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1. Introduction. This is a survey article devoted to the problem of ap-
proximation of smooth (that is, C∞) maps between nonsingular real algebraic
varieties by algebraic morphisms. A common ancestor of the results presented
below is the classical Weierstrass approximation theorem: Any smooth real-
valued function defined in an open neighborhood of a compact subset K of Rn

can be approximated on K, in the C∞ topology, by polynomial functions.
The basic objects of our investigation are real algebraic sets. These are

subsets of Rn, for some n, defined by systems of polynomial equations. Ac-
cording to Hilbert’s basis theorem, each algebraic subset of Rn is given by a
finite system of polynomial equations p1 = 0, . . . , pk = 0, and hence by a single
equation p2

1 + . . .+p2
k = 0. We have the usual notions of dimension, irreducibil-

ity and nonsingularity of real algebraic sets. In particular, each nonsingular
real algebraic set is a smooth manifold. The converse if false. For example, the
algebraic curve C = {(x, y) ∈ R2 | y3 +2x2y−x4 = 0} is a smooth submanifold
of R2, but 0 is a singular point of C. The algebraic subsets of Rn satisfy the
axioms for closed sets in a topology. The topology on Rn determined in this
way is called the Zariski topology, as opposed to the Euclidean topology induced
by the usual metric. Thus each real algebraic set is endowed with the Zariski
topology and the Euclidean topology. For any algebraic subset Z of Rn and
any Zariski open subset U of Z, let R(U) denote the ring of regular functions
on U . Recall that a function r : U → R is said to be regular if it is of the
form r = p/q, where p and q are polynomial functions with q−1(0) ∩U = ∅. If
Z is endowed with the Zariski topology, the correspondence RZ : U → R(U)
defines a sheaf of rings of real-valued functions on Z. This gives rise to a ringed
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space (Z,RZ). A real algebraic variety is a topological space X together with
a sheaf RX of real-valued functions on X such that the ringed space (X,RX)
is isomorphic to (Z,RZ) for some real algebraic set Z (such an object is often
called an affine real algebraic variety, cf. [6]). A map f : X → Y of real al-
gebraic varieties is said to be regular (or to be a morphism) if it is continuous
and for every open subset U of Y and every function r in RY (U), the compos-
ite function r ◦ f |f−1(U) is in RX(f−1(U)). Assuming that Y is an algebraic
subset of Rp, a map f = (f1, . . . , fp) : X → Y is regular if and only if each
component fj : X → R is a regular function, that is, fj belongs to RX(X) for
j = 1, . . . , p. The set of all regular maps from X into Y is denoted by R(X,Y ).
Henceforth, unless explicitly stated otherwise, all topological notions relating
to real algebraic varieties will refer to the Euclidean topology.

Example 1.1.
(i) If (X,RX) is a real algebraic variety, then for any Zariski open subset U

of X, the ringed space (U,RX |U ) is a real algebraic variety. Indeed, it can be
assumed that X is an algebraic subset of Rn. Let p be a polynomial function
on Rn with p−1(0) = X \ U . Then (U,RX |U ) is isomorphic to (Z,RZ), where
Z = {(x, y) ∈ Rn × R |x ∈ X, yp(x) = 1} is an algebraic subset of Rn+1.

(ii) Any Zariski locally closed subset of real projective n-space Pn(R), with
the usual sheaf of regular functions, can be regarded as a real algebraic variety
in the sense defined above. The quickest way to see it is to observe that Pn(R)
is contained in the affine complex algebraic variety Pn(C) \H, where H is the
hypersurface in Pn(C) defined by the equation x2

0 + . . . + x2
n = 0. Another,

more useful, affine model of Pn(R) is constructed as follows. Let Mn+1denote
the set of all real (n+ 1)× (n+ 1) matrices and let

Pn = {A ∈Mn+1|tA = A = A2, trace(A) = 1}.

Clearly, Pn is an algebraic subset of Mn+1 = R(n+1)2 , and the map

Pn(R)→ Pn, (x0 : . . . : xn)→
(

xixj
x2

0 + . . .+ x2
n

)
∈ Pn

is an isomorphism. In a similar way, one can show that the real Grassmannians
are real algebraic varieties.

(iii) Any quasiprojective complex algebraic variety W can be considered
with its underlying real structure. It becomes then a real algebraic variety,
denoted by WR. In particular, P1(C)R is biregularly isomorphic to the unit
2-sphere S2.

Real algebraic varieties are much more flexible than complex varieties. This
is illustrated by the following fundamental result (cf. [41, 48] and [6]).

Theorem 1.2 (Nash–Tognoli). Any compact smooth manifold is diffeo-
morphic to a nonsingular real algebraic variety.
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The proof is based on a deep and difficult theorem from cobordism theory.
Namely, every compact smooth manifold is cobordant to a compact nonsin-
gular real algebraic variety. It is interesting to note that the varieties in the
cobordism theorem are quite simple. They are products of P2n(R) and Pq(R)-
bundles on Pr(R) (cf. [39, Lemma 1]).

Any nonsingular real algebraic variety diffeomorphic to a given smooth
manifold M is called an algebraic model of M . The Nash–Tognoli theorem can
be supplemented as follows.

Theorem 1.3 (cf. [11]). Any compact smooth manifold of positive dimen-
sion has an uncountable family of mutually birationally nonequivalent algebraic
models.

As will be seen below, the existence of various algebraic models of compact
smooth manifolds has important consequences for the approximation problem.

Let X and Y be nonsingular real algebraic varieties. We regard R(X,Y )
as a subset of the space C∞(X,Y ) of all smooth maps from X into Y , endowed
with the C∞ compact-open topology (the weak C∞ topology in the terminology
used in [29]). The Weierstrass approximation theorem implies that R(X,Rp)
is dense in C∞(X,Rp). However, in general, the set R(X,Y ) is not dense in
C∞(X,Y ), and its closure C∞R (X,Y ) is very hard to describe. We say that a
smooth map from X into Y can be approximated by regular maps if it belongs
to C∞R (X,Y ).

Theorem 1.4 (cf. [16]). Any compact smooth manifold of positive di-
mension has an algebraic model Y such that C∞R (X,Y ) 6= C∞(X,Y ) for every
nonsingular real algebraic variety X of positive dimension.

We say that a nonsingular irreducible real algebraic variety Y is a Weier-
strass variety if C∞R (X,Y ) = C∞(X,Y ) for some nonsingular real algebraic
variety X of positive dimension.

Example 1.5.
(i) The unit n-sphere

Sn = {(x1, . . . , xn+1) ∈ Rn |x2
1 + . . .+ x2

n+1 = 1}
is a Weierstrass variety for all n ≥ 1. For n ≥ 2 this is an immediate con-
sequence of the Weierstrass theorem, while for n = 1 it requires an extra
argument (cf. Corollaries 2.6 and 2.7).

(ii) Any nonsingular rational real algebraic variety Y is a Weierstrass va-
riety. In fact, the set R(C, Y ) is dense in C∞(C, Y ) for every compact nonsin-
gular real algebraic curve C (cf. [17]). Recall that a real algebraic variety is
said to be rational if it is birationally equivalent to Pn(R) for some n.

(iii) A nonsingular irreducible real algebraic curve is a Weierstrass variety
if and only if it is rational (cf. [16]).
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(iv) Let V be a nonsingular irreducible complex algebraic variety defined
over R. The set V (R) of real points of V is either empty or it is a nonsingular
irreducible real algebraic variety with dimR V (R) = dimC V . If dimC V ≥ 1
and the first Betti number of V is nonzero, then V (R) is not a Weierstrass
variety (cf. [17]). In particular, the real part of a positive-dimensional complex
Abelian variety defined over R is never a Weierstrass variety.

(v) It is not known whether the Fermat sphere

Σ = {(x1, x2, x3) ∈ R3 |x4
1 + x4

2 + x4
3 = 1}

is a Weierstrass variety.

It seems that the class of Weierstrass varieties is “close” to the class of
nonsingular rational varieties. These two classes coincide in dimension 1. We
conjecture that a compact nonsingular irreducible real algebraic surface is a
Weierstrass variety if and only if it is rational. It is difficult to formulate
a precise conjecture in higher dimensions. There exists a Weierstrass 3-fold
that is not rational. Indeed, according to [1], one can find a nonsingular real
algebraic 3-fold X that is not rational, but X × Pn(R) is rational for some
n ≥ 1. In view of Example 1.5 (ii), X is a Weierstrass variety.

In some cases, the only regular maps are constant maps.

Theorem 1.6 (cf. [19]). Any compact connected smooth manifold has an
algebraic model Y such that for every rational real algebraic variety X, every
regular map from X into Y is constant.

The phenomenon of scarcity of regular maps is also illustrated by the fol-
lowing:

Example 1.7. Let V and W be nonsingular irreducible complex projective
curves defined over R, of genus g(V ) and g(W ), respectively. Assume that the
sets of real points C = V (R) and D = W (R) are nonempty. Each regular
map from C into D has a unique extension to a (complex) regular map from
V into W . If g(V ) < g(W ), then every regular map from C into D is constant
by virtue of the Hurwitz–Riemann theorem [26, p. 140]. According to the
theorem of de Franchis [38, p. 227], if g(W ) ≥ 2, then there exist only finitely
many nonconstant regular maps from C to D.

