

7 See the papers by Erlichson and Nauenberg in this issue.
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Newton’s invectives against the use of symbols in the modern analytics resemble those of T
Hobbes and Isaac Barrow [Jesseph, 1999, 189 ff; Pycior, 1997, 135 ff; Mahoney, 1990]. His po
however, was more complex. There is undoubtedly a tension in Newton’s philosophy of mathe
Newton was too good an algebraist to completely rule out the analysis of the moderns. As I said
his position seems to have that of downgrading algebra and calculus to heuristic tools.

The circumstances surrounding the publication of theArithmetica universalisare interesting. I
appeared anonymously in 1707. Newton made it clear that he was compelled to publish in o
obtain the support of his Cambridge colleagues in the election to the 1705 Parliament and did no
his name to appear on the title page [Westfall, 1980, 626, 648–649]. In the opening “To the Rea
was stated that the author had “condescended to handle” the subject. TheArithmetica universalisalso
ended with oft-quoted statements in favour of pure geometry and against the “Moderns” who had
“Elegancy” of Geometry:

Geometry was invented that we might expeditiously avoid, by drawing Lines, the Tediousness of Computation. Therefore th
two sciences [. . .] ought not be confounded. The Ancients did so industriously distinguish them from one another, that they ne
introduced Arithmetical Terms into Geometry. And the Moderns, by confounding both, have lost the Simplicity in which all th
Elegancy of Geometry consists. [1964–1967, II, 228]

In his mature life Newton published symbolical mathematics, but he insisted in conveying to his
the idea that such works did not exhaust the scope of his mathematical activity and that geom
works were superior.

In theArithmetica UniversalisNewton made it also clear that the equation does not define the c
The Arithmetica Universalismight be considered an exercise in Cartesian algebra, but—as we
above—it ended with an Appendix where most of Descartes’s methodology concerning curv
rejected:

it is not the Equation, but the Description that makes the Curve to be a Geometrical one. The Circle is a Geometrical Line, not bec
it may be expressed by an Equation, but because its Description is a Postulate. It is not the Simplicity of the Equation, but the Eas
of the Description, which is to determine the Choice of our Lines for the Construction of Problems. [1964–1967, II, 226]

Newton went on to observe that the equation of a parabola is simpler than the equation of the
However, it is the circle which is simpler and to be preferred in the solution of problems. Desc
classification of curves as a function of the degree of the equation is not relevant for the geom
who will choose curves as a function of the simplicity of their mechanical description:

But Algebraick Expressions add nothing to the Simplicity of the Construction. The bare Descriptions of the Lines only are here to
considered. [1964–1967, II, 227]

Newton observes that from this point of view the conchoid is a quite simple curve. Independ
considerations about its equation, its mechanical description is one of the most simple and
only the circle is simpler. Newton was thus ending his treatise on Cartesian algebra by stat
secondary importance of equations and by insisting—as he does in the very first lines of thePreface
to thePrincipia—on the fact that geometrical objects should be conceived of as generated mecha
that geometry is subsumed under mechanics.

The first half of thePreface to Newton’s Principia is devoted to defining “rational mechanic
as opposed to “practical mechanics,” to discussing its relationship with geometry and its use



Introduction / Historia Mathematica 30 (2003) 407–431 417

that it
ry: quite
the very

ed by
xact”
ometry
studies
f both
and by

tudying
general

ived as
hanics,
anical

es the
scribe
aches
uch.
anics

reek
eive
rrison,

tions by

2. To
re and
which

tology
scartes,
(curves
hanical
broader
tulates
tinuous
etry.
ometry

ostulates.
VIII,
investigation of nature. Newton affirms that geometry is founded upon mechanical practice and
is part of universal mechanics. He also denies that exactness appertains exclusively to geomet
the contrary, geometry receives its exactness from mechanical practice. In stating these theses in
first lines of thePrincipia Newton was distinguishing his mathematical method from the one defend
Descartes in theGéométrie(1637). Descartes had defined “geometrical” as “what is perfect and e
and “mechanical” as what is not so. He had, therefore, banished “mechanical” curves from ge
and admitted only those curves which are defined by an algebraic equation. Since his early
on the fluxional method, Newton had aimed at developing a method for studying properties o
geometrical and mechanical curves. He did so by conceiving curves as generated by motion
admitting infinite series as legitimate representations of curves. Newton was convinced that s
geometrical magnitudes in terms of their mechanical construction opened access to a much more
approach than Descartes’s.8

Newton expressed time and again his conviction that geometrical objects should be conce
generated by motion: geometry, from his point of view, was subsumed under mechanics. Mec
in fact, provides geometry with its subject matter, and it does so with a rich variety of mech
constructions. As Newton wrote in thePrefaceto thePrincipia:

For geometry postulates [postulat] that a beginner has learnt to describe lines and circles exactly [accurate] before he approach
threshold of geometry; and then it teaches how problems are solved by these operations. To describe straight lines and to de
circles are problems, but not problems in geometry. Geometry postulates the solution of these problems from mechanics; and te
the use of the problems thus solved. And geometry can boast that with so few principles obtained from other field, it can do so m
Therefore geometry is founded on mechanical practice [praxi mechanica] and is nothing other than that part of universal mech
which reduces the art of measuring to exact proportions and demonstrations. [1999, 382]

The use of the verbpostulareshould be noted. The role and meaning of postulates in ancient G
geometry, and their distinction fromaxioms, is a vexed interpretative question. Newton seems to conc
postulates as “the existence-claims of geometry; they are what geometry is ultimately about” [Ga
1987, 611]. Traditionally, postulates provided a means to generate some elementary construc
the use of mechanical devices, such as rulers and compasses. For instance, in Euclid’sElementsone
reads: “Let the following be postulated: 1. To draw a straight line from any point to any point.
produce a finite straight line continuously in a straight line. 3. To describe a circle with any cent
distance” [Euclid, 1926, I, 154]. As Molland observes, these postulates “lay down conditions under
straight lines and circles may be constructed” [Molland, 1991, 185]. But Newton’s geometrical on
was much larger, for he had to admit not only figures constructible by ruler and compass. De
as we know, had already enlarged the scope of geometry by admitting all algebraical curves
defined by an indeterminate polynomial equation) as legitimate. Newton wished to admit the mec
curves (such as the spiral or the cycloid) too. Consequently Newton’s notion of postulate is much
than both in classic and Cartesian geometry: “[for Newton] it is motion which describes the pos
and serves as the foundation of geometry” [Garrison, 1987, 611]. Any curve generated by con
motion is, in Newton’s terminology, a “fluent quantity” and, as such, a legitimate object of geom
In the early 1710 Newton wrote a manuscript in which he pondered the relationships between ge
and mechanics. Mechanics, he affirmed, precedes geometry and is based on a number of p
One of these was: “To move a given body by a given force in a given direction” [1967–1981,

8 On Descartes’s refusal of mechanical curves see Bos [2001, 335 ff].
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177]. The mechanical generation of magnitudes performed in mechanics is the assumption o
geometry is based, and this mechanical motion presupposes a mover, a force; it must “originate
activity of some agent” [Garrison, 1987, 611]. In fact, Newton stated in a manuscript treatise on ge
written the 1690s, that the mechanical generation of magnitudes can be performed by “God, n
any technician.” Echoing thePrefaceto thePrincipia, Newton wrote:

Geometry neither teaches how to describe a plane nor postulates its description, though this is its whole foundation. To be
the planes of fields are not formed by the practitioner [ab artifice] but merely measured. Geometry does not teach how to des
a straight line and a circle but postulates them; in other words, it postulates that the practitioner has learnt these operations b
he attains the threshold of geometry. [. . .] Both the genesis of the subject-matter of geometry, therefore, and the fabrication of it
postulates pertain to mechanics. Any plane figure executed by God, nature or any technician [a Deo Natura Artifice quovis confe
you will are measured by geometry in the hypothesis that they are exactly constructed. [1967–1981, VII, 338–343]

Maurizio Mamiani in [1998] has noticed a connection between Newton’s mechanically
fluxional geometry and certain aspects of theDe gravitatione et aequipondio fluidorum—a metaphysica
manuscript whose dating is still object of disagreement—where Newton writes that:

the analogy between the Divine faculties and our own is greater than has formerly perceived by Philosophers [since] in moving Bo
we create nothing nor can we create anything, but we only simulate the power of creation [. . .] if anyone prefers this our power to
be called the finite and lowest level of the power which makes God the Creator, this no more detracts from the divine power th
detracts from God’s intellect that intellect in a finite degree belongs to us also. [Newton, 1962, 141–142]

Mechanically described figures, curves in particular, are thus generated by a faculty that mimics
and God.9

Sepkoski’s thesis, according to which Newton was a moderate mathematical constructivist, n
fits well with Newton’s conviction that geometry is based upon mechanical practice, that geom
objects have to be seen as mechanically produced, but is in harmony also with what Cohen ha
us about Newton’s use of mathematical models [Cohen, 1980]. According to Cohen, in thePrincipia
Newton used mathematical constructs as successive approximations to reality. Each model w
by Newton as physically false, since it was based on simplifying assumptions that violated the
laws of motions. For instance, in Proposition 1, Book 1, he considers a single body acted upo
central force directed towards an immovable point, a situation which contradicts the third law of m
but which approximates the motion of a light satellite attracted by a massive body. However,
Principia Newton made use of a series of models that adhere more and more closely to actual re
“each successive idealization extends the one preceding it by dropping an assumption that simp
mathematics” [Smith, 2001, 250].10

As a concluding remark to this section one can say that it would be excessive to attribute to N
a definite philosophy of mathematics: he was not committed to philosophy to the extent of Des
Hobbes, or Leibniz. However, he held philosophical views that shaped his mathematical rese
a way, one could say that he was both a realist and a constructivist, since the mechanicall
geometrical constructs are meant to approximate the real “geneses [which] take place in the re
physical nature and are daily witnessed in the motion of bodies.”

