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Abstract. Artificial intelligence methods for MT data processing are 

proposed. Distortions having a complex structure created by external 

artificial sources such as, for example, passing train were investigate. In 

the first part of this paper the time intervals with such type of 

distortions were found by using a special neuronal system. Next for time 

intervals found in the first stage the measure curve fragment is removed 

and then it is replied by the fragment created by a trained perceptron. 

The experiment showed that used method are effective. 

Keywords: MT data, neural network. 

1.  Introduction 

Magnetotelluric (MT) is a one of the most popular and commonly used 

passive geophysical method. It is widely used in deep lithosphere research but 

recently a growing number of examples of using MT method in hydrocarbon 
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prospecting and earthquake prediction are observed. Magnetotelluric applies 

measuring of fluctuations in natural electric (E) and magnetic (H) fields in 

orthogonal directions at the surface of the Earth to determining the 

conductivity structure of the Earth at depths ranging from tens of meters to 

several hundreds of kilometers.  

 

 
 

Fig. 1. Simplified scheme of MT processing and interpretation 
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The fundamental theory of magnetotelluric was first proposed by Tikhonov 

[1], and Cagniard [2]. Magnetotelluric data, called amplitude and phase 

sounding curves, are usually obtained by processing of measured time series, 

which describe electromagnetic variations in particular point on Earth 

surface. Sounding curves are next interpreted with various inversion methods 

(Fig. 1). But quality of magnetotelluric data often suffers from high noise 

level. The most common sources of this noise such as railways, electrical 

devices, thunderstorms etc. are very hard to avoid especially in urbanized 

areas. Typically MT signals are recorded in two separated points (measuring 

point and remote reference point) and then these two records are processed 

together. Fragments with high noise level are simply removed. But sometimes 

noise sources like for example DC railways are so intensive that whole record 

is affected and traditional processing is pointless. In this case, to obtain a solid 

sounding curve with limited error from raw and very noisy time series other, 

more effective and sophisticated method of noise reduction is needed. 

Nowadays the most promising ways of reduction of steady shape intensive 

noises are based on methods of artificial intelligence [3, 4, 5].  

2.  Recognition and elimination distortions caused by trains 

In order to implement automatic system for train caused distortions 

recognition and elimination, 121 data sets have been collected. Each set 

consists of two measurements: 

(a) The first one consists of two time series – )(tEx  and ),(tH y  without 

distortions. 

(b) The second one consists of two time series – )(tE x  and ),(tH y  has been 

done at the same place, with distortions caused by trains.  
 

The time series consist of 57 till about 5000 measurement points. It was input 

date for the system. 

2.1.  Recognition of train caused distortions 

The distorted intervals marking in the time series )(tEx  was the first 

task of the implemented system.  
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The data analysis showed that distortions caused by trains have a 

characteristic shape on the time series )(tEx – see Fig. 2.  

 

Fig. 2.  Train caused distortions on the xE  time series 

 

Fig. 3. An example of effect of approximating algorithm using – the time series is 

approximated by a broken line 
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2.1.1.  Train caused distortions recognition using artificial neural networks 

(ANNs) 

Learning and testing sets were prepared in the following way: 

a) The approximating broken line is calculated for each time series 

)(tE x (Fig. 3). 

b) Sequences of n  ( )1≥n  points satisfying a given criterion were chosen. 

In this paper three various criteria were used to choose sequences for 

input data: 

,):(),...,( 1 qpplappG mmnmmq ≥→⇔
++

 

,):(),...,( 1 qpplappD mmnmmq ≤→⇔
++

 

),,...,(),...,(),...,( nmmqnmmqnmmq ppDppGppO
+−++

∨⇔  

where: ):( 1+
→ mm ppla  is a slope of a straight line containing points mp  and 

1+mp , Rd ∈ . 

The criteria were applied in order to divide the set nS  into various classes 

of problems which are solved by specialized ANNs. Thus, the criterion qG  

describes sequences in which the first line segment is described by the 

ascending affined function with great value of differential coefficient whereas 

qD  corresponds to sequences in which the first line segment is described by 

the descending affined function with great absolute value of differential 

coefficient. The criterion qO  describes sequences in which the first line 

segment is described by the ascending or descending affined function with 

great absolute value of differential coefficient. 