As a special case of the previous example, we get:

Example 1.8. Let Fn be the Fermat curve of degree n,

Fn = {(x : y : z) ∈ P2(R) |xn + yn = zn}.
If k > n ≥ 2, then every regular map from Fn into Fk is constant. If k ≥ 4,
then for each n ≥ 1, there exist only finitely many nonconstant regular maps
from Fn into Fk.
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If a smooth map between nonsingular real algebraic varieties can be ap-
proximated by regular maps, then it is homotopic to a regular map (cf. [6,
Corollary 9.3.7] if the source variety is not compact). The converse is false. If
n ≥ 4, then every smooth map Fn → Fn of topological degree 1 is homotopic to
a regular map (the identity map), but only finitely many of such maps can be
approximated by regular maps (namely, only these which are already regular).

It is convenient to introduce a certain numerical invariant. Given a real
algebraic variety Y , let β(Y ) be the supremum of all nonnegative integers
n with the following property: for every n-dimensional compact connected
nonsingular real algebraic variety X, every continuous map from X into Y is
homotopic to a regular map.

Theorem 1.9 (cf. [19]). Let Y be a compact nonsingular real algebraic
variety. Then:

(i) β(Y ) ≤ dimY , provided that dimY ≥ 1.
(ii) If the k-th Stiefel–Whitney class of Y is nonzero for some k ≥ 1, then

β(Y ) ≤ k. In particular, β(Y ) = 0 or β(Y ) = 1, provided that Y is
nonorientable as a smooth manifold.

(iii) If dimY = p and Hk(Y ; Z/2) 6= 0 for some k satisfying 0 < k < p, then

β(Y ) ≤

{
max{k, p− k} − 1 ≤ p− 2 for k 6= p/2
p/2 for k = p/2.

Theorem 1.9 implies in particular that there is no positive-dimensional
compact nonsingular real algebraic variety Y for which the setR(X,Y ) is dense
in C∞(X,Y ) for every compact nonsingular real algebraic variety X. Thus the
Weierstrass approximation theorem cannot be reformulated in a straightfor-
ward manner for maps with values in any compact nonsingular real algebraic
variety of positive dimension.

It is hard to determine the exact value of β(Y ) even for “simple” varieties Y .

Example 1.10 (cf. [19]). Let Y be a compact nonsingular irreducible real
algebraic variety of positive dimension.

(i) If Y is rational, then β(Y ) ≥ 1 and the equality holds provided that Y
is nonorientable. Moreover, β(Pn(R)) = 1 for all n ≥ 1.

(ii) Assuming that dimY = 1, we have β(Y ) = 1 if and only if Y is
biregularly isomorphic to S1. We conjecture that, up to biregular isomorphism,
the only variety Y (of any dimension) with β(Y ) = dimY is S1.

(iii) If dimY = 2, then β(Y ) = 0 or β(Y ) = 1, and β(Y ) = 1 provided that
Y is either rational or homeomorphic to S2.

(iv) If dimY = 3 and H1(Y ; Z/2) 6= 0, then β(Y ) = 0 or β(Y ) = 1.
(v) Assuming that dimY = 4 and Y is connected and simply connected,

we have β(Y ) ≥ 3 if and only if Y is homeomorphic to S4.
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(vi) If Y is homeomorphic to Sn with n ≥ 2, then n − 1 ≤ β(Y ) ≤ n and
no example with β(Y ) = n is known. If n is even, then β(Sn) = n− 1.

The following general result provides some additional information about
the invariant β(−).

Theorem 1.11 (cf. [19]). A compact connected smooth manifold M has
an algebraic model Y with β(Y ) = 0 if and only if the fundamental group of
M is nontrivial.

As demonstrated heretofore, for nonsingular real algebraic varieties X and
Y , the set R(X,Y ) is dense in C∞(X,Y ) only in exceptional cases. The ap-
proximation problem, motivated by the Weierstrass theorem, is that of finding
a reasonable description of the closure C∞R (X,Y ) of R(X,Y ) in C∞(X,Y ). The
set C∞R (X,Y ) tends to be very small if the target variety is sufficiently “gen-
eral.” Moreover, the approximation problem is hopelessly complicated with-
out imposing some restrictions on Y . In the subsequent sections, we study
C∞R (X,Y ) assuming that X is compact and Y is rational. As a guiding prin-
ciple serves the following:

Conjecture 1.12. A smooth map from X into Y , where X is compact
and Y is rational, can be approximated by regular maps if and only if it is
homotopic to a regular map.

This conjecture is known to be true in several cases. For example, when
Y = Pn(R) (cf. Section 2), Y is a rational surface (cf. Section 6) or Y = S4 (cf.
Section 7). Actually, in these three cases we have results describing C∞R (X,Y )
in terms of certain cohomological invariants and being much more useful than
Conjecture 1.12. In favorable situations these invariants can be explicitly com-
puted. We pay special attention to maps with values in S1 ∼= P1(R) (cf.
Section 3) or S2 (cf. Sections 4 and 5). Some results are surprising. For in-
stance, up to biregular isomorphism, there exist exactly 18 unordered pairs
{C,D} of nonsingular cubic curves in P2(R), defined over Q, such that the set
R(C×D,S2) is dense in C∞(C×D,S2) (cf. Section 5). Conjecture 1.12 remains
open for Y = Sp with p different from 1, 2 and 4. There are, however, inter-
esting results concerning homotopical properties of regular maps with values
in Sp for any p (cf. Section 8).

Acknowledgements. We want to thank Professor Kamil Rusek for suggesting
that we write this paper.

2. Real algebraic cycles and maps into Pn(R). Let X be a compact
nonsingular real algebraic variety. Each d-dimensional algebraic subset A of
X represents a homology class in Hd(X; Z/2). This can be seen in several



15

different ways. For example, the pair (X,A) can be triangulated so that each
(d− 1)-simplex is the common face of an even number of d-simplices (cf. [6]).
It follows that the sum of all d-simplices contained in A is a Z/2-cycle. We
say that the homology class in Hd(X; Z/2) represented by this cycle is repre-
sented by A. The subsetHalg

d (X; Z/2) ofHd(X; Z/2) consisting of all homology
classes represented by d-dimensional algebraic subsets of X forms a subgroup.
If n = dimX, let Hn−d

alg (X; Z/2) denote the inverse image of Halg
d (X; Z/2) un-

der the Poincaré duality isomorphism Hn−d(X; Z/2)→ Hd(X; Z/2). The k-th
Stiefel–Whitney class wk(X) of X is in Hk

alg(X; Z/2) for all k ≥ 0 (cf. [21, 3]).

In particular, H1
alg(X; Z/2) 6= 0 if X is nonorientable. The groups Halg

d (−; Z/2)
and Hk

alg(−; Z/2) have the expected functorial property. If f : X → Y is a
regular map between compact nonsingular real algebraic varieties, then

f∗(H
alg
d (X; Z/2)) ⊆ Halg

d (Y ; Z/2) and f∗(Hk
alg(Y ; Z/2)) ⊆ Hk

alg(X; Z/2),

where f∗ and f∗ are the homomorphisms of homology and cohomology groups
induced by f (cf. [21, 3]).

Example 2.1. Clearly, Hk
alg(Pn(R); Z/2) = Hk(Pn(R); Z/2) for all k ≥ 0

and n ≥ 1.

Example 2.2 (Joost van Hamel). The algebraic surface

T = {(x, y, z) ∈ R3 | z2 + ((x2 + y2)2 − 1)((x2 + y2)2 − 2) = 0}
in R3 is nonsingular and diffeomorphic to the standard torus S1 × S1. In
particular, H1(T ; Z/2) ∼= (Z/2)2. We assert that H1

alg(T ; Z/2) ∼= Z/2. The
assertion can be proved as follows. The algebraic curve

C = {(t, z) ∈ R2 | z2 + (t2 − 1)(t2 − 2) = 0}
in R2 is nonsingular and irreducible. It has two connected components, each
diffeomorphic to S1. Let C+ denote the connected component of C contained
in {(t, z) ∈ R2 | t > 0}. The map e : C+ → T defined by e(t, z) = (

√
t, 0, z)

is a smooth embedding. Set E = e(C+) and let [E] denote the homology class
in H1(T ; Z/2) represented by the smooth curve E. If π : T → C is defined by
π(x, y, z) = (x2+y2, z), then π(T ) = C+ and the composite map π◦e : C+ → C
is the inclusion map C+ ↪→ C. It follows that the homology class π∗([E]) in
H1(C; Z/2) is represented by the smooth curve C+. In particular, π∗([E])
is not in Halg

1 (C; Z/2), the curve C being irreducible. Since π is a regular
map, the functoriality of Halg

1 (−; Z/2) implies that the homology class [E] is
not in Halg

1 (T ; Z/2). On the other hand, the algebraic curve D = S1 × {0}
is contained in T , and hence its homology class [D] belongs to Halg

1 (T ; Z/2).
Clearly, [D] 6= 0 since D is transverse to E and the intersection D ∩E consist
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of one point. Consequently, Halg
1 (T ; Z/2) ∼= Z/2 and H1

alg(T ; Z/2) ∼= Z/2, as
asserted.

Of course, T is not biregularly isomorphic to the standard torus S1 × S1

for which H1
alg(S1 × S1; Z/2) = H1(S1 × S1; Z/2).

The group H1
alg(−; Z/2) is of particular interest to us. We have the follow-

ing general result.

Theorem 2.3. Let M be a compact connected smooth manifold of dimen-
sion at least 2. For a subgroup G of H1(M ; Z/2), the following conditions are
equivalent:

(a) There exist an algebraic model X of M and a smooth diffeomorphism
ϕ : X →M satisfying

ϕ∗(G) = H1
alg(X; Z/2).

(b) The first Stiefel–Whitney class w1(M) is in G.

