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DETERMINING A SOUND-SOFT POLYHEDRAL SCATTERER
BY A SINGLE FAR-FIELD MEASUREMENT

GIOVANNI ALESSANDRINI AND LUCA RONDI

(Communicated by M. Gregory Forest)

Abstract. We prove that a sound-soft polyhedral scatterer is uniquely deter-
mined by the far-field pattern corresponding to an incident plane wave at one
given wavenumber and one given incident direction.

Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,
salimmo su, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta’l ciel, per un pertugio tondo;
e quindi uscimmo a riveder le stelle.

Dante, Inferno, C.XXXIV, 133-139.

1. Introduction

We consider the acoustic scattering problem with a sound-soft obstacle D. For
simplicity of exposition, let us assume here that D is a bounded solid in R

N , N ≥ 2,
that is that D is a connected compact set which coincides with the closure of its
interior. We shall denote by G the exterior of D,

(1.1) G = R
N\D,

and we shall assume throughout that it is connected.
Let ω ∈ S

N−1 and let k > 0 be fixed. Let u be the complex valued solution to

(1.2)




∆u + k2u = 0 in G,
u(x) = us(x) + eikω·x x ∈ G,
u = 0 on ∂G,

limr→∞ r(N−1)/2
(

∂us

∂r − ikus
)

= 0 r = ‖x‖.
It is well known that the asymptotic behavior at infinity of the so-called scattered
field us(x) = u(x) − eikω·x is governed by the formula

(1.3) us(x) =
eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) + O

(
1

‖x‖
)}

,
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as ‖x‖ goes to ∞, uniformly in all directions x̂ = x/‖x‖ ∈ S
N−1. The function

u∞, which is defined on S
N−1, is called the far-field pattern of us; see for instance

[2]. In this paper we prove that if N = 2 and D is a polygon, or if N = 3 and
D is a polyhedron, then it is uniquely determined by the far-field pattern u∞ for
one wavenumber k and one incident direction ω; see Theorem 2.2 below. Indeed,
we prove this result independently of the dimension N ≥ 2, and for this reason
it is convenient to express our assumption on D by prescribing that it is an N -
dimensional polyhedron, that is, a solid whose boundary is contained in the union
of finitely many (N − 1)-dimensional hyperplanes (more precisely, we should say
a polytope (see for instance [3]), but for the sake of simplicity we prefer to stick
to the 3-dimensional terminology). In fact, our result applies to a wider class of
scatterers D, which need not to be solids, nor connected, but whose boundary is
the finite union of the closures of open subsets of (N −1)-dimensional hyperplanes.
See Section 2 below for a complete formulation.

We wish to mention here that in ’94 C. Liu and A. Nachman [4] proved, among
various results, that, for N ≥ 2, u∞ uniquely determines the convex hull of a
polyhedral obstacle D. Their arguments involve a scattering theory analogue of
a classical theorem of Polya on entire functions and the reflection principle for
solutions of the Helmholtz equation across a flat boundary. In that preprint, they
also presented some arguments towards a proof of the unique determination of a
general polyhedral obstacle.

More recently, J. Cheng and M. Yamamoto [1], for the case N = 2, proved
that the far-field pattern uniquely determines a polygonal obstacle D, provided D
satisfies an additional geometrical condition, which, roughly speaking, is expressed
in terms of the absence of trapped rays in its exterior G. The method of proof in
[1] is mainly based on the use of the reflection principle and on the study of the
behavior of the nodal line {u = 0} of the solution u to (1.2) near the boundary ∂G.

Also in this paper we make use of such a reflection argument, but, rather than
examining the boundary behavior of the nodal set we investigate the structure of
the nodal set of u in the interior of G. In this respect, the main tool is summarized
in the fact that if D is a polyhedron, then the nodal set of u in G does not contain
any open portion of an (N − 1)-dimensional hyperplane; see Theorem 2.4.

In Section 2 we set up our main hypotheses on the obstacle, we state the main
results (Theorem 2.2 and Theorem 2.4) and prove Theorem 2.2.