The above criteria were used because train caused distortion begins from 

big increase or big decrease of the measured value xE . 

c) For each sequence )(),...,( KSpp nnmm ∈
+

 input vector was made. It 

was calculated in two following ways:  
 

)](),(),...,(),([),...,( 1111 nmnmnmnmmmmmnmmw ppyppxppyppxppW
+−++−++++

→→→→=  

 

)],(),:(),...,,(),:([),...,( 1111 nmnmnmnmmmmmnmmk ppdpplappdpplappW
+−++−++++

→→=  

 

where: 

)( 1+
→ mm ppx  – the first component of the vector 1+

→ mm pp , 

)( 1+
→ mm ppy  – the second component of the vector 1+

→ mm pp , 



 

 

 

 

 

 

 
80 

):( 1+
→ mm ppla  – slope of a straight line to which points mp  and 1+mp  

belong, 

),( 1+mm ppd  – Euclidean distance between points mp  and 1+mp . 

 

d) A number value was assigned to each input vector in dependence on 

the investigated fragment of the time series )(tEx  was distorted or 

not: 

 1)( =Wf  if vector W  has been obtained from distorted time series ),(tEx  

 0)( =Wf  if vector W has been obtained from undistorted time series )(tEx . 

About ¾ elements from the obtained set of pairs ))(,( WfW  were selected 

randomly and they constituted the learning set. Other elements were used as 

testing set. 

2.1.2.  ANNs architectures 

Two types of ANNs were used: 

 

a) Multilayered perceptron with one hidden layer consisting of sigmoid neurons [7]: 

x
e

xf
−

+
=

1

1
)( . 

       The output layer consists of linear neurons. 

b) Multilayer network with radial basis neurons in the hidden layer [6]: 

)),...,((),...,( 11 kk xxrfxxg = , 

              where:  

    
2

)(
k

wxxr −= β , 

   ],...,[ 1 kxxx =  – input vector, 

   ],...,[ 1 kwww =  – a neuron weights vector, 

   
k

wx −  – distance in k-dimensional Euclidean space, 

   0>β  – a parameter.  

       An activation function: 
xexf −

=)( . 

       There are linear neurons in the output layer.  

 

The efficiency of ANNs prediction was measured using Mean Absolute Error.  
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2.1.3.  The system recognizing train caused distortions 

For a given time series )(tEx  the train caused distortions recognizing 

algorithm is of the following form: 

1. Estimate the time series )(tEx  for a parameter δ  given by the user or 

calculated using statistic methods. 

2. For each sequence of n  broken line segments:  

a. check if the sequence satisfies one of the established criterion  

      ( qG , qD  or qO ); 

b. check the proper neural network in dependence of which criterion is 

satisfied; if none is satisfied interrupt the algorithm; 

c. construct input vector according to kW  or wW ; 

d. activate ANN for the obtained input vector; 

e. remember of the output ANN value for each point kt  from the 

investigated interval.  

3. For each point kt  of the graph the output value of the system is equal to 

arithmetic mean of all ANNs output values obtained in point 2.e.  

4. Mark intervals of time series )(tEx  on which the output value of the 

system is greater than a given bias 10 ≤≤ γ  (default value is equal  

to 0.5) as intervals with distortions. 

The scheme of the system is shown in Fig. 4. 

 

 

Fig. 4. The scheme of train caused distortions recognizing system using criteria qG  

and qD  
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2.1.4.  Obtained results 

The results are shown in Tab. 1. In systems number 4, 8, 9, 11 and 18 two 

various ANNs were used for line segments sequences satisfying criterion 4,0G  

and 4,0−
D . System 18 was the best one – its efficiency is equal to 75,13%. 

2.2.  Train caused distortions elimination 

The data set consists of 121 subsets. Each of them it is a double 

measurement of the electric Earth field with and without train caused 

distortions. The distorted signal was put onto the ANN input. To return a 

time series like to the corresponding one without distortions was the ANN 

task.  

The ANN has one hidden layer with sigmoidal neurons or radial-based 

neurons and linear neurons in the output layer. The number of neurons in the 

output layer was equal to the size of the input vector. 

 

 

Tab. 1.  Distortions recognition results. Notations: RFB – radial based network – 

neural Network with radial neuron in the hidden layer; WP – multilayer perceptron; 

δ  parameter determined for each time series using statistic methods 

 

The 

system 

number  

Parameter  

δ  

Input 

vector 

size 

How the 

input 

vector was 

determined 

Criterion 

Number of 

neurons in 

hidden layer 

 

ANN 

type 

MAE for 

testing set 

 

Efficiency 

1 0,8 20 kW  4,0G  120 RFB 0,3833 72,15% 

2 0,8 20 kW  4,0G  6 WP 0,3961 71,81% 

4,0G  30 WP 0,3621 
3 0,8 30 kW  

4,0−
D  31 RFB 0,3773 

74,43% 

4,0G  5 WP 0,3649 
4 0,8 30 kW  

4,0−
D  8 WP 0,3941 

73,51% 

5 1,3 10 wW  4,0G  15 WP 0,368 61,49% 

6 1,3 20 wW  4,0O  63 RFB 0,3689 68,01% 
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The 

system 

number  

Parameter  

δ  

Input 

vector 

size 

How the 

input 

vector was 

determined 

Criterion 

Number of 

neurons in 

hidden layer 

 