Obviously, (a) implies (b) since w1(X) is in H1
alg(X; Z/2). The proof of

the converse is too long to be included here (cf. [10, 34]). Theorem 2.3 gives
a complete description of the subgroups of H1(M ; Z/2) that can be realized
as H1

alg(X; Z/2) for some algebraic model X of M . In particular, there is no
restriction on the subgroups if M is orientable. It should be mentioned that
the behavior of the group Hk

alg(−; Z/2) for k ≥ 2 is more complicated. Given
a positive even integer k, one can find a compact connected smooth manifold
M with Hk

alg(X; Z/2) 6= Hk(X; Z/2) for every algebraic model X of M (cf.
[2, 34, 47]). The closure of R(−,Pn(R)) in C∞(−,Pn(R)) can be described in
terms of H1

alg(−; Z/2).

Theorem 2.4. Let X be a compact nonsingular real algebraic variety and
let n be a positive integer. For a smooth map f : X → Pn(R), the following
conditions are equivalent:

(a) f can be approximated by regular maps.
(b) f is homotopic to a regular map.
(c) f∗(un) is in H1

alg(X; Z/2), where un is the unique generator of the group
H1(Pn(R); Z/2) ∼= Z/2.

Sketch of proof. Obviously, (a) implies (b). The functoriality of
H1

alg(−; Z/2) implies that g∗(un) is in H1
alg(X; Z/2) for every regular map

g : X → Pn(R). If f is homotopic to g, then f∗ = g∗, and hence (c) fol-
lows from (b). In the proof that (c) implies (a), we use theory of algebraic
vector bundles on real algebraic varieties, developed in [6, Chapter 12]. First
we claim that every smooth section of an algebraic vector bundle η on X can
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be approximated by regular sections. Indeed, η is an algebraic vector subbun-
dle of the trivial vector bundle εkX = X × Rk for some k. However, then this
is just the Weierstrass approximation theorem.

Now, let γn be the universal line bundle on Pn(R). The total space of γn is

E(γn) = {(l, e) ∈ Pn(R)× Rn+1 | e ∈ l},

where Pn(R) is regarded as the set of all 1-dimensional vector subspaces of
Rn+1. In particular, γn is an algebraic subbundle of the trivial vector bundle
on Pn(R) with fiber Rn+1. We have f∗(un) = w1(f∗γn), where w1(−) stands for
the first Stiefel–Whitney class and f∗γn is the pullback of γn by f . According
to (c), w1(f∗γn) is in H1

alg(X; Z/2), which implies the existence of an algebraic
line bundle ξ on X and a smooth vector bundle isomorphism ϕ : ξ → f∗γn (cf.
[6, Theorem 12.4.8]). Let σ : X → Hom(ξ, f∗γn) be the smooth section of the
vector bundle Hom(ξ, f∗γn) defined by σ(x)(w) = ϕ(w) for all x in X and w in
the fiber ξx of ξ at x. Since f∗γn is a smooth subbundle of εn+1

X , we can regard σ
as a smooth section of the algebraic vector bundle Hom(ξ, εn+1

X ). Hence, there
exists a regular section s : X → Hom(ξ, εn+1

X ) close to σ in the C∞ topology.
We can assume that the linear map s(x) : ξx → (εn+1

X )x = {x} × Rn+1, is
injective for all x in X, the variety X being compact. Define g : X → Pn(R)
by g(x) = ρ(s(x)(ξx)), where ρ : X×Rn+1 → Rn+1 is the canonical projection.
It is readily seen that the map g is regular (cf. [6, Proposition 3.4.9]), while
the construction of g implies that it is close to f in the C∞ topology.

Corollary 2.5. Any compact smooth manifold M has an algebraic model
X such that for each positive integer n, the set R(X,Pn(R)) is dense in
C∞(X,Pn(R)).

Proof. By Theorem 2.3, there exists an algebraic model X of M with
H1

alg(X; Z/2) = H1(X; Z/2), and hence it suffices to make use of Theorem
2.4.

Corollary 2.6. Let X be a compact nonsingular real algebraic curve.
Then the set R(X,Pn(R)) is dense in C∞(X,Pn(R)) for all n ≥ 1. In partic-
ular, R(X,S1) is dense in C∞(X,S1).

Proof. It suffices to apply Theorem 2.4 sinceH1
alg(X; Z/2) = H1(X; Z/2).

Corollary 2.7. The set R(Sn,Pk(R)) is dense in C∞(Sn,Pk(R)) for all
n ≥ 1 and k ≥ 1. In particular, R(Sn, S1) is dense in C∞(Sn, S1) for all n ≥ 1.

Proof. The assertion follows from Theorem 2.4.
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3. Regular maps into S1. LetX be a compact nonsingular real algebraic
variety. Recall that C∞R (X,S1) denotes the closure of R(X,S1) in C∞(X,S1).
It is convenient to regard S1 as a multiplicative subgroup of C \ {0} and en-
dow C∞(X,S1) with the induced group structure. Obviously, R(X,S1) and
C∞R (X,S1) are subgroups of C∞(X,S1). In this section we investigate the quo-
tient group

Γ(X) = C∞(X,S1)/C∞R (X,S1).
The set R(X,S1) is dense in C∞(X,S1) if and only if Γ(X) = 0.

For a smooth manifold M , let A(M) denote the image of the canonical
monomorphism r : H1(M,Z)⊗Z Z/2→ H1(M ; Z/2).

Theorem 3.1. For any compact nonsingular real algebraic variety X, the
group Γ(X) is canonically isomorphic to A(X)/(A(X) ∩H1

alg(X; Z/2)).

Proof. Consider the homomorphism

ψ : C∞(X,S1)→ H1(X; Z/2), ψ(f) = f∗(u),

where u is the unique generator of H1(S1; Z/2) ∼= Z/2. We claim that
ψ(C∞(X,S1)) = A(X). Indeed, the following diagram of group homomor-
phisms

C∞(X,S1)
ϕ //

ψ

''OOOOOOOOOOO
H1(X,Z) // H1(X,Z)⊗Z Z/2

r

vvmmmmmmmmmmmmm

H1(X; Z/2)

is commutative, where ϕ is defined analogously to ψ, by replacing the generator
u of H1(S1; Z/2) with a generator of H1(S1,Z) ∼= Z. Since ϕ is surjective, the
claim follows. By Theorem 2.4, a smooth map f : X → S1 is in C∞R (X,S1) if
and only if f∗(u) is in H1

alg(X; Z/2). Therefore,

ψ−1(A(X) ∩H1
alg(X; Z/2)) = C∞R (X,S1),

and the homomorphism ψ induces an isomorphism

Γ(X)→ A(X)/(A(X) ∩H1
alg(X; Z/2)).

More information about the group Γ(−) is contained in the following result.

Theorem 3.2. Let M be a compact connected smooth manifold of dimen-
sion at least 2 and let

α(M) =

{
rank H1(M ; Z)− 1 if M is nonorientable and w1(M) ∈ A(M),
rank H1(M ; Z) otherwise.
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Then:
(i) For each algebraic model X of M, one has Γ(X) ∼= (Z/2)s for some

integer s satisfying 0 ≤ s ≤ α(M).
(ii) For each integer s satisfying 0 ≤ s ≤ α(M), there exists an algebraic

model X of M with Γ(X) ∼= (Z/2)s.

Proof. (i) Let X be an algebraic model of M . We have dimZ/2A(X) =
ρ(M), where ρ(M) = rank H1(M ; Z). According to Theorem 3.1, Γ(X) ∼=
(Z/2)s for some s satisfying 0 ≤ s ≤ ρ(M). Moreover, if M is nonorientable
and w1(M) is in A(M), then 0 ≤ s ≤ ρ(M) − 1 since w1(X) belongs to
H1

alg(X; Z/2).
(ii) It suffices to make use of Theorems 2.3 and 3.1.

Informally, Theorem 3.2 can be interpreted as saying that 1/2s of the space
C∞(X,S1) consists of the maps approximable by regular maps.

Corollary 3.3. For a compact connected orientable smooth manifold M ,
the following conditions are equivalent:

(a) The set R(X,S1) is dense in C∞(X,S1) for every algebraic model X
of M .

(b) The first Betti number of M is zero or dimM ≤ 1.

Proof. The equivalence of (a) and (b) follows from Theorem 3.2 (resp.
Corollary 2.6) if dimM ≥ 2 (resp. dimM = 1). The case dimM = 0 is
trivial.

Theorem 3.4. For a compact connected smooth surface M , the following
conditions are equivalent:

(a) The set R(X,S1) is dense in C∞(X,S1) for every algebraic model X
of M .

(b) M is homeomorphic to the unit 2-sphere or the real projective plane or
the Klein bottle.

Proof. The equivalence of (a) and (b) follows from Theorem 3.2 since
α(M) = 0 if and only if M is homeomorphic to one of the three surfaces
named in (b).

We next examine the group Γ(X) for a compact connected nonsingular real
algebraic surface X of topological genus g. Note that A(X)=H1(X; Z/2) for X
orientable and A(X) = {v∈H1(X; Z/2) | v∪v = 0} for X nonorientable, where
∪ stands the cup product. The Stiefel–Whitney class of w1(X) is not in A(X) if
and only ifX is nonorientable of odd genus. Denoting by γ(X) (resp. δ(X)) the
dimension of the Z/2-vector space H1

alg(X; Z/2) (resp. A(X) ∩H1
alg(X; Z/2)),
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in view of Theorem 3.2, we get

Γ(X) ∼=


(Z/2)2g−γ(X) if X is orientable,
(Z/2)g−γ(X) if X is nonorientable and g is odd,
(Z/2)g−δ(X)−1 if X is nonorientable and g is even.

In particular, assuming that X is either orientable or nonorientable of odd
genus, the set R(X,S1) is dense in C∞(X,S1) if and only if H1

alg(X; Z/2) =
H1(X; Z/2).