In Section 3 we prove Theorem 2.4. The proof is preceded by a sequence of propo-
sitions and auxiliary lemmas regarding the study of the nodal sets of real-valued
solutions to the Helmholtz equation (see Proposition 3.2) and the construction of a
suitable path in G (cammino ascoso = hidden path) which connects a point in ∂D
to infinity, avoiding the singular points in the nodal set of u and intersecting the
nodal set orthogonally, Proposition 3.6.

2. The uniqueness result

Definition 2.1. Let us define a cell as the closure of an open subset of an (N −1)-
dimensional hyperplane. We shall say that D is a polyhedral scatterer if it is a
compact subset of R

N , such that

(i) the exterior G = R
N\D is connected,

(ii) the boundary of G is given by the finite union of cells Cj .
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Let us observe that an equivalent condition to (ii) is that D has the form

D = (
m⋃

i=1

Pi) ∪ (
n⋃

j=1

Sj),

where each Pi is a polyhedron and each Sj is a cell; thus we are allowing the
simultaneous presence of solid obstacles and of crack-type scatterers. Note also
that, by this definition, a cell need not be an (N − 1)-dimensional polyhedron.

We also recall that for any compact set D a weak solution u ∈ W 1,2
loc (G) to (1.2)

exists and is unique; see for instance [5]. As is well known, u is analytic in G,
but, of course, due to the possible irregularity of the boundary of G, the Dirichlet
boundary condition in (1.2) is, in general, satisfied in the weak sense only. On the
other hand, one can see that, if x0 ∈ ∂G is an interior point of one of the cells
forming ∂G, then it is a regular point for the Dirichlet problem in G, hence u is
continuous up to x0 and u(x0) = 0.

Theorem 2.2. Let us fix ω ∈ S
N−1 and k > 0. A polyhedral scatterer D is uniquely

determined by the far-field pattern u∞.

A proof of Theorem 2.2 will be obtained as a consequence of Theorem 2.4 below;
the following definitions will be needed.

Definition 2.3. Let us denote by Nu the nodal set of u in G, that is,

Nu = {x ∈ G : u(x) = 0}.
We shall say that x ∈ Nu is a flat point if there exist a hyperplane Π through x
and a positive number r such that Π ∩ Br(x) ⊂ Nu.

Theorem 2.4. Let D be a polyhedral scatterer. Then Nu cannot contain any flat
point.

We postpone the proof of this result to Section 3 and we conclude the proof of
Theorem 2.2.

Proof of Theorem 2.2. Let D and D′ be two polyhedral scatterers and let u′ be
the solution to (1.2) when D is replaced with D′. Let us assume that for a given
ω ∈ S

N−1 and k > 0, u∞ = u′
∞. We denote with G̃ the connected component of

R
N\(D ∪ D′) which contains the exterior of a sufficiently large ball. By Rellich’s

Lemma (see for instance [2, Lemma 2.11]) and unique continuation we infer that
u = u′ over G̃.

First, we notice that if ∂G̃ ⊂ D ∩ D′, then D = D′ = R
N\G̃. This is due to the

fact that both G and G′ = R
N\D′ are connected.

Let us assume, by contradiction, that D is different from D′. Then, without
loss of generality, we can assume that there exists a point x′ ∈ (∂G′\D) ∩ ∂G̃.
We can also assume that x′ belongs to the interior of one of the cells composing
∂G′, and therefore that there exist a hyperplane Π′ and r > 0 such that x′ ∈
S′ = Π′ ∩ Br(x′) ⊂ (∂G′\D) ∩ ∂G̃. Since u = u′ in G̃, by continuity we have that
u = u′ = 0 on S′, hence S′ is contained into the nodal set of u, that is, S′ ⊂ Nu,
and, consequently, x′ is a flat point for Nu. This contradicts Theorem 2.4. �
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3. The hidden path and the proof of Theorem 2.4

We start with a well-known property of the nodal set of u.

Lemma 3.1. The nodal set Nu is bounded.