9 On Newton’s constructivism in geometry see Garrison [1987], Dear [1995, 212]. On the relationship between N
conceptions of God and his method of fluxions see Ramati [2001].

10 See also Smith [2002].
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2.3. Logic and background material

Mathematicians could not express their proofs in a formal logical system even if they wished to because mathematical argumen
not merely formal. [. . .] The inferences appeal to features of the non-logical content, which is why one has to understand so m
background material in order to grasp a mathematical argument. [Larvor, 2001, 221]

I believe that it can be safely admitted that the logic of a mathematical proof is invariant: it
context-dependent. This is why the technical debate on the cogency of certain propositions of N
Principia is legitimate, informative, and fascinating. The mathematicians and physicists who
recently opened themagnum opusto test the cogency of its demonstrations have raised our understa
of the niceties of Newton’s mathematical natural philosophy.

However, mathematics, like any other human enterprise, does develop in a context, in con
relation—as Kitcher and Corry maintain—with other scientific disciplines and with culture in ge
As Larvor maintains in the lines quoted in the opening of this section, in order to grasp a mathe
argument one has to be informed about background material that is beyond the reach of mere
inspection of the demonstrative steps. I hope I have argued convincingly that contextual his
useful for achieving a historical understanding of a technical text such as thePrincipia. In Section 2 we
have seen how Newton’s cultural and philosophical convictions were intertwined with his charac
mathematical practice. This practice—well known to historians of mathematics—includes relucta
publish the calculus, preference for geometry and aversion toward symbolism, mathematical cla
and the subordination of geometry to mechanics rather than to algebra. All these aspects profound
the mathematical style of thePrincipia. Thus, I believe that an understanding of Newton’s mathema
practice adopted in thePrincipia cannot be achieved without a serious collaboration between histo
of Newton’s mathematics and historians of other sectors of Newton’s thought.

But can we go deeper in our attempt to bridge the gap between technical and cultural New
researches? I began my paper by noting that historians of technical aspects of Newton’s mathem
of motion work somewhat in isolation, and that connections with historians of cultural aspects of s
are seldom established. After the brief presentation of Newton’s philosophical ideas proposed ab
issue remains of whether it is possible to make use of knowledge about Newton’s philosophica
in order to articulate open questions debated in the technical literature. In the remaining part
paper I will attempt to move toward a contextualist reading of some aspects of Newton’s mathe
astronomy.

3. Looking for intersections between conceptualism and contextualism

3.1. Michael Nauenberg and Curtis Wilson on Newton’s mathematization of lunar theory

I will consider the recent studies by Michael Nauenberg and Curtis Wilson of Newton’s appro
the study of the Moon’s motion [Nauenberg, 2000, 2001; Wilson, 2001]. These works are partic
interesting since Nauenberg and Wilson are among the finest historians of Newton’s mathe
astronomy. The topic they are discussing is one of the most technical parts of Newton’s c
mechanics. We are thus lucky to have access to these impervious subjects thanks to the gui
these two technically adept historians. They both read Newton’s demonstrations in fine detail, th
have a good command of modern perturbation theory, but, this notwithstanding, they reach so
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contrasting conclusions concerning the nature of Newton’s achievements on the three-body probl
contrasting conclusions reached by Nauenberg and Wilson, even though they concern a spec
of Newton’sPrincipia, are in a way typical of 20th-century commentators of Newton’s mathema
astronomy. Their disagreement, in fact, concerns a question that recurs in the literature: Are N
geometrical methods adopted in thePrincipia equivalent to the calculus? While I believe that t
issue can be settled only by historians of technical aspects of Newton’s mathematics, I will arg
knowledge of the philosophical context adds a new dimension to our understanding of this quest

In the Principia Newton dealt with lunar theory in Book 3, Propositions 22 and 25–35. In t
propositions Newton dealt with three lunar inequalities; one of these is the “variation,” an
discovered by Tycho Brahe consisting in the fact that the Moon “maximally lags behind its mean p
in the octants before the syzygies, and maximally exceeds its mean position in the octants a
syzygies” [Wilson, 2001, 141]. Newton dealt also with the motion of the nodes and the variation
inclination of the Moon’s orbit. In thePrincipia Newton does not deal with the motion of the Moon
apogee, apart from a very limited mathematical approach contained in Propositions 43–45, B
There are, however, a number of manuscripts in the Portsmouth collection, which was presente
University Library of Cambridge at the end of the 19th century, where a perturbation method is a
to the Moon’s apsidal motion [Newton, 1967–1981, VI, 508–535]. In their papers Nauenberg and
deal with Newton’s treatment of the variation (most notably, Propositions 26 and 28, Book 3) an
the Portsmouth papers.