4. Regular maps into S2. We begin by introducing a new cohomological
invariant, useful in the study of regular maps with values in S2k for k ≥ 1. In
particular, it allows us to give a characterization of the smooth maps into S2

that are approximable by regular maps.
Let X be a compact nonsingular real algebraic variety. A nonsingular pro-

jective complexification of X is a pair (V, j), where V is a nonsingular complex
projective variety defined over R and j : X → V is an injective map such that
the set V (R) of real points of V is Zariski dense in V , j(X) = V (R) and j
induces a biregular isomorphism between X and V (R). The existence of (V, j)
follows from Hironaka’s resolution of singularities [28] (V is uniquely deter-
mined, up to isomorphism over R, only if dimX ≤ 1). For each nonnegative
integer k, let H2k

C-alg(X; Z) denote the subgroup of H2k(X; Z) defined by

H2k
C-alg(X; Z) = j∗(H2k

alg(V ; Z)),

where H2k
alg(V ; Z) is the subgroup of H2k(V ; Z) generated by the cohomology

classes corresponding to irreducible algebraic subvarieties of V of (complex)
codimension k. One readily shows that H2k

C-alg(X; Z) does not depend on the
choice of (V, j) (cf. [5]). The direct sum of the groups H2k

C-alg(X; Z) for k ≥ 0
is closed under cup product (since the analogous statement for the groups
H2k

alg(V ; Z) holds true; cf. [27]).
For every nonnegative integer i,

pi(X) ∈ H4i
C-alg(X; Z) and β(w2i(X) ∪ w2i+1(X)) ∈ H4i+2

C-alg(X; Z),

where pi(X) is the ith Pontryagin class of X and

β : H4i+1(X; Z/2)→ H4i+2(X; Z)

is the Bockstein homomorphism. Indeed, let τX be the tangent bundle to X.
The k-th Chern class ck(τX ⊗R C) of the complexification of τX and the k-th
Chern class ck(V ) of V are related by ck(τX ⊗R C) = j∗(ck(V )). Since ck(V ) is
in H2k

alg(V ; Z), it follows that ck(τX⊗R C) is in H2k
C-alg(X; Z). It suffices to recall
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that c2i(τX ⊗R C) = (−1)ipi(X) and c2i+1(τX ⊗R C) = β(w2i(X) ∪ w2i+1(X))
(cf. [40]). In particular,

β(w1(X)) ∈ H2
C-alg(X; Z).

The group H2k
C-alg(−; Z) has the functorial property (cf. [5]). If f : X → Y

is a regular map between compact nonsingular real algebraic varieties, then

f∗(H2k
C-alg(Y ; Z)) ⊆ H2k

C-alg(X; Z).
Example 4.1.
(i) If j : Pn(R) ↪→ Pn(C) is the inclusion map, then (Pn(C), j) is a non-

singular projective complexification of Pn(R), and hence H2k
C-alg(Pn(R); Z) =

H2k(Pn(R); Z) for all k ≥ 0.
(ii) Let Σn

2d be the n-dimensional Fermat sphere of degree 2d,

Σn
2d = {(x1, . . . , xn+1) ∈ Rn+1 | x2d

1 + . . .+ x2d
n+1 = 1}.

We claim that H2k
C-alg(Σn

2d; Z) = H2k(Σn
2d; Z) for all d ≥ 1, k ≥ 0 and n ≥ 1.

Since Σn
2d is diffeomorphic to Sn, the only nontrivial case is n = 2k with k ≥ 1.

Set Σ = Σ2k
2d and define

V = {(u1 :v1 : . . . :uk :vk :s : t) ∈ P2k+1(C) | u2d
1 +v2d

1 +. . .+u2d
k +v2d

k +s2d = t2d}

j : Σ→ V, j(u1, v1, . . . , uk, vk, s) = (u1 : v1 : . . . : uk : vk : s : 1).

Then (V, j) is a nonsingular projective complexification of Σ. Let α be a
complex number satisfying α2d = −1 and let

L = {(u1 :v1 : . . . :uk :vk :s : t) ∈ P2k+1(C) | ul = vl for 1 ≤ l ≤ k and s = t}.

By construction, L is a nonsingular complex subvariety of V of codimension
k, j : Σ → V is tranverse to L, and j−1(L) = {(0, . . . , 0, 1)}. If λ is the
cohomology class in H2k

alg(V ; Z) represented by L, then j∗(λ) is a generator of
H2k(Σ; Z) ∼= Z (cf. [21, Proposition 2.15]). The claim follows since j∗(λ) is in
H2k

C-alg(Σ; Z). In particular, H2k
C-alg(Sn; Z) = H2k(Sn; Z) for all k ≥ 0 and n ≥ 1.

(iii) A compact nonsingular irreducible real algebraic curve C is said to
be dividing if the set V \ j(C) is disconnected, where (V, j) is a nonsingular
projective complexification of C (V is uniquely determined up to isomorphism
over R since dimC = 1). If C is dividing and connected, then H2

C-alg(C ×
D; Z) = 0 for every compact nonsingular real algebraic curve D. Indeed,
j∗(Hq(V ; Z)) = 0 for all q ≥ 1. Moreover, if (W, l) is a nonsingular projective
complexification of D, then (V ×W, j × l) is that of C × D. The assertion
follows since (j × l)∗(H2(V ×W ; Z)) = 0 by virtue of Künneth’s theorem. In
particular, H2

C-alg(S1 ×D; Z) = 0 since S1 is a dividing curve.
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Example 4.2. For each nonsingular complex projective variety W , we have
H2k

alg(W ; Z) ⊆ H2k
C-alg(WR; Z) for all k ≥ 0. This assertion can be proved as

follows. Suppose that W is a subvariety of Pn(C). Let σ : Pn(C)→ Pn(C) be
complex conjugation and let W = σ(W ). The map τ : W ×W → W ×W ,
τ(x, y) = (σ(y), σ(x)) is an antiholomorphic involution. Thus W × W can
be regarded as a complex projective variety defined over R, whose set of real
points consists of the points fixed by τ . If j : WR → W ×W is defined by
j(x) = (x, σ(x)), then (W ×W, j) is a nonsingular projective complexification
of WR. The assertion follows since the composition of j with the canonical
projection π : W ×W →W is the identity map of WR, and π∗(H2k

alg(W ; Z)) ⊆
H2k

alg(W ×W ; Z). In particular, H2
C-alg(WR; Z) = H2(WR; Z) if dimCW = 1.

Furthermore, H2k
C-alg(Pn(C)R; Z) = H2k(Pn(C)R; Z) for all k ≥ 0 and n ≥ 1.

The next two results can be viewed as a partial counterpart of Theorem
2.3 for the group H2

C-alg(−; Z).

Theorem 4.3. Any compact smooth manifold M has an algebraic model
X with H2

C-alg(X; Z) = H2(X; Z).

For the proof we refer to [13]. Theorem 4.3 cannot be generalized on the
groups H2k

C-alg(−; Z) for k ≥ 2. There exists a compact connected smooth
manifold M such that H4

C-alg(X; Z) 6= H4(X; Z) for every algebraic model X
of M (cf. [35]).

Theorem 4.4. Let M be a compact connected smooth surface.
(i) If M is nonorientable of odd genus, then H2

C-alg(X; Z) = H2(X; Z) for
every algebraic model X of M .

(ii) If M is nonorientable of even genus, then there exist two algebraic mod-
els X0 and X1 of M satisfying H2

C-alg(X0; Z) = 0 and H2
C-alg(X1; Z) =

H2(X1; Z).
(iii) If M is orientable, then for each integer b, there exists an algebraic model

Xb of M with H2
C-alg(Xb; Z) = bH2(Xb; Z).

Depending on whether the surface M is orientable or not, H2(M ; Z) = Z
or H2(M ; Z) = Z/2. Thus Theorem 4.4 gives a complete description of the
subgroups of H2(M ; Z) that can be realized as H2

C-alg(X; Z) for some algebraic
model X of M . If M is nonorientable of odd genus, then β(w1(M)) generates
H2(M ; Z) and hence (i) follows. The proofs of (ii) and (iii) are significantly
harder (cf. [9] and [14], respectively).

The group H2
C-alg(−; Z) is of interest to us since it can be used to describe

the closure of R(−,S2) in C∞(−,S2).
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Theorem 4.5. Let X be a compact nonsingular real algebraic variety. For
a smooth map f : X → S2, the following conditions are equivalent:

(a) f can be approximated by regular maps.
(b) f is homotopic to a regular map.
(c) f∗(s2) is in H2

C-alg(X; Z), where s2 is a generator of H2(S2; Z) ∼= Z.

Sketch of proof. Recall that S2 is biregularly isomorphic to P1(C)R.
The analogous, more general, theorem can be formulated for maps with values
in Pn(C)R, where s2 in condition (c) is a generator of H2(Pn(C)R; Z). The
proof is then parallel to that of Theorem 2.4. One works with algebraic C-
line bundles (on real algebraic varieties) instead of real algebraic line bundles,
substitutes H2

C-alg(−; Z) for H1
alg(−; Z/2), and makes use of the functoriality

of H2
C-alg(−; Z) and the equality H2

C-alg(Pn(C)R; Z) = H2(Pn(C)R; Z). More
details can be found in [5, 9, 14].

Several interesting results concerning regular maps into S2 can now be
derived.

Theorem 4.6. Any compact smooth manifold M has an algebraic model
X such that the set R(X; S2) is dense in C∞(X; S2).

Proof. It suffices to combine Theorems 4.3 and 4.5.