Proof. By (1.3), we have that the scattered field us(x) tends to zero, as ‖x‖ tends
to infinity, uniformly for all directions x̂ = x/‖x‖ ∈ S

N−1. Then the lemma im-
mediately follows by observing that |u(x)| = |us(x) + eikω·x| → 1 uniformly as
‖x‖ → ∞. �

Next we discuss some properties of the nodal set of real-valued solutions to the
Helmholtz equation. Let v be a nontrivial real-valued solution to

(3.1) ∆v + k2v = 0 in G,

in a connected open set G. We denote the nodal set of v as

Nv = {x ∈ G : v(x) = 0}
and we let Cv be the set of nodal critical points, that is,

Cv = {x ∈ G : v(x) = 0 and ∇v(x) = 0}.
We say that Σ ⊂ Nv is a regular portion of Nv if it is an analytic open and connected
hypersurface contained in Nv\Cv. Let us denote by A1, A2, . . . , An, . . . the nodal
domains of v, that is, the connected components of the open set {x ∈ G : v(x) 
=
0} = G\Nv.

Proposition 3.2. We can order the nodal domains A1, A2, . . . , An, . . . in such a
way that for any j ≥ 2 there exist i, 1 ≤ i < j, and a regular portion Σj of Nv such
that

(3.2) Σj ⊂ ∂Ai ∩ ∂Aj .

We subdivide the main steps of the proof of this proposition in the next two
lemmas.

Lemma 3.3. Let A1, . . . , An be nodal domains and let A =
◦

A1 ∪ . . . ∪ An. If x ∈
∂A ∩ G, then for any r > 0 there exists y ∈ (Br(x) ∩ G)\A.

Proof. We can assume, without loss of generality, that r > 0 is such that Br(x) ⊂ G.
Then, let us assume, by contradiction, that we have Br(x) ⊂ A. Then we infer that

x ∈
◦
A= A and this contradicts the fact that x ∈ ∂A. �

Lemma 3.4. Let A1, . . . , An be nodal domains and let A =
◦

A1 ∪ . . . ∪ An. If x ∈
∂A ∩ G, then for any r > 0 there exists y ∈ Br(x) ∩ ∂A ∩ G such that ∇v(y) 
= 0.

Proof. Note that, if we a-priori knew that ∂A were smooth in a small neighbor-
hood of x, then the thesis would be a straightforward consequence of Holmgren’s
Theorem. Lacking such an a-priori smoothness, we proceed as follows. We can
assume, without loss of generality, that r > 0 is such that Br(x) ⊂ G. Assume, by
contradiction, that ∇v ≡ 0 on Br(x) ∩ ∂A and set w = v in Br(x) ∩ A, w = 0 in
Br(x)\A. One can easily verify that w ∈ W 2,∞(Br(x)) and also that w is a strong
solution to the Helmholtz equation in Br(x). Now, by Lemma 3.3, w ≡ 0 on an
open subset of Br(x) and hence by unique continuation w ≡ 0 in Br(x) which is
impossible. �
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Proof of Proposition 3.2. We proceed by induction. We choose A1 arbitrarily.
Let us assume that we have ordered A1, . . . , An in such a way that there exist

Σ2, . . . , Σn regular portions of Nv such that (3.2) holds for any j = 2, . . . , n and for
some i < j.

Let A =
◦

A1 ∪ . . . ∪ An. If A = G, then we are done. Otherwise, since G is
connected, we can find x ∈ ∂A ∩ G. We apply Lemma 3.4 and we fix, for r > 0
small enough, a point y ∈ Br(x) ∩ ∂A ∩ G such that ∇v(y) 
= 0. There exists a
positive r1 such that Br1(y)∩ ∂A is a regular portion of Nv and there exist exactly
two nodal domains, Ã1 ⊂ A and Ã2 with Ã2 ∩ A = ∅, whose intersections with
Br1(y) are not empty. It is clear that Ã1 coincides with Ai for some i = 1, . . . , n,
and if we pick An+1 = Ã2 and choose Σn+1 = Br1(y) ∩ Nv, then (3.2) holds for
j = n + 1, also. �

We now show that we are able to connect points of G\Nv with suitable regular
curves contained in G which avoid the nodal critical points of v. Here and in the
sequel we shall say that a curve γ = γ(t) is regular if it is C1-smooth and d

dtγ(t) 
= 0
for every t.