ANN 

type 

MAE for 

testing set 

 

Efficiency 

7 1,3 20 wW  4,0G  6 WP 0,3912 63,36% 

4,0G  22 WP 0,3769 
8 1,3 20 kW  

4,0−
D  5 WP 0,3877 

68,03% 

4,0G  3 WP 0,39 
9 1,3 20 kW  

4,0−
D  5 WP 0,3877 

67,52% 

10 1,3 30 kW  4,0O  5 WP 0,3727 65,35% 

4,0G  2 WP 0,3487 
11 1,3 30 kW  

4,0−
D  4 WP 0,3669 

66,17% 

12 1,3 30 wW  4,0G  23 WP 0,3545 67,22% 

13 1,3 40 wW  4,0O  18 RFB 0,359 61,59% 

14 1,3 40 wW  4,0G  43 WP 0,3396 66,17% 

15 1,3 40 wW  4,0−
D  102 RFB 0,302 62,03% 

16 variable 10 kW  4,0G  6 WP 0,4119 64,79% 

17 variable 30 kW  4,0O  46 RFB 0,401 70,46% 

4,0G  50 WP 0,378 
18 variable 30 wW  

4,0−
D  8 WP 0,3831 

75,13% 

19 variable 40 wW  4,0G  51 RFB 0,3901 71,55% 

20 variable 40 kW  4,0−
D  24 RFB 0,3922 68,82% 

21 variable 40 kW  4,0−
D  6 RFB 0,3992 68,40% 

 

 

Learning and testing sets were constructed in the following way: 

1. Each time series )(tEx  was divided into fragments consisted of M  

points. 

2. Each obtained fragment )(tFk  was divided into m sub-fragments and the 

integral of each fragment has been calculated.  
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4. The ¾ of the data set was used as the learning set and ¼ as the testing 

set. 

  

The used data it is about 15% of needed data being necessary for learning 

the ANNs with the highest efficiency. Results are shown in Tab. 2 and Tab. 3. 

In Tab. 2 there are results that were obtained for the smaller data set 

consisted of 74 measurement subsets. In Tab. 3 there are result for bigger 

data set consisted of 121 measurement subsets. It is noticed that for the 

bigger data set the result is changed significantly. 

 

 

Tab. 2.  Neural networks training results. The networks were used for elimination of 

train caused distortions. Notations: RFB – radial based network – neural Network 

with radial neuron in the hidden layer; WP – multilayer perceptron 

 

Index M  m  

Number 

of 

neurons 

in the 

last 

layer  

 

ANN 

type 

Number 

of 

hidden 

neurons 

MAE for 

learning 

set 

MAE for 

testing 

set 

Cardinality 

of the 

learning 

set 

Cardinality 

of the 

testing set 

Weights 

number 

in the 

neural 

network 

1 600 12 50 RFB 12 11,409 19,899 49 16 1200 

2 300 12 25 RBF 10 19,89 23,565 142 47 500 

3 300 6 50 RFB 11 10,108247 13,112735 142 47 1100 

4 150 6 25 WP 20 152,93 179,178 324 108 1000 

5 150 6 25 RFB 10 11,003 13,101 324 108 500 

6 150 6 25 RFB 21 11,061 12,044 324 108 1050 
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Tab. 3.  Results for ANNs used for train caused distortions elimination. Notations: 

RFB – radial based network – neural Network with radial neuron in the hidden layer; 

WP – multilayer perceptron 

 

Index M  m  

Number 

of 

neurons 

in the 

last 

layer 

ANN 

type 

Number 

of 

hidden 

neurons 

MAE 

for 

learning 

set 

MAE 

for 

testing 

set 

Cardinality  

of the 

learning 

set 

Cardinality 

of the 

testing set 

Weights 

number 

in the 

neural 

network 

1 600 12 50 RFB 6 16,367 24,855 38 12 600 

2 300 12 25 RBF 10 22,959 28,115 105 35 500 

3 300 6 50 RFB 16 10,020 15,669 105 35 1600 

4 150 6 25 RFB 27 11,070 15,294 239 80 1350 

3.  Concluding remarks 

In the case of train caused distortions the results should be regarded as 

preliminary because the number of learning examples is about 15% of the 

needed number. However, even is such situation the system achieved 75% 

efficiency, which, in this context, is a quite good result. In the case of ANNs 

which removes train caused distortions the results are very promising. To 

enlarge the learning set of about 50 examples improved outcomes signifi-

cantly. This probably means that the obtained results can be improved by 

adding next examples to the learning set. 
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