Theorem 4.7. For a compact connected smooth surface M , the following
conditions are equivalent:

(a) The set R(X; S2) is dense in C∞(X; S2) for every algebraic model X
of M .

(b) M is nonorientable of odd genus.

Proof. It suffices to make use of Theorems 4.4 and 4.5.

Let X be a compact nonsingular real algebraic surface. If X is connected
and orientable, then

H2
C-alg(X; Z) = b(X)H2(X; Z)

for some uniquely determined nonnegative integer b(X). According to Theorem
4.5 and Hopf’s theorem,

C∞R (X,S2) = {f ∈ C∞(X,S2) | deg(f) ∈ b(X)Z},

where deg(f) denotes the topological degree of f (computed with respect to
some fixed orientations on X and on S2). Thus the description of C∞R (X,S2) is
reduced to the computation of the numerical invariant b(X). In particular, the
set R(X,S2) is dense in C∞(X,S2) (resp. R(X,S2) contains only null homo-
topic maps) if and only if b(X) = 1 (resp. b(X) = 0). The invariant b(−) can
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take any nonnegative integer as its value. By Theorem 4.4 (iii), if M is a com-
pact connected orientable smooth surface, then for each nonnegative integer b,
there exists an algebraic model Xb of M with b(Xb) = b. The computation of
b(X) for a given surface X is a very subtle problem (cf. Section 5).

Example 4.8. It would be interesting to complete the computation of
b(Fk × Fk), where Fk is the Fermat curve of degree k (cf. Example 1.8 for the
definition of Fk). By Example 4.1 (iii), b(F2 × F2) = 0 since F2 is isomorphic
to S1. If k ≥ 3, then according to [14, Example 1.14], b(Fk × Fk) = 1 for k
odd and 1 ≤ b(Fk × Fk) ≤ 2 for k even. A more delicate argument in [20,
Example 17] allows to prove the equality b(F4 × F4) = 2. We conjecture that
b(Fk × Fk) = 2 for k even and greater than 4.

Theorem 4.9. Let C be a compact nonsingular real algebraic curve. If C
is dividing and connected, then for every compact nonsingular real algebraic
curve D, the set R(C ×D,S2) contains only null homotopic maps.

Proof. The assertion follows from Example 4.1 (iii), Theorem 4.5 and
Hopf’s theorem.

The assumption in Theorem 4.9 that the curve C be dividing is necessary.
If C is connected and nondividing, then one can find a compact connected
nonsingular real algebraic curve D such that b(C×D) = 2 (cf. [15]; it remains
an open problem if there exists a curve D with b(C × D) = 1). There are
also connected nondividing curves C for which the set R(C × C,S2) is dense
in C∞(C × C,S2) (cf. Section 5). Such curves are exceptional. For “most”
nondividing curves C, the set R(C×C,S2) contains only null homotopic maps.
The meaning of “most” can be made precise by introducing moduli spaces of
real algebraic curves (cf. [20] and, for cubic curves, Section 5).

Theorem 4.10. For any nonsingular complex projective curve W, the set
R(WR,S2) is dense in C∞(WR,S2).

Proof. The assertion follows from Example 4.2 and Theorem 4.5.

Curiously, the setR(WR×WR, S2) is never dense inR(WR×WR, S2), unless
W has genus 0 (cf. [18]).

The approximation problem has a complete solution for maps from the
Fermat sphere Σn

2d into S2 (cf. Example 4.1 (ii) for the definition of Σn
2d).

Theorem 4.11. The set R(Σn
2d,S2) is dense in C∞(Σn

2d,S2) for all d ≥ 1
and n ≥ 1. In particular, R(Sn, S2) is dense in C∞(Sn,S2) for all n ≥ 1.

Proof. It suffices to make use of Example 4.1 (ii) and Theorem 4.5.
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We next investigate maps from nonsingular algebraic surfaces in P3(R)
into S2. Such surfaces are subject to certain topological restrictions since each
compact smooth surface in P3(R) has at most one nonorientable connected
component, which is necessarily of odd genus.

Theorem 4.12. Let V ⊂ P3(C) be a nonsingular surface defined by a
homogenous polynomial of degree at least 4, with all coefficients real and alge-
braically independent over Q. The set X = V (R) of real points of V is either
empty or it is a nonsingular irreducible real algebraic surface in P3(R) with the
following properties:

(i) If X is orientable, then the set C∞R (X,S2) consists of the null homotopic
smooth maps.

(ii) If X is nonorientable and X0 is its unique nonorientable connected com-
ponent, then the set C∞R (X,S2) consists of the smooth maps f : X → S2

such that the restriction f |X\X0
: X \ X0 → S2 is null homotopic (the

last condition is understood to be vacuous whenever X = X0).
In particular, assuming X 6= ∅, the set R(X; S2) is dense in C∞(X; S2) if and
only if X is nonorientable and connected.

Sketch of proof. By the Lefschetz theorem, V is connected and hence
irreducible. Consequently, if X is nonempty, then it is a nonsingular irreducible
surface in P3(R).

Let ρ : Pic(P3(C)) → Pic(V ) be the homomorphism of the Picard groups
induced by the inclusion map V ↪→ P3(C). If e : X ↪→ P3(R), j : X ↪→ V
and l : P3(R) ↪→ P3(C) are the inclusion maps, then the following diagram is
commutative:

Pic(P3(C))
ρ //

c1
��

Pic(V )

c1
��

H2(P3(C); Z)

l∗

��

H2(V ; Z)

j∗

��
H2(P3(R); Z) e∗ // H2(X; Z),

where c1 is the first Chern class homomorphism. It is well known that ρ is
an isomorphism (cf. [24]). Note that (P3(C), l) and (V, j) are nonsingular
projective complexifications of P3(R) and X, respectively. Therefore,

Im l∗ = H2
C-alg(P3(R); Z) = H2(P3(R); Z) ∼= Z/2 and Im j∗ = H2

C-alg(X; Z).

Since c1(Pic(−)) = H2
alg(−; Z), it follows that

H2
C-alg(X; Z) = Im e∗.

Thus either H2
C-alg(X; Z) = 0 or H2

C-alg(X; Z) ∼= Z/2.
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If X is orientable, then H2(X; Z) is a nontrivial free abelian group, and
hence H2

C-alg(X; Z) = 0. If X is nonorientable, then the smooth surface X0 has
odd genus, and hence β(w1(X)) 6= 0. Since β(w1(X)) belongs to H2

C-alg(X; Z),
it follows that H2

C-alg(X; Z) = Zβ(w1(X)).
Thus both (i) and (ii) follow from Theorem 4.5 and Hopf’s theorem. The

last assertion is obvious.

Let Ωk be the vector space of real homogenous polynomials of degree k in
4 variables. The subset of Ωk consisting of the polynomials whose coefficients
are algebraically dependent over Q is a countable union of proper algebraic
subsets. Thus Theorem 4.12 holds for most surfaces V of degree at least 4.
Some assumption on the coefficients of the polynomial defining V is necessary.
Indeed, consider the Fermat sphere Σ2

2d as a surface in P3(R). The Zariski clo-
sure of Σ2

2d in P3(C) is nonsingular. Moreover, Σ2
2d is orientable and, according

to Theorem 4.12, the set R(Σ2
2d, S2) is dense in C∞(Σ2

2d,S2).

Theorem 4.13. Let X be a nonsingular algebraic subset of Pn(R) with
n+2 ≤ 2 dimX. Assume that the Zariski closure of X in Pn(C) is nonsingular.
Then X is irreducible and

C∞R (X,S2) = {f ∈ C∞(X,S2) | f∗(s2) ∈ e∗(H2(Pn(R); Z))},

where s2 is a generator of H2(S2; Z) and e : X ↪→ Pn(R) is the inclusion map.

Sketch of proof. Let V be the Zariski closure of X in Pn(C) and let
ρ : Pic(Pn(C)) → Pic(V ) be the homomorphism induced by the inclusion
map V ↪→ Pn(C). According to the Barth–Larsen theorem (cf. [36]), V is
irreducible and ρ is an isomorphism. In particular, X is irreducible. Moreover,
as in the proof of Theorem 4.12, we get

H2
C-alg(X; Z) = Im e∗ = e∗(H2(Pn(R); Z)).

Thus it suffices to apply Theorem 4.5.

Theorem 4.13 is of interest when dimX ≥ 3. If dimX = 2, then n = 2
and X = P2(R).

5. Regular maps from the product of real cubic curves into S2.
In this section we study the set of regular maps R(C×D,S2), where C and D
are nonsingular real cubic curves in P2(R). For proofs we refer to [14].

We first recall the classification of nonsingular cubic curves in P2(R). For
any real number α in R∗ = R \ {0}, set

τα =

{
1
2(1 + α

√
−1) if α > 0

α
√
−1 if α < 0.
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The numbers

g2(τα) = 60
∑
ω∈Λ′α

ω−4, g3(τα) = 140
∑
ω∈Λ′α

ω−6,

where Λα = Z + Zτα is a lattice in C and Λ′α = Λα \ {0}, are real and

Dα = {(x : y : z) ∈ P2(R) | y2z = 4x3 − g2(τα)xz2 − g3(τα)z3}
is a nonsingular cubic curve in P2(R) (cf. [32]). Each nonsingular cubic curve
in P2(R) is biregularly isomorphic to exactly one cubic Dα. Thus R∗ can be
regarded as a moduli space of nonsingular cubic curves in P2(R). For α > 0
(resp. α < 0) the cubic Dα is connected (resp. has 2 connected components).
The Zariski closure Eα of Dα in P2(C) is a complex elliptic curve. For each
α ∈ R∗ there is precisely one β ∈ R∗, β 6= α, such that the complex elliptic
curves Eα and Eβ are isomorphic: β = −α if α2 = 1 and β = 1/α otherwise.
The corresponding real cubics Dα and Dβ are said to be associated.