Proposition 3.5. Let x1 and y1 belong to G\Nv. Then there exists a regular curve
γ contained in G and connecting x1 with y1 such that the following conditions are
satisfied:

γ ∩ Cv = ∅,(3.3)

if x ∈ Nv ∩ γ, then γ intersects Nv at x orthogonally.(3.4)

Proof. We order the nodal domains A1, A2, . . . , An, . . . according to Proposition 3.2.
Without loss of generality, we can assume that x1 ∈ A1 and y1 ∈ Ai for some i > 1.
By Proposition 3.2, we can find il, with l = 1, . . . , n, such that i1 = 1, in = i, and,
for any l = 2, . . . , n, il−1 < il and there exists a regular portion of Nv, Σil

, such
that Σil

⊂ ∂Ail−1 ∩ ∂Ail
.

Let σl be a line segment crossing Σil
orthogonally and let it be small enough

such that σl ⊂ Ail−1 ∪ Σil
∪ Ail

. Let y−
l ∈ Ail−1 , y+

l ∈ Ail
be the endpoints of

σl. Let β1 be a regular path within A1 which joins x1 to y−
2 and has a C1-smooth

junction with σ2 at y−
2 . For every l = 2, . . . , n − 1, let βl be a regular path within

Ail
which joins y+

l to y−
l+1 and has C1-smooth junctions with the segments σl and

σl+1, at the points y+
l , y−

l+1, respectively. Let βn be a regular path within Ain

which joins y+
n to y1 and has a C1-smooth junction with σn at y+

n . We form the
curve γ by attaching consecutively the curves β1, σ1, β2, σ2, . . . up to βn. �

We have what is needed to build up our hidden path. From now on we consider
G = R

N\D and v = �u. Note that Nu ⊂ Nv.

Proposition 3.6. Let x1 ∈ ∂G be such that x1 belongs to the interior of one of the
cells forming ∂G and ∂v

∂ν (x1) 
= 0, ν being the unit normal to ∂G at x1, pointing to
the interior of G. Let y1 ∈ Nu\Cv be fixed.

Then there exists a regular curve γ : [0, +∞) �→ R
N , such that the following

conditions are satisfied:
(1) γ(0) = x1;
(2) γ(t) ∈ G for every t > 0;
(3) there exists t1 such that γ(t1) = y1;
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(4) limt→+∞ ‖γ(t)‖ = +∞;
(5) if, for some t, γ(t) ∈ Nu, then γ(t) /∈ Cv and γ intersects Nv at x = γ(t)

orthogonally.

Proof. Let A1 be the nodal domain of v such that x1 ∈ ∂A1 and let η1 be a line
segment in A1 having x1 as an endpoint and which is orthogonal to ∂G there.
Let x′

1 ∈ A1 be the other endpoint of η1. Let η2 be a line segment crossing Nv

orthogonally at the point y1. Let it be small enough so that v is strictly monotone
on η2. Let y′

1, y′′
1 be the endpoints of η2. By Proposition 3.5, we can find a regular

curve γ1 joining x′
1 to y′

1 and satisfying conditions (3.3), (3.4). We can also choose
γ1 in such a way that it has C1-smooth junctions with the segments η1, η2 at
its endpoints. Let R > 0 be large enough so that Nu ⊂ BR(0) and let us fix
z1, |z1| > R. Again by Proposition 3.5, we can find a regular curve γ2 joining y′′

1

to z1 and satisfying conditions (3.3), (3.4) and also such that it has a C1-smooth
junction with η2 at the point y′′

1 . Next let us fix a regular path γ3 in R
N\BR(0)

joining z1 to ∞ having a C1-smooth junction with γ2 at z1. The resulting path γ
is obtained by attaching the paths η1, γ1, η2, γ2, γ3. �
Lemma 3.7. Let the assumptions of Proposition 3.6 be satisfied and let γ be the
path constructed there. If y′ = γ(t′) ∈ Nu is a flat point, then there exists t′′ > t′

such that y′′ = γ(t′′) ∈ Nu is a flat point.

Proof. Let Π′ be the plane through y′ and let r > 0 be such that S′ = Π′∩Br(y′) ⊂
Nu.

Let S̃′ be the connected component of Π′\D containing y′. We have that, by
analytic continuation, u is identically zero on S̃′. Therefore, we can immediately
notice that, by Lemma 3.1, S̃′ is bounded.

Let ε > 0 be small enough so that v(γ(t)) is strictly monotone for t′−ε ≤ t ≤ t′+ε,
and let us set y− = γ(t′ − ε), y+ = γ(t′ + ε).