One of the questions debated by Wilson and Nauenberg is the equivalence between Newton’s
and those employed by mid-18th-century mathematicians, such as Euler, d’Alembert, and C
Wilson recognizes that

Newton in his assault on the lunar problem during the 1680s relied crucially on techniques he had developed in his perio
intense algebraic exploration, from the mid-1660s to the early 1670s. These techniques include use of the binomial theorem
approximations, determination of the curvature of algebraic curves at given points, and integration of sinusoidal functions. [2
139].

However, Wilson maintains that Newton’s methods are far from being equivalent to those of
Clairaut, d’Alembert, and the other great Continental 18th- and 19th-century mathematicians. He
“Newton’s methods contrast sharply with those of the Eulers [i.e., Leonhard and Johann] and [
William] Hill” [2001, 139], and “success came for Newton’s successors only with a new appr
different from any he had envisaged: algorithmic and global” [2001, 140].

Let us briefly consider Propositions 26 and 28. In Proposition 26 Newton aims at determini
variation in velocity of the Moon, due to the solar perturbing force, as it moves along a trajector
is assumed circular with the Earth at the centerT (see Fig. 1) andCD the line of quadratures. From
Proposition 25 Newton has a quantitative estimate of the ratio of the mean values of the per
accelerative force of the Sun on the Moon to the Earth’s much greater accelerative force on the
Such an estimate is achieved by several approximations (for instance, the Sun is assumed to be
distant), the use of binomial expansions (which are truncated), and several trigonometrical re
Such algebraical calculations are not rendered explicitly in thePrincipia and must be reconstructed b
the reader. Newton represents the acceleration of the Moon as seen from an observer at re
Earth by the lineLT and decomposesLT into two components, a radial componentET and a transvers
componentLE. In order to find the variation of the Moon’s speed “as it moves fromC to any pointP
betweenC andA, it is necessary to integrate [in Newton’s terminology to “square”] the acceleratioLE
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Fig. 1. Newton’s diagram for Proposition 26, Book 3, from Newton [1999, 841].

over time” [Wilson, 2001, 144].11 Newton constructsGC at right angles with, and equal to, the circ
radiusTC and shows that such a quadrature is equivalent to summing the infinitesimal stripesFKkf
(that is,LEdt is proportional toFKkf , where we use the Leibniziandt for the infinitesimal incremen
of time—notice thatdt is proportional toda, wherea is the angleCTPof mean motion of the Moon)
Newton does not publish the integration in print, but from the numerical results he achieves it i
that he must have performed the integral of sin(2a)da. In fact, Newton writes that the increment in ra
of areal description is proportional to the “versed sine of twice the distance of the Moon from the n
quadrature” [Newton, 1999, 843]; i.e., it is proportional to(1 − cos 2a) (wherea is anglePTC). So
Newton must have performed the integration, but does not reveal the details to the reader. Now
has an estimate of the ratio of the velocity at quadratures to the velocity at syzygies. In Propos
Newton tries to determine the variational orbit. As Wilson puts it, “the assumption is that in the ab
of the perturbing accelerationsLE andET the Moon would move uniformly in a circle about the Eart
center” [Wilson, 2001, 146]. So Newton assumes a circular orbit and shows how it must be m
if the perturbing force of the Sun is switched on. As Nauenberg has shown in Nauenberg [1994
Newton deploys a measure of force in terms of curvature; namely, Newton applies Huygens’s law
According to this law a body that moves along a circle with constant angular speed has a cen
acceleration whose strength is proportional to the square of linear speed and inversely proport
the radius. In the case of a general trajectory Newton knew from his earliest studies on the mo
bodies that the strength of the normal component of total force at a general pointP of the trajectory
is proportional to the square of the instantaneous speed atP divided by the radius of curvature atP .
This physical insight is applied in Proposition 28. Since Newton has (a) from Proposition 25 an es
of the ratio of the radial component of the perturbing accelerative force of the Sun on the M
the accelerative force of the Earth on the Moon12 and (b) from Proposition 26 an estimate of the ra
of the velocity at quadratures to the velocity at syzygies, he can apply Huygens’s law locally in

11 In fact the radial componentET will not cause any transverse acceleration.
12 In fact the total radial accelerative force at quadratures and syzygies consists in the Earth’s attraction and an

subtracted radial perturbing accelerative force due to the Sun.
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Fig. 2. Newton’s diagram for Proposition 28, Book 3, from Newton [1999, 845].

to determine the ratio of curvature at quadratures to that at syzygies. Newton’s “general strate
determine, in two different ways, the ratio of the curvature of the orbit at syzygies to its curvat
quadrature. The two expressions of the ratio are set equal, and from the resulting equation [N
obtains algebraically a numerical value for the ratio of the orbital radius at quadrature to the
radius at syzygy” [Wilson, 2001, 146]. To obtain a second expression for this ratio Newton assum
in the presence of the perturbing force the unperturbed circular orbits is deformed into an elliptic
such that the greater axisCD lies between the quadratures; i.e., the Sun is atS (see Fig. 2), the Eart
remaining situated in the centerT . Notice that the ellipse rotates with the Sun (see the dotted line).