Theorem 5.1. Let C and D be nonsingular cubic curves in P2(R). Then
C×D can be oriented in such a way that for each map f in R(C×D,S2), the
topological degree deg(f |A) of the restriction of f to a connected component A
of C ×D is independent of the choice of A. Moreover,

DegR(C,D) = {m ∈ Z |m = deg(g|A), g ∈ R(C ×D,S2)}
is a subgroup of Z.

Let b(C,D) be the nonnegative integer defined by DegR(C,D) = b(C,D)Z.
For C×D connected, b(C,D) coincides with the invariant b(C×D) introduced
in Section 4.

Assuming that C × D is oriented as in Theorem 5.1, a smooth map h :
C ×D → S2 can be approximated by regular maps if and only if deg(h|A) is
a multiple of b(C,D) and does not depend on A. In particular, R(C ×D,S2)
is dense in C∞(C ×D,S2) (resp. R(C ×D,S2) contains only null homotopic
maps) if and only if C ×D is connected and b(C,D) = 1 (resp. b(C,D) = 0).

For (α, β) in R∗ × R∗, set b(α, β) = b(Dα, Dβ). The explicit formulas for
b(α, β) are given in [14]. Here we only characterize the pairs (α, β) for which
b(α, β) = 0 and give the values for b(α, α).

Theorem 5.2. For α and β in R∗, the following conditions are equivalent:
(a) Every map in R(Dα ×Dβ,S2) is null homotopic.
(b) b(α, β) = 0.
(c) αβ is in R \Q.

It follows that the set of pairs (α, β) in R∗ ×R∗ for which the set R(Dα ×
Dβ,S2) contains a homotopically nontrivial map is very small. It is contained
in the union of a countable family of hyperbolas in R2.
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Corollary 5.3. For α in R∗, the following conditions are equivalent:
(a) There exists a homotopically nontrivial map in R(Dα ×Dα,S2).
(b) α2 is in Q.
(c) The complex elliptic curve Eα has complex multiplication.

Since b(α, α) = 0 if and only if α2 is in R∗ \Q, we now examine the values
of b(α, α) for α2 in Q.

Theorem 5.4. (i) If α = (p/q)
√
d, where p, q, d ∈ Z+, (p, q) = 1 and d

is square free, then

b(α, α) =


q2/(p, q) if d ≡ 3 (mod 4) and pq ≡ 1 (mod 2)
2q2/(p, q) if d ≡ 1 (mod 4) and pq ≡ 1 (mod 2)
4q2/(p, q) if pqd ≡ 0 (mod 2).

(ii) If α < 0 and α2 = p/q, where p, q ∈ Z+ and (p, q) = 1, then

b(α, α) = q.

The following density result is of particular interest.

Theorem 5.5. Let C1, . . . , Cn be nonsingular cubic curves in P2(R) and
let X = C1 × · · · × Cn, n ≥ 2. Then the following conditions are equivalent:

(a) R(X,S2) is dense in C∞(X,S2).
(b) The Ci are connected and b(Ci, Cj) = 1 for all i 6= j.
(c) Each Ci is biregularly isomorphic to Dαi with αi = (pi/qi)

√
d, pi, qi, d ∈

Z+, (pi, qi) = 1, d square free, d ≡ 3 (mod 4), where for all i 6= j, one
has pipjqiqj ≡ 1 (mod 2) and pipjd is divisible by qiqj.

In particular, (a) holds only for a countable collections of n-tuples of cubics.

Corollary 5.6. For a nonsingular real cubic curve C in P2(R), the set
R(Cn,S2) is dense in C∞(Cn,S2), n ≥ 2, if and only if C is biregularly iso-
morphic to Dα with α =

√
4k − 1 for some k ∈ Z+.

The next corollary plays a crucial role in the proof of Theorem 4.4 (iii).

Corollary 5.7. Let b a positive integer and let α =
√

(4b− 1)/b. Then
Dα is connected and b(Dα, Dα) = b.

We now examine consequences of the results above for cubic curves in P2(R)
defined over Q. It is well known that there exist (up to isomorphism) exactly
13 complex elliptic curves, defined over Q, with complex multiplication. These
are the curves Eα with α in

Γ = {−
√

7,−
√

3,−
√

2,−2,−1,
√

3, 3
√

3,
√

7,
√

11,
√

19,
√

43,
√

67,
√

163}
(cf. [32, p. 233]). It follows, making use of Corollary 5.3, that there are pre-
cisely 26 nonsingular cubic curves in P2(R), defined over Q, with b(C,C) 6=0.
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Since the j-invariant of Eα for α ∈ Γ is explicitly known (cf. [32, p. 233]), we
can produce explicit equations of these 26 real cubics. Let

Ω1 = {3, 7, 11, 19, 27, 43, 67, 163}, Ω2 = {8, 12, 16, 28},
Ω = Ω1 ∪ Ω2 ∪ {4}.

For k ∈ Ω, define nonsingular cubic curves Ak and A∗k in P2(R) by the following
affine equations:

A3 : y2 = x3 − 1, A∗3 : y2 = x3 + 1 if k = 3

A4 : y2 = x3 − x, A∗4 : y2 = x3 + x if k = 4

Ak : y2 = 4x3 − akx− ak, A∗k : y2 = 4x3 − akx+ ak if k > 4,

where ak = 27jk/(jk − 1728) and

k 7 11 19 27 43 67 163
−jk (3·5)3 215 (25 ·3)3 215 ·3·53 (26 ·3·5)3 (25 ·3·5·11)3 (26 ·3·5·23·29)3

k 8 12 16 28
jk (2 · 3 · 11)3 24 · 33 · 53 (22 · 5)3 (3 · 5 · 17)3

The curves Ak, A∗k for k ∈ Ω1 (resp. k ∈ Ω2) and A∗4 (resp. A4) are connected
(resp. disconnected). Observe that jk is the j-invariant of Ak and A∗k, and
that no two of these real 26 cubics are isomorphic. In particular, each pair
(Ak, A∗k) is a pair of associated cubics. It can be shown that

Ak (resp. A∗k) is isomorphic to D√k (resp. D1/
√
k) for k ∈ Ω1,

Ak (resp. A∗k) is isomorphic to D−
√
k/2 (resp. D−2/

√
k) for k ∈ Ω2,

A4 (resp. A∗4) is isomorphic to D−1 (resp. D1).
Taking all these into account, one obtains several interesting results.

Theorem 5.8. There exist (up to isomorphism) exactly 18 unordered pairs
{C,D} of nonsingular cubic curves in P2(R), defined over Q, such that R(C×
D,S2) is dense in C∞(C×D,S2). These unordered pairs are {Ak, Ak}, {Ak, A∗k}
for k ∈ Ω1, {A3, A27} and {A∗3, A27}.

More generally, there exist (up to isomorphism) exactly 28 unordered pairs
{C,D} of connected nonsingular cubic curves in P2(R), defined over Q, with
b(C,D) odd.

Example 5.9. Consider the following compact connected nonsingular
curves in R2:

C1 :x2 + 3y4 + 6y2 = 1

C2 :x2 + y4 = 1

C3 :x2 + 3y4 − 6y2 = 1.
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One can show that C1, C2, C3 are isomorphic to A3, A∗4, A∗3, respectively. It
follows that b(Ck × Ck) = k for k = 1, 2, 3. In particular, R(C1 × C1, S2) is
dense in C∞(C1×C1,S2), but a map f in C∞(Ck×Ck, S2) can be approximated
by regular maps if and only if deg(f) is in kZ for k = 2, 3.

Theorem 5.10. There exist (up to isomorphism) precisely 26 nonsingular
cubic curves C in P2(R), defined over Q, with b(C,C) 6= 0. These cubics are
Ak, A∗k for k ∈ Ω, and one has

b(C,C) =


1 for C ∼= Ak, k ∈ Ω,
k for C ∼= A∗k, k ∈ Ω1,
k/4 for C ∼= A∗k, k ∈ Ω2,
2 for C ∼= A∗4.

Arithmetical digression. The following famous statement was considered by
Gauss and proved in 1966 independently by Baker and Stark: There exist
exactly 9 imaginary quadratic fields Q(

√
−d), d = 1, 2, 3, 7, 11, 19, 43, 67, 163,

for which the ring of algebraic integers is factorial (equivalently, there exist
exactly 13 binary integral positive primitive quadratic forms with class num-
ber 1), cf. [42]. Strangely enough, Theorem 5.10 is equivalent to the Gauss
problem.

Observe that {−∆ |∆ ∈ Ω} is the set of discriminants of binary integral
positive primitive quadratic forms with class number 1, and that the set

{b ∈ Z+ | b = ∆/(∆, 4), ∆ ∈ Ω}

coincides with the set

{b ∈ Z+ | b = b(C,C), C ⊂ P2(R) is a nonsingular cubic defined over Q}.

6. Regular maps into real rational surfaces. Recent papers [4, 30],
extending earlier results [22, 23], give a surprizing classification of real rational
surfaces.

Theorem 6.1. Two compact nonsingular real rational surfaces are biregu-
larly isomorphic if and only if they are homeomorphic.

Compact nonsingular real rational surfaces are classified, up to biregular
isomorphism, as follows. There are exactly two orientable rational surfaces, S2

and S1×S1. For each positive integer g, there exists exactly one nonorientable
rational surface of topological genus g, namely the surface obtained by blowing
up S2 at any g distinct points.