Let G+ be the connected component of G\S̃′ containing y+ and let G− be the
connected component of G\S̃′ containing y−. Let us remark that it may happen
that G+ = G−.

Let us denote with R the reflection in Π′. We call E+ the connected component
of G+ ∩ R(G−) containing y+ and E− the connected component of G− ∩ R(G+)
containing y−. We observe that E− = R(E+) and we set E = E+ ∪ E− ∪ S̃′.

We have that E is a connected open set and, by construction, the boundary of
E is composed by cells, more precisely by subsets of the cells of ∂G and of R(∂G).
Furthermore, in E we have that u = −Ru where Ru(x) = u(R(x)). In fact, u + Ru

is a solution of the Helmholtz equation in E with zero Cauchy data on S̃′.
In other words, u is odd symmetric in E, with respect to the plane Π′. Hence,

we infer that u = 0 on E ∩ Π′ and, moreover, u is continuous up to the interior of
each cell forming ∂E and u = 0 there. Furthermore, since u is continuous in G, we
have that u = 0 in all of ∂E ∩ G. That is, ∂E ∩ G ⊂ Nu.

Let us exclude now the case that E is unbounded. In fact, ∂E is bounded and,
if E were unbounded, then E would contain R

N\Bρ(0), for some sufficiently large
ρ > 0. Then u = 0 on Π′\Bρ(0) and this contradicts Lemma 3.1.

Thus E is a bounded open set containing y′. Since γ is not bounded, there
exists t′′ > t′ such that γ(t′′) ∈ ∂E ∩G. We have that y′′ = γ(t′′) ∈ Nu and, by the
properties of γ, it is not a critical point of v. Let C be a cell of ∂E such that y′′ ∈ C
and let Π′′ be the hyperplane containing C. Let r > 0 be such that Br(y′′) ⊂ G.
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We have that u = 0 on C ∩ Br(y′′) and hence, by analytic continuation, u = 0 on
Π′′ ∩ Br(y′′); therefore Π′′ ∩ Br(y′′) ⊂ Nu. �
Proof of Theorem 2.4. Let us assume, by contradiction, that y1 ∈ Nu is a flat point.
Let Π1 be the plane through y1 and r > 0 such that S1 = Π1∩Br(y1) ⊂ Nu. By the
uniqueness for the Cauchy problem, S1 contains at least one point y′

1 /∈ Cv. Thus,
without loss of generality, we can assume that there exists a flat point y1 ∈ Nu\Cv.

We arbitrarily fix a point x1 belonging to the interior of one of the cells of ∂G.
Again by the uniqueness for the Cauchy problem, we can assume, without loss of
generality, that ∂v

∂ν 
= 0, ν being the interior unit normal to ∂G at the point x1.
We choose γ according to Proposition 3.6. Then, applying iteratively Lemma

3.7, we can find a strictly increasing sequence {tn}n∈N such that, for any n, yn =
γ(tn) is a flat point of u and, by construction of γ, yn is not a critical point of
v. Since Nu is bounded and limt→+∞ ‖γ(t)‖ = +∞, there exists a finite T such
that limn→+∞ tn = T . We have that ỹ = γ(T ) belongs to Nu and, again by the
properties of γ, ỹ is not a critical point of v and γ is orthogonal to Nv there.
Therefore, there exists δ > 0 such that v(γ(t)) 
= 0 for every T − δ < t < T and
this contradicts the fact that γ(tn) ∈ Nu for any n. �
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Trieste, Italy

E-mail address: rondi@univ.trieste.it

http://www.ams.org/mathscinet-getitem?mr=2036535
http://www.ams.org/mathscinet-getitem?mr=2036535
http://www.ams.org/mathscinet-getitem?mr=1635980
http://www.ams.org/mathscinet-getitem?mr=1635980
http://www.ams.org/mathscinet-getitem?mr=0370327
http://www.ams.org/mathscinet-getitem?mr=0370327
http://www.ams.org/mathscinet-getitem?mr=1396903
http://www.ams.org/mathscinet-getitem?mr=1396903

	1. Introduction
	2. The uniqueness result
	3. The hidden path and the proof of Theorem ??
	Acknowledgement
	References