Here we will not follow Wilson in his masterful identification of flaws and drawbacks in Newt
demonstrations in any detail. What is interesting for us are the conclusions he reaches. In an
Proposition 28, Book 3, he notices that “Newton does not construct the orbit [the flattened elliptica
of the Moon] starting from the forces, but ratherassumesa circular orbit, and then shows how it must
modified” [2001, 144]. In fact, Newton writes that “since the figure of the lunar orbit is unknown, le
in its place assume an ellipse DBCA, in whose center the Earth is placed” [Newton, 1999, 845].
of deducing the orbit from some basic equations, Newton began with some simplifying assum
concerning the shape of the Moon’s orbit (circular in Propositions 25 and 26, elliptical in Propositi
and tried to establish the perturbation caused by the Solar force. According to Nauenberg, N
solution of the lunar variations in Proposition 28 “corresponds to the periodic solution obtained la
L. Euler and in full detail by G.W. Hill” [2001, 198]. However, as Wilson states, Newton’s appr
led to several problems. Most notably, the level of approximation was not under control. There
internal check on the level of accuracy of the various approximations introduced. The method fo
by the Eulers and Hill, according to Wilson, was instead profoundly different, since they “started
differential equations that stated exactly the conditions of the problem,” and “reference to the diffe
equations [. . .] controls the successive approximations” [2001, 153]. Wilson agrees with Naue
in recognizing that Newton in Propositions 26 and 28 employed algebraic techniques, most
binomial expansions, trigonometrical relations, integrations of sinusoidal functions, and calculat
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Fig. 3. Newton’s diagram for Proposition 17, Book 1, from Newton [1999, 470].

curvatures of algebraic curves, but he did so in a completely different way than Euler or Hill. (a) Ne
use of such algorithmic techniques was not systematic (“Newton on many occasions formula
solved problems [in celestial mechanics] algebraically, but he did not do so always or as a m
policy” [2001, 171]). Newton’s use of algebraic techniques was notmethodical. That is, Newton used
algebraic techniques in certain passages of his demonstrations, which were fundamentally ge
in character. Newton’s demonstrations were always assisted by geometrical and physical insigh
were often unjustified (in particular, the degree of approximation was not under control). Instead “b
Euler and Clairaut, dynamical insight was required for the formation of the initial differential equa
but not thereafter” (p. 179). Further, (b) Newton did not deduce the Moon’s orbit from the equati
motion but, rather, “assumed a fictive shape (a concentric circle) and reasoned to the modificat
that the perturbing forces would require” (p. 171).

Nauenberg shows that a much more general approach to perturbation theory is develope
Portsmouth papers, where Newton faces the problem of the determination of the motion of the
apogee. Nauenberg’s study of these intricate papers is to be welcomed as a decisive advanc
understanding of Newrton’s treatment of the three-body problem. The Portsmouth method depen
a technique expressed in two corollaries (Corollaries 3 and 4) to Proposition 17, Book 1, added
second edition of thePrincipia.

Proposition 17 is related to the solution of the so-called inverse problem of central forces. Here N
considers a body of given mass accelerated by a centripetal inverse square force directed towardS. The
body is fired atP in the directionPR with a given initial speed (see Fig. 3). Newtonassumesthat the
trajectory is a conic section and that one of the foci is located at the force centerS. He determines th
unique conic that satisfies the given initial conditions. According to Proposition 16 (againassumingthat
the trajectory is a conic) the initial conditions determine thelatus rectum, L, of the conic trajectory.13

Because of the reflective property of conics, the lines joiningP with the foci make equal angles with th
tangent atP , therefore the direction of the line where lies the second focusH is also determined. Newto

13 In modern terms one can render Proposition 16 as follows. The semi-latus rectum, L/2, of the sought conic trajectory
L/2 = b2/a = (v2SY2)/(mk) = h2/(mk), wherev is the initial speed,SY falls perpendicularly on the tangent atP , a andb

are the major and minor semiaxes,h is angular momentum,m, the mass, andk is a constant such thatF = −k/SP2. Thus the
given initial conditions determine thelatus rectumof the conic trajectory.
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995, 57].
shows that the following geometrical property holds for any conic section:

SP+ PH

PH
= 2(SP+ KP)

L
,

whereSK falls orthogonally onPH. SinceSP, L, andKP are unequivocally determined by the initi
conditions,PH also is given. And the second focus is thus found. We have now enough inform
to build the required conic: we have the fociS andH and the major axisSP+ PH.14 Proposition 17
allows one to scale the conic trajectory for an inverse square force in function of the initial cond
ForL < 2(SP+ KP) the conic is an ellipse, forL = 2(SP+ KP) it is a parabola, and forL > 2(SP+ KP)

it is an hyperbola.
The technique employed in Proposition 17 can be applied, as Newton states in Corollaries 3

to the study of a perturbed Keplerian orbit. One of Nauenberg’s insights is that these two corolla
crucial for an understanding of the Portsmouth method. They read as follows:

Corollary 3. Hence also, if a body moves in any conic whatever and is forced out of its orbit by any impulse, the orbit in which
will afterward pursue its course can be found. For by compounding the body’s own motion with that motion which the impulse alo
would generate, there will be found the motion with which the body will go forth from the given place of impulse along a straig
line given in position.
Corollary 4. And if the body is continually perturbed by some force impressed from outside, its trajectory can be determined v
nearly, by noting the changes which the force introduces at certain points and estimating from the order of the sequence the con
changes at intermediate places. [Newton, 1999, 472]

These two corollaries pave the way to evaluating the effect of a perturbing force over a two-body s
The perturbing force is subdivided into a series of impulses acting at equal intervals of time. Afte
impulse it is possible to determine the velocity of the point mass and use this velocity as a new
condition. Applying Proposition 17 one can then determine the parameters of the conic along
the body will move until the next impulse causes a successive change of parameters. In Naue
words “repeated application of Proposition 17 determine the Moon’s perturbed orbit as a sequ
elliptical arc segments joined together” [Nauenberg, 2001, 201–202]. It is this more general ap
that Newton employed in determining the motion of the Moon’s apogee. As Whiteside, in a se
paper, and Nauenberg and Wilson in their recent studies show, in the Portsmouth papers Newt
several mistakes, and in fact his results on the Moon’s apogee did not find their way in thePrincipia
[Whiteside, 1975].

In analyzing the Portsmouth method Wilson and Nauenberg express a certain disagreement a
translatability of such a method in terms of differential equations. From Nauenberg’s analysis it
seem that such a translation is quite straightforward. Nauenberg maintains that this method “corr
to the variation of orbital parameters method first developed by Euler and afterwards by La
and Laplace” [2001, 189]. Nauenberg is not the first one to have maintained this thesis. For in
Chandrasekhar quotes with approval François Félix Tisserand, who affirmed that Newton undo
had in his possession these equations for his treatment of lunar perturbations [Chandrasekhar, 1
According to Nauenberg:

14 I have followed in broad outlines the analysis of Proposition 17 given by Chandrasekhar [1995, 108].
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Newton’s physical and geometrical approach leads directly to differential equations [. . .] for the parameters of the revolving ellipse
[. . .] this method corresponds precisely to the modern method of the variation of orbital parameters attributed to Euler, Lagrange
Laplace. [2001, 191].

Wilson is much more cautious and rather thinks that methods equivalent to Leibnizian integration
only sporadically in a demonstrative context which is basically driven by (often unjustified) physic
geometrical insights.

These brief remarks do not due justice to Nauenberg’s and Wilson’s sophisticated researche
hope they suffice to indicate how the basic question which we referred to above emerge in the
of this discussion. While I believe that a resolution of such historiographic issues can come onl
the study of technical details of Newton’s mathematics, I will try to inquire whether knowledge o
philosophical context can help us in looking at the analyses carried out by Nauenberg and Wilson
slightly new perspective.

3.2. The context again

Our study of Newton’s philosophical views in Section 2 reveals a context in which his demonstr
might be considered from a different point of view. We know that Newton was a follower of G
exemplars: most notably, he was profoundly impressed by Pappus’s tantalizing description of the
of analysis and synthesis in Book 7 of theCollectio. In late antiquity analysis (or “resolution”) wa
conceived of as a method of discovery, or a method of problem solving, which, working step b
backwards from what was sought as if it had already been achieved, eventually arrived at what is
This, and similar, rather vague definitions were aimed at describing in a general way a whole appa
geometric problem solving procedures developed by the Greeks. Synthesis (or “composition”) g
other way round; it starts from what is known and, working through the consequences, it arrives
is sought. The axiomatic and deductive structure of Euclid’sElementswas the model of the synthet
method of proof. Analysis (orresolutio) was often thought of as a method of discovery prelimin
to the synthesis (orcompositio), which, reversing the steps of the analytical procedure, achieve
true scientific demonstration. Analysis was thus the working tool of the geometer, but it was onl
synthesis that one could achieve indisputable demonstration. In his numerous manuscripts re
the method of analysis and synthesis, Newton often quoted from the introduction to the seven
of Pappus’sCollectio. In a treatise on geometry that Newton composed in the early 1690s we fin
following passage freely taken from Pappus:

Resolution, accordingly, is the route from the required as it were granted through what thereupon follows in consequence to some
granted in the composition. For in resolution, putting what is sought as done, we consider what chances to ensue [. . .] proceeding
in this way till we alight upon something already known or numbered among the principles. And this type of procedure we c
resolution, it being as it were a reversesolution. In composition, however, putting now done what we last assumed in the resolution
and here, according to their nature, ordering as antecedents what were before consequences, we in the end, by mutually compo
them, attain what is required. And this method we callcomposition. [Newton, 1967–1981, VII, 307]

I believe that in thePrincipia one can individuate a tradition of geometrical problem-solving at w
deeply rooted in Newton’s reinterpretation of the classical tradition. Newton was actually reinterp
this tradition into a completely new area: the geometrization of motion. His geometrical n
philosophy was thus very innovative, notwithstanding Newton’s classicist rhetoric.
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Rather than discarding Newton’s treatment of force and motion as inferior compared to mid
century analytic mechanics, we should try to be more respectful of what Newton was seeki
should try to understand which questions he was trying to answer. Rather than subjecting N
demonstrations to exigencies which emerged much later (such as generality of methods, alg
power, systematicity), it is better to take into consideration the tacit dimension—to use Po
terminology—of such demonstrations.