The first proof of Theorem 6.1 given in [4] was simplified in [30]. The key
result of [30] is the following:
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Theorem 6.2. Let Y be a compact nonsingular real rational surface. For
any two systems {a1, . . . , ak} and {b1, . . . , bk} of k points of Y, there exists a
biregular isomorphism ϕ : Y → Y with ϕ(ai) = bi for i = 1, . . . , k.

The structure of C∞R (−, Y ), where Y is a real rational surface, is fully
controlled by the invariants H1

alg(−; Z/2) and H2
C-alg(−; Z).

Theorem 6.3. Let X be a compact nonsingular real algebraic variety and
let Y be a compact nonsingular real rational surface. For a smooth map
f : X → Y , the following conditions are equivalent:

(a) f can be approximated by regular maps.
(b) f is homotopic to a regular map.
(c) Either Y is homeomorphic to S2 and f∗(H2(Y ; Z)) ⊆ H2

C-alg(X; Z), or
Y is not homeomorphic to S2 and f∗(H1(Y ; Z/2)) ⊆ H1

alg(X; Z).
The proof is given in [33]. Some steps in it can be simplified since Theorem

6.1 is now available.

Theorem 6.4. Let X and Y be compact nonsingular real rational surfaces.
If X is homeomorphic to S1 × S1 and Y is homeomorphic to S2, then the
set R(X,Y ) contains only null homotopic maps. In all other cases, the set
R(X,Y ) is dense in C∞(X,Y ).

Proof. It follows from the classification of real rational surfaces that
H1

alg(X; Z/2) = H1(X; Z/2). Moreover, H2
C-alg(X; Z) = 0 if X is homeomor-

phic to S1 × S1, and H2
C-alg(X; Z) = H2(X; Z) otherwise. Thus is suffices to

make use of Theorem 6.3.

7. Regular maps into S4. Behind the results presented in Sections 3, 4
and 5 is the existence of biregular isomorphisms S1 ∼= P1(R) and S2 ∼= P1(C)R.
In this section we make use of the quaternions H and the quaternion projective
line P1(H). Identifying H with R4, we regard P1(H) as a real algebraic variety.
The map

P1(H)→ S4, (u : v)→

(
2uv

|u|2 + |v|2
,
|u|2 − |v|2

|u|2 + |v|2

)

is a biregular isomorphism, which is used to identify P1(H) with S4.
A topological H-vector bundle on a real algebraic variety X is said to admit

an algebraic structure if it is topologically isomorphic to an algebraic H-vector
subbundle of the trivial H-vector bundle X × Hn for same n. Clearly, the
universal H-line bundle γ on P1(H) = S4 admits an algebraic structure.
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Theorem 7.1. Let X be a compact nonsingular real algebraic variety. For
a smooth map f : X → S4, the following conditions are equivalent:

(a) f can be approximated by regular maps.
(b) f is homotopic to a regular map.
(c) The H-line bundle f∗γ on X admits an algebraic structure.

The proof of this theorem follows in general lines that of Theorem 2.4. (cf.
[7] for details).

Corollary 7.2. The set R(Sn,S4) is dense in C∞(Sn, S4) for all n ≥ 1.

Proof. Every H-vector bundle on Sn admits an algebraic structure (cf.
[46, Theorem 11.1.], where this fact is expressed in terms of projective mod-
ules), and hence it suffices to apply Theorem 7.1.

When a topological H-vector bundle ξ is regarded as a C-vector bundle,
we indicate this by writing ξC. Denote by H4

H-alg(X; Z) the subset of H4(X; Z)
consisting of all cohomology classes of the form c2(ξC), where ξ is an H-vector
bundle on X admitting an algebraic structure. Since c1(ξC) = 0, it follows
that H4

H-alg(X; Z) is a subgroup of H4(X; Z). If f : X → Y is a regular map
between real algebraic varieties, then

f∗(H4
H-alg(Y ; Z)) ⊆ H4

H-alg(X; Z).

Example 7.3. We have H4
H-alg(S4; Z) = H4(S4; Z) since s4 = c2(γC) is a

generator of H4(S4; Z).

Theorem 7.4. Let X be a compact nonsingular real algebraic 4-fold. For
a smooth map f : X → S4, the following conditions are equivalent:

(a) f can be approximated by regular maps.
(b) f is homotopic to a regular map.
(c) f∗(s4) is in H4

H-alg(X; Z).

Sketch of proof. The equivalence of (a) and (b) follows from Theorem
7.1. In view of Example 7.3 and the functoriality of H4

H-alg(−; Z), condition
(b) implies (c).

Suppose that (c) holds and f∗(s4) = c2(ξC), where ξ is an H-vector bundle
on X admitting an algebraic structure. Since dimX = 4, it can be assumed
that ξ is an H-line bundle, and hence ξ is isomorphic to the pullback g∗γ for
some smooth map g : X → S4. According to Theorem 7.1, we may assume
that g is a regular map. Since

g∗(s4) = g∗(c2(γC)) = c2((g∗γ)C) = c2(ξC) = f∗(s4),

the maps f and g are homotopic by virtue of Hopf’s theorem. Thus (c) implies
(b).
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Theorem 7.4 with X connected and orientable is equivalent to [9, Theorem
5.1, Proposition 5.3]. For such a 4-fold X, we have

H4
H-alg(X; Z) = b4(X)H4(X; Z),

where b4(X) is a uniquely determined nonnegative integer. According to The-
orem 7.4 and Hopf’s theorem,

C∞R (X,S4) = {f ∈ C∞(X,S4) |deg(f) ∈ b4(X)Z},
where deg(f) denotes the topological degree of f . In particular, the set
R(X,S4) is dense in C∞(X,S4) (resp. R(X,S4) contains only null homotopic
maps) if and only if b4(X) = 1 (resp. b4(X) = 0).

Example 7.5. Let p and q be positive integers. If p is even, then the map
ψ : Sp × Sq → Sp+q defined by

ψ(x0, . . . , xp, y0, . . . , yq) = (y0x0, . . . , y0xp, y1, . . . , yq)

is of topological degree 2. In particular, b4(S2 × S2) = 1 or b4(S2 × S2) = 2. It
is not known if there is a regular map form S2 × S2 into S4 of odd topological
degree. The existence of such a map would, of course, imply b4(S2 × S2) = 1.

The group H4
H-alg(−; Z) is very hard to compute. Therefore it is useful to

compare it to the group H4
C-alg(−; Z) introduced in Section 4. Recall that the

first Pontryagin class p1(−) is in H4
C-alg(−; Z).

Proposition 7.6. If X is a compact nonsingular real algebraic variety,
then

2H4
C-alg(X; Z) ⊆ H4

H-alg(X; Z).

In particular, 2p1(X) is in H4
H-alg(X; Z).

Sketch of proof. Let (V, j) be a nonsingular projective complexifica-
tion of X and let U be an affine Zariski open subset of V , defined over R,
containing V (R). Let e : X → U be defined by e(x) = j(x) for all x in X.

Each cohomology class w in H4
C-alg(X; Z) is of the form w = j∗(v) for some

v in H4
alg(V ; Z). Clearly, w = e∗(u), where u in H4(U ; Z) is the restriction of

v. According to Grothendieck’s formula [27, Example 15.3.6], there exists an
algebraic (complex) vector bundle ζ on U with c1(ζ) = 0 and c2(ζ) = u. The
pullback η = e∗ζ is an algebraic C-vector bundle on X with c1(η) = 0 and
c2(η) = w. The quaternionification ξ = η ⊗C H of η is an H-vector bundle on
X admitting an algebraic structure. The topological C-vector bundles ξC and
η ⊕ η, where η is the conjugate of η, are isomorphic. The cohomology class

c2(ξC) = c2(η ⊕ η) = −c1(η) ∪ c1(η) + 2c2(η) = 2w

is in H4
H-alg(X; Z). Thus 2H4

C-alg(X; Z) ⊆ H4
H-alg(X; Z), as asserted.
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Example 7.7. According to Example 4.1 (ii), Theorem 7.4 and Proposition
7.6, for the Fermat 4-sphere of degree 2k, we have b4(Σ4

2k) = 1 or b4(Σ4
2k) = 2.

If k is odd, then the map

Σ4
2k → S4, (x1, . . . , x5)→

(
xk1, . . . , x

k
5

)
is regular of topological degree 1, and hence b(Σ4

2k) = 1. Thus the set
R(Σ4

4l+2,S4) is dense in C∞(Σ4
4l+2,S4) for all l ≥ 0. No example with b4(Σ4

4l) =
2 and l ≥ 1 is known.

Theorem 7.8. Let X be a compact nonsingular real algebraic 4-fold and
let f : X → S4 be a smooth map.

(i) If f∗(s4) is in 2H4
C-alg(X,Z), then f can be approximated by regular maps.

(ii) If f∗(s4) is a multiple of 2p1(X), then f can be approximated by regular
maps.

Proof. It suffices to apply Theorem 7.4 and Proposition 7.6.

It should be noted that the assumption in Theorem 7.8 (ii) is purely topo-
logical.

A simple but important numerical invariant of compact oriented smooth
manifolds M is the signature σ(M) (cf. [40]). The following result comes
from [9].

Theorem 7.9. Let X be a compact nonsingular real algebraic 4-fold and
let f : X → S4 be a smooth map. If X is connected and oriented, and deg(f)
is a multiple of 6σ(X), then f can be approximated by regular maps.

Proof. According to the signature theorem [40, p. 224], 3σ(X) is the
Pontryagin number of X. If deg(f) is a multiple of 6σ(X), then f∗(s4) is a
multiple of 2p1(X). If suffices to apply Theorem 7.8 (ii).