In ancient and early modern mathematics what was required by the solution of a “problem
the construction (by means considered as legitimate) of a geometric object from elements th
assumed as “given.” The distinction between problems and theorems was highly significant for Ne
contemporaries: it was a distinction that went back to Euclid’sElements. ThePrincipia’s propositions,
as in theElements, are neatly divided into theorems and problems. The propositions consider
Wilson and Nauenberg, namely, Propositions 26 and 28, Book 3—as well as Proposition 17, Bo
are classified in thePrincipia as “problemata.” Newton’s purpose in these propositions was thus th
obtaining mechanically generated geometrical constructs that satisfied given dynamic conditions

Further, we should notice what we said above about Newton’s conception of a mecha
based geometry. In constructing geometric objects, the geometer mimics God’s faculty of con
providential intervention, which is manifested in the heavenly motions. The existence of the re
of geometry (e.g., planetary orbits) does not come from within mathematics, but is provided
outside. Otherwise said, for Newton geometrical objects are human fabrications, which are con
mechanically. The purpose of the geometer is to give rise to constructions that mimic the real m
that exist in nature. The fact that Newton begins, as Wilson observes, his demonstrations in luna
with a simplified geometrical model of the Moon’s orbit is thus perfectly in line with his aim of attai
a progressive succession of geometrical constructs that approximate the real motion of the Moon
the essence of what Cohen calls the “Newtonian style” in Cohen [1980]).

The peculiar geometrical character of Newton’s problem-solving techniques, rooted as they
the Pappusian tradition, does not imply, however, that in his mathematization of motion he neve
recourse to algorithmic techniques. What we said above about Newton’s dual publication strategy
make us aware of the plausible existence of hidden parts behind the printed text of thePrincipia (and
we really need the keen mathematical eye of people such as Chandrasekhar, Nauenberg, White
Wilson to spot these!). It should be observed in this context that part of the difficulty in readin
Principia resides in the fact that many of its demonstrations areincomplete, as we have seen in ou
cursory analysis of Propositions 26 and 28, Book 3. In thePrincipia one can find cases in which Newto
skips important passages in his demonstrations, and very often such gaps can be filled only by rec
algorithmic techniques (most notably, infinite series and integrations). In the printed text Newton u
obliquely refers the reader to methods whereby “curvilinear figures” can be squared.15 Only in one
instance an explicit reference to the “method of fluxions” occurs.16 When we read the manuscripts th
circulated in the Newtonian circle we find that Newton discussed the algorithmic methods necessa
the gaps present in the printed text of thePrincipia [Guicciardini, 2003]. Perhaps the most extraordin
manuscript is David Gregory’sNotae in Newtoni Principia Mathematica Philosophaie Naturalis, where
one can discover a great deal about Newton’s ability to apply series and integrations to the sc

15 See, e.g., Newton [1999, 529–533].
16 [Newton, 1999, 884].
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motion.17 Newton’s ability to apply fluxions and series to mathematical astronomy is evident both
an internal analysis of Newton’s printed text and from knowledge acquired from his corresponde
manuscripts circulated within his circle.

Was Newton able therefore to mathematize mechanics in calculus terms? For instance, is Na
right in stating that Newton’s methods in lunar theory are “equivalent” to Euler’s? Thes
ambiguous questions which must be qualified. An analysis of thePrincipia and knowledge of Newton’
correspondence and manuscripts refutes the widespread belief that he was unable to apply s
fluxions to the science of motion, but does not imply—as Wilson shows—that he was in posses
tools comparable to those acquired by, say, Euler or d’Alembert. In translating Newton’s demons
of thePrincipia into Leibnizian calculus terms, another widespread practice (see Chandrasekhar [
we risk both betraying his style and overlooking the mathematical limitations of his methods. W
projecting on his method of series and fluxions a modernity which is extraneous to it.

In the first place, one should note that Newton referred to his algorithmic youthful discoverie
“method” of series and fluxions, not as a “calculus.” He conceived and practiced his method with
17th-century tradition of heuristic problem-solving techniques recently studied in Bos [2001]. One
main concerns of 17th-century mathematicians was to develop methods aimed at determining pr
of geometrical objects, most notably curves. Since Descartes’sGéométrie(1637) such problems wer
approached by application of algebraic techniques. These techniques were, however, subs
geometrical ones. As Bos shows, from Descartes’ point of view, the equation was just part
definition of a curve, since, in order to practice geometry, one had to exhibit a geometric construc
the curve. Descartes did not depart from the ancient Pappusian approach according to which a so
known only if it can be constructed starting from geometric elements considered as given at the
“by 1650 an equation was a problem whose solution was a construction; by 1750 problems as wel
solutions were couched in terms of equations or analytical expressions” [Bos, 2001, 427]. So a
often referred to as “common analysis,” was practiced within the framework of a tripartite me
The first step was—in accordance to Pappus’s analytic method—to assume the solution as g
assigning symbols to geometrical magnitudes (known,a, b, c, and unknown,x, y, z) this translated
into the “discovery” of an algebraic equation [“aequationis inventio”]. The second step consis
manipulating the equation in order to express the sought quantity (let us say,x) in terms of the givens
(let us say,a, b, and c). But this did not end the process. As Bos remarks, one had to proceed
a geometrical construction that exhibited the solution, and there was an extensive debate con
the legitimacy of constructions tools. The “construction of the equation” [“aequationis constru
consisted in constructing geometrically the magnitudex as function of the given magnitudesa, b, andc.
This last, third, step was synthetic, since the sought magnitude was built from the givens. In a ma
dating from the early 1690s Newton described this tripartite method as follows:

if a question be answered [. . .] that question is resolved by the discovery of the equation and composed by its construction, but it is n
solved before the construction’s enunciation and its complete demonstration is, with the equation now neglected, composed. He
is that resolution so rarely occurs in the Ancient’s writings outside Pappus’sCollection [. . .] to be sure, it is the duty of geometers to
teach unskilled men and mechanics, and resolution is ill-suited to be taught to the masses. [Newton, 1967–1981, VII, 307]

17 Royal Society Library MS 210.
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Thus, according to Newton, a problem is solved by the geometrical construction (or synthesis), w
resolution (the analytical step) consisting in the discovery and solution of the equation can be ne
and—following the Ancient’s practice—avoided in publication.

In his youthful studies Newton was continuing the Cartesian tradition by developing what he t
a “new analysis”: an extension of the “common analysis” of the Cartesians. Newton’s new analys
the method of series and fluxions, and this method, as much as the Cartesian one, was subse
geometry. Newton began with a specific geometric problem, by manipulating geometrical line
“discovered” a fluxional [differential, in Leibnizian terms] equation (first step), and the “quadra
of such an equation (second step) ended the analytical part of the problem-solving procedur
the synthetic procedure had to follow, and the solution achieved in the second step was con
synthetically. In thePrincipia Newton did not publish the second step: typically he showed the re
how a certain problem could be reduced to a “quadature” (i.e., the integral of a differential equ
he kept the integration technique hidden and proceeded to publish the synthetic geometrical con
of the solution. Thus the questions of Newton’s use of calculus in thePrincipia should be set in term
respectful of the context in which he placed himself as a geometer.

Newton’s use of fluxional method was part of a procedure that was basically geometric in cha
The algorithmic method intervened only in certain crucial passages of the Pappusian analytic p
solving technique. For instance, we have seen how Newton in Proposition 26 reaches a re
integration of sin(2a). However, the integration does not appear in print. In Proposition 28 Ne
calculates curvatures by the method of fluxions, but, again, he does not explain to the reader h
curvature calculations can be carried on. As far as the inverse problem of central forces is con
we notice that in Proposition 41, Book 1, Newton reduces the problem to the integration of a
of differential equations. In Corollary 3 to Proposition 41 Newton faces the problem of determinin
trajectory of a body fired in an inverse cube central force field. His integration technique was re
in a letter to David Gregory [Newton, 1959–1977, III, 348–349]. But in the printed Corollary 3
can find just the “construction” of the solution attained by integration, i.e., a geometrical constr
of the Cartesian spirals traveled by a body fired in an inverse cube force field [Erlichson, 1
Brackenridge, 2003]. Similarly, in his private papers (the Portsmouth calculation of the Moon’s a
motion), the calculations necessary to solve the three-body problem are carried on in a more exp
compared with the printed Propositions 25–35, Book 3.

A study of Newton’s mathematization of motion cannot be carried out without the technical w
fine historians such as Nauenberg and Wilson. However, such conceptualist researches can be
embedded in a contextualist setting, since the questions that Newton asked himself, the methods
that he accepted or privileged, the hierarchies that guided his research, the standards of pu
he adopted were noticeably different from the ones we accept nowadays, and indeed differe
the ones accepted by Leibniz and his successors. It is only by having access to this tacit dim
of Newton’s methods, to the “background material” of his demonstrations, that we can app
the technicalities of the mathematical procedures of thePrincipia. Both the attempts to transla
the Principia’s demonstrations into modern calculus and the criticisms based upon standards
developed later risk missing the point.18

18 I hope the reader will understand that in no way do I wish to underestimate the excellence of Nauenberg’s and
researches. What I want to advocate is the fruitfulness of a different approach which is complementary to theirs. Fu
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