Example 7.10. Let X be a nonsingular real algebraic variety homeomor-
phic to P2(C). Then every smooth map from X into S4 of topological degree
divisible by 6 can be approximated by regular maps. Indeed, the assertion
follows from Theorem 7.9 since σ(X) = 1.

Theorem 7.11. Let M be a compact connected oriented smooth manifold
of dimension 4. Then the following conditions are equivalent:

(a) M is the boundary of a compact orientable smooth manifold.
(b) σ(M) = 0
(c) There exists an algebraic model X of M such that every regular map

from X into S4 is null homotopic.
Of course, the equivalence of (a) and (b) is well known (cf. [40]). According

to Theorem 7.9, condition (c) implies (b). For the proof that (a) implies (c)
we refer to [9].
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8. Homotopy classes of regular maps into spheres. Recall that
R(Sn,Sp) is dense in C∞(Sn, Sp) for all n ≥ 1 and p = 1, 2 or 4 (cf. Sections
3, 4 and 7). If p is a positive integer different from 1, 2 and 4, no example is
known of a compact nonsingular real algebraic variety X with dimX ≥ p and
R(X,Sp) dense in C∞(X,Sp). There are, however, several results concerning
homotopy classes represented by regular maps from X into Sp.

Fixing a generator sp of Hp(Sp; Z), to each continuous map f : X → Sp
we assign the cohomology class f∗(sp) in Hp(X; Z). The correspondence f →
f∗(sp) gives rise to a map

ρp : πp(X)→ Hp(X; Z)

defined on the set of homotopy classes of continuous maps form X into Sp.
If dimX ≤ 2p − 2, then πp(X) forms an Abelian group, called the pth

cohomotopy group of X, and ρp is a group homomorphism (cf. [31]). Both
the kernel and the cokernel of ρp are finite groups (cf. [45, p. 289, Proposition
2’]). In particular, πp(X) is a finitely generated Abelian group with

rankπp(X) = rankHp(X; Z).

According to Hopf’s theorem, ρp is a group isomorphism if dimX = p. Of
interest to us is the subset πpalg(X) of πp(X) consisting of the homotopy classes
represented by regular maps from X into Sp. It is not known whether πpalg(X)
is a subgroup of πp(X) (it is so if dimX = p with p = 2 or 4, or with p odd; cf.
Theorems 4.5, 7.4 and Theorem 8.1). We let πpalg(X) denote the subgroup of
πp(X) generated by πpalg(X). Clearly, πpalg(X) = 0 if and only if every regular
map from X into Sp is null homotopic.

Theorem 8.1. If p is odd and dimX ≤ 2p − 2, then 2πp(X) ⊆ πpalg(X).
In particular,

rankπpalg(X) = rankπp(X).

Moreover, if X is connected with dimX = p odd, then πpalg(X) = πp(X) or
πpalg(X) = 2πp(X).

For the proof we refer to [8] or [6]. No example is known with πpalg(X) =
2πp(X) in the last assertion of Theorem 8.1.

We encounter a radically different behavior of the group πpalg(X) for p even.
If dimX ≤ 4k−2, then the homomorphism ρ2k : π2k(X)→ H2k(X; Z) satisfies

ρ2k(π2k
alg(X)) ⊆ H2k

C - alg(X; Z).

This claim follows immediately from the functoriality of H2k
C - alg(−; Z) and Ex-

ample 4.1(ii). In particular,

rankπ2k
alg(X) ≤ rankH2k

C - alg(X; Z).
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Since rankH2k
C - alg(X; Z) can be “small” as compared to rankH2k(X; Z), we

obtain that rankπ2k
alg(X) can be “small” as compared to rankπ2k(X). This

informal remark is illustrated by Theorems 8.2, 8.3, 8.5 and 8.6 below.

Theorem 8.2. Let Y be a compact nonsingular real algebraic variety of
dimension 2k− l, with l odd. Then π2k

alg(Y ×Sl) = 0, that is, every regular map
from Y × Sl into S2k is null homotopic.

Proof. Since ρ2k : π2k(Y × Sl) → H2k(Y × Sl; Z) is an isomorphism, it
suffices to prove that H2k

C - alg(Y × Sl; Z) = 0. To this end we define

W = {(z1 : . . . : zl+2) ∈ Pl+1(C) | z2
1 + . . .+ z2

l+1 = z2
l+2},

e : Sl →W, e(x1, . . . , xl+1) = (x1 : . . . , xl+1 : 1).

Obviously, (W, e) is a nonsingular projective complexification of Sl. Since
l is odd, we have H l(W ; Z) = 0 (cf. [25, pp. 43, 153]). Consequently,
e∗(Hq(W ; Z)) = 0 in Hq(Sl; Z) for all q ≥ 1. If (V, j) is a nonsingular projec-
tive complexification of Y , then (V ×W, j× e) is that of Y ×Sl. By Künneth’s
theorem, (j × e)∗(H2k(V ×W ; Z)) = 0, and hence H2k

C - alg(Y × Sl; Z) = 0, as
required.

Theorem 8.2 comes from [9]. For Y orientable, a proof based on K-theory
is given in [8] and [6]. This theorem inspired [43], where a different proof can
be found.

Theorem 8.3. Let d1, . . . , dr be positive integers, with r ≥ 2, and let d =
d1 + . . .+ dr. Then the following conditions are equivalent:

(a) Every regular map from Sd1 × . . .× Sdr into Sd is null homotopic.
(b) The integer d is even and at least two of the integers d1, . . . , dr are odd.

Proof. Making use of Theorem 8.1 and Example 7.5, we conclude that
(a) implies (b) (Theorem 8.1 is not required if r = 2). According to Theorem
8.2, condition (b) implies (a).

A different proof of Theorem 8.3, based on K-theory, is presented in [8] and [6].
For any smooth manifold M and any nonnegative integer k, let P 4k(M)

denote the subgroup of H4k(M ; Z) generated by all cup products pi1(M) ∪
. . .∪ pir(M), with i1 + . . .+ ir = k, of the Pontryagin classes of M . In general,
P 4k(M) is a “small” subgroup of H4k(M ; Z). If X is a compact nonsingular
real algebraic variety, then P 4k(X) ⊆ H4k

C - alg(X; Z) (cf. Section 4).

Theorem 8.4. Any compact connected orientable smooth manifold has an
algebraic model X such that the groups H4k+2

C - alg(X; Z) and H4k
C - alg(X; Z)/P 4k(X)

are finite for all k ≥ 0.
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For the proof we refer to [35, Theorem 1.4].

Theorem 8.5. Any compact connected orientable smooth manifold M has
an algebraic model X such that

(i) π4k+2
alg (X) is a finite group for k ≥ 0 with dimM ≤ 8k + 2,

(ii) rankπ4k
alg(X) ≤ rankP 4k(M) for k ≥ 1 with dimM ≤ 8k − 2.

Proof. If X is an algebraic model of M as in Theorem 8.4, then both (i)
and (ii) are satisfied.

Theorem 8.6. Let M be a compact connected oriented smooth manifold of
dimension 2k. If k is even, assume that the disjoint union of two copies of M
is an oriented boundary. Then there exists an algebraic model X of M such
that every regular map from X into S2k is null homotopic.

Proof. Recall that a compact oriented smooth manifold is said to be an
oriented boundary if it is the boundary, with induced orientation, of a compact
oriented smooth manifold with boundary. If k is even, then P 2k(M) = 0
(cf. [40, Lemma 17.3]). Hence, according to Theorem 8.5, there exists an
algebraic model X of M such that the group π2k

alg(X) is finite. Consequently,
π2k

alg(X) = 0, the group π2k(X) being infinite cyclic.

Theorem 8.6 comes from [35]. A special case was earlier proved in [9].
Smooth manifolds also have algebraic models with properties opposed to

those exhibited in Theorems 8.5 and 8.6.

Theorem 8.7. Any compact smooth manifold M has an algebraic model X
such that πpalg(X) = πp(X) for all positive integers p satisfying dimM ≤ 2p−2.
Moreover, πpalg(X) = πp(X) for p = dimM .

For the proof we refer to [8, 35].
The question whether every continuous map from Sn into Sp is homotopic

to a regular map, for all pairs (n, p) with n ≥ p ≥ 1, remains open and seems to
be a hard problem. The answer is known to be affirmative for some pairs (n, p)
(cf. [6, 8, 44, 50]). For example, it is so for n = p. Actually, for each integer
d, one can find an explicit formula for a regular map Sn → Sn of topological
degree d (cf. [8, 50] and [6]).

Working with real algebraic sets it is also natural to consider polynomial
maps between them. For algebraic subsets X ⊆ Rn and Y ⊆ Rp, a map
f = (f1, . . . , fp) : X → Y is said to be a polynomial map if each component
fj : X → R is the restriction of a polynomial function from Rn into R. The
behavior of polynomial maps is quite different from the behavior of regular
maps. For example, each polynomial map from Sn into Sp is constant, provided
that n ≥ 2m > p for some integer m (cf. [50] or [6]). On the other hand, as
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we already know, R(Sn,Sp) is dense in C∞(Sn, Sp) for p = 1, 2 or 4. More on
polynomial maps between spheres can be found in [6, 49, 50].

The following result should be compared with Theorem 8.3.

Theorem 8.8. Let d1, . . . , dr be positive integers, with r ≥ 2, and let d =
d1 + . . .+ dr. Then the following conditions are equivalent:

(a) Every polynomial map from Sd1 × · · · × Sdr into Sd is null homotopic.
(b) At least two of the integers d1, . . . , dr are odd.

The proof can be found in [12] or [6]. Special cases of Theorems 8.2, 8.3
and 8.8, only for polynomial maps, are proved in [37].